diff --git a/.gitattributes b/.gitattributes index a1a49010f13bbe57099eccba71adb6bf148cfea5..15b78d9bbf5057114735a362d74f640e77697307 100644 --- a/.gitattributes +++ b/.gitattributes @@ -8,3 +8,5 @@ merged_tinyllama_logger/tokenizer.model filter=lfs diff=lfs merge=lfs -text model_output/incremental_1_logs/checkpoint-575/scheduler.pt filter=lfs diff=lfs merge=lfs -text model_output/incremental_1_logs/checkpoint-575/tokenizer.model filter=lfs diff=lfs merge=lfs -text model_output/incremental_1_logs/checkpoint-575/optimizer.pt filter=lfs diff=lfs merge=lfs -text +model_output/incremental_1_logs/runs/Jul09_05-50-46_59575be58a1d/events.out.tfevents.1752040290.59575be58a1d.1.0 filter=lfs diff=lfs merge=lfs -text +model_output/phi2_finetuned_logs/tokenizer.model filter=lfs diff=lfs merge=lfs -text diff --git a/model_output/incremental_1_logs/adapter_model.safetensors b/model_output/incremental_1_logs/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..91791351e3d77c825c07b1dfe3873c34a854b643 --- /dev/null +++ b/model_output/incremental_1_logs/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:acad913dd6e9b753ddf765a86cc873b844a7ce42b4fbd377c87a591b38a5dd5d +size 18034152 diff --git a/model_output/incremental_1_logs/runs/Jul09_05-50-46_59575be58a1d/events.out.tfevents.1752040290.59575be58a1d.1.0 b/model_output/incremental_1_logs/runs/Jul09_05-50-46_59575be58a1d/events.out.tfevents.1752040290.59575be58a1d.1.0 new file mode 100644 index 0000000000000000000000000000000000000000..06bf6710bb2735a3b9b935dac6739074c567713f --- /dev/null +++ b/model_output/incremental_1_logs/runs/Jul09_05-50-46_59575be58a1d/events.out.tfevents.1752040290.59575be58a1d.1.0 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ca921025597722122d6eaacf61053c1c076b44e8b5bbf42c70b06e7487578fc +size 24215 diff --git a/model_output/phi2_finetuned_logs/tokenizer.model b/model_output/phi2_finetuned_logs/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..6c00c742ce03c627d6cd5b795984876fa49fa899 --- /dev/null +++ b/model_output/phi2_finetuned_logs/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 +size 499723 diff --git a/model_output/phi2_finetuned_logs/training_args.bin b/model_output/phi2_finetuned_logs/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..98ecedd9e63e7297229edf10c0eb1f56c6654783 --- /dev/null +++ b/model_output/phi2_finetuned_logs/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3b700a056d639ed9c21c55161a384bfbbef2c644d1d2d01be0fe277331ce2898 +size 5176 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..30d02c37273be8a2ec3cd1fe24ed50a1aca2ba76 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/asteroidal.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/asteroidal.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd22dff431e2a93c2f296928cdaff15696cdc0c2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/asteroidal.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/boundary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/boundary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a4da174130b2253217d67028f277eb30599a46c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/boundary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/bridges.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/bridges.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51ebe99f272a93733a13b5ee4e074b989c9be53d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/bridges.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chains.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chains.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ae350cc350af0df196fdd14516728cfa375de32 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chains.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chordal.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chordal.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7d926e1ef471a8a2c2d675091b40581ceccbde9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/chordal.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/clique.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/clique.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cee627fa894ab23976c4e5135a8c8adf952af77 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/clique.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cluster.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cluster.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..612e74706ea70fa1cef028c64e23946b1cb1416d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cluster.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/communicability_alg.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/communicability_alg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da1ea75062d04ace8874209e4e190a251dee061b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/communicability_alg.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/core.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/core.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb17181af333ed8e979b489bd44f934541e9bc94 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/core.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/covering.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/covering.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8ebe4bdab770e34bd10a057e129a02936835e13 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/covering.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cuts.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cuts.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..731d39a0dea830cfe89d02e22406a50be0c4a443 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cuts.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cycles.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cycles.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d8f832fbb42e23ef94b3c5a14601e867c4368c01 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/cycles.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/d_separation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/d_separation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a89be360f683a348de2f6751074c38fa9c2921d8 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/d_separation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dag.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dag.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..744faddca9817e7f0a2776bffc2a479e3b5ea4d3 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dag.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_measures.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_measures.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f3afa601adac6f0dbf0e0180df4a81340083750 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_measures.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_regular.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_regular.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..661dda4b2064ee8bcadf6338ffd088d5122e42c4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/distance_regular.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominance.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominance.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ba9779a304c6ec8c901cab9e57b10d9977477dc Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominance.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominating.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominating.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a4ba536d346ebca508fbc2fe1e48a085ec0f7d41 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/dominating.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/efficiency_measures.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/efficiency_measures.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..39a882d7616def24f55ac35e65e84cb75e272ee2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/efficiency_measures.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/euler.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/euler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2cc7a7eceaa4c5826b3f205b19a6cc959d8ab393 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/euler.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graph_hashing.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graph_hashing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a59fbda8b77db072e7f59d88f0f28ca2e2987f20 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graph_hashing.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graphical.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graphical.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..acd3dad263c9ad9a890247f66ee2779a0530ce65 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/graphical.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hierarchy.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hierarchy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2670467c3d4c7ac0835a62f1c5fd6bd78cd0d0cc Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hierarchy.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hybrid.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hybrid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e18cb59ad85444a6046ebde6cbec6da2eaf2a6b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/hybrid.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/isolate.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/isolate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66cc025e5b38b6c342569e175d2e16e5c117081f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/isolate.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/link_prediction.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/link_prediction.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a436874b843bc0cbfe81dc263c88a9a5840615d9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/link_prediction.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/lowest_common_ancestors.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/lowest_common_ancestors.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54e9809a4a04ce3df6fe32e6d548c5d59fc9e064 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/lowest_common_ancestors.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/matching.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/matching.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7759c26e40d419d8362a3b6ac468e703ced37975 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/matching.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/mis.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/mis.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e15174828dccfff3f74c882598ddd73eeb0c8088 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/mis.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/moral.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/moral.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..336aef62474d39b4e5564d8ad5842b762caf444f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/moral.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/node_classification.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/node_classification.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31f9168a3477c9e118528f30c18faeff976af860 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/node_classification.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/non_randomness.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/non_randomness.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a833b9e52b2e72ca6d53844a41164db54f338796 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/non_randomness.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planar_drawing.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planar_drawing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b7ef5eac9a7d40c8052744d9c7ed42ba9fc5ab4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planar_drawing.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planarity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planarity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03b6bd5f280e3fdc60c4f2a57581dfb2261055e2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/planarity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/polynomials.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/polynomials.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fe9984b44891dee93603c82c4a64dbbc6d92444 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/polynomials.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/reciprocity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/reciprocity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17aed15cd2d1d4a47512a032025b72ad0ec6da27 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/reciprocity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/regular.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/regular.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e548521b986db3ce4b0226e6d8386f5220a7cecd Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/regular.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/richclub.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/richclub.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e1502d9ceecc76c67f97d3ea2cb2cdcc40a487f9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/richclub.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/similarity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/similarity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4bb977b729a6e0743a8365c99da295c1e46f4bff Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/similarity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/simple_paths.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/simple_paths.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74eb2e801fd89cda76a1d6f92cf6da829a5ea6d4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/simple_paths.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smallworld.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smallworld.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0498ab703c6e38e848372a910bb073de05b549d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smallworld.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smetric.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smetric.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..302a8847ef432a750f6bc1f3da732183f45d799f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/smetric.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/sparsifiers.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/sparsifiers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..63b5562e715d7d5554910e0167080ccb545e006c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/sparsifiers.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/structuralholes.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/structuralholes.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..caf2e8752717ef427a81bc3c6feb5d505924577b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/structuralholes.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/summarization.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/summarization.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..670bb098e01402e6a8066097fc925c41477932a2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/summarization.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/swap.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/swap.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8266aec4fb859b6c1136f0f44f6c43807e625276 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/swap.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/threshold.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/threshold.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fcddc6e6a3ae5836151cf8db709d69aa5110de03 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/threshold.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/time_dependent.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/time_dependent.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5423eb2e2acaf6156f032f7fae3875f0305a4826 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/time_dependent.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/tournament.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/tournament.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c5e5e1e6f05626eb418c6a1efb9d994dbd0e4191 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/tournament.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/triads.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/triads.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..542a4b94d9c14914bbe29bb77a02a4f54acd7967 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/triads.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/vitality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/vitality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d42e46d3769f311323fc8fed75c42c0932a16320 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/vitality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/voronoi.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/voronoi.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d491b4507ceed0c521a7f24804765eb628f9db4e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/voronoi.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/walks.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/walks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ba0fdd4c768f0177394196e7df5deb8a71d88f8 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/walks.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/wiener.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/wiener.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cc9ab46f9fe67d91dbf8bf9c5891e591456cfcb7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/__pycache__/wiener.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/community/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fa782201ddc7a5ad538d08af45f065ad37ef628b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/__init__.py @@ -0,0 +1,24 @@ +"""Functions for computing and measuring community structure. + +The ``community`` subpackage can be accessed by using :mod:`networkx.community`, then accessing the +functions as attributes of ``community``. For example:: + + >>> import networkx as nx + >>> G = nx.barbell_graph(5, 1) + >>> communities_generator = nx.community.girvan_newman(G) + >>> top_level_communities = next(communities_generator) + >>> next_level_communities = next(communities_generator) + >>> sorted(map(sorted, next_level_communities)) + [[0, 1, 2, 3, 4], [5], [6, 7, 8, 9, 10]] + +""" +from networkx.algorithms.community.asyn_fluid import * +from networkx.algorithms.community.centrality import * +from networkx.algorithms.community.kclique import * +from networkx.algorithms.community.kernighan_lin import * +from networkx.algorithms.community.label_propagation import * +from networkx.algorithms.community.lukes import * +from networkx.algorithms.community.modularity_max import * +from networkx.algorithms.community.quality import * +from networkx.algorithms.community.community_utils import * +from networkx.algorithms.community.louvain import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7becb27f412c2acc9392c708404282acaed4c3d6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/asyn_fluid.