Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[1]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import init, MarginRankingLoss
|
| 13 |
+
from torch.optim import Adam
|
| 14 |
+
from distutils.version import LooseVersion
|
| 15 |
+
from torch.utils.data import Dataset, DataLoader
|
| 16 |
+
from torch.autograd import Variable
|
| 17 |
+
import math
|
| 18 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 19 |
+
import nltk
|
| 20 |
+
import re
|
| 21 |
+
import torch.optim as optim
|
| 22 |
+
from tqdm import tqdm
|
| 23 |
+
from transformers import AutoModelForMaskedLM
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import random
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# In[2]:
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# eng_dict = []
|
| 32 |
+
# with open('eng_dict.txt', 'r') as file:
|
| 33 |
+
# # Read each line from the file and append it to the list
|
| 34 |
+
# for line in file:
|
| 35 |
+
# # Remove leading and trailing whitespace (e.g., newline characters)
|
| 36 |
+
# cleaned_line = line.strip()
|
| 37 |
+
# eng_dict.append(cleaned_line)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# In[14]:
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def greet(X, ny):
|
| 44 |
+
global eng_dict
|
| 45 |
+
ny = int(ny)
|
| 46 |
+
if ny == 0:
|
| 47 |
+
rand_no = random.random()
|
| 48 |
+
tok_map = {2: 0.4363429005892416,
|
| 49 |
+
1: 0.6672580202327398,
|
| 50 |
+
4: 0.7476060740459144,
|
| 51 |
+
3: 0.9618703668504087,
|
| 52 |
+
6: 0.9701028532809564,
|
| 53 |
+
7: 0.9729244545819342,
|
| 54 |
+
8: 0.9739508754144756,
|
| 55 |
+
5: 0.9994508859743607,
|
| 56 |
+
9: 0.9997507867114407,
|
| 57 |
+
10: 0.9999112969650892,
|
| 58 |
+
11: 0.9999788802297832,
|
| 59 |
+
0: 0.9999831041838266,
|
| 60 |
+
12: 0.9999873281378701,
|
| 61 |
+
22: 0.9999957760459568,
|
| 62 |
+
14: 1.0000000000000002}
|
| 63 |
+
for key in tok_map.keys():
|
| 64 |
+
if rand_no < tok_map[key]:
|
| 65 |
+
num_sub_tokens_label = key
|
| 66 |
+
break
|
| 67 |
+
else:
|
| 68 |
+
num_sub_tokens_label = ny
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
|
| 70 |
+
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
|
| 71 |
+
model.load_state_dict(torch.load('model_26_2'))
|
| 72 |
+
model.eval()
|
| 73 |
+
X_init = X
|
| 74 |
+
X_init = X_init.replace("[MASK]", " [MASK] ")
|
| 75 |
+
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
|
| 76 |
+
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
|
| 77 |
+
input_id_chunki = tokens['input_ids'][0].split(510)
|
| 78 |
+
input_id_chunks = []
|
| 79 |
+
mask_chunks = []
|
| 80 |
+
mask_chunki = tokens['attention_mask'][0].split(510)
|
| 81 |
+
for tensor in input_id_chunki:
|
| 82 |
+
input_id_chunks.append(tensor)
|
| 83 |
+
for tensor in mask_chunki:
|
| 84 |
+
mask_chunks.append(tensor)
|
| 85 |
+
xi = torch.full((1,), fill_value=101)
|
| 86 |
+
yi = torch.full((1,), fill_value=1)
|
| 87 |
+
zi = torch.full((1,), fill_value=102)
|
| 88 |
+
for r in range(len(input_id_chunks)):
|
| 89 |
+
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
|
| 90 |
+
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
|
| 91 |
+
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
|
| 92 |
+
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
|
| 93 |
+
di = torch.full((1,), fill_value=0)
|
| 94 |
