Update README.md
Browse files
README.md
CHANGED
|
@@ -6,6 +6,78 @@ license: apache-2.0
|
|
| 6 |
The repo contains the weights for the custom architecture presented in [Bertolini et al., 2023](https://arxiv.org/abs/2302.14828).
|
| 7 |
Working example on how to load and use the model can be found in the [Git repo](https://github.com/lorenzoscottb/Dream_Reports_Annotation/tree/main/Experiments/Supervised_Learning).
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
### Cite
|
| 10 |
If you use the model, please cite the pre-print.
|
| 11 |
```bibtex
|
|
|
|
| 6 |
The repo contains the weights for the custom architecture presented in [Bertolini et al., 2023](https://arxiv.org/abs/2302.14828).
|
| 7 |
Working example on how to load and use the model can be found in the [Git repo](https://github.com/lorenzoscottb/Dream_Reports_Annotation/tree/main/Experiments/Supervised_Learning).
|
| 8 |
|
| 9 |
+
#### Use
|
| 10 |
+
|
| 11 |
+
```py
|
| 12 |
+
import torch, os
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import transformers
|
| 16 |
+
from transformers import AutoModel
|
| 17 |
+
from transformers import AutoConfig
|
| 18 |
+
from transformers import BertTokenizerFast
|
| 19 |
+
from SL_utils import *
|
| 20 |
+
|
| 21 |
+
Coding_emotions = {
|
| 22 |
+
"AN": "Anger",
|
| 23 |
+
"AP": "Apprehension",
|
| 24 |
+
"SD": "Sadness",
|
| 25 |
+
"CO": "Confusion",
|
| 26 |
+
"HA": "Happiness",
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
emotions_list = list(Coding_emotions.keys())
|
| 30 |
+
|
| 31 |
+
test_sentences = [
|
| 32 |
+
"In my dream I was follwed by the scary monster.",
|
| 33 |
+
"I was walking in a forest, sorrounded by singing birds. I was in calm and peace."
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
test_sentences_target = len(test_sentences)*[[0, 0, 0, 0, 0]]
|
| 37 |
+
test_sentences_df = pd.DataFrame.from_dict(
|
| 38 |
+
{
|
| 39 |
+
"report":test_sentences,
|
| 40 |
+
"Report_as_Multilabel":test_sentences_target
|
| 41 |
+
}
|
| 42 |
+
)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
```py
|
| 46 |
+
model_name = "bert-large-cased"
|
| 47 |
+
model_config = AutoConfig.from_pretrained(model_name)
|
| 48 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=False)
|
| 49 |
+
testing_set = CustomDataset(test_sentences_df, tokenizer, max_length=512)
|
| 50 |
+
|
| 51 |
+
test_params = {
|
| 52 |
+
'batch_size': 2,
|
| 53 |
+
'shuffle': True,
|
| 54 |
+
'num_workers': 0
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
testing_loader = DataLoader(testing_set, **test_params)
|
| 58 |
+
|
| 59 |
+
model = BERT_PTM(
|
| 60 |
+
model_config,
|
| 61 |
+
model_name=model_name,
|
| 62 |
+
n_classes=len(emotions_list),
|
| 63 |
+
freeze_BERT=False,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Load the models' weights from the pre-treined model
|
| 67 |
+
model.load_state_dict(torch.load("path/to/pytorch_model.bin"))
|
| 68 |
+
model.to("cuda")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
```py
|
| 72 |
+
outputs, targets, ids = validation(model, testing_loader, device="cuda", return_inputs=True)
|
| 73 |
+
|
| 74 |
+
corr_outputs = np.array(outputs) >= 0.5
|
| 75 |
+
corr_outputs_df = pd.DataFrame(corr_outputs, columns=emotions_list)
|
| 76 |
+
corr_outputs_df = corr_outputs_df.astype(int)
|
| 77 |
+
|
| 78 |
+
corr_outputs_df["report"] = decoded_ids = [decode_clean(x, tokenizer) for x in tqdm(ids)]
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
### Cite
|
| 82 |
If you use the model, please cite the pre-print.
|
| 83 |
```bibtex
|