Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,24 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
## Usage
|
| 5 |
+
|
| 6 |
+
```python
|
| 7 |
+
import torch
|
| 8 |
+
from informer_models import InformerConfig, InformerForSequenceClassification
|
| 9 |
+
|
| 10 |
+
# Loading the model
|
| 11 |
+
model = InformerForSequenceClassification.from_pretrained("BrachioLab/supernova-classification")
|
| 12 |
+
model.to(device)
|
| 13 |
+
model.eval()
|
| 14 |
+
y_true = []
|
| 15 |
+
y_pred = []
|
| 16 |
+
for i, batch in enumerate(test_dataloader):
|
| 17 |
+
print(f"processing batch {i}")
|
| 18 |
+
batch = {k: v.to(device) for k, v in batch.items() if k != "objid"}
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model(**batch)
|
| 21 |
+
y_true.extend(batch['labels'].cpu().numpy())
|
| 22 |
+
y_pred.extend(torch.argmax(outputs.logits, dim=2).squeeze().cpu().numpy())
|
| 23 |
+
print(f"accuracy: {sum([1 for i, j in zip(y_true, y_pred) if i == j]) / len(y_true)}")
|
| 24 |
+
```
|