--- license: apache-2.0 ---

FireRedTTS-1S: An Upgraded Streamable Foundation Text-to-Speech System

#### 👉🏻 [FireRedTTS-1S Paper](https://arxiv.org/abs/2503.20499) 👈🏻 #### 👉🏻 [FireRedTTS-1S Demos](https://fireredteam.github.io/demos/firered_tts_1s/) 👈🏻 ## News - [2025/05/26] 🔥 We add flow-mathing decoder and update the [technical report](https://arxiv.org/abs/2503.20499) - [2025/03/25] 🔥 We release the [technical report](https://arxiv.org/abs/2503.20499) and [project page](https://fireredteam.github.io/demos/firered_tts_1s/) ## Roadmap - [x] 2025/04 - [x] Release the pre-trained checkpoints and inference code. ## Usage #### Clone and install - Clone the repo ```shell https://github.com/FireRedTeam/FireRedTTS.git cd FireRedTTS ``` - Create conda env ```shell # step1.create env conda create --name redtts python=3.10 # stpe2.install torch (pytorch should match the cuda-version on your machine) # CUDA 11.8 conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia # CUDA 12.1 conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia # step3.install fireredtts form source cd fireredtts pip install -e . # step4.install other requirements pip install -r requirements.txt ``` #### Download models Download the required model files from [**Model_Lists**](https://huggingface.co/FireRedTeam/FireRedTTS-1S/tree/main) and place them in the folder `pretrained_models` #### Basic Usage ```python import os import torchaudio![alt text](image.png) from fireredtts.fireredtts import FireRedTTS # acoustic llm decoder tts = FireRedTTS( config_path="configs/config_24k.json", pretrained_path=, ) """ # flow matching decoder tts = FireRedTTS( config_path="configs/config_24k_flow.json", pretrained_path=, ) """ #same language # For the test-hard evaluation, we enabled the use_tn=True configuration setting. rec_wavs = tts.synthesize( prompt_wav="examples/prompt_1.wav", prompt_text="对,所以说你现在的话,这个账单的话,你既然说能处理,那你就想办法处理掉。", text="小红书,是中国大陆的网络购物和社交平台,成立于二零一三年六月。", lang="zh", use_tn=True ) rec_wavs = rec_wavs.detach().cpu() out_wav_path = os.path.join("./example.wav") torchaudio.save(out_wav_path, rec_wavs, 24000) ``` ## Tips - The reference audio should not be too long or too short; a duration of 3 to 10 seconds is recommended. - The reference audio should be smooth and natural, and the accompanying text must be accurate to enhance the stability and naturalness of the synthesized audio. ## ⚠️ Usage Disclaimer ❗️❗️❗️❗️❗️❗️ - The project incorporates zero-shot voice cloning functionality; Please note that this capability is intended **solely for academic research purposes**. - **DO NOT** use this model for **ANY illegal activities**❗️❗️❗️❗️❗️❗️ - The developers assume no liability for any misuse of this model. - If you identify any instances of **abuse**, **misuse**, or **fraudulent** activities related to this project, **please report them to our team immediately.**