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/asyn_fluid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..618e2e05cc7fd12d886d408fb7b972aec766f3ac Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/asyn_fluid.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a6b281ef93f228cb878be12d9b06b026d9e065e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d0e8a1addcc51d753fccfbe57da1987c6b51db8 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..119d252f0da105c8b3bb085deea239c58363a358 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac4b274fc51993abce2da63ae90982bb72325a44 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff7ccfb6825ba9eb02cfd92951388d4a16ba5e95 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a3234d9e4cc3769e87c9f8c4353e9656eac4844 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b0628e36d2e2ee26054bc1f40dec62e6056f481 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcfab95b66e24a36f0c742c7b48f4849650f7f0e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91e51b375f2c43a9ee23627a0357c60d04415bc7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/quality.py b/phivenv/Lib/site-packages/networkx/algorithms/community/quality.py new file mode 100644 index 0000000000000000000000000000000000000000..ab86b09113ad078e2ada3cbc294eff46a97543ef --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/quality.py @@ -0,0 +1,346 @@ +"""Functions for measuring the quality of a partition (into +communities). + +""" + +from itertools import combinations + +import networkx as nx +from networkx import NetworkXError +from networkx.algorithms.community.community_utils import is_partition +from networkx.utils.decorators import argmap + +__all__ = ["modularity", "partition_quality"] + + +class NotAPartition(NetworkXError): + """Raised if a given collection is not a partition.""" + + def __init__(self, G, collection): + msg = f"{collection} is not a valid partition of the graph {G}" + super().__init__(msg) + + +def _require_partition(G, partition): + """Decorator to check that a valid partition is input to a function + + Raises :exc:`networkx.NetworkXError` if the partition is not valid. + + This decorator should be used on functions whose first two arguments + are a graph and a partition of the nodes of that graph (in that + order):: + + >>> @require_partition + ... def foo(G, partition): + ... print("partition is valid!") + ... + >>> G = nx.complete_graph(5) + >>> partition = [{0, 1}, {2, 3}, {4}] + >>> foo(G, partition) + partition is valid! + >>> partition = [{0}, {2, 3}, {4}] + >>> foo(G, partition) + Traceback (most recent call last): + ... + networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G + >>> partition = [{0, 1}, {1, 2, 3}, {4}] + >>> foo(G, partition) + Traceback (most recent call last): + ... + networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G + + """ + if is_partition(G, partition): + return G, partition + raise nx.NetworkXError("`partition` is not a valid partition of the nodes of G") + + +require_partition = argmap(_require_partition, (0, 1)) + + +@nx._dispatch +def intra_community_edges(G, partition): + """Returns the number of intra-community edges for a partition of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + The "intra-community edges" are those edges joining a pair of nodes + in the same block of the partition. + + """ + return sum(G.subgraph(block).size() for block in partition) + + +@nx._dispatch +def inter_community_edges(G, partition): + """Returns the number of inter-community edges for a partition of `G`. + according to the given + partition of the nodes of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + The *inter-community edges* are those edges joining a pair of nodes + in different blocks of the partition. + + Implementation note: this function creates an intermediate graph + that may require the same amount of memory as that of `G`. + + """ + # Alternate implementation that does not require constructing a new + # graph object (but does require constructing an affiliation + # dictionary): + # + # aff = dict(chain.from_iterable(((v, block) for v in block) + # for block in partition)) + # return sum(1 for u, v in G.edges() if aff[u] != aff[v]) + # + MG = nx.MultiDiGraph if G.is_directed() else nx.MultiGraph + return nx.quotient_graph(G, partition, create_using=MG).size() + + +@nx._dispatch +def inter_community_non_edges(G, partition): + """Returns the number of inter-community non-edges according to the + given partition of the nodes of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + A *non-edge* is a pair of nodes (undirected if `G` is undirected) + that are not adjacent in `G`. The *inter-community non-edges* are + those non-edges on a pair of nodes in different blocks of the + partition. + + Implementation note: this function creates two intermediate graphs, + which may require up to twice the amount of memory as required to + store `G`. + + """ + # Alternate implementation that does not require constructing two + # new graph objects (but does require constructing an affiliation + # dictionary): + # + # aff = dict(chain.from_iterable(((v, block) for v in block) + # for block in partition)) + # return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v]) + # + return inter_community_edges(nx.complement(G), partition) + + +@nx._dispatch(edge_attrs="weight") +def modularity(G, communities, weight="weight", resolution=1): + r"""Returns the modularity of the given partition of the graph. + + Modularity is defined in [1]_ as + + .. math:: + Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \gamma\frac{k_ik_j}{2m}\right) + \delta(c_i,c_j) + + where $m$ is the number of edges (or sum of all edge weights as in [5]_), + $A$ is the adjacency matrix of `G`, $k_i$ is the (weighted) degree of $i$, + $\gamma$ is the resolution parameter, and $\delta(c_i, c_j)$ is 1 if $i$ and + $j$ are in the same community else 0. + + According to [2]_ (and verified by some algebra) this can be reduced to + + .. math:: + Q = \sum_{c=1}^{n} + \left[ \frac{L_c}{m} - \gamma\left( \frac{k_c}{2m} \right) ^2 \right] + + where the sum iterates over all communities $c$, $m$ is the number of edges, + $L_c$ is the number of intra-community links for community $c$, + $k_c$ is the sum of degrees of the nodes in community $c$, + and $\gamma$ is the resolution parameter. + + The resolution parameter sets an arbitrary tradeoff between intra-group + edges and inter-group edges. More complex grouping patterns can be + discovered by analyzing the same network with multiple values of gamma + and then combining the results [3]_. That said, it is very common to + simply use gamma=1. More on the choice of gamma is in [4]_. + + The second formula is the one actually used in calculation of the modularity. + For directed graphs the second formula replaces $k_c$ with $k^{in}_c k^{out}_c$. + + Parameters + ---------- + G : NetworkX Graph + + communities : list or iterable of set of nodes + These node sets must represent a partition of G's nodes. + + weight : string or None, optional (default="weight") + The edge attribute that holds the numerical value used + as a weight. If None or an edge does not have that attribute, + then that edge has weight 1. + + resolution : float (default=1) + If resolution is less than 1, modularity favors larger communities. + Greater than 1 favors smaller communities. + + Returns + ------- + Q : float + The modularity of the partition. + + Raises + ------ + NotAPartition + If `communities` is not a partition of the nodes of `G`. + + Examples + -------- + >>> G = nx.barbell_graph(3, 0) + >>> nx.community.modularity(G, [{0, 1, 2}, {3, 4, 5}]) + 0.35714285714285715 + >>> nx.community.modularity(G, nx.community.label_propagation_communities(G)) + 0.35714285714285715 + + References + ---------- + .. [1] M. E. J. Newman "Networks: An Introduction", page 224. + Oxford University Press, 2011. + .. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore. + "Finding community structure in very large networks." + Phys. Rev. E 70.6 (2004). + .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community Detection" + Phys. Rev. E 74, 016110, 2006. https://doi.org/10.1103/PhysRevE.74.016110 + .. [4] M. E. J. Newman, "Equivalence between modularity optimization and + maximum likelihood methods for community detection" + Phys. Rev. E 94, 052315, 2016. https://doi.org/10.1103/PhysRevE.94.052315 + .. [5] Blondel, V.D. et al. "Fast unfolding of communities in large + networks" J. Stat. Mech 10008, 1-12 (2008). + https://doi.org/10.1088/1742-5468/2008/10/P10008 + """ + if not isinstance(communities, list): + communities = list(communities) + if not is_partition(G, communities): + raise NotAPartition(G, communities) + + directed = G.is_directed() + if directed: + out_degree = dict(G.out_degree(weight=weight)) + in_degree = dict(G.in_degree(weight=weight)) + m = sum(out_degree.values()) + norm = 1 / m**2 + else: + out_degree = in_degree = dict(G.degree(weight=weight)) + deg_sum = sum(out_degree.values()) + m = deg_sum / 2 + norm = 1 / deg_sum**2 + + def community_contribution(community): + comm = set(community) + L_c = sum(wt for u, v, wt in G.edges(comm, data=weight, default=1) if v in comm) + + out_degree_sum = sum(out_degree[u] for u in comm) + in_degree_sum = sum(in_degree[u] for u in comm) if directed else out_degree_sum + + return L_c / m - resolution * out_degree_sum * in_degree_sum * norm + + return sum(map(community_contribution, communities)) + + +@require_partition +@nx._dispatch +def partition_quality(G, partition): + """Returns the coverage and performance of a partition of G. + + The *coverage* of a partition is the ratio of the number of + intra-community edges to the total number of edges in the graph. + + The *performance* of a partition is the number of + intra-community edges plus inter-community non-edges divided by the total + number of potential edges. + + This algorithm has complexity $O(C^2 + L)$ where C is the number of communities and L is the number of links. + + Parameters + ---------- + G : NetworkX graph + + partition : sequence + Partition of the nodes of `G`, represented as a sequence of + sets of nodes (blocks). Each block of the partition represents a + community. + + Returns + ------- + (float, float) + The (coverage, performance) tuple of the partition, as defined above. + + Raises + ------ + NetworkXError + If `partition` is not a valid partition of the nodes of `G`. + + Notes + ----- + If `G` is a multigraph; + - for coverage, the multiplicity of edges is counted + - for performance, the result is -1 (total number of possible edges is not defined) + + References + ---------- + .. [1] Santo Fortunato. + "Community Detection in Graphs". + *Physical Reports*, Volume 486, Issue 3--5 pp. 75--174 + + """ + + node_community = {} + for i, community in enumerate(partition): + for node in community: + node_community[node] = i + + # `performance` is not defined for multigraphs + if not G.is_multigraph(): + # Iterate over the communities, quadratic, to calculate `possible_inter_community_edges` + possible_inter_community_edges = sum( + len(p1) * len(p2) for p1, p2 in combinations(partition, 2) + ) + + if G.is_directed(): + possible_inter_community_edges *= 2 + else: + possible_inter_community_edges = 0 + + # Compute the number of edges in the complete graph -- `n` nodes, + # directed or undirected, depending on `G` + n = len(G) + total_pairs = n * (n - 1) + if not G.is_directed(): + total_pairs //= 2 + + intra_community_edges = 0 + inter_community_non_edges = possible_inter_community_edges + + # Iterate over the links to count `intra_community_edges` and `inter_community_non_edges` + for e in G.edges(): + if node_community[e[0]] == node_community[e[1]]: + intra_community_edges += 1 + else: + inter_community_non_edges -= 1 + + coverage = intra_community_edges / len(G.edges) + + if G.is_multigraph(): + performance = -1.0 + else: + performance = (intra_community_edges + inter_community_non_edges) / total_pairs + + return coverage, performance diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2af6efc1a61d1e5b0dc0bc8d589466797857512 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_asyn_fluid.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_asyn_fluid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d58ead01570c559dabcd9b816815fb345a0b8ca4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_asyn_fluid.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_centrality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_centrality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fae71406a6f6d680a84b8a5fcae6f3a26de8d125 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_centrality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kclique.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kclique.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbd08d46b589f6340edbe08cc97dbf228f4d9e66 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kclique.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kernighan_lin.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kernighan_lin.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de729ce0e43f795f995cb0b2da4583cbe31abf41 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_kernighan_lin.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_label_propagation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_label_propagation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52e8c861f328684b20083b4eb339f8a26f441c3c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_label_propagation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_louvain.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_louvain.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98f50f5ab398025c7ea8e63ada1740868b1ed49d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_louvain.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_lukes.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_lukes.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94c74e5f0d386ef68c8279b5480cd4d2da7d158b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_lukes.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_modularity_max.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_modularity_max.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6dffb3ab26a7e863674dd864a9ba591a104f9454 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_modularity_max.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_quality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_quality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bba302ca22090d8b79132dd7c81d5ec5814b84c1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_quality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_utils.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d94facc5f6d8420432c1a6c09752e8a5a0fb59b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/__pycache__/test_utils.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_asyn_fluid.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_asyn_fluid.py new file mode 100644 index 0000000000000000000000000000000000000000..cd108dda36949dabe8a1d574bde596335150205e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_asyn_fluid.py @@ -0,0 +1,129 @@ +import pytest + +import networkx as nx +from networkx import Graph, NetworkXError +from networkx.algorithms.community import asyn_fluidc + + +def test_exceptions(): + test = Graph() + test.add_node("a") + pytest.raises(NetworkXError, asyn_fluidc, test, "hi") + pytest.raises(NetworkXError, asyn_fluidc, test, -1) + pytest.raises(NetworkXError, asyn_fluidc, test, 3) + test.add_node("b") + pytest.raises(NetworkXError, asyn_fluidc, test, 1) + + +def test_single_node(): + test = Graph() + + test.add_node("a") + + # ground truth + ground_truth = {frozenset(["a"])} + + communities = asyn_fluidc(test, 1) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + +def test_two_nodes(): + test = Graph() + + test.add_edge("a", "b") + + # ground truth + ground_truth = {frozenset(["a"]), frozenset(["b"])} + + communities = asyn_fluidc(test, 2) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + +def test_two_clique_communities(): + test = Graph() + + # c1 + test.add_edge("a", "b") + test.add_edge("a", "c") + test.add_edge("b", "c") + + # connection + test.add_edge("c", "d") + + # c2 + test.add_edge("d", "e") + test.add_edge("d", "f") + test.add_edge("f", "e") + + # ground truth + ground_truth = {frozenset(["a", "c", "b"]), frozenset(["e", "d", "f"])} + + communities = asyn_fluidc(test, 2, seed=7) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + +def test_five_clique_ring(): + test = Graph() + + # c1 + test.add_edge("1a", "1b") + test.add_edge("1a", "1c") + test.add_edge("1a", "1d") + test.add_edge("1b", "1c") + test.add_edge("1b", "1d") + test.add_edge("1c", "1d") + + # c2 + test.add_edge("2a", "2b") + test.add_edge("2a", "2c") + test.add_edge("2a", "2d") + test.add_edge("2b", "2c") + test.add_edge("2b", "2d") + test.add_edge("2c", "2d") + + # c3 + test.add_edge("3a", "3b") + test.add_edge("3a", "3c") + test.add_edge("3a", "3d") + test.add_edge("3b", "3c") + test.add_edge("3b", "3d") + test.add_edge("3c", "3d") + + # c4 + test.add_edge("4a", "4b") + test.add_edge("4a", "4c") + test.add_edge("4a", "4d") + test.add_edge("4b", "4c") + test.add_edge("4b", "4d") + test.add_edge("4c", "4d") + + # c5 + test.add_edge("5a", "5b") + test.add_edge("5a", "5c") + test.add_edge("5a", "5d") + test.add_edge("5b", "5c") + test.add_edge("5b", "5d") + test.add_edge("5c", "5d") + + # connections + test.add_edge("1a", "2c") + test.add_edge("2a", "3c") + test.add_edge("3a", "4c") + test.add_edge("4a", "5c") + test.add_edge("5a", "1c") + + # ground truth + ground_truth = { + frozenset(["1a", "1b", "1c", "1d"]), + frozenset(["2a", "2b", "2c", "2d"]), + frozenset(["3a", "3b", "3c", "3d"]), + frozenset(["4a", "4b", "4c", "4d"]), + frozenset(["5a", "5b", "5c", "5d"]), + } + + communities = asyn_fluidc(test, 5, seed=9) + result = {frozenset(c) for c in communities} + assert result == ground_truth diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_centrality.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_centrality.py new file mode 100644 index 0000000000000000000000000000000000000000..a31d9a8051e2e4362d214a0e2ac1d79694eca127 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_centrality.py @@ -0,0 +1,84 @@ +"""Unit tests for the :mod:`networkx.algorithms.community.centrality` +module. + +""" +from operator import itemgetter + +import networkx as nx + + +def set_of_sets(iterable): + return set(map(frozenset, iterable)) + + +def validate_communities(result, expected): + assert set_of_sets(result) == set_of_sets(expected) + + +def validate_possible_communities(result, *expected): + assert any(set_of_sets(result) == set_of_sets(p) for p in expected) + + +class TestGirvanNewman: + """Unit tests for the + :func:`networkx.algorithms.community.centrality.girvan_newman` + function. + + """ + + def test_no_edges(self): + G = nx.empty_graph(3) + communities = list(nx.community.girvan_newman(G)) + assert len(communities) == 1 + validate_communities(communities[0], [{0}, {1}, {2}]) + + def test_undirected(self): + # Start with the graph .