+
for i in range(len(input_id_chunks)):
|
| 95 |
+
pad_len = 512 - input_id_chunks[i].shape[0]
|
| 96 |
+
if pad_len > 0:
|
| 97 |
+
for p in range(pad_len):
|
| 98 |
+
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
|
| 99 |
+
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
|
| 100 |
+
vb = torch.ones_like(input_id_chunks[0])
|
| 101 |
+
fg = torch.zeros_like(input_id_chunks[0])
|
| 102 |
+
maski = []
|
| 103 |
+
for l in range(len(input_id_chunks)):
|
| 104 |
+
masked_pos = []
|
| 105 |
+
for i in range(len(input_id_chunks[l])):
|
| 106 |
+
if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
|
| 107 |
+
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
|
| 108 |
+
continue
|
| 109 |
+
masked_pos.append(i)
|
| 110 |
+
maski.append(masked_pos)
|
| 111 |
+
input_ids = torch.stack(input_id_chunks)
|
| 112 |
+
att_mask = torch.stack(mask_chunks)
|
| 113 |
+
outputs = model(input_ids, attention_mask = att_mask)
|
| 114 |
+
last_hidden_state = outputs[0].squeeze()
|
| 115 |
+
l_o_l_sa = []
|
| 116 |
+
sum_state = []
|
| 117 |
+
for t in range(num_sub_tokens_label):
|
| 118 |
+
c = []
|
| 119 |
+
l_o_l_sa.append(c)
|
| 120 |
+
if len(maski) == 1:
|
| 121 |
+
masked_pos = maski[0]
|
| 122 |
+
for k in masked_pos:
|
| 123 |
+
for t in range(num_sub_tokens_label):
|
| 124 |
+
l_o_l_sa[t].append(last_hidden_state[k+t])
|
| 125 |
+
else:
|
| 126 |
+
for p in range(len(maski)):
|
| 127 |
+
masked_pos = maski[p]
|
| 128 |
+
for k in masked_pos:
|
| 129 |
+
for t in range(num_sub_tokens_label):
|
| 130 |
+
if (k+t) >= len(last_hidden_state[p]):
|
| 131 |
+
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
|
| 132 |
+
continue
|
| 133 |
+
l_o_l_sa[t].append(last_hidden_state[p][k+t])
|
| 134 |
+
for t in range(num_sub_tokens_label):
|
| 135 |
+
sum_state.append(l_o_l_sa[t][0])
|
| 136 |
+
for i in range(len(l_o_l_sa[0])):
|
| 137 |
+
if i == 0:
|
| 138 |
+
continue
|
| 139 |
+
for t in range(num_sub_tokens_label):
|
| 140 |
+
sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
|
| 141 |
+
yip = len(l_o_l_sa[0])
|
| 142 |
+
# qw = []
|
| 143 |
+
er = ""
|
| 144 |
+
for t in range(num_sub_tokens_label):
|
| 145 |
+
sum_state[t] /= yip
|
| 146 |
+
idx = torch.topk(sum_state[t], k=5, dim=0)[1]
|
| 147 |
+
wor = [tokenizer.decode(i.item()).strip() for i in idx]
|
| 148 |
+
for kl in wor:
|
| 149 |
+
if all(char.isalpha() for char in kl):
|
| 150 |
+
# qw.append(kl.lower())
|
| 151 |
+
er+=kl
|
| 152 |
+
break
|
| 153 |
+
# print(er)
|
| 154 |
+
# astr = ""
|
| 155 |
+
# for j in range(len(qw)):
|
| 156 |
+
# mock = ""
|
| 157 |
+
# mock+= qw[j]
|
| 158 |
+
# if (j+2) < len(qw) and ((mock+qw[j+1]+qw[j+2]) in eng_dict):
|
| 159 |
+
# mock +=qw[j+1]
|
| 160 |
+
# mock +=qw[j+2]
|
| 161 |
+
# j = j+2
|
| 162 |
+
# elif (j+1) < len(qw) and ((mock+qw[j+1]) in eng_dict):
|
| 163 |
+
# mock +=qw[j+1]
|
| 164 |
+
# j = j+1
|
| 165 |
+
# if len(astr) == 0:
|
| 166 |
+
# astr+=mock
|
| 167 |
+
# else:
|
| 168 |
+
# astr+=mock.capitalize()
|
| 169 |
+
return er
|
| 170 |
+
title = "Rename a variable in a Java class"
|
| 171 |
+
description = """This model is a fine-tuned GraphCodeBERT model fin-tuned to output higher-quality variable names for Java classes. Long classes are handled by the
|
| 172 |
+
model. Replace any variable name with a "[MASK]" to get an identifier renaming.
