--- tags: - generated_from_trainer model-index: - name: output_diff_approach results: [] --- # output_diff_approach This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1603 - 5 Err Precision: 0.0 - 5 Err Recall: 0.0 - 5 Err F1: 0.0 - 5 Err Number: 34 - Precision: 0.4328 - Recall: 0.3244 - F1: 0.3709 - Number: 9934 - Err Precision: 0.0 - Err Recall: 0.0 - Err F1: 0.0 - Err Number: 285 - Egin Err Precision: 0.7528 - Egin Err Recall: 0.4192 - Egin Err F1: 0.5385 - Egin Err Number: 1126 - El Err Precision: 0.7112 - El Err Recall: 0.2891 - El Err F1: 0.4111 - El Err Number: 1380 - Nd Err Precision: 0.6986 - Nd Err Recall: 0.4487 - Nd Err F1: 0.5464 - Nd Err Number: 1188 - Ne Word Err Precision: 0.7223 - Ne Word Err Recall: 0.6297 - Ne Word Err F1: 0.6728 - Ne Word Err Number: 8247 - Unc Insert Err Precision: 0.6140 - Unc Insert Err Recall: 0.0776 - Unc Insert Err F1: 0.1378 - Unc Insert Err Number: 902 - Micro Avg Precision: 0.5922 - Micro Avg Recall: 0.4282 - Micro Avg F1: 0.4970 - Micro Avg Number: 23096 - Macro Avg Precision: 0.4915 - Macro Avg Recall: 0.2736 - Macro Avg F1: 0.3347 - Macro Avg Number: 23096 - Weighted Avg Precision: 0.5832 - Weighted Avg Recall: 0.4282 - Weighted Avg F1: 0.4841 - Weighted Avg Number: 23096 - Overall Accuracy: 0.9514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:| | 0.3987 | 1.0 | 575 | 0.1930 | 0.0 | 0.0 | 0.0 | 34 | 0.3517 | 0.1737 | 0.2326 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.8127 | 0.2389 | 0.3693 | 1126 | 0.8345 | 0.1681 | 0.2799 | 1380 | 0.6727 | 0.3460 | 0.4569 | 1188 | 0.7470 | 0.4215 | 0.5389 | 8247 | 0.25 | 0.0011 | 0.0022 | 902 | 0.5670 | 0.2648 | 0.3610 | 23096 | 0.4586 | 0.1687 | 0.2350 | 23096 | 0.5519 | 0.2648 | 0.3508 | 23096 | 0.9422 | | 0.1861 | 2.0 | 1150 | 0.1603 | 0.0 | 0.0 | 0.0 | 34 | 0.4328 | 0.3244 | 0.3709 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.7528 | 0.4192 | 0.5385 | 1126 | 0.7112 | 0.2891 | 0.4111 | 1380 | 0.6986 | 0.4487 | 0.5464 | 1188 | 0.7223 | 0.6297 | 0.6728 | 8247 | 0.6140 | 0.0776 | 0.1378 | 902 | 0.5922 | 0.4282 | 0.4970 | 23096 | 0.4915 | 0.2736 | 0.3347 | 23096 | 0.5832 | 0.4282 | 0.4841 | 23096 | 0.9514 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2