-.-.-. + G = nx.path_graph(4) + communities = list(nx.community.girvan_newman(G)) + assert len(communities) == 3 + # After one removal, we get the graph .-. .-. + validate_communities(communities[0], [{0, 1}, {2, 3}]) + # After the next, we get the graph .-. . ., but there are two + # symmetric possible versions. + validate_possible_communities( + communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}] + ) + # After the last removal, we always get the empty graph. + validate_communities(communities[2], [{0}, {1}, {2}, {3}]) + + def test_directed(self): + G = nx.DiGraph(nx.path_graph(4)) + communities = list(nx.community.girvan_newman(G)) + assert len(communities) == 3 + validate_communities(communities[0], [{0, 1}, {2, 3}]) + validate_possible_communities( + communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}] + ) + validate_communities(communities[2], [{0}, {1}, {2}, {3}]) + + def test_selfloops(self): + G = nx.path_graph(4) + G.add_edge(0, 0) + G.add_edge(2, 2) + communities = list(nx.community.girvan_newman(G)) + assert len(communities) == 3 + validate_communities(communities[0], [{0, 1}, {2, 3}]) + validate_possible_communities( + communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}] + ) + validate_communities(communities[2], [{0}, {1}, {2}, {3}]) + + def test_most_valuable_edge(self): + G = nx.Graph() + G.add_weighted_edges_from([(0, 1, 3), (1, 2, 2), (2, 3, 1)]) + # Let the most valuable edge be the one with the highest weight. + + def heaviest(G): + return max(G.edges(data="weight"), key=itemgetter(2))[:2] + + communities = list(nx.community.girvan_newman(G, heaviest)) + assert len(communities) == 3 + validate_communities(communities[0], [{0}, {1, 2, 3}]) + validate_communities(communities[1], [{0}, {1}, {2, 3}]) + validate_communities(communities[2], [{0}, {1}, {2}, {3}]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kclique.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kclique.py new file mode 100644 index 0000000000000000000000000000000000000000..aa0b7e823e2780f734180562fa3fb8ce5a671312 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kclique.py @@ -0,0 +1,91 @@ +from itertools import combinations + +import pytest + +import networkx as nx + + +def test_overlapping_K5(): + G = nx.Graph() + G.add_edges_from(combinations(range(5), 2)) # Add a five clique + G.add_edges_from(combinations(range(2, 7), 2)) # Add another five clique + c = list(nx.community.k_clique_communities(G, 4)) + assert c == [frozenset(range(7))] + c = set(nx.community.k_clique_communities(G, 5)) + assert c == {frozenset(range(5)), frozenset(range(2, 7))} + + +def test_isolated_K5(): + G = nx.Graph() + G.add_edges_from(combinations(range(5), 2)) # Add a five clique + G.add_edges_from(combinations(range(5, 10), 2)) # Add another five clique + c = set(nx.community.k_clique_communities(G, 5)) + assert c == {frozenset(range(5)), frozenset(range(5, 10))} + + +class TestZacharyKarateClub: + def setup_method(self): + self.G = nx.karate_club_graph() + + def _check_communities(self, k, expected): + communities = set(nx.community.k_clique_communities(self.G, k)) + assert communities == expected + + def test_k2(self): + # clique percolation with k=2 is just connected components + expected = {frozenset(self.G)} + self._check_communities(2, expected) + + def test_k3(self): + comm1 = [ + 0, + 1, + 2, + 3, + 7, + 8, + 12, + 13, + 14, + 15, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + ] + comm2 = [0, 4, 5, 6, 10, 16] + comm3 = [24, 25, 31] + expected = {frozenset(comm1), frozenset(comm2), frozenset(comm3)} + self._check_communities(3, expected) + + def test_k4(self): + expected = { + frozenset([0, 1, 2, 3, 7, 13]), + frozenset([8, 32, 30, 33]), + frozenset([32, 33, 29, 23]), + } + self._check_communities(4, expected) + + def test_k5(self): + expected = {frozenset([0, 1, 2, 3, 7, 13])} + self._check_communities(5, expected) + + def test_k6(self): + expected = set() + self._check_communities(6, expected) + + +def test_bad_k(): + with pytest.raises(nx.NetworkXError): + list(nx.community.k_clique_communities(nx.Graph(), 1)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py new file mode 100644 index 0000000000000000000000000000000000000000..3dc555475dd55dbe401c2d009ccd4fbdc0cb2d8b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py @@ -0,0 +1,91 @@ +"""Unit tests for the :mod:`networkx.algorithms.community.kernighan_lin` +module. +""" +from itertools import permutations + +import pytest + +import networkx as nx +from networkx.algorithms.community import kernighan_lin_bisection + + +def assert_partition_equal(x, y): + assert set(map(frozenset, x)) == set(map(frozenset, y)) + + +def test_partition(): + G = nx.barbell_graph(3, 0) + C = kernighan_lin_bisection(G) + assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}]) + + +def test_partition_argument(): + G = nx.barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + C = kernighan_lin_bisection(G, partition) + assert_partition_equal(C, partition) + + +def test_partition_argument_non_integer_nodes(): + G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) + partition = ({"A", "B"}, {"C", "D"}) + C = kernighan_lin_bisection(G, partition) + assert_partition_equal(C, partition) + + +def test_seed_argument(): + G = nx.barbell_graph(3, 0) + C = kernighan_lin_bisection(G, seed=1) + assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}]) + + +def test_non_disjoint_partition(): + with pytest.raises(nx.NetworkXError): + G = nx.barbell_graph(3, 0) + partition = ({0, 1, 2}, {2, 3, 4, 5}) + kernighan_lin_bisection(G, partition) + + +def test_too_many_blocks(): + with pytest.raises(nx.NetworkXError): + G = nx.barbell_graph(3, 0) + partition = ({0, 1}, {2}, {3, 4, 5}) + kernighan_lin_bisection(G, partition) + + +def test_multigraph(): + G = nx.cycle_graph(4) + M = nx.MultiGraph(G.edges()) + M.add_edges_from(G.edges()) + M.remove_edge(1, 2) + for labels in permutations(range(4)): + mapping = dict(zip(M, labels)) + A, B = kernighan_lin_bisection(nx.relabel_nodes(M, mapping), seed=0) + assert_partition_equal( + [A, B], [{mapping[0], mapping[1]}, {mapping[2], mapping[3]}] + ) + + +def test_max_iter_argument(): + G = nx.Graph( + [ + ("A", "B", {"weight": 1}), + ("A", "C", {"weight": 2}), + ("A", "D", {"weight": 3}), + ("A", "E", {"weight": 2}), + ("A", "F", {"weight": 4}), + ("B", "C", {"weight": 1}), + ("B", "D", {"weight": 4}), + ("B", "E", {"weight": 2}), + ("B", "F", {"weight": 1}), + ("C", "D", {"weight": 3}), + ("C", "E", {"weight": 2}), + ("C", "F", {"weight": 1}), + ("D", "E", {"weight": 4}), + ("D", "F", {"weight": 3}), + ("E", "F", {"weight": 2}), + ] + ) + partition = ({"A", "B", "C"}, {"D", "E", "F"}) + C = kernighan_lin_bisection(G, partition, max_iter=1) + assert_partition_equal(C, ({"A", "F", "C"}, {"D", "E", "B"})) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_label_propagation.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_label_propagation.py new file mode 100644 index 0000000000000000000000000000000000000000..9a0b3d89b6ea19403e02bad0ba635e7bdaa0a6d5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_label_propagation.py @@ -0,0 +1,240 @@ +from itertools import chain, combinations + +import pytest + +import networkx as nx + + +def test_directed_not_supported(): + with pytest.raises(nx.NetworkXNotImplemented): + # not supported for directed graphs + test = nx.DiGraph() + test.add_edge("a", "b") + test.add_edge("a", "c") + test.add_edge("b", "d") + result = nx.community.label_propagation_communities(test) + + +def test_iterator_vs_iterable(): + G = nx.empty_graph("a") + assert list(nx.community.label_propagation_communities(G)) == [{"a"}] + for community in nx.community.label_propagation_communities(G): + assert community == {"a"} + pytest.raises(TypeError, next, nx.community.label_propagation_communities(G)) + + +def test_one_node(): + test = nx.Graph() + test.add_node("a") + + # The expected communities are: + ground_truth = {frozenset(["a"])} + + communities = nx.community.label_propagation_communities(test) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + +def test_unconnected_communities(): + test = nx.Graph() + # community 1 + test.add_edge("a", "c") + test.add_edge("a", "d") + test.add_edge("d", "c") + # community 2 + test.add_edge("b", "e") + test.add_edge("e", "f") + test.add_edge("f", "b") + + # The expected communities are: + ground_truth = {frozenset(["a", "c", "d"]), frozenset(["b", "e", "f"])} + + communities = nx.community.label_propagation_communities(test) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + +def test_connected_communities(): + test = nx.Graph() + # community 1 + test.add_edge("a", "b") + test.add_edge("c", "a") + test.add_edge("c", "b") + test.add_edge("d", "a") + test.add_edge("d", "b") + test.add_edge("d", "c") + test.add_edge("e", "a") + test.add_edge("e", "b") + test.add_edge("e", "c") + test.add_edge("e", "d") + # community 2 + test.add_edge("1", "2") + test.add_edge("3", "1") + test.add_edge("3", "2") + test.add_edge("4", "1") + test.add_edge("4", "2") + test.add_edge("4", "3") + test.add_edge("5", "1") + test.add_edge("5", "2") + test.add_edge("5", "3") + test.add_edge("5", "4") + # edge between community 1 and 2 + test.add_edge("a", "1") + # community 3 + test.add_edge("x", "y") + # community 4 with only a single node + test.add_node("z") + + # The expected communities are: + ground_truth1 = { + frozenset(["a", "b", "c", "d", "e"]), + frozenset(["1", "2", "3", "4", "5"]), + frozenset(["x", "y"]), + frozenset(["z"]), + } + ground_truth2 = { + frozenset(["a", "b", "c", "d", "e", "1", "2", "3", "4", "5"]), + frozenset(["x", "y"]), + frozenset(["z"]), + } + ground_truth = (ground_truth1, ground_truth2) + + communities = nx.community.label_propagation_communities(test) + result = {frozenset(c) for c in communities} + assert result in ground_truth + + +def test_termination(): + # ensure termination of asyn_lpa_communities in two cases + # that led to an endless loop in a previous version + test1 = nx.karate_club_graph() + test2 = nx.caveman_graph(2, 10) + test2.add_edges_from([(0, 20), (20, 10)]) + nx.community.asyn_lpa_communities(test1) + nx.community.asyn_lpa_communities(test2) + + +class TestAsynLpaCommunities: + def _check_communities(self, G, expected): + """Checks that the communities computed from the given graph ``G`` + using the :func:`~networkx.asyn_lpa_communities` function match + the set of nodes given in ``expected``. + + ``expected`` must be a :class:`set` of :class:`frozenset` + instances, each element of which is a node in the graph. + + """ + communities = nx.community.asyn_lpa_communities(G) + result = {frozenset(c) for c in communities} + assert result == expected + + def test_null_graph(self): + G = nx.null_graph() + ground_truth = set() + self._check_communities(G, ground_truth) + + def test_single_node(self): + G = nx.empty_graph(1) + ground_truth = {frozenset([0])} + self._check_communities(G, ground_truth) + + def test_simple_communities(self): + # This graph is the disjoint union of two triangles. + G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"]) + ground_truth = {frozenset("abc"), frozenset("def")} + self._check_communities(G, ground_truth) + + def test_seed_argument(self): + G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"]) + ground_truth = {frozenset("abc"), frozenset("def")} + communities = nx.community.asyn_lpa_communities(G, seed=1) + result = {frozenset(c) for c in communities} + assert result == ground_truth + + def test_several_communities(self): + # This graph is the disjoint union of five triangles. + ground_truth = {frozenset(range(3 * i, 3 * (i + 1))) for i in range(5)} + edges = chain.from_iterable(combinations(c, 2) for c in ground_truth) + G = nx.Graph(edges) + self._check_communities(G, ground_truth) + + +class TestFastLabelPropagationCommunities: + N = 100 # number of nodes + K = 15 # average node degree + + def _check_communities(self, G, truth, weight=None, seed=None): + C = nx.community.fast_label_propagation_communities(G, weight=weight, seed=seed) + assert {frozenset(c) for c in C} == truth + + def test_null_graph(self): + G = nx.null_graph() + truth = set() + self._check_communities(G, truth) + + def test_empty_graph(self): + G = nx.empty_graph(self.N) + truth = {frozenset([i]) for i in G} + self._check_communities(G, truth) + + def test_star_graph(self): + G = nx.star_graph(self.N) + truth = {frozenset(G)} + self._check_communities(G, truth) + + def test_complete_graph(self): + G = nx.complete_graph(self.N) + truth = {frozenset(G)} + self._check_communities(G, truth) + + def test_bipartite_graph(self): + G = nx.complete_bipartite_graph(self.N // 2, self.N // 2) + truth = {frozenset(G)} + self._check_communities(G, truth) + + def test_random_graph(self): + G = nx.gnm_random_graph(self.N, self.N * self.K // 2) + truth = {frozenset(G)} + self._check_communities(G, truth) + + def test_disjoin_cliques(self): + G = nx.Graph(["ab", "AB", "AC", "BC", "12", "13", "14", "23", "24", "34"]) + truth = {frozenset("ab"), frozenset("ABC"), frozenset("1234")} + self._check_communities(G, truth) + + def test_ring_of_cliques(self): + G = nx.ring_of_cliques(self.N, self.K) + truth = { + frozenset([self.K * i + k for k in range(self.K)]) for i in range(self.N) + } + self._check_communities(G, truth) + + def test_larger_graph(self): + G = nx.gnm_random_graph(100 * self.N, 50 * self.N * self.K) + nx.community.fast_label_propagation_communities(G) + + def test_graph_type(self): + G1 = nx.complete_graph(self.N, nx.MultiDiGraph()) + G2 = nx.MultiGraph(G1) + G3 = nx.DiGraph(G1) + G4 = nx.Graph(G1) + truth = {frozenset(G1)} + self._check_communities(G1, truth) + self._check_communities(G2, truth) + self._check_communities(G3, truth) + self._check_communities(G4, truth) + + def test_weight_argument(self): + G = nx.MultiDiGraph() + G.add_edge(1, 2, weight=1.41) + G.add_edge(2, 1, weight=1.41) + G.add_edge(2, 3) + G.add_edge(3, 4, weight=3.14) + truth = {frozenset({1, 2}), frozenset({3, 4})} + self._check_communities(G, truth, weight="weight") + + def test_seed_argument(self): + G = nx.karate_club_graph() + C = nx.community.fast_label_propagation_communities(G, seed=2023) + truth = {frozenset(c) for c in C} + self._check_communities(G, truth, seed=2023) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_louvain.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_louvain.py new file mode 100644 index 0000000000000000000000000000000000000000..60b95d377837e91e3f68af101055ca3145ae640d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_louvain.py @@ -0,0 +1,244 @@ +import networkx as nx + + +def test_modularity_increase(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + partition = [{u} for u in G.nodes()] + mod = nx.community.modularity(G, partition) + partition = nx.community.louvain_communities(G) + + assert nx.community.modularity(G, partition) > mod + + +def test_valid_partition(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + H = G.to_directed() + partition = nx.community.louvain_communities(G) + partition2 = nx.community.louvain_communities(H) + + assert nx.community.is_partition(G, partition) + assert nx.community.is_partition(H, partition2) + + +def test_karate_club_partition(): + G = nx.karate_club_graph() + part = [ + {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21}, + {16, 4, 5, 6, 10}, + {23, 25, 27, 28, 24, 31}, + {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30}, + ] + partition = nx.community.louvain_communities(G, seed=2, weight=None) + + assert part == partition + + +def test_partition_iterator(): + G = nx.path_graph(15) + parts_iter = nx.community.louvain_partitions(G, seed=42) + first_part = next(parts_iter) + first_copy = [s.copy() for s in first_part] + + # gh-5901 reports sets changing after next partition is yielded + assert first_copy[0] == first_part[0] + second_part = next(parts_iter) + assert first_copy[0] == first_part[0] + + +def test_undirected_selfloops(): + G = nx.karate_club_graph() + expected_partition = nx.community.louvain_communities(G, seed=2, weight=None) + part = [ + {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21}, + {16, 4, 5, 6, 10}, + {23, 25, 27, 28, 24, 31}, + {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30}, + ] + assert expected_partition == part + + G.add_weighted_edges_from([(i, i, i * 1000) for i in range(9)]) + # large self-loop weight impacts partition + partition = nx.community.louvain_communities(G, seed=2, weight="weight") + assert part != partition + + # small self-loop weights aren't enough to impact partition in this graph + partition = nx.community.louvain_communities(G, seed=2, weight=None) + assert part == partition + + +def test_directed_selfloops(): + G = nx.DiGraph() + G.add_nodes_from(range(11)) + G_edges = [ + (0, 2), + (0, 1), + (1, 0), + (2, 1), + (2, 0), + (3, 4), + (4, 3), + (7, 8), + (8, 7), + (9, 10), + (10, 9), + ] + G.add_edges_from(G_edges) + G_expected_partition = nx.community.louvain_communities(G, seed=123, weight=None) + + G.add_weighted_edges_from([(i, i, i * 1000) for i in range(3)]) + # large self-loop weight impacts partition + G_partition = nx.community.louvain_communities(G, seed=123, weight="weight") + assert G_partition != G_expected_partition + + # small self-loop weights aren't enough to impact partition in this graph + G_partition = nx.community.louvain_communities(G, seed=123, weight=None) + assert G_partition == G_expected_partition + + +def test_directed_partition(): + """ + Test 2 cases that were looping infinitely + from issues #5175 and #5704 + """ + G = nx.DiGraph() + H = nx.DiGraph() + G.add_nodes_from(range(10)) + H.