File size: 4,794 Bytes
b59f460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from torch import nn 
import torch 
from method.MambaCSSM import MambaCSSM

class MambaCSSMUnet(nn.Module):

    def __init__(self, output_classes = 2):
        super(MambaCSSMUnet, self).__init__()

        #### Encoder Conv
        self.conv_block_1 = nn.Sequential(
            nn.Conv2d(6, 16, 3, 1, padding=1),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.Conv2d(16, 16, 3, 1, padding=1),
            nn.BatchNorm2d(16),
            nn.ReLU()
        )

        self.mp_block_1 = nn.MaxPool2d(2, 2, return_indices=True)

        self.conv_block_2 = nn.Sequential(
            nn.Conv2d(16, 32, 3, 1, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(32, 32, 3, 1, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU()
        )

        self.mp_block_2 = nn.MaxPool2d(2, 2, return_indices=True)

        self.conv_block_3 = nn.Sequential(
            nn.Conv2d(32, 64, 3, 1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )

        self.mp_block_3 = nn.MaxPool2d(2, 2, return_indices=True)

        self.conv_block_4 = nn.Sequential(
            nn.Conv2d(64, 128, 3, 1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )

        self.mp_block_4 = nn.MaxPool2d(2, 2, return_indices=True)

        #### Mamba


        self.mamba = MambaCSSM(num_layers=4, d_model=256,d_conv=4, d_state=16)

        
        #### Decoder Deconv
        self.mpu_block_4 = nn.MaxUnpool2d(2, 2)
        self.conv_4 = nn.Sequential(
            nn.Conv2d(256, 128, 3, 1, padding=1),
            nn.ReLU()
        )
        self.deconv_4_block = nn.Sequential(
            nn.ConvTranspose2d(128, 64, 3, 1, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(64, 64, 3, 1, padding=1),
            nn.ReLU()
        )

        self.mpu_block_3 = nn.MaxUnpool2d(2, 2)

        self.conv_3 = nn.Sequential(
            nn.Conv2d(128, 64, 3, 1, padding=1),
            nn.ReLU()
        )

        self.deconv_3_block = nn.Sequential(
            nn.ConvTranspose2d(64, 32, 3, 1, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(32, 32, 3, 1, padding=1),
            nn.ReLU()
        )

        self.mpu_block_2 = nn.MaxUnpool2d(2, 2)

        self.conv_2 = nn.Sequential(
            nn.Conv2d(64, 32, 3, 1, padding=1),
            nn.ReLU()
        )

        self.deconv_2_block = nn.Sequential(
            nn.ConvTranspose2d(32, 16, 3, 1, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(16, 16, 3, 1, padding=1),
            nn.ReLU()
        )

        self.mpu_block_1 = nn.MaxUnpool2d(2, 2)

        self.conv_1 = nn.Sequential(
            nn.Conv2d(32, 16, 3, 1, padding=1),
            nn.ReLU()
        )

        self.deconv_1_block = nn.Sequential(
            nn.ConvTranspose2d(16, 8, 3, 1, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(8, 6, 3, 1, padding=1),
            nn.ReLU()
        )

        self.conv_final = nn.Conv2d(6, output_classes, 1, 1)


    def forward(self, t1,t2):

        t = torch.cat([t1,t2], dim = 1)

        x1 = self.conv_block_1(t)
        f1, i1 = self.mp_block_1(x1)
        x2 = self.conv_block_2(f1)
        f2, i2 = self.mp_block_2(x2)
        x3 = self.conv_block_3(f2)
        f3, i3 = self.mp_block_3(x3)
        x4 = self.conv_block_4(f3)
        f4, i4 = self.mp_block_4(x4)



        b,c,h,w = f4.shape
        f4_t1 = f4[:,:c//2, :,:]
        f4_t2 = f4[:,c//2:, :,:]



        # print(f4_t1.shape)
        f4_t1 = f4_t1.view((-1, 64, 16*16))  # Adjusted for input size 256x256
        f4_t2 = f4_t2.view((-1, 64, 16*16))  # Adjusted for input size 256x256
        f5_t1,f5_t2 = self.mamba(f4_t1, f4_t2)
        f5_t1 = f5_t1.view((-1, 64, 16, 16))  # Adjust the shape for further operations
        f5_t2 = f5_t2.view((-1, 64, 16, 16))  # Adjust the shape for further operations

        f5 = torch.cat([f5_t1, f5_t2], dim = 1)


        f6 = self.mpu_block_4(f5, i4)
        f7 = self.conv_4(torch.cat((x4, f6), dim=1))
        f8 = self.deconv_4_block(f7)

        f9 = self.mpu_block_3(f8, i3, output_size=x3.size())
        f10 = self.conv_3(torch.cat((f9, x3), dim=1))
        f11 = self.deconv_3_block(f10)

        f12 = self.mpu_block_2(f11, i2)
        f13 = self.conv_2(torch.cat((f12, x2), dim=1))

        f14 = self.deconv_2_block(f13)

        f15 = self.mpu_block_1(f14, i1)
        f16 = self.conv_1(torch.cat((f15, x1), dim=1))
        f17 = self.deconv_1_block(f16)
        f18 = self.conv_final(f17)






        return f18