File size: 5,665 Bytes
1ea6a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
tags:
- generated_from_trainer
model-index:
- name: output_diff_approach
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output_diff_approach

This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1603
- 5 Err Precision: 0.0
- 5 Err Recall: 0.0
- 5 Err F1: 0.0
- 5 Err Number: 34
-   Precision: 0.4328
-   Recall: 0.3244
-   F1: 0.3709
-   Number: 9934
-  Err Precision: 0.0
-  Err Recall: 0.0
-  Err F1: 0.0
-  Err Number: 285
- Egin Err Precision: 0.7528
- Egin Err Recall: 0.4192
- Egin Err F1: 0.5385
- Egin Err Number: 1126
- El Err Precision: 0.7112
- El Err Recall: 0.2891
- El Err F1: 0.4111
- El Err Number: 1380
- Nd Err Precision: 0.6986
- Nd Err Recall: 0.4487
- Nd Err F1: 0.5464
- Nd Err Number: 1188
- Ne Word Err Precision: 0.7223
- Ne Word Err Recall: 0.6297
- Ne Word Err F1: 0.6728
- Ne Word Err Number: 8247
- Unc Insert Err Precision: 0.6140
- Unc Insert Err Recall: 0.0776
- Unc Insert Err F1: 0.1378
- Unc Insert Err Number: 902
- Micro Avg Precision: 0.5922
- Micro Avg Recall: 0.4282
- Micro Avg F1: 0.4970
- Micro Avg Number: 23096
- Macro Avg Precision: 0.4915
- Macro Avg Recall: 0.2736
- Macro Avg F1: 0.3347
- Macro Avg Number: 23096
- Weighted Avg Precision: 0.5832
- Weighted Avg Recall: 0.4282
- Weighted Avg F1: 0.4841
- Weighted Avg Number: 23096
- Overall Accuracy: 0.9514

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number |   Precision |   Recall |   F1   |   Number |  Err Precision |  Err Recall |  Err F1 |  Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|
| 0.3987        | 1.0   | 575  | 0.1930          | 0.0             | 0.0          | 0.0      | 34           | 0.3517      | 0.1737   | 0.2326 | 9934     | 0.0            | 0.0         | 0.0     | 285         | 0.8127             | 0.2389          | 0.3693      | 1126            | 0.8345           | 0.1681        | 0.2799    | 1380          | 0.6727           | 0.3460        | 0.4569    | 1188          | 0.7470                | 0.4215             | 0.5389         | 8247               | 0.25                     | 0.0011                | 0.0022            | 902                   | 0.5670              | 0.2648           | 0.3610       | 23096            | 0.4586              | 0.1687           | 0.2350       | 23096            | 0.5519                 | 0.2648              | 0.3508          | 23096               | 0.9422           |
| 0.1861        | 2.0   | 1150 | 0.1603          | 0.0             | 0.0          | 0.0      | 34           | 0.4328      | 0.3244   | 0.3709 | 9934     | 0.0            | 0.0         | 0.0     | 285         | 0.7528             | 0.4192          | 0.5385      | 1126            | 0.7112           | 0.2891        | 0.4111    | 1380          | 0.6986           | 0.4487        | 0.5464    | 1188          | 0.7223                | 0.6297             | 0.6728         | 8247               | 0.6140                   | 0.0776                | 0.1378            | 902                   | 0.5922              | 0.4282           | 0.4970       | 23096            | 0.4915              | 0.2736           | 0.3347       | 23096            | 0.5832                 | 0.4282              | 0.4841          | 23096               | 0.9514           |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2