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + G_edges = [ + (0, 2), + (0, 1), + (1, 0), + (2, 1), + (2, 0), + (3, 4), + (4, 3), + (7, 8), + (8, 7), + (9, 10), + (10, 9), + ] + H_edges = [ + (1, 2), + (1, 6), + (1, 9), + (2, 3), + (2, 4), + (2, 5), + (3, 4), + (4, 3), + (4, 5), + (5, 4), + (6, 7), + (6, 8), + (9, 10), + (9, 11), + (10, 11), + (11, 10), + ] + G.add_edges_from(G_edges) + H.add_edges_from(H_edges) + + G_expected_partition = [{0, 1, 2}, {3, 4}, {5}, {6}, {8, 7}, {9, 10}] + G_partition = nx.community.louvain_communities(G, seed=123, weight=None) + + H_expected_partition = [{2, 3, 4, 5}, {8, 1, 6, 7}, {9, 10, 11}] + H_partition = nx.community.louvain_communities(H, seed=123, weight=None) + + assert G_partition == G_expected_partition + assert H_partition == H_expected_partition + + +def test_none_weight_param(): + G = nx.karate_club_graph() + nx.set_edge_attributes( + G, {edge: i * i for i, edge in enumerate(G.edges)}, name="foo" + ) + + part = [ + {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21}, + {16, 4, 5, 6, 10}, + {23, 25, 27, 28, 24, 31}, + {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30}, + ] + partition1 = nx.community.louvain_communities(G, weight=None, seed=2) + partition2 = nx.community.louvain_communities(G, weight="foo", seed=2) + partition3 = nx.community.louvain_communities(G, weight="weight", seed=2) + + assert part == partition1 + assert part != partition2 + assert part != partition3 + assert partition2 != partition3 + + +def test_quality(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + H = nx.gn_graph(200, seed=1234) + I = nx.MultiGraph(G) + J = nx.MultiDiGraph(H) + + partition = nx.community.louvain_communities(G) + partition2 = nx.community.louvain_communities(H) + partition3 = nx.community.louvain_communities(I) + partition4 = nx.community.louvain_communities(J) + + quality = nx.community.partition_quality(G, partition)[0] + quality2 = nx.community.partition_quality(H, partition2)[0] + quality3 = nx.community.partition_quality(I, partition3)[0] + quality4 = nx.community.partition_quality(J, partition4)[0] + + assert quality >= 0.65 + assert quality2 >= 0.65 + assert quality3 >= 0.65 + assert quality4 >= 0.65 + + +def test_multigraph(): + G = nx.karate_club_graph() + H = nx.MultiGraph(G) + G.add_edge(0, 1, weight=10) + H.add_edge(0, 1, weight=9) + G.add_edge(0, 9, foo=20) + H.add_edge(0, 9, foo=20) + + partition1 = nx.community.louvain_communities(G, seed=1234) + partition2 = nx.community.louvain_communities(H, seed=1234) + partition3 = nx.community.louvain_communities(H, weight="foo", seed=1234) + + assert partition1 == partition2 != partition3 + + +def test_resolution(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + + partition1 = nx.community.louvain_communities(G, resolution=0.5, seed=12) + partition2 = nx.community.louvain_communities(G, seed=12) + partition3 = nx.community.louvain_communities(G, resolution=2, seed=12) + + assert len(partition1) <= len(partition2) <= len(partition3) + + +def test_threshold(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + partition1 = nx.community.louvain_communities(G, threshold=0.3, seed=2) + partition2 = nx.community.louvain_communities(G, seed=2) + mod1 = nx.community.modularity(G, partition1) + mod2 = nx.community.modularity(G, partition2) + + assert mod1 < mod2 + + +def test_empty_graph(): + G = nx.Graph() + G.add_nodes_from(range(5)) + expected = [{0}, {1}, {2}, {3}, {4}] + assert nx.community.louvain_communities(G) == expected diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_lukes.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_lukes.py new file mode 100644 index 0000000000000000000000000000000000000000..cfa48f0f47667ce4c4fa96c175bee4cb95a4852f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_lukes.py @@ -0,0 +1,152 @@ +from itertools import product + +import pytest + +import networkx as nx + +EWL = "e_weight" +NWL = "n_weight" + + +# first test from the Lukes original paper +def paper_1_case(float_edge_wt=False, explicit_node_wt=True, directed=False): + # problem-specific constants + limit = 3 + + # configuration + if float_edge_wt: + shift = 0.001 + else: + shift = 0 + + if directed: + example_1 = nx.DiGraph() + else: + example_1 = nx.Graph() + + # graph creation + example_1.add_edge(1, 2, **{EWL: 3 + shift}) + example_1.add_edge(1, 4, **{EWL: 2 + shift}) + example_1.add_edge(2, 3, **{EWL: 4 + shift}) + example_1.add_edge(2, 5, **{EWL: 6 + shift}) + + # node weights + if explicit_node_wt: + nx.set_node_attributes(example_1, 1, NWL) + wtu = NWL + else: + wtu = None + + # partitioning + clusters_1 = { + frozenset(x) + for x in nx.community.lukes_partitioning( + example_1, limit, node_weight=wtu, edge_weight=EWL + ) + } + + return clusters_1 + + +# second test from the Lukes original paper +def paper_2_case(explicit_edge_wt=True, directed=False): + # problem specific constants + byte_block_size = 32 + + # configuration + if directed: + example_2 = nx.DiGraph() + else: + example_2 = nx.Graph() + + if explicit_edge_wt: + edic = {EWL: 1} + wtu = EWL + else: + edic = {} + wtu = None + + # graph creation + example_2.add_edge("name", "home_address", **edic) + example_2.add_edge("name", "education", **edic) + example_2.add_edge("education", "bs", **edic) + example_2.add_edge("education", "ms", **edic) + example_2.add_edge("education", "phd", **edic) + example_2.add_edge("name", "telephone", **edic) + example_2.add_edge("telephone", "home", **edic) + example_2.add_edge("telephone", "office", **edic) + example_2.add_edge("office", "no1", **edic) + example_2.add_edge("office", "no2", **edic) + + example_2.nodes["name"][NWL] = 20 + example_2.nodes["education"][NWL] = 10 + example_2.nodes["bs"][NWL] = 1 + example_2.nodes["ms"][NWL] = 1 + example_2.nodes["phd"][NWL] = 1 + example_2.nodes["home_address"][NWL] = 8 + example_2.nodes["telephone"][NWL] = 8 + example_2.nodes["home"][NWL] = 8 + example_2.nodes["office"][NWL] = 4 + example_2.nodes["no1"][NWL] = 1 + example_2.nodes["no2"][NWL] = 1 + + # partitioning + clusters_2 = { + frozenset(x) + for x in nx.community.lukes_partitioning( + example_2, byte_block_size, node_weight=NWL, edge_weight=wtu + ) + } + + return clusters_2 + + +def test_paper_1_case(): + ground_truth = {frozenset([1, 4]), frozenset([2, 3, 5])} + + tf = (True, False) + for flt, nwt, drc in product(tf, tf, tf): + part = paper_1_case(flt, nwt, drc) + assert part == ground_truth + + +def test_paper_2_case(): + ground_truth = { + frozenset(["education", "bs", "ms", "phd"]), + frozenset(["name", "home_address"]), + frozenset(["telephone", "home", "office", "no1", "no2"]), + } + + tf = (True, False) + for ewt, drc in product(tf, tf): + part = paper_2_case(ewt, drc) + assert part == ground_truth + + +def test_mandatory_tree(): + not_a_tree = nx.complete_graph(4) + + with pytest.raises(nx.NotATree): + nx.community.lukes_partitioning(not_a_tree, 5) + + +def test_mandatory_integrality(): + byte_block_size = 32 + + ex_1_broken = nx.DiGraph() + + ex_1_broken.add_edge(1, 2, **{EWL: 3.2}) + ex_1_broken.add_edge(1, 4, **{EWL: 2.4}) + ex_1_broken.add_edge(2, 3, **{EWL: 4.0}) + ex_1_broken.add_edge(2, 5, **{EWL: 6.3}) + + ex_1_broken.nodes[1][NWL] = 1.2 # ! + ex_1_broken.nodes[2][NWL] = 1 + ex_1_broken.nodes[3][NWL] = 1 + ex_1_broken.nodes[4][NWL] = 1 + ex_1_broken.nodes[5][NWL] = 2 + + with pytest.raises(TypeError): + nx.community.lukes_partitioning( + ex_1_broken, byte_block_size, node_weight=NWL, edge_weight=EWL + ) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_modularity_max.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_modularity_max.py new file mode 100644 index 0000000000000000000000000000000000000000..2757f3515a28900047468cfa4e1a39cd9abf88fd --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_modularity_max.py @@ -0,0 +1,333 @@ +import pytest + +import networkx as nx +from networkx.algorithms.community import ( + greedy_modularity_communities, + naive_greedy_modularity_communities, +) + + +@pytest.mark.parametrize( + "func", (greedy_modularity_communities, naive_greedy_modularity_communities) +) +def test_modularity_communities(func): + G = nx.karate_club_graph() + john_a = frozenset( + [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] + ) + mr_hi = frozenset([0, 4, 5, 6, 10, 11, 16, 19]) + overlap = frozenset([1, 2, 3, 7, 9, 12, 13, 17, 21]) + expected = {john_a, overlap, mr_hi} + assert set(func(G, weight=None)) == expected + + +@pytest.mark.parametrize( + "func", (greedy_modularity_communities, naive_greedy_modularity_communities) +) +def test_modularity_communities_categorical_labels(func): + # Using other than 0-starting contiguous integers as node-labels. + G = nx.Graph( + [ + ("a", "b"), + ("a", "c"), + ("b", "c"), + ("b", "d"), # inter-community edge + ("d", "e"), + ("d", "f"), + ("d", "g"), + ("f", "g"), + ("d", "e"), + ("f", "e"), + ] + ) + expected = {frozenset({"f", "g", "e", "d"}), frozenset({"a", "b", "c"})} + assert set(func(G)) == expected + + +def test_greedy_modularity_communities_components(): + # Test for gh-5530 + G = nx.Graph([(0, 1), (2, 3), (4, 5), (5, 6)]) + # usual case with 3 components + assert greedy_modularity_communities(G) == [{4, 5, 6}, {0, 1}, {2, 3}] + # best_n can make the algorithm continue even when modularity goes down + assert greedy_modularity_communities(G, best_n=3) == [{4, 5, 6}, {0, 1}, {2, 3}] + assert greedy_modularity_communities(G, best_n=2) == [{0, 1, 4, 5, 6}, {2, 3}] + assert greedy_modularity_communities(G, best_n=1) == [{0, 1, 2, 3, 4, 5, 6}] + + +def test_greedy_modularity_communities_relabeled(): + # Test for gh-4966 + G = nx.balanced_tree(2, 2) + mapping = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 7: "h"} + G = nx.relabel_nodes(G, mapping) + expected = [frozenset({"e", "d", "a", "b"}), frozenset({"c", "f", "g"})] + assert greedy_modularity_communities(G) == expected + + +def test_greedy_modularity_communities_directed(): + G = nx.DiGraph( + [ + ("a", "b"), + ("a", "c"), + ("b", "c"), + ("b", "d"), # inter-community edge + ("d", "e"), + ("d", "f"), + ("d", "g"), + ("f", "g"), + ("d", "e"), + ("f", "e"), + ] + ) + expected = [frozenset({"f", "g", "e", "d"}), frozenset({"a", "b", "c"})] + assert greedy_modularity_communities(G) == expected + + # with loops + G = nx.DiGraph() + G.add_edges_from( + [(1, 1), (1, 2), (1, 3), (2, 3), (1, 4), (4, 4), (5, 5), (4, 5), (4, 6), (5, 6)] + ) + expected = [frozenset({1, 2, 3}), frozenset({4, 5, 6})] + assert greedy_modularity_communities(G) == expected + + +@pytest.mark.parametrize( + "func", (greedy_modularity_communities, naive_greedy_modularity_communities) +) +def test_modularity_communities_weighted(func): + G = nx.balanced_tree(2, 3) + for a, b in G.edges: + if ((a == 1) or (a == 2)) and (b != 0): + G[a][b]["weight"] = 10.0 + else: + G[a][b]["weight"] = 1.0 + + expected = [{0, 1, 3, 4, 7, 8, 9, 10}, {2, 5, 6, 11, 12, 13, 14}] + + assert func(G, weight="weight") == expected + assert func(G, weight="weight", resolution=0.9) == expected + assert func(G, weight="weight", resolution=0.3) == expected + assert func(G, weight="weight", resolution=1.1) != expected + + +def test_modularity_communities_floating_point(): + # check for floating point error when used as key in the mapped_queue dict. + # Test for gh-4992 and gh-5000 + G = nx.Graph() + G.add_weighted_edges_from( + [(0, 1, 12), (1, 4, 71), (2, 3, 15), (2, 4, 10), (3, 6, 13)] + ) + expected = [{0, 1, 4}, {2, 3, 6}] + assert greedy_modularity_communities(G, weight="weight") == expected + assert ( + greedy_modularity_communities(G, weight="weight", resolution=0.99) == expected + ) + + +def test_modularity_communities_directed_weighted(): + G = nx.DiGraph() + G.add_weighted_edges_from( + [ + (1, 2, 5), + (1, 3, 3), + (2, 3, 6), + (2, 6, 1), + (1, 4, 1), + (4, 5, 3), + (4, 6, 7), + (5, 6, 2), + (5, 7, 5), + (5, 8, 4), + (6, 8, 3), + ] + ) + expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})] + assert greedy_modularity_communities(G, weight="weight") == expected + + # A large weight of the edge (2, 6) causes 6 to change group, even if it shares + # only one connection with the new group and 3 with the old one. + G[2][6]["weight"] = 20 + expected = [frozenset({1, 2, 3, 6}), frozenset({4, 5, 7, 8})] + assert greedy_modularity_communities(G, weight="weight") == expected + + +def test_greedy_modularity_communities_multigraph(): + G = nx.MultiGraph() + G.add_edges_from( + [ + (1, 2), + (1, 2), + (1, 3), + (2, 3), + (1, 4), + (2, 4), + (4, 5), + (5, 6), + (5, 7), + (5, 7), + (6, 7), + (7, 8), + (5, 8), + ] + ) + expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})] + assert greedy_modularity_communities(G) == expected + + # Converting (4, 5) into a multi-edge causes node 4 to change group. + G.add_edge(4, 5) + expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})] + assert greedy_modularity_communities(G) == expected + + +def test_greedy_modularity_communities_multigraph_weighted(): + G = nx.MultiGraph() + G.add_weighted_edges_from( + [ + (1, 2, 5), + (1, 2, 3), + (1, 3, 6), + (1, 3, 6), + (2, 3, 4), + (1, 4, 1), + (1, 4, 1), + (2, 4, 3), + (2, 4, 3), + (4, 5, 1), + (5, 6, 3), + (5, 6, 7), + (5, 6, 4), + (5, 7, 9), + (5, 7, 9), + (6, 7, 8), + (7, 8, 2), + (7, 8, 2), + (5, 8, 6), + (5, 8, 6), + ] + ) + expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})] + assert greedy_modularity_communities(G, weight="weight") == expected + + # Adding multi-edge (4, 5, 16) causes node 4 to change group. + G.add_edge(4, 5, weight=16) + expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})] + assert greedy_modularity_communities(G, weight="weight") == expected + + # Increasing the weight of edge (1, 4) causes node 4 to return to the former group. + G[1][4][1]["weight"] = 3 + expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})] + assert greedy_modularity_communities(G, weight="weight") == expected + + +def test_greed_modularity_communities_multidigraph(): + G = nx.MultiDiGraph() + G.add_edges_from( + [ + (1, 2), + (1, 2), + (3, 1), + (2, 3), + (2, 3), + (3, 2), + (1, 4), + (2, 4), + (4, 2), + (4, 5), + (5, 6), + (5, 6), + (6, 5), + (5, 7), + (6, 7), + (7, 8), + (5, 8), + (8, 4), + ] + ) + expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})] + assert greedy_modularity_communities(G, weight="weight") == expected + + +def test_greed_modularity_communities_multidigraph_weighted(): + G = nx.MultiDiGraph() + G.add_weighted_edges_from( + [ + (1, 2, 5), + (1, 2, 3), + (3, 1, 6), + (1, 3, 6), + (3, 2, 4), + (1, 4, 2), + (1, 4, 5), + (2, 4, 3), + (3, 2, 8), + (4, 2, 3), + (4, 3, 5), + (4, 5, 2), + (5, 6, 3), + (5, 6, 7), + (6, 5, 4), + (5, 7, 9), + (5, 7, 9), + (7, 6, 8), + (7, 8, 2), + (8, 7, 2), + (5, 8, 6), + (5, 8, 6), + ] + ) + expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})] + assert greedy_modularity_communities(G, weight="weight") == expected + + +def test_resolution_parameter_impact(): + G = nx.barbell_graph(5, 3) + + gamma = 1 + expected = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))] + assert greedy_modularity_communities(G, resolution=gamma) == expected + assert naive_greedy_modularity_communities(G, resolution=gamma) == expected + + gamma = 2.5 + expected = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}] + assert greedy_modularity_communities(G, resolution=gamma) == expected + assert naive_greedy_modularity_communities(G, resolution=gamma) == expected + + gamma = 0.3 + expected = [frozenset(range(8)), frozenset(range(8, 13))] + assert greedy_modularity_communities(G, resolution=gamma) == expected + assert naive_greedy_modularity_communities(G, resolution=gamma) == expected + + +def test_cutoff_parameter(): + G = nx.circular_ladder_graph(4) + + # No aggregation: + expected = [{k} for k in range(8)] + assert greedy_modularity_communities(G, cutoff=8) == expected + + # Aggregation to half order (number of nodes) + expected = [{k, k + 1} for k in range(0, 8, 2)] + assert greedy_modularity_communities(G, cutoff=4) == expected + + # Default aggregation case (here, 2 communities emerge) + expected = [frozenset(range(4)), frozenset(range(4, 8))] + assert greedy_modularity_communities(G, cutoff=1) == expected + + +def test_best_n(): + G = nx.barbell_graph(5, 3) + + # Same result as without enforcing cutoff: + best_n = 3 + expected = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))] + assert greedy_modularity_communities(G, best_n=best_n) == expected + + # One additional merging step: + best_n = 2 + expected = [frozenset(range(8)), frozenset(range(8, 13))] + assert greedy_modularity_communities(G, best_n=best_n) == expected + + # Two additional merging steps: + best_n = 1 + expected = [frozenset(range(13))] + assert greedy_modularity_communities(G, best_n=best_n) == expected diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_quality.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_quality.py new file mode 100644 index 0000000000000000000000000000000000000000..3447c9484e6da68e1245e71cbed5762a18827136 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_quality.py @@ -0,0 +1,138 @@ +"""Unit tests for the :mod:`networkx.algorithms.community.quality` +module. + +""" +import pytest + +import networkx as nx +from networkx import barbell_graph +from networkx.algorithms.community import modularity, partition_quality +from networkx.algorithms.community.quality import inter_community_edges + + +class TestPerformance: + """Unit tests for the :func:`performance` function.""" + + def test_bad_partition(self): + """Tests that a poor partition has a low performance measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 4}, {2, 3, 5}] + assert 8 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7) + + def test_good_partition(self): + """Tests that a good partition has a high performance measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + assert 14 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7) + + +class TestCoverage: + """Unit tests for the :func:`coverage` function.""" + + def test_bad_partition(self): + """Tests that a poor partition has a low coverage measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 4}, {2, 3, 5}] + assert 3 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7) + + def test_good_partition(self): + """Tests that a good partition has a high coverage measure.""" + G = barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + assert 6 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7) + + +def test_modularity(): + G = nx.barbell_graph(3, 0) + C = [{0, 1, 4}, {2, 3, 5}] + assert (-16 / (14**2)) == pytest.approx(modularity(G, C), abs=1e-7) + C = [{0, 1, 2}, {3, 4, 5}] + assert (35 * 2) / (14**2) == pytest.approx(modularity(G, C), abs=1e-7) + + n = 1000 + G = nx.erdos_renyi_graph(n, 0.09, seed=42, directed=True) + C = [set(range(n // 2)), set(range(n // 2, n))] + assert 0.00017154251389292754 == pytest.approx(modularity(G, C), abs=1e-7) + + G = nx.margulis_gabber_galil_graph(10) + mid_value = G.number_of_nodes() // 2 + nodes = list(G.nodes) + C = [set(nodes[:mid_value]), set(nodes[mid_value:])] + assert 0.13 == pytest.approx(modularity(G, C), abs=1e-7) + + G = nx.DiGraph() + G.add_edges_from([(2, 1), (2, 3), (3, 4)]) + C = [{1, 2}, {3, 4}] + assert 2 / 9 == pytest.approx(modularity(G, C), abs=1e-7) + + +def test_modularity_resolution(): + G = nx.barbell_graph(3, 0) + C = [{0, 1, 4}, {2, 3, 5}] + assert modularity(G, C) == pytest.approx(3 / 7 - 100 / 14**2) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2) + + C = [{0, 1, 2}, {3, 4, 5}] + assert modularity(G, C) == pytest.approx(6 / 7 - 98 / 14**2) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2) + + G = nx.barbell_graph(5, 3) + C = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))] + gamma = 1 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=1: modularity = 0.518229 + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2))) + + C = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}] + gamma = 1 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + gamma = 2.5 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=2.5: modularity = -0.06553819 + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + gamma = 0.2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2))) + + C = [frozenset(range(8)), frozenset(range(8, 13))] + gamma = 1 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + gamma = 2 + result = modularity(G, C, resolution=gamma) + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + gamma = 0.3 + result = modularity(G, C, resolution=gamma) + # This C is maximal for gamma=0.3: modularity = 0.805990 + assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2))) + + +def test_inter_community_edges_with_digraphs(): + G = nx.complete_graph(2, create_using=nx.DiGraph()) + partition = [{0}, {1}] + assert inter_community_edges(G, partition) == 2 + + G = nx.complete_graph(10, create_using=nx.DiGraph()) + partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}] + assert inter_community_edges(G, partition) == 70 + + G = nx.cycle_graph(4, create_using=nx.DiGraph()) + partition = [{0, 1}, {2, 3}] + assert inter_community_edges(G, partition) == 2 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_utils.py b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..329ff66a4229ee67e0e7c58ddaf22aa4f22b290b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/community/tests/test_utils.py @@ -0,0 +1,28 @@ +"""Unit tests for the :mod:`networkx.algorithms.community.utils` module. + +""" + +import networkx as nx + + +def test_is_partition(): + G = nx.empty_graph(3) + assert nx.community.is_partition(G, [{0, 1}, {2}]) + assert nx.community.is_partition(G, ({0, 1}, {2})) + assert nx.community.is_partition(G, ([0, 1], [2])) + assert nx.community.is_partition(G, [[0, 1], [2]]) + + +def test_not_covering(): + G = nx.empty_graph(3) + assert not nx.community.is_partition(G, [{0}, {1}]) + + +def test_not_disjoint(): + G = nx.empty_graph(3) + assert not nx.community.is_partition(G, [{0, 1}, {1, 2}]) + + +def test_not_node(): + G = nx.empty_graph(3) + assert not nx.community.is_partition(G, [{0, 1}, {3}]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/components/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f9ae2caba856daba534037f4a6f967abfad49552 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/__init__.py @@ -0,0 +1,6 @@ +from .connected import * +from .strongly_connected import * +from .weakly_connected import * +from .attracting import * +from .biconnected import * +from .semiconnected import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6ad74329fe06b39c03d716684988733c9e4d7a9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d51525b775e6ab4a42fee9a2e7d85b8bb30e2b36 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33d6c472253e0e6d6930826aeb911a8b6ad53956 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9da540a98c49741f30eec6a24fa45b23b13c485 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14fec7f393de6bb93b203c2c2e597a59187ddc7f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93ffef253ed728f608c5c33bc9f16774e6b3e022 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba017fb61382b69ab8a66b14f6ca3c624ad043d9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/attracting.py b/phivenv/Lib/site-packages/networkx/algorithms/components/attracting.py new file mode 100644 index 0000000000000000000000000000000000000000..1cc2e15615cbfa10bc8ea7389b9be2d88a55f127 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/attracting.py @@ -0,0 +1,114 @@ +"""Attracting components.""" +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +__all__ = [ + "number_attracting_components", + "attracting_components", + "is_attracting_component", +] + + +@not_implemented_for("undirected") +@nx._dispatch +def attracting_components(G): + """Generates the attracting components in `G`. + + An attracting component in a directed graph `G` is a strongly connected + component with the property that a random walker on the graph will never + leave the component, once it enters the component. + + The nodes in attracting components can also be thought of as recurrent + nodes. If a random walker enters the attractor containing the node, then + the node will be visited infinitely often. + + To obtain induced subgraphs on each component use: + ``(G.subgraph(c).copy() for c in attracting_components(G))`` + + Parameters + ---------- + G : DiGraph, MultiDiGraph + The graph to be analyzed. + + Returns + ------- + attractors : generator of sets + A generator of sets of nodes, one for each attracting component of G. + + Raises + ------ + NetworkXNotImplemented + If the input graph is undirected. + + See Also + -------- + number_attracting_components + is_attracting_component + + """ + scc = list(nx.strongly_connected_components(G)) + cG = nx.condensation(G, scc) + for n in cG: + if cG.out_degree(n) == 0: + yield scc[n] + + +@not_implemented_for("undirected") +@nx._dispatch +def number_attracting_components(G): + """Returns the number of attracting components in `G`. + + Parameters + ---------- + G : DiGraph, MultiDiGraph + The graph to be analyzed. + + Returns + ------- + n : int + The number of attracting components in G. + + Raises + ------ + NetworkXNotImplemented + If the input graph is undirected. + + See Also + -------- + attracting_components + is_attracting_component + + """ + return sum(1 for ac in attracting_components(G)) + + +@not_implemented_for("undirected") +@nx._dispatch +def is_attracting_component(G): + """Returns True if `G` consists of a single attracting component. + + Parameters + ---------- + G : DiGraph, MultiDiGraph + The graph to be analyzed. + + Returns + ------- + attracting : bool + True if `G` has a single attracting component. Otherwise, False. + + Raises + ------ + NetworkXNotImplemented + If the input graph is undirected. + + See Also + -------- + attracting_components + number_attracting_components + + """ + ac = list(attracting_components(G)) + if len(ac) == 1: + return len(ac[0]) == len(G) + return False diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/biconnected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/biconnected.py new file mode 100644 index 0000000000000000000000000000000000000000..632b2d598d7c8132e37fa7d6647c48c837ab3136 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/biconnected.py @@ -0,0 +1,393 @@ +"""Biconnected components and articulation points.""" +from itertools import chain + +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +__all__ = [ + "biconnected_components", + "biconnected_component_edges", + "is_biconnected", + "articulation_points", +] + + +@not_implemented_for("directed") +@nx._dispatch +def is_biconnected(G): + """Returns True if the graph is biconnected, False otherwise. + + A graph is biconnected if, and only if, it cannot be disconnected by + removing only one node (and all edges incident on that node). If + removing a node increases the number of disconnected components + in the graph, that node is called an articulation point, or cut + vertex. A biconnected graph has no articulation points. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + Returns + ------- + biconnected : bool + True if the graph is biconnected, False otherwise. + + Raises + ------ + NetworkXNotImplemented + If the input graph is not undirected. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> print(nx.is_biconnected(G)) + False + >>> G.add_edge(0, 3) + >>> print(nx.is_biconnected(G)) + True + + See Also + -------- + biconnected_components + articulation_points + biconnected_component_edges + is_strongly_connected + is_weakly_connected + is_connected + is_semiconnected + + Notes + ----- + The algorithm to find articulation points and biconnected + components is implemented using a non-recursive depth-first-search + (DFS) that keeps track of the highest level that back edges reach + in the DFS tree. A node `n` is an articulation point if, and only + if, there exists a subtree rooted at `n` such that there is no + back edge from any successor of `n` that links to a predecessor of + `n` in the DFS tree. By keeping track of all the edges traversed + by the DFS we can obtain the biconnected components because all + edges of a bicomponent will be traversed consecutively between + articulation points. + + References + ---------- + .. [1] Hopcroft, J.; Tarjan, R. (1973). + "Efficient algorithms for graph manipulation". + Communications of the ACM 16: 372–378. doi:10.1145/362248.362272 + + """ + bccs = biconnected_components(G) + try: + bcc = next(bccs) + except StopIteration: + # No bicomponents (empty graph?) + return False + try: + next(bccs) + except StopIteration: + # Only one bicomponent + return len(bcc) == len(G) + else: + # Multiple bicomponents + return False + + +@not_implemented_for("directed") +@nx._dispatch +def biconnected_component_edges(G): + """Returns a generator of lists of edges, one list for each biconnected + component of the input graph. + + Biconnected components are maximal subgraphs such that the removal of a + node (and all edges incident on that node) will not disconnect the + subgraph. Note that nodes may be part of more than one biconnected + component. Those nodes are articulation points, or cut vertices. + However, each edge belongs to one, and only one, biconnected component. + + Notice that by convention a dyad is considered a biconnected component. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + Returns + ------- + edges : generator of lists + Generator of lists of edges, one list for each bicomponent. + + Raises + ------ + NetworkXNotImplemented + If the input graph is not undirected. + + Examples + -------- + >>> G = nx.barbell_graph(4, 2) + >>> print(nx.is_biconnected(G)) + False + >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) + >>> len(bicomponents_edges) + 5 + >>> G.add_edge(2, 8) + >>> print(nx.is_biconnected(G)) + True + >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) + >>> len(bicomponents_edges) + 1 + + See Also + -------- + is_biconnected, + biconnected_components, + articulation_points, + + Notes + ----- + The algorithm to find articulation points and biconnected + components is implemented using a non-recursive depth-first-search + (DFS) that keeps track of the highest level that back edges reach + in the DFS tree. A node `n` is an articulation point if, and only + if, there exists a subtree rooted at `n` such that there is no + back edge from any successor of `n` that links to a predecessor of + `n` in the DFS tree. By keeping track of all the edges traversed + by the DFS we can obtain the biconnected components because all + edges of a bicomponent will be traversed consecutively between + articulation points. + + References + ---------- + .. [1] Hopcroft, J.; Tarjan, R. (1973). + "Efficient algorithms for graph manipulation". + Communications of the ACM 16: 372–378. doi:10.1145/362248.362272 + + """ + yield from _biconnected_dfs(G, components=True) + + +@not_implemented_for("directed") +@nx._dispatch +def biconnected_components(G): + """Returns a generator of sets of nodes, one set for each biconnected + component of the graph + + Biconnected components are maximal subgraphs such that the removal of a + node (and all edges incident on that node) will not disconnect the + subgraph. Note that nodes may be part of more than one biconnected + component. Those nodes are articulation points, or cut vertices. The + removal of articulation points will increase the number of connected + components of the graph. + + Notice that by convention a dyad is considered a biconnected component. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + Returns + ------- + nodes : generator + Generator of sets of nodes, one set for each biconnected component. + + Raises + ------ + NetworkXNotImplemented + If the input graph is not undirected. + + Examples + -------- + >>> G = nx.lollipop_graph(5, 1) + >>> print(nx.is_biconnected(G)) + False + >>> bicomponents = list(nx.biconnected_components(G)) + >>> len(bicomponents) + 2 + >>> G.add_edge(0, 5) + >>> print(nx.is_biconnected(G)) + True + >>> bicomponents = list(nx.biconnected_components(G)) + >>> len(bicomponents) + 1 + + You can generate a sorted list of biconnected components, largest + first, using sort. + + >>> G.remove_edge(0, 5) + >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)] + [5, 2] + + If you only want the largest connected component, it's more + efficient to use max instead of sort. + + >>> Gc = max(nx.biconnected_components(G), key=len) + + To create the components as subgraphs use: + ``(G.subgraph(c).copy() for c in biconnected_components(G))`` + + See Also + -------- + is_biconnected + articulation_points + biconnected_component_edges + k_components : this function is a special case where k=2 + bridge_components : similar to this function, but is defined using + 2-edge-connectivity instead of 2-node-connectivity. + + Notes + ----- + The algorithm to find articulation points and biconnected + components is implemented using a non-recursive depth-first-search + (DFS) that keeps track of the highest level that back edges reach + in the DFS tree. A node `n` is an articulation point if, and only + if, there exists a subtree rooted at `n` such that there is no + back edge from any successor of `n` that links to a predecessor of + `n` in the DFS tree. By keeping track of all the edges traversed + by the DFS we can obtain the biconnected components because all + edges of a bicomponent will be traversed consecutively between + articulation points. + + References + ---------- + .. [1] Hopcroft, J.; Tarjan, R. (1973). + "Efficient algorithms for graph manipulation". + Communications of the ACM 16: 372–378. doi:10.1145/362248.362272 + + """ + for comp in _biconnected_dfs(G, components=True): + yield set(chain.from_iterable(comp)) + + +@not_implemented_for("directed") +@nx._dispatch +def articulation_points(G): + """Yield the articulation points, or cut vertices, of a graph. + + An articulation point or cut vertex is any node whose removal (along with + all its incident edges) increases the number of connected components of + a graph. An undirected connected graph without articulation points is + biconnected. Articulation points belong to more than one biconnected + component of a graph. + + Notice that by convention a dyad is considered a biconnected component. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + Yields + ------ + node + An articulation point in the graph. + + Raises + ------ + NetworkXNotImplemented + If the input graph is not undirected. + + Examples + -------- + + >>> G = nx.barbell_graph(4, 2) + >>> print(nx.is_biconnected(G)) + False + >>> len(list(nx.articulation_points(G))) + 4 + >>> G.add_edge(2, 8) + >>> print(nx.is_biconnected(G)) + True + >>> len(list(nx.articulation_points(G))) + 0 + + See Also + -------- + is_biconnected + biconnected_components + biconnected_component_edges + + Notes + ----- + The algorithm to find articulation points and biconnected + components is implemented using a non-recursive depth-first-search + (DFS) that keeps track of the highest level that back edges reach + in the DFS tree. A node `n` is an articulation point if, and only + if, there exists a subtree rooted at `n` such that there is no + back edge from any successor of `n` that links to a predecessor of + `n` in the DFS tree. By keeping track of all the edges traversed + by the DFS we can obtain the biconnected components because all + edges of a bicomponent will be traversed consecutively between + articulation points. + + References + ---------- + .. [1] Hopcroft, J.; Tarjan, R. (1973). + "Efficient algorithms for graph manipulation". + Communications of the ACM 16: 372–378. doi:10.1145/362248.362272 + + """ + seen = set() + for articulation in _biconnected_dfs(G, components=False): + if articulation not in seen: + seen.add(articulation) + yield articulation + + +@not_implemented_for("directed") +def _biconnected_dfs(G, components=True): + # depth-first search algorithm to generate articulation points + # and biconnected components + visited = set() + for start in G: + if start in visited: + continue + discovery = {start: 0} # time of first discovery of node during search + low = {start: 0} + root_children = 0 + visited.add(start) + edge_stack = [] + stack = [(start, start, iter(G[start]))] + edge_index = {} + while stack: + grandparent, parent, children = stack[-1] + try: + child = next(children) + if grandparent == child: + continue + if child in visited: + if discovery[child] <= discovery[parent]: # back edge + low[parent] = min(low[parent], discovery[child]) + if components: + edge_index[parent, child] = len(edge_stack) + edge_stack.append((parent, child)) + else: + low[child] = discovery[child] = len(discovery) + visited.add(child) + stack.append((parent, child, iter(G[child]))) + if components: + edge_index[parent, child] = len(edge_stack) + edge_stack.append((parent, child)) + + except StopIteration: + stack.pop() + if len(stack) > 1: + if low[parent] >= discovery[grandparent]: + if components: + ind = edge_index[grandparent, parent] + yield edge_stack[ind:] + del edge_stack[ind:] + + else: + yield grandparent + low[grandparent] = min(low[parent], low[grandparent]) + elif stack: # length 1 so grandparent is root + root_children += 1 + if components: + ind = edge_index[grandparent, parent] + yield edge_stack[ind:] + del edge_stack[ind:] + if not components: + # root node is articulation point if it has more than 1 child + if root_children > 1: + yield start diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/connected.py new file mode 100644 index 0000000000000000000000000000000000000000..ff4fca5d0c1326d34f1b90cdaf56ab50d6898ab5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/connected.py @@ -0,0 +1,208 @@ +"""Connected components.""" +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +from ...utils import arbitrary_element + +__all__ = [ + "number_connected_components", + "connected_components", + "is_connected", + "node_connected_component", +] + + +@not_implemented_for("directed") +@nx._dispatch +def connected_components(G): + """Generate connected components. + + Parameters + ---------- + G : NetworkX graph + An undirected graph + + Returns + ------- + comp : generator of sets + A generator of sets of nodes, one for each component of G. + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Examples + -------- + Generate a sorted list of connected components, largest first. + + >>> G = nx.path_graph(4) + >>> nx.add_path(G, [10, 11, 12]) + >>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)] + [4, 3] + + If you only want the largest connected component, it's more + efficient to use max instead of sort. + + >>> largest_cc = max(nx.connected_components(G), key=len) + + To create the induced subgraph of each component use: + + >>> S = [G.subgraph(c).copy() for c in nx.connected_components(G)] + + See Also + -------- + strongly_connected_components + weakly_connected_components + + Notes + ----- + For undirected graphs only. + + """ + seen = set() + for v in G: + if v not in seen: + c = _plain_bfs(G, v) + seen.update(c) + yield c + + +@nx._dispatch +def number_connected_components(G): + """Returns the number of connected components. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + Returns + ------- + n : integer + Number of connected components + + Examples + -------- + >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)]) + >>> nx.number_connected_components(G) + 3 + + See Also + -------- + connected_components + number_weakly_connected_components + number_strongly_connected_components + + Notes + ----- + For undirected graphs only. + + """ + return sum(1 for cc in connected_components(G)) + + +@not_implemented_for("directed") +@nx._dispatch +def is_connected(G): + """Returns True if the graph is connected, False otherwise. