Upload MOJO
Browse files- README.md +6 -6
- config.json +1 -1
- mojo.py +4 -2
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
---
|
| 11 |
|
| 12 |
# MOJO
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
| 4 |
+
- bulk RNA-seq
|
| 5 |
+
- DNA methylation
|
| 6 |
+
- biology
|
| 7 |
+
- transcriptomics
|
| 8 |
+
- epigenomics
|
| 9 |
+
- multimodal
|
| 10 |
---
|
| 11 |
|
| 12 |
# MOJO
|
config.json
CHANGED
|
@@ -39,6 +39,6 @@
|
|
| 39 |
"stem_kernel_shape": 15,
|
| 40 |
"token_embed_dim": 256,
|
| 41 |
"torch_dtype": "float32",
|
| 42 |
-
"transformers_version": "4.
|
| 43 |
"use_gene_embedding": true
|
| 44 |
}
|
|
|
|
| 39 |
"stem_kernel_shape": 15,
|
| 40 |
"token_embed_dim": 256,
|
| 41 |
"torch_dtype": "float32",
|
| 42 |
+
"transformers_version": "4.51.0",
|
| 43 |
"use_gene_embedding": true
|
| 44 |
}
|
mojo.py
CHANGED
|
@@ -78,14 +78,16 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 78 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 79 |
if self.rescaling_factor is None:
|
| 80 |
inv_freq = 1.0 / (
|
| 81 |
-
self.upper_freq
|
|
|
|
| 82 |
)
|
| 83 |
else:
|
| 84 |
updated_base = self.upper_freq * (
|
| 85 |
self.rescaling_factor ** (self.dim / (self.dim - 2))
|
| 86 |
)
|
| 87 |
inv_freq = 1.0 / (
|
| 88 |
-
updated_base
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
|
|
|
|
| 78 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 79 |
if self.rescaling_factor is None:
|
| 80 |
inv_freq = 1.0 / (
|
| 81 |
+
self.upper_freq
|
| 82 |
+
** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim)
|
| 83 |
)
|
| 84 |
else:
|
| 85 |
updated_base = self.upper_freq * (
|
| 86 |
self.rescaling_factor ** (self.dim / (self.dim - 2))
|
| 87 |
)
|
| 88 |
inv_freq = 1.0 / (
|
| 89 |
+
updated_base
|
| 90 |
+
** (torch.arange(0, self.dim, 2, device=q.device).float() / self.dim)
|
| 91 |
)
|
| 92 |
|
| 93 |
self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
|