|
| 173 |
+
"""
|
| 174 |
+
ex = ["""import java.io.*;
|
| 175 |
+
public class x {
|
| 176 |
+
public static void main(String[] args) {
|
| 177 |
+
String f = "file.txt";
|
| 178 |
+
BufferedReader [MASK] = null;
|
| 179 |
+
String l;
|
| 180 |
+
try {
|
| 181 |
+
[MASK] = new BufferedReader(new FileReader(f));
|
| 182 |
+
while ((l = [MASK].readLine()) != null) {
|
| 183 |
+
System.out.println(l);
|
| 184 |
+
}
|
| 185 |
+
} catch (IOException e) {
|
| 186 |
+
e.printStackTrace();
|
| 187 |
+
} finally {
|
| 188 |
+
try {
|
| 189 |
+
if ([MASK] != null) [MASK].close();
|
| 190 |
+
} catch (IOException ex) {
|
| 191 |
+
ex.printStackTrace();
|
| 192 |
+
}
|
| 193 |
+
}
|
| 194 |
+
}
|
| 195 |
+
}""", """import java.net.*;
|
| 196 |
+
import java.io.*;
|
| 197 |
+
|
| 198 |
+
public class s {
|
| 199 |
+
public static void main(String[] args) throws IOException {
|
| 200 |
+
ServerSocket [MASK] = new ServerSocket(8000);
|
| 201 |
+
try {
|
| 202 |
+
Socket s = [MASK].accept();
|
| 203 |
+
PrintWriter pw = new PrintWriter(s.getOutputStream(), true);
|
| 204 |
+
BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));
|
| 205 |
+
String i;
|
| 206 |
+
while ((i = br.readLine()) != null) {
|
| 207 |
+
pw.println(i);
|
| 208 |
+
}
|
| 209 |
+
} finally {
|
| 210 |
+
if ([MASK] != null) [MASK].close();
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
}""", """import java.io.*;
|
| 214 |
+
import java.util.*;
|
| 215 |
+
|
| 216 |
+
public class y {
|
| 217 |
+
public static void main(String[] args) {
|
| 218 |
+
String [MASK] = "data.csv";
|
| 219 |
+
String l = "";
|
| 220 |
+
String cvsSplitBy = ",";
|
| 221 |
+
try (BufferedReader br = new BufferedReader(new FileReader([MASK]))) {
|
| 222 |
+
while ((l = br.readLine()) != null) {
|
| 223 |
+
String[] z = l.split(cvsSplitBy);
|
| 224 |
+
System.out.println("Values [field-1= " + z[0] + " , field-2=" + z[1] + "]");
|
| 225 |
+
}
|
| 226 |
+
} catch (IOException e) {
|
| 227 |
+
e.printStackTrace();
|
| 228 |
+
}
|
| 229 |
+
}
|
| 230 |
+
}"""]
|
| 231 |
+
# We instantiate the Textbox class
|
| 232 |
+
textbox = gr.Textbox(title=title,
|
| 233 |
+
description=description,examples = ex,label="Type Java code snippet:", placeholder="replace variable with [MASK]", lines=10)
|
| 234 |
+
|
| 235 |
+
gr.Interface(fn=greet, inputs=[
|
| 236 |
+
textbox,
|
| 237 |
+
gr.Textbox(type="text", label="Number of tokens in name:", placeholder="0 for randomly sampled number of tokens")
|
| 238 |
+
], outputs="text").launch()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# In[ ]:
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
import java.io.*;
|
| 245 |
+
public class x {
|
| 246 |
+
public static void main(String[] args) {
|
| 247 |
+
String f = "file.txt";
|
| 248 |
+
BufferedReader [MASK] = null;
|
| 249 |
+
String l;
|
| 250 |
+
try {
|
| 251 |
+
[MASK] = new BufferedReader(new FileReader(f));
|
| 252 |
+
while ((l = [MASK].readLine()) != null) {
|
| 253 |
+
System.out.println(l);
|
| 254 |
+
}
|
| 255 |
+
} catch (IOException e) {
|
| 256 |
+
e.printStackTrace();
|
| 257 |
+
} finally {
|
| 258 |
+
try {
|
| 259 |
+
if ([MASK] != null) [MASK].close();
|
| 260 |
+
} catch (IOException ex) {
|
| 261 |
+
ex.printStackTrace();
|
| 262 |
+
}
|
| 263 |
+
}
|
| 264 |
+
}
|
| 265 |
+
}
|
| 266 |
+
|