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + Returns + ------- + connected : bool + True if the graph is connected, false otherwise. + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> print(nx.is_connected(G)) + True + + See Also + -------- + is_strongly_connected + is_weakly_connected + is_semiconnected + is_biconnected + connected_components + + Notes + ----- + For undirected graphs only. + + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + "Connectivity is undefined ", "for the null graph." + ) + return sum(1 for node in _plain_bfs(G, arbitrary_element(G))) == len(G) + + +@not_implemented_for("directed") +@nx._dispatch +def node_connected_component(G, n): + """Returns the set of nodes in the component of graph containing node n. + + Parameters + ---------- + G : NetworkX Graph + An undirected graph. + + n : node label + A node in G + + Returns + ------- + comp : set + A set of nodes in the component of G containing node n. + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)]) + >>> nx.node_connected_component(G, 0) # nodes of component that contains node 0 + {0, 1, 2} + + See Also + -------- + connected_components + + Notes + ----- + For undirected graphs only. + + """ + return _plain_bfs(G, n) + + +def _plain_bfs(G, source): + """A fast BFS node generator""" + adj = G._adj + n = len(adj) + seen = {source} + nextlevel = [source] + while nextlevel: + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in adj[v]: + if w not in seen: + seen.add(w) + nextlevel.append(w) + if len(seen) == n: + return seen + return seen diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/semiconnected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/semiconnected.py new file mode 100644 index 0000000000000000000000000000000000000000..24a89f34d448e65db9442c773708bb1febd22394 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/semiconnected.py @@ -0,0 +1,70 @@ +"""Semiconnectedness.""" +import networkx as nx +from networkx.utils import not_implemented_for, pairwise + +__all__ = ["is_semiconnected"] + + +@not_implemented_for("undirected") +@nx._dispatch +def is_semiconnected(G): + r"""Returns True if the graph is semiconnected, False otherwise. + + A graph is semiconnected if and only if for any pair of nodes, either one + is reachable from the other, or they are mutually reachable. + + This function uses a theorem that states that a DAG is semiconnected + if for any topological sort, for node $v_n$ in that sort, there is an + edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is + semiconnected by condensing the graph: i.e. constructing a new graph `H` + with nodes being the strongly connected components of `G`, and edges + (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some + $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute + the topological sort of `H` and check if for every $n$ there is an edge + $(scc_n, scc_{n+1})$. + + Parameters + ---------- + G : NetworkX graph + A directed graph. + + Returns + ------- + semiconnected : bool + True if the graph is semiconnected, False otherwise. + + Raises + ------ + NetworkXNotImplemented + If the input graph is undirected. + + NetworkXPointlessConcept + If the graph is empty. + + Examples + -------- + >>> G = nx.path_graph(4, create_using=nx.DiGraph()) + >>> print(nx.is_semiconnected(G)) + True + >>> G = nx.DiGraph([(1, 2), (3, 2)]) + >>> print(nx.is_semiconnected(G)) + False + + See Also + -------- + is_strongly_connected + is_weakly_connected + is_connected + is_biconnected + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + "Connectivity is undefined for the null graph." + ) + + if not nx.is_weakly_connected(G): + return False + + H = nx.condensation(G) + + return all(H.has_edge(u, v) for u, v in pairwise(nx.topological_sort(H))) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/strongly_connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/strongly_connected.py new file mode 100644 index 0000000000000000000000000000000000000000..5bf5b9947667c3c83416ebb9593144bb07969952 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/strongly_connected.py @@ -0,0 +1,431 @@ +"""Strongly connected components.""" +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +__all__ = [ + "number_strongly_connected_components", + "strongly_connected_components", + "is_strongly_connected", + "strongly_connected_components_recursive", + "kosaraju_strongly_connected_components", + "condensation", +] + + +@not_implemented_for("undirected") +@nx._dispatch +def strongly_connected_components(G): + """Generate nodes in strongly connected components of graph. + + Parameters + ---------- + G : NetworkX Graph + A directed graph. + + Returns + ------- + comp : generator of sets + A generator of sets of nodes, one for each strongly connected + component of G. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + Generate a sorted list of strongly connected components, largest first. + + >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) + >>> nx.add_cycle(G, [10, 11, 12]) + >>> [ + ... len(c) + ... for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True) + ... ] + [4, 3] + + If you only want the largest component, it's more efficient to + use max instead of sort. + + >>> largest = max(nx.strongly_connected_components(G), key=len) + + See Also + -------- + connected_components + weakly_connected_components + kosaraju_strongly_connected_components + + Notes + ----- + Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_. + Nonrecursive version of algorithm. + + References + ---------- + .. [1] Depth-first search and linear graph algorithms, R. Tarjan + SIAM Journal of Computing 1(2):146-160, (1972). + + .. [2] On finding the strongly connected components in a directed graph. + E. Nuutila and E. Soisalon-Soinen + Information Processing Letters 49(1): 9-14, (1994).. + + """ + preorder = {} + lowlink = {} + scc_found = set() + scc_queue = [] + i = 0 # Preorder counter + neighbors = {v: iter(G[v]) for v in G} + for source in G: + if source not in scc_found: + queue = [source] + while queue: + v = queue[-1] + if v not in preorder: + i = i + 1 + preorder[v] = i + done = True + for w in neighbors[v]: + if w not in preorder: + queue.append(w) + done = False + break + if done: + lowlink[v] = preorder[v] + for w in G[v]: + if w not in scc_found: + if preorder[w] > preorder[v]: + lowlink[v] = min([lowlink[v], lowlink[w]]) + else: + lowlink[v] = min([lowlink[v], preorder[w]]) + queue.pop() + if lowlink[v] == preorder[v]: + scc = {v} + while scc_queue and preorder[scc_queue[-1]] > preorder[v]: + k = scc_queue.pop() + scc.add(k) + scc_found.update(scc) + yield scc + else: + scc_queue.append(v) + + +@not_implemented_for("undirected") +@nx._dispatch +def kosaraju_strongly_connected_components(G, source=None): + """Generate nodes in strongly connected components of graph. + + Parameters + ---------- + G : NetworkX Graph + A directed graph. + + Returns + ------- + comp : generator of sets + A generator of sets of nodes, one for each strongly connected + component of G. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + Generate a sorted list of strongly connected components, largest first. + + >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) + >>> nx.add_cycle(G, [10, 11, 12]) + >>> [ + ... len(c) + ... for c in sorted( + ... nx.kosaraju_strongly_connected_components(G), key=len, reverse=True + ... ) + ... ] + [4, 3] + + If you only want the largest component, it's more efficient to + use max instead of sort. + + >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len) + + See Also + -------- + strongly_connected_components + + Notes + ----- + Uses Kosaraju's algorithm. + + """ + post = list(nx.dfs_postorder_nodes(G.reverse(copy=False), source=source)) + + seen = set() + while post: + r = post.pop() + if r in seen: + continue + c = nx.dfs_preorder_nodes(G, r) + new = {v for v in c if v not in seen} + seen.update(new) + yield new + + +@not_implemented_for("undirected") +@nx._dispatch +def strongly_connected_components_recursive(G): + """Generate nodes in strongly connected components of graph. + + .. deprecated:: 3.2 + + This function is deprecated and will be removed in a future version of + NetworkX. Use `strongly_connected_components` instead. + + Recursive version of algorithm. + + Parameters + ---------- + G : NetworkX Graph + A directed graph. + + Returns + ------- + comp : generator of sets + A generator of sets of nodes, one for each strongly connected + component of G. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + Generate a sorted list of strongly connected components, largest first. + + >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) + >>> nx.add_cycle(G, [10, 11, 12]) + >>> [ + ... len(c) + ... for c in sorted( + ... nx.strongly_connected_components_recursive(G), key=len, reverse=True + ... ) + ... ] + [4, 3] + + If you only want the largest component, it's more efficient to + use max instead of sort. + + >>> largest = max(nx.strongly_connected_components_recursive(G), key=len) + + To create the induced subgraph of the components use: + >>> S = [G.subgraph(c).copy() for c in nx.weakly_connected_components(G)] + + See Also + -------- + connected_components + + Notes + ----- + Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_. + + References + ---------- + .. [1] Depth-first search and linear graph algorithms, R. Tarjan + SIAM Journal of Computing 1(2):146-160, (1972). + + .. [2] On finding the strongly connected components in a directed graph. + E. Nuutila and E. Soisalon-Soinen + Information Processing Letters 49(1): 9-14, (1994).. + + """ + import warnings + + warnings.warn( + ( + "\n\nstrongly_connected_components_recursive is deprecated and will be\n" + "removed in the future. Use strongly_connected_components instead." + ), + category=DeprecationWarning, + stacklevel=2, + ) + + yield from strongly_connected_components(G) + + +@not_implemented_for("undirected") +@nx._dispatch +def number_strongly_connected_components(G): + """Returns number of strongly connected components in graph. + + Parameters + ---------- + G : NetworkX graph + A directed graph. + + Returns + ------- + n : integer + Number of strongly connected components + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)]) + >>> nx.number_strongly_connected_components(G) + 3 + + See Also + -------- + strongly_connected_components + number_connected_components + number_weakly_connected_components + + Notes + ----- + For directed graphs only. + """ + return sum(1 for scc in strongly_connected_components(G)) + + +@not_implemented_for("undirected") +@nx._dispatch +def is_strongly_connected(G): + """Test directed graph for strong connectivity. + + A directed graph is strongly connected if and only if every vertex in + the graph is reachable from every other vertex. + + Parameters + ---------- + G : NetworkX Graph + A directed graph. + + Returns + ------- + connected : bool + True if the graph is strongly connected, False otherwise. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)]) + >>> nx.is_strongly_connected(G) + True + >>> G.remove_edge(2, 3) + >>> nx.is_strongly_connected(G) + False + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + See Also + -------- + is_weakly_connected + is_semiconnected + is_connected + is_biconnected + strongly_connected_components + + Notes + ----- + For directed graphs only. + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + """Connectivity is undefined for the null graph.""" + ) + + return len(next(strongly_connected_components(G))) == len(G) + + +@not_implemented_for("undirected") +@nx._dispatch +def condensation(G, scc=None): + """Returns the condensation of G. + + The condensation of G is the graph with each of the strongly connected + components contracted into a single node. + + Parameters + ---------- + G : NetworkX DiGraph + A directed graph. + + scc: list or generator (optional, default=None) + Strongly connected components. If provided, the elements in + `scc` must partition the nodes in `G`. If not provided, it will be + calculated as scc=nx.strongly_connected_components(G). + + Returns + ------- + C : NetworkX DiGraph + The condensation graph C of G. The node labels are integers + corresponding to the index of the component in the list of + strongly connected components of G. C has a graph attribute named + 'mapping' with a dictionary mapping the original nodes to the + nodes in C to which they belong. Each node in C also has a node + attribute 'members' with the set of original nodes in G that + form the SCC that the node in C represents. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + Contracting two sets of strongly connected nodes into two distinct SCC + using the barbell graph. + + >>> G = nx.barbell_graph(4, 0) + >>> G.remove_edge(3, 4) + >>> G = nx.DiGraph(G) + >>> H = nx.condensation(G) + >>> H.nodes.data() + NodeDataView({0: {'members': {0, 1, 2, 3}}, 1: {'members': {4, 5, 6, 7}}}) + >>> H.graph['mapping'] + {0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1} + + Contracting a complete graph into one single SCC. + + >>> G = nx.complete_graph(7, create_using=nx.DiGraph) + >>> H = nx.condensation(G) + >>> H.nodes + NodeView((0,)) + >>> H.nodes.data() + NodeDataView({0: {'members': {0, 1, 2, 3, 4, 5, 6}}}) + + Notes + ----- + After contracting all strongly connected components to a single node, + the resulting graph is a directed acyclic graph. + + """ + if scc is None: + scc = nx.strongly_connected_components(G) + mapping = {} + members = {} + C = nx.DiGraph() + # Add mapping dict as graph attribute + C.graph["mapping"] = mapping + if len(G) == 0: + return C + for i, component in enumerate(scc): + members[i] = component + mapping.update((n, i) for n in component) + number_of_components = i + 1 + C.add_nodes_from(range(number_of_components)) + C.add_edges_from( + (mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v] + ) + # Add a list of members (ie original nodes) to each node (ie scc) in C. + nx.set_node_attributes(C, members, "members") + return C diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2bf9a3b240e1a5b28b7cd0153309ab76893b368e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..226d6a1c30ebe475f21fc93e93c3714282183029 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fdf97f2f556c868a7654a29e9e090a161cd731cd Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ad0985570ddc24c3c1e0a56ce05306220ebb9c0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79ad9a21a829c9c324065094a0cb8bc9a1871a48 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e43a86b10c90d1d5dfaad2e4959032acbcd716b7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d45866979cf62648d7380bc90ec12658c3a064b9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_attracting.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_attracting.py new file mode 100644 index 0000000000000000000000000000000000000000..336c40ddc27162c1c2f5cc245f4fc840311506b5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_attracting.py @@ -0,0 +1,70 @@ +import pytest + +import networkx as nx +from networkx import NetworkXNotImplemented + + +class TestAttractingComponents: + @classmethod + def setup_class(cls): + cls.G1 = nx.DiGraph() + cls.G1.add_edges_from( + [ + (5, 11), + (11, 2), + (11, 9), + (11, 10), + (7, 11), + (7, 8), + (8, 9), + (3, 8), + (3, 10), + ] + ) + cls.G2 = nx.DiGraph() + cls.G2.add_edges_from([(0, 1), (0, 2), (1, 1), (1, 2), (2, 1)]) + + cls.G3 = nx.DiGraph() + cls.G3.add_edges_from([(0, 1), (1, 2), (2, 1), (0, 3), (3, 4), (4, 3)]) + + cls.G4 = nx.DiGraph() + + def test_attracting_components(self): + ac = list(nx.attracting_components(self.G1)) + assert {2} in ac + assert {9} in ac + assert {10} in ac + + ac = list(nx.attracting_components(self.G2)) + ac = [tuple(sorted(x)) for x in ac] + assert ac == [(1, 2)] + + ac = list(nx.attracting_components(self.G3)) + ac = [tuple(sorted(x)) for x in ac] + assert (1, 2) in ac + assert (3, 4) in ac + assert len(ac) == 2 + + ac = list(nx.attracting_components(self.G4)) + assert ac == [] + + def test_number_attacting_components(self): + assert nx.number_attracting_components(self.G1) == 3 + assert nx.number_attracting_components(self.G2) == 1 + assert nx.number_attracting_components(self.G3) == 2 + assert nx.number_attracting_components(self.G4) == 0 + + def test_is_attracting_component(self): + assert not nx.is_attracting_component(self.G1) + assert not nx.is_attracting_component(self.G2) + assert not nx.is_attracting_component(self.G3) + g2 = self.G3.subgraph([1, 2]) + assert nx.is_attracting_component(g2) + assert not nx.is_attracting_component(self.G4) + + def test_connected_raise(self): + G = nx.Graph() + with pytest.raises(NetworkXNotImplemented): + next(nx.attracting_components(G)) + pytest.raises(NetworkXNotImplemented, nx.number_attracting_components, G) + pytest.raises(NetworkXNotImplemented, nx.is_attracting_component, G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_biconnected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_biconnected.py new file mode 100644 index 0000000000000000000000000000000000000000..19d2d8831ced26a516d101e735b6701f39865c1b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_biconnected.py @@ -0,0 +1,248 @@ +import pytest + +import networkx as nx +from networkx import NetworkXNotImplemented + + +def assert_components_edges_equal(x, y): + sx = {frozenset(frozenset(e) for e in c) for c in x} + sy = {frozenset(frozenset(e) for e in c) for c in y} + assert sx == sy + + +def assert_components_equal(x, y): + sx = {frozenset(c) for c in x} + sy = {frozenset(c) for c in y} + assert sx == sy + + +def test_barbell(): + G = nx.barbell_graph(8, 4) + nx.add_path(G, [7, 20, 21, 22]) + nx.add_cycle(G, [22, 23, 24, 25]) + pts = set(nx.articulation_points(G)) + assert pts == {7, 8, 9, 10, 11, 12, 20, 21, 22} + + answer = [ + {12, 13, 14, 15, 16, 17, 18, 19}, + {0, 1, 2, 3, 4, 5, 6, 7}, + {22, 23, 24, 25}, + {11, 12}, + {10, 11}, + {9, 10}, + {8, 9}, + {7, 8}, + {21, 22}, + {20, 21}, + {7, 20}, + ] + assert_components_equal(list(nx.biconnected_components(G)), answer) + + G.add_edge(2, 17) + pts = set(nx.articulation_points(G)) + assert pts == {7, 20, 21, 22} + + +def test_articulation_points_repetitions(): + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3)]) + assert list(nx.articulation_points(G)) == [1] + + +def test_articulation_points_cycle(): + G = nx.cycle_graph(3) + nx.add_cycle(G, [1, 3, 4]) + pts = set(nx.articulation_points(G)) + assert pts == {1} + + +def test_is_biconnected(): + G = nx.cycle_graph(3) + assert nx.is_biconnected(G) + nx.add_cycle(G, [1, 3, 4]) + assert not nx.is_biconnected(G) + + +def test_empty_is_biconnected(): + G = nx.empty_graph(5) + assert not nx.is_biconnected(G) + G.add_edge(0, 1) + assert not nx.is_biconnected(G) + + +def test_biconnected_components_cycle(): + G = nx.cycle_graph(3) + nx.add_cycle(G, [1, 3, 4]) + answer = [{0, 1, 2}, {1, 3, 4}] + assert_components_equal(list(nx.biconnected_components(G)), answer) + + +def test_biconnected_components1(): + # graph example from + # https://web.archive.org/web/20121229123447/http://www.ibluemojo.com/school/articul_algorithm.html + edges = [ + (0, 1), + (0, 5), + (0, 6), + (0, 14), + (1, 5), + (1, 6), + (1, 14), + (2, 4), + (2, 10), + (3, 4), + (3, 15), + (4, 6), + (4, 7), + (4, 10), + (5, 14), + (6, 14), + (7, 9), + (8, 9), + (8, 12), + (8, 13), + (10, 15), + (11, 12), + (11, 13), + (12, 13), + ] + G = nx.Graph(edges) + pts = set(nx.articulation_points(G)) + assert pts == {4, 6, 7, 8, 9} + comps = list(nx.biconnected_component_edges(G)) + answer = [ + [(3, 4), (15, 3), (10, 15), (10, 4), (2, 10), (4, 2)], + [(13, 12), (13, 8), (11, 13), (12, 11), (8, 12)], + [(9, 8)], + [(7, 9)], + [(4, 7)], + [(6, 4)], + [(14, 0), (5, 1), (5, 0), (14, 5), (14, 1), (6, 14), (6, 0), (1, 6), (0, 1)], + ] + assert_components_edges_equal(comps, answer) + + +def test_biconnected_components2(): + G = nx.Graph() + nx.add_cycle(G, "ABC") + nx.add_cycle(G, "CDE") + nx.add_cycle(G, "FIJHG") + nx.add_cycle(G, "GIJ") + G.add_edge("E", "G") + comps = list(nx.biconnected_component_edges(G)) + answer = [ + [ + tuple("GF"), + tuple("FI"), + tuple("IG"), + tuple("IJ"), + tuple("JG"), + tuple("JH"), + tuple("HG"), + ], + [tuple("EG")], + [tuple("CD"), tuple("DE"), tuple("CE")], + [tuple("AB"), tuple("BC"), tuple("AC")], + ] + assert_components_edges_equal(comps, answer) + + +def test_biconnected_davis(): + D = nx.davis_southern_women_graph() + bcc = list(nx.biconnected_components(D))[0] + assert set(D) == bcc # All nodes in a giant bicomponent + # So no articulation points + assert len(list(nx.articulation_points(D))) == 0 + + +def test_biconnected_karate(): + K = nx.karate_club_graph() + answer = [ + { + 0, + 1, + 2, + 3, + 7, + 8, + 9, + 12, + 13, + 14, + 15, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + }, + {0, 4, 5, 6, 10, 16}, + {0, 11}, + ] + bcc = list(nx.biconnected_components(K)) + assert_components_equal(bcc, answer) + assert set(nx.articulation_points(K)) == {0} + + +def test_biconnected_eppstein(): + # tests from http://www.ics.uci.edu/~eppstein/PADS/Biconnectivity.py + G1 = nx.Graph( + { + 0: [1, 2, 5], + 1: [0, 5], + 2: [0, 3, 4], + 3: [2, 4, 5, 6], + 4: [2, 3, 5, 6], + 5: [0, 1, 3, 4], + 6: [3, 4], + } + ) + G2 = nx.Graph( + { + 0: [2, 5], + 1: [3, 8], + 2: [0, 3, 5], + 3: [1, 2, 6, 8], + 4: [7], + 5: [0, 2], + 6: [3, 8], + 7: [4], + 8: [1, 3, 6], + } + ) + assert nx.is_biconnected(G1) + assert not nx.is_biconnected(G2) + answer_G2 = [{1, 3, 6, 8}, {0, 2, 5}, {2, 3}, {4, 7}] + bcc = list(nx.biconnected_components(G2)) + assert_components_equal(bcc, answer_G2) + + +def test_null_graph(): + G = nx.Graph() + assert not nx.is_biconnected(G) + assert list(nx.biconnected_components(G)) == [] + assert list(nx.biconnected_component_edges(G)) == [] + assert list(nx.articulation_points(G)) == [] + + +def test_connected_raise(): + DG = nx.DiGraph() + with pytest.raises(NetworkXNotImplemented): + next(nx.biconnected_components(DG)) + with pytest.raises(NetworkXNotImplemented): + next(nx.biconnected_component_edges(DG)) + with pytest.raises(NetworkXNotImplemented): + next(nx.articulation_points(DG)) + pytest.raises(NetworkXNotImplemented, nx.is_biconnected, DG) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_connected.py new file mode 100644 index 0000000000000000000000000000000000000000..4c9b8d28fd56f55d97e14e9cb8fb07742d055bc2 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_connected.py @@ -0,0 +1,117 @@ +import pytest + +import networkx as nx +from networkx import NetworkXNotImplemented +from networkx import convert_node_labels_to_integers as cnlti +from networkx.classes.tests import dispatch_interface + + +class TestConnected: + @classmethod + def setup_class(cls): + G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted") + G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted") + G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted") + cls.G = nx.union(G1, G2) + cls.G = nx.union(cls.G, G3) + cls.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)]) + cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1) + + cls.gc = [] + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2), + (2, 3), + (2, 8), + (3, 4), + (3, 7), + (4, 5), + (5, 3), + (5, 6), + (7, 4), + (7, 6), + (8, 1), + (8, 7), + ] + ) + C = [[3, 4, 5, 7], [1, 2, 8], [6]] + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)]) + C = [[2, 3, 4], [1]] + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)]) + C = [[1, 2, 3]] + cls.gc.append((G, C)) + + # Eppstein's tests + G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []}) + C = [[0], [1], [2], [3], [4], [5], [6]] + cls.gc.append((G, C)) + + G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]}) + C = [[0, 1, 2], [3, 4]] + cls.gc.append((G, C)) + + G = nx.DiGraph() + C = [] + cls.gc.append((G, C)) + + # This additionally tests the @nx._dispatch mechanism, treating + # nx.connected_components as if it were a re-implementation from another package + @pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert]) + def test_connected_components(self, wrapper): + cc = nx.connected_components + G = wrapper(self.G) + C = { + frozenset([0, 1, 2, 3]), + frozenset([4, 5, 6, 7, 8, 9]), + frozenset([10, 11, 12, 13, 14]), + } + assert {frozenset(g) for g in cc(G)} == C + + def test_number_connected_components(self): + ncc = nx.number_connected_components + assert ncc(self.G) == 3 + + def test_number_connected_components2(self): + ncc = nx.number_connected_components + assert ncc(self.grid) == 1 + + def test_connected_components2(self): + cc = nx.connected_components + G = self.grid + C = {frozenset([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])} + assert {frozenset(g) for g in cc(G)} == C + + def test_node_connected_components(self): + ncc = nx.node_connected_component + G = self.grid + C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} + assert ncc(G, 1) == C + + def test_is_connected(self): + assert nx.is_connected(self.grid) + G = nx.Graph() + G.add_nodes_from([1, 2]) + assert not nx.is_connected(G) + + def test_connected_raise(self): + with pytest.raises(NetworkXNotImplemented): + next(nx.connected_components(self.DG)) + pytest.raises(NetworkXNotImplemented, nx.number_connected_components, self.DG) + pytest.raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1) + pytest.raises(NetworkXNotImplemented, nx.is_connected, self.DG) + pytest.raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph()) + + def test_connected_mutability(self): + G = self.grid + seen = set() + for component in nx.connected_components(G): + assert len(seen & component) == 0 + seen.update(component) + component.clear() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_semiconnected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_semiconnected.py new file mode 100644 index 0000000000000000000000000000000000000000..6376bbfb12a061e1724b0c74d2614e116149d8bf --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_semiconnected.py @@ -0,0 +1,55 @@ +from itertools import chain + +import pytest + +import networkx as nx + + +class TestIsSemiconnected: + def test_undirected(self): + pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.Graph()) + pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.MultiGraph()) + + def test_empty(self): + pytest.raises(nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.DiGraph()) + pytest.raises( + nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.MultiDiGraph() + ) + + def test_single_node_graph(self): + G = nx.DiGraph() + G.add_node(0) + assert nx.is_semiconnected(G) + + def test_path(self): + G = nx.path_graph(100, create_using=nx.DiGraph()) + assert nx.is_semiconnected(G) + G.add_edge(100, 99) + assert not nx.is_semiconnected(G) + + def test_cycle(self): + G = nx.cycle_graph(100, create_using=nx.DiGraph()) + assert nx.is_semiconnected(G) + G = nx.path_graph(100, create_using=nx.DiGraph()) + G.add_edge(0, 99) + assert nx.is_semiconnected(G) + + def test_tree(self): + G = nx.DiGraph() + G.add_edges_from( + chain.from_iterable([(i, 2 * i + 1), (i, 2 * i + 2)] for i in range(100)) + ) + assert not nx.is_semiconnected(G) + + def test_dumbbell(self): + G = nx.cycle_graph(100, create_using=nx.DiGraph()) + G.add_edges_from((i + 100, (i + 1) % 100 + 100) for i in range(100)) + assert not nx.is_semiconnected(G) # G is disconnected. + G.add_edge(100, 99) + assert nx.is_semiconnected(G) + + def test_alternating_path(self): + G = nx.DiGraph( + chain.from_iterable([(i, i - 1), (i, i + 1)] for i in range(0, 100, 2)) + ) + assert not nx.is_semiconnected(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py new file mode 100644 index 0000000000000000000000000000000000000000..f1c773026a682bd8edc6bfaf07581f5152c912e8 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py @@ -0,0 +1,207 @@ +import pytest + +import networkx as nx +from networkx import NetworkXNotImplemented + + +class TestStronglyConnected: + @classmethod + def setup_class(cls): + cls.gc = [] + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2), + (2, 3), + (2, 8), + (3, 4), + (3, 7), + (4, 5), + (5, 3), + (5, 6), + (7, 4), + (7, 6), + (8, 1), + (8, 7), + ] + ) + C = {frozenset([3, 4, 5, 7]), frozenset([1, 2, 8]), frozenset([6])} + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)]) + C = {frozenset([2, 3, 4]), frozenset([1])} + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)]) + C = {frozenset([1, 2, 3])} + cls.gc.append((G, C)) + + # Eppstein's tests + G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []}) + C = { + frozenset([0]), + frozenset([1]), + frozenset([2]), + frozenset([3]), + frozenset([4]), + frozenset([5]), + frozenset([6]), + } + cls.gc.append((G, C)) + + G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]}) + C = {frozenset([0, 1, 2]), frozenset([3, 4])} + cls.gc.append((G, C)) + + def test_tarjan(self): + scc = nx.strongly_connected_components + for G, C in self.gc: + assert {frozenset(g) for g in scc(G)} == C + + def test_tarjan_recursive(self): + scc = nx.strongly_connected_components_recursive + for G, C in self.gc: + with pytest.deprecated_call(): + assert {frozenset(g) for g in scc(G)} == C + + def test_kosaraju(self): + scc = nx.kosaraju_strongly_connected_components + for G, C in self.gc: + assert {frozenset(g) for g in scc(G)} == C + + def test_number_strongly_connected_components(self): + ncc = nx.number_strongly_connected_components + for G, C in self.gc: + assert ncc(G) == len(C) + + def test_is_strongly_connected(self): + for G, C in self.gc: + if len(C) == 1: + assert nx.is_strongly_connected(G) + else: + assert not nx.is_strongly_connected(G) + + def test_contract_scc1(self): + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2), + (2, 3), + (2, 11), + (2, 12), + (3, 4), + (4, 3), + (4, 5), + (5, 6), + (6, 5), + (6, 7), + (7, 8), + (7, 9), + (7, 10), + (8, 9), + (9, 7), + (10, 6), + (11, 2), + (11, 4), + (11, 6), + (12, 6), + (12, 11), + ] + ) + scc = list(nx.strongly_connected_components(G)) + cG = nx.condensation(G, scc) + # DAG + assert nx.is_directed_acyclic_graph(cG) + # nodes + assert sorted(cG.nodes()) == [0, 1, 2, 3] + # edges + mapping = {} + for i, component in enumerate(scc): + for n in component: + mapping[n] = i + edge = (mapping[2], mapping[3]) + assert cG.has_edge(*edge) + edge = (mapping[2], mapping[5]) + assert cG.has_edge(*edge) + edge = (mapping[3], mapping[5]) + assert cG.has_edge(*edge) + + def test_contract_scc_isolate(self): + # Bug found and fixed in [1687]. + G = nx.DiGraph() + G.add_edge(1, 2) + G.add_edge(2, 1) + scc = list(nx.strongly_connected_components(G)) + cG = nx.condensation(G, scc) + assert list(cG.nodes()) == [0] + assert list(cG.edges()) == [] + + def test_contract_scc_edge(self): + G = nx.DiGraph() + G.add_edge(1, 2) + G.add_edge(2, 1) + G.add_edge(2, 3) + G.add_edge(3, 4) + G.add_edge(4, 3) + scc = list(nx.strongly_connected_components(G)) + cG = nx.condensation(G, scc) + assert sorted(cG.nodes()) == [0, 1] + if 1 in scc[0]: + edge = (0, 1) + else: + edge = (1, 0) + assert list(cG.edges()) == [edge] + + def test_condensation_mapping_and_members(self): + G, C = self.gc[1] + C = sorted(C, key=len, reverse=True) + cG = nx.condensation(G) + mapping = cG.graph["mapping"] + assert all(n in G for n in mapping) + assert all(0 == cN for n, cN in mapping.items() if n in C[0]) + assert all(1 == cN for n, cN in mapping.items() if n in C[1]) + for n, d in cG.nodes(data=True): + assert set(C[n]) == cG.nodes[n]["members"] + + def test_null_graph(self): + G = nx.DiGraph() + assert list(nx.strongly_connected_components(G)) == [] + assert list(nx.kosaraju_strongly_connected_components(G)) == [] + with pytest.deprecated_call(): + assert list(nx.strongly_connected_components_recursive(G)) == [] + assert len(nx.condensation(G)) == 0 + pytest.raises( + nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph() + ) + + def test_connected_raise(self): + G = nx.Graph() + with pytest.raises(NetworkXNotImplemented): + next(nx.strongly_connected_components(G)) + with pytest.raises(NetworkXNotImplemented): + next(nx.kosaraju_strongly_connected_components(G)) + with pytest.raises(NetworkXNotImplemented): + with pytest.deprecated_call(): + next(nx.strongly_connected_components_recursive(G)) + pytest.raises(NetworkXNotImplemented, nx.is_strongly_connected, G) + pytest.raises( + nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph() + ) + pytest.raises(NetworkXNotImplemented, nx.condensation, G) + + strong_cc_methods = ( + nx.strongly_connected_components, + nx.kosaraju_strongly_connected_components, + ) + + @pytest.mark.parametrize("get_components", strong_cc_methods) + def test_connected_mutability(self, get_components): + DG = nx.path_graph(5, create_using=nx.DiGraph) + G = nx.disjoint_union(DG, DG) + seen = set() + for component in get_components(G): + assert len(seen & component) == 0 + seen.update(component) + component.clear() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py new file mode 100644 index 0000000000000000000000000000000000000000..e313263668c07ad7b7a3cb2ad8f1b74b08347a14 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py @@ -0,0 +1,90 @@ +import pytest + +import networkx as nx +from networkx import NetworkXNotImplemented + + +class TestWeaklyConnected: + @classmethod + def setup_class(cls): + cls.gc = [] + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2), + (2, 3), + (2, 8), + (3, 4), + (3, 7), + (4, 5), + (5, 3), + (5, 6), + (7, 4), + (7, 6), + (8, 1), + (8, 7), + ] + ) + C = [[3, 4, 5, 7], [1, 2, 8], [6]] + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)]) + C = [[2, 3, 4], [1]] + cls.gc.append((G, C)) + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)]) + C = [[1, 2, 3]] + cls.gc.append((G, C)) + + # Eppstein's tests + G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []}) + C = [[0], [1], [2], [3], [4], [5], [6]] + cls.gc.append((G, C)) + + G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]}) + C = [[0, 1, 2], [3, 4]] + cls.gc.append((G, C)) + + def test_weakly_connected_components(self): + for G, C in self.gc: + U = G.to_undirected() + w = {frozenset(g) for g in nx.weakly_connected_components(G)} + c = {frozenset(g) for g in nx.connected_components(U)} + assert w == c + + def test_number_weakly_connected_components(self): + for G, C in self.gc: + U = G.to_undirected() + w = nx.number_weakly_connected_components(G) + c = nx.number_connected_components(U) + assert w == c + + def test_is_weakly_connected(self): + for G, C in self.gc: + U = G.to_undirected() + assert nx.is_weakly_connected(G) == nx.is_connected(U) + + def test_null_graph(self): + G = nx.DiGraph() + assert list(nx.weakly_connected_components(G)) == [] + assert nx.number_weakly_connected_components(G) == 0 + with pytest.raises(nx.NetworkXPointlessConcept): + next(nx.is_weakly_connected(G)) + + def test_connected_raise(self): + G = nx.Graph() + with pytest.raises(NetworkXNotImplemented): + next(nx.weakly_connected_components(G)) + pytest.raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G) + pytest.raises(NetworkXNotImplemented, nx.is_weakly_connected, G) + + def test_connected_mutability(self): + DG = nx.path_graph(5, create_using=nx.DiGraph) + G = nx.disjoint_union(DG, DG) + seen = set() + for component in nx.weakly_connected_components(G): + assert len(seen & component) == 0 + seen.update(component) + component.clear() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/components/weakly_connected.py b/phivenv/Lib/site-packages/networkx/algorithms/components/weakly_connected.py new file mode 100644 index 0000000000000000000000000000000000000000..c8dc2350ef16f01c4b41426fd8d945a05b186511 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/components/weakly_connected.py @@ -0,0 +1,196 @@ +"""Weakly connected components.""" +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +__all__ = [ + "number_weakly_connected_components", + "weakly_connected_components", + "is_weakly_connected", +] + + +@not_implemented_for("undirected") +@nx._dispatch +def weakly_connected_components(G): + """Generate weakly connected components of G. + + Parameters + ---------- + G : NetworkX graph + A directed graph + + Returns + ------- + comp : generator of sets + A generator of sets of nodes, one for each weakly connected + component of G. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + Generate a sorted list of weakly connected components, largest first. + + >>> G = nx.path_graph(4, create_using=nx.DiGraph()) + >>> nx.add_path(G, [10, 11, 12]) + >>> [ + ... len(c) + ... for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True) + ... ] + [4, 3] + + If you only want the largest component, it's more efficient to + use max instead of sort: + + >>> largest_cc = max(nx.weakly_connected_components(G), key=len) + + See Also + -------- + connected_components + strongly_connected_components + + Notes + ----- + For directed graphs only. + + """ + seen = set() + for v in G: + if v not in seen: + c = set(_plain_bfs(G, v)) + seen.update(c) + yield c + + +@not_implemented_for("undirected") +@nx._dispatch +def number_weakly_connected_components(G): + """Returns the number of weakly connected components in G. + + Parameters + ---------- + G : NetworkX graph + A directed graph. + + Returns + ------- + n : integer + Number of weakly connected components + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (2, 1), (3, 4)]) + >>> nx.number_weakly_connected_components(G) + 2 + + See Also + -------- + weakly_connected_components + number_connected_components + number_strongly_connected_components + + Notes + ----- + For directed graphs only. + + """ + return sum(1 for wcc in weakly_connected_components(G)) + + +@not_implemented_for("undirected") +@nx._dispatch +def is_weakly_connected(G): + """Test directed graph for weak connectivity. + + A directed graph is weakly connected if and only if the graph + is connected when the direction of the edge between nodes is ignored. + + Note that if a graph is strongly connected (i.e. the graph is connected + even when we account for directionality), it is by definition weakly + connected as well. + + Parameters + ---------- + G : NetworkX Graph + A directed graph. + + Returns + ------- + connected : bool + True if the graph is weakly connected, False otherwise. + + Raises + ------ + NetworkXNotImplemented + If G is undirected. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (2, 1)]) + >>> G.add_node(3) + >>> nx.is_weakly_connected(G) # node 3 is not connected to the graph + False + >>> G.add_edge(2, 3) + >>> nx.is_weakly_connected(G) + True + + See Also + -------- + is_strongly_connected + is_semiconnected + is_connected + is_biconnected + weakly_connected_components + + Notes + ----- + For directed graphs only. + + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept( + """Connectivity is undefined for the null graph.""" + ) + + return len(next(weakly_connected_components(G))) == len(G) + + +def _plain_bfs(G, source): + """A fast BFS node generator + + The direction of the edge between nodes is ignored. + + For directed graphs only. + + """ + n = len(G) + Gsucc = G._succ + Gpred = G._pred + seen = {source} + nextlevel = [source] + + yield source + while nextlevel: + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in Gsucc[v]: + if w not in seen: + seen.add(w) + nextlevel.append(w) + yield w + for w in Gpred[v]: + if w not in seen: + seen.add(w) + nextlevel.append(w) + yield w + if len(seen) == n: + return diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..15bc5abe5d0e1e0db9d152ccd39b9bf87f2533ee --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__init__.py @@ -0,0 +1,11 @@ +"""Connectivity and cut algorithms +""" +from .connectivity import * +from .cuts import * +from .edge_augmentation import * +from .edge_kcomponents import * +from .disjoint_paths import * +from .kcomponents import * +from .kcutsets import * +from .stoerwagner import * +from .utils import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78d7fd9f6b5b10a159303e0887b0aad65e5426c4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9916e5e38df7a6d149cb4b278a456ad0f0213384 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cca9378e30fe2b9a74d409a0c18f01ad66aa22b1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..747da4267249a92ebd4524ed7bad40caa2ca0909 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..084fe46afbf2391f2f94a5a71528ad6953630a48 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68fae5377fbb382782ea057e953f80e5a765117d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..503ada7e5412ee440e7e129fecb65413f1815374 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e0271a054d5a67450640b89c996f3b734249de47 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28eaf20e3754472860c831f44ab0d4b1c6ee5609 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7250fac72a5efa11beca987b91edc6efbbcc0d31 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/connectivity.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/connectivity.py new file mode 100644 index 0000000000000000000000000000000000000000..cbb34152bba9b93fcdc2aa5fa2a0774ee4ef197c --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/connectivity.py @@ -0,0 +1,826 @@ +""" +Flow based connectivity algorithms +""" + +import itertools +from operator import itemgetter + +import networkx as nx + +# Define the default maximum flow function to use in all flow based +# connectivity algorithms. +from networkx.algorithms.flow import ( + boykov_kolmogorov, + build_residual_network, + dinitz, + edmonds_karp, + shortest_augmenting_path, +) + +default_flow_func = edmonds_karp + +from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity + +__all__ = [ + "average_node_connectivity", + "local_node_connectivity", + "node_connectivity", + "local_edge_connectivity", + "edge_connectivity", + "all_pairs_node_connectivity", +] + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 4, "residual?": 5}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"auxiliary", "residual"}, +) +def local_node_connectivity( + G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None +): + r"""Computes local node connectivity for nodes s and t. + + Local node connectivity for two non adjacent nodes s and t is the + minimum number of nodes that must be removed (along with their incident + edges) to disconnect them. + + This is a flow based implementation of node connectivity. We compute the + maximum flow on an auxiliary digraph build from the original input + graph (see below for details). + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + s : node + Source node + + t : node + Target node + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The choice + of the default function may change from version to version and + should not be relied on. Default value: None. + + auxiliary : NetworkX DiGraph + Auxiliary digraph to compute flow based node connectivity. It has + to have a graph attribute called mapping with a dictionary mapping + node names in G and in the auxiliary digraph. If provided + it will be reused instead of recreated. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + cutoff : integer, float, or None (default: None) + If specified, the maximum flow algorithm will terminate when the + flow value reaches or exceeds the cutoff. This only works for flows + that support the cutoff parameter (most do) and is ignored otherwise. + + Returns + ------- + K : integer + local node connectivity for nodes s and t + + Examples + -------- + This function is not imported in the base NetworkX namespace, so you + have to explicitly import it from the connectivity package: + + >>> from networkx.algorithms.connectivity import local_node_connectivity + + We use in this example the platonic icosahedral graph, which has node + connectivity 5. + + >>> G = nx.icosahedral_graph() + >>> local_node_connectivity(G, 0, 6) + 5 + + If you need to compute local connectivity on several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for node connectivity, and the residual + network for the underlying maximum flow computation. + + Example of how to compute local node connectivity among + all pairs of nodes of the platonic icosahedral graph reusing + the data structures. + + >>> import itertools + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity + ... + >>> H = build_auxiliary_node_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> result = dict.fromkeys(G, dict()) + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as parameters + >>> for u, v in itertools.combinations(G, 2): + ... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R) + ... result[u][v] = k + ... + >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) + True + + You can also use alternative flow algorithms for computing node + connectivity. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) + 5 + + Notes + ----- + This is a flow based implementation of node connectivity. We compute the + maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see: + :meth:`maximum_flow`) on an auxiliary digraph build from the original + input graph: + + For an undirected graph G having `n` nodes and `m` edges we derive a + directed graph H with `2n` nodes and `2m+n` arcs by replacing each + original node `v` with two nodes `v_A`, `v_B` linked by an (internal) + arc in H. Then for each edge (`u`, `v`) in G we add two arcs + (`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute + capacity = 1 for each arc in H [1]_ . + + For a directed graph G having `n` nodes and `m` arcs we derive a + directed graph H with `2n` nodes and `m+n` arcs by replacing each + original node `v` with two nodes `v_A`, `v_B` linked by an (internal) + arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc + (`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for + each arc in H. + + This is equal to the local node connectivity because the value of + a maximum s-t-flow is equal to the capacity of a minimum s-t-cut. + + See also + -------- + :meth:`local_edge_connectivity` + :meth:`node_connectivity` + :meth:`minimum_node_cut` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and + Erlebach, 'Network Analysis: Methodological Foundations', Lecture + Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. + http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf + + """ + if flow_func is None: + flow_func = default_flow_func + + if auxiliary is None: + H = build_auxiliary_node_connectivity(G) + else: + H = auxiliary + + mapping = H.graph.get("mapping", None) + if mapping is None: + raise nx.NetworkXError("Invalid auxiliary digraph.") + + kwargs = {"flow_func": flow_func, "residual": residual} + if flow_func is shortest_augmenting_path: + kwargs["cutoff"] = cutoff + kwargs["two_phase"] = True + elif flow_func is edmonds_karp: + kwargs["cutoff"] = cutoff + elif flow_func is dinitz: + kwargs["cutoff"] = cutoff + elif flow_func is boykov_kolmogorov: + kwargs["cutoff"] = cutoff + + return nx.maximum_flow_value(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs) + + +@nx._dispatch +def node_connectivity(G, s=None, t=None, flow_func=None): + r"""Returns node connectivity for a graph or digraph G. + + Node connectivity is equal to the minimum number of nodes that + must be removed to disconnect G or render it trivial. If source + and target nodes are provided, this function returns the local node + connectivity: the minimum number of nodes that must be removed to break + all paths from source to target in G. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + s : node + Source node. Optional. Default value: None. + + t : node + Target node. Optional. Default value: None. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + Returns + ------- + K : integer + Node connectivity of G, or local node connectivity if source + and target are provided. + + Examples + -------- + >>> # Platonic icosahedral graph is 5-node-connected + >>> G = nx.icosahedral_graph() + >>> nx.node_connectivity(G) + 5 + + You can use alternative flow algorithms for the underlying maximum + flow computation. In dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better + than the default :meth:`edmonds_karp`, which is faster for + sparse networks with highly skewed degree distributions. Alternative + flow functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path) + 5 + + If you specify a pair of nodes (source and target) as parameters, + this function returns the value of local node connectivity. + + >>> nx.node_connectivity(G, 3, 7) + 5 + + If you need to perform several local computations among different + pairs of nodes on the same graph, it is recommended that you reuse + the data structures used in the maximum flow computations. See + :meth:`local_node_connectivity` for details. + + Notes + ----- + This is a flow based implementation of node connectivity. The + algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$ + maximum flow problems on an auxiliary digraph. Where $\delta$ + is the minimum degree of G. For details about the auxiliary + digraph and the computation of local node connectivity see + :meth:`local_node_connectivity`. This implementation is based + on algorithm 11 in [1]_. + + See also + -------- + :meth:`local_node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if (s is not None and t is None) or (s is None and t is not None): + raise nx.NetworkXError("Both source and target must be specified.") + + # Local node connectivity + if s is not None and t is not None: + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + return local_node_connectivity(G, s, t, flow_func=flow_func) + + # Global node connectivity + if G.is_directed(): + if not nx.is_weakly_connected(G): + return 0 + iter_func = itertools.permutations + # It is necessary to consider both predecessors + # and successors for directed graphs + + def neighbors(v): + return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)]) + + else: + if not nx.is_connected(G): + return 0 + iter_func = itertools.combinations + neighbors = G.neighbors + + # Reuse the auxiliary digraph and the residual network + H = build_auxiliary_node_connectivity(G) + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} + + # Pick a node with minimum degree + # Node connectivity is bounded by degree. + v, K = min(G.degree(), key=itemgetter(1)) + # compute local node connectivity with all its non-neighbors nodes + for w in set(G) - set(neighbors(v)) - {v}: + kwargs["cutoff"] = K + K = min(K, local_node_connectivity(G, v, w, **kwargs)) + # Also for non adjacent pairs of neighbors of v + for x, y in iter_func(neighbors(v), 2): + if y in G[x]: + continue + kwargs["cutoff"] = K + K = min(K, local_node_connectivity(G, x, y, **kwargs)) + + return K + + +@nx._dispatch +def average_node_connectivity(G, flow_func=None): + r"""Returns the average connectivity of a graph G. + + The average connectivity `\bar{\kappa}` of a graph G is the average + of local node connectivity over all pairs of nodes of G [1]_ . + + .. math:: + + \bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}} + + Parameters + ---------- + + G : NetworkX graph + Undirected graph + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity` + for details. The choice of the default function may change from + version to version and should not be relied on. Default value: None. + + Returns + ------- + K : float + Average node connectivity + + See also + -------- + :meth:`local_node_connectivity` + :meth:`node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Beineke, L., O. Oellermann, and R. Pippert (2002). The average + connectivity of a graph. Discrete mathematics 252(1-3), 31-45. + http://www.sciencedirect.com/science/article/pii/S0012365X01001807 + + """ + if G.is_directed(): + iter_func = itertools.permutations + else: + iter_func = itertools.combinations + + # Reuse the auxiliary digraph and the residual network + H = build_auxiliary_node_connectivity(G) + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} + + num, den = 0, 0 + for u, v in iter_func(G, 2): + num += local_node_connectivity(G, u, v, **kwargs) + den += 1 + + if den == 0: # Null Graph + return 0 + return num / den + + +@nx._dispatch +def all_pairs_node_connectivity(G, nbunch=None, flow_func=None): + """Compute node connectivity between all pairs of nodes of G. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + nbunch: container + Container of nodes. If provided node connectivity will be computed + only over pairs of nodes in nbunch. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + Returns + ------- + all_pairs : dict + A dictionary with node connectivity between all pairs of nodes + in G, or in nbunch if provided. + + See also + -------- + :meth:`local_node_connectivity` + :meth:`edge_connectivity` + :meth:`local_edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + """ + if nbunch is None: + nbunch = G + else: + nbunch = set(nbunch) + + directed = G.is_directed() + if directed: + iter_func = itertools.permutations + else: + iter_func = itertools.combinations + + all_pairs = {n: {} for n in nbunch} + + # Reuse auxiliary digraph and residual network + H = build_auxiliary_node_connectivity(G) + mapping = H.graph["mapping"] + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} + + for u, v in iter_func(nbunch, 2): + K = local_node_connectivity(G, u, v, **kwargs) + all_pairs[u][v] = K + if not directed: + all_pairs[v][u] = K + + return all_pairs + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 4, "residual?": 5}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def local_edge_connectivity( + G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None +): + r"""Returns local edge connectivity for nodes s and t in G. + + Local edge connectivity for two nodes s and t is the minimum number + of edges that must be removed to disconnect them. + + This is a flow based implementation of edge connectivity. We compute the + maximum flow on an auxiliary digraph build from the original + network (see below for details). This is equal to the local edge + connectivity because the value of a maximum s-t-flow is equal to the + capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ . + + Parameters + ---------- + G : NetworkX graph + Undirected or directed graph + + s : node + Source node + + t : node + Target node + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + auxiliary : NetworkX DiGraph + Auxiliary digraph for computing flow based edge connectivity. If + provided it will be reused instead of recreated. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + cutoff : integer, float, or None (default: None) + If specified, the maximum flow algorithm will terminate when the + flow value reaches or exceeds the cutoff. This only works for flows + that support the cutoff parameter (most do) and is ignored otherwise. + + Returns + ------- + K : integer + local edge connectivity for nodes s and t. + + Examples + -------- + This function is not imported in the base NetworkX namespace, so you + have to explicitly import it from the connectivity package: + + >>> from networkx.algorithms.connectivity import local_edge_connectivity + + We use in this example the platonic icosahedral graph, which has edge + connectivity 5. + + >>> G = nx.icosahedral_graph() + >>> local_edge_connectivity(G, 0, 6) + 5 + + If you need to compute local connectivity on several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for edge connectivity, and the residual + network for the underlying maximum flow computation. + + Example of how to compute local edge connectivity among + all pairs of nodes of the platonic icosahedral graph reusing + the data structures. + + >>> import itertools + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity + >>> H = build_auxiliary_edge_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> result = dict.fromkeys(G, dict()) + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as parameters + >>> for u, v in itertools.combinations(G, 2): + ... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R) + ... result[u][v] = k + >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) + True + + You can also use alternative flow algorithms for computing edge + connectivity. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) + 5 + + Notes + ----- + This is a flow based implementation of edge connectivity. We compute the + maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an + auxiliary digraph build from the original input graph: + + If the input graph is undirected, we replace each edge (`u`,`v`) with + two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute + 'capacity' for each arc to 1. If the input graph is directed we simply + add the 'capacity' attribute. This is an implementation of algorithm 1 + in [1]_. + + The maximum flow in the auxiliary network is equal to the local edge + connectivity because the value of a maximum s-t-flow is equal to the + capacity of a minimum s-t-cut (Ford and Fulkerson theorem). + + See also + -------- + :meth:`edge_connectivity` + :meth:`local_node_connectivity` + :meth:`node_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if flow_func is None: + flow_func = default_flow_func + + if auxiliary is None: + H = build_auxiliary_edge_connectivity(G) + else: + H = auxiliary + + kwargs = {"flow_func": flow_func, "residual": residual} + if flow_func is shortest_augmenting_path: + kwargs["cutoff"] = cutoff + kwargs["two_phase"] = True + elif flow_func is edmonds_karp: + kwargs["cutoff"] = cutoff + elif flow_func is dinitz: + kwargs["cutoff"] = cutoff + elif flow_func is boykov_kolmogorov: + kwargs["cutoff"] = cutoff + + return nx.maximum_flow_value(H, s, t, **kwargs) + + +@nx._dispatch +def edge_connectivity(G, s=None, t=None, flow_func=None, cutoff=None): + r"""Returns the edge connectivity of the graph or digraph G. + + The edge connectivity is equal to the minimum number of edges that + must be removed to disconnect G or render it trivial. If source + and target nodes are provided, this function returns the local edge + connectivity: the minimum number of edges that must be removed to + break all paths from source to target in G. + + Parameters + ---------- + G : NetworkX graph + Undirected or directed graph + + s : node + Source node. Optional. Default value: None. + + t : node + Target node. Optional. Default value: None. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + cutoff : integer, float, or None (default: None) + If specified, the maximum flow algorithm will terminate when the + flow value reaches or exceeds the cutoff. This only works for flows + that support the cutoff parameter (most do) and is ignored otherwise. + + Returns + ------- + K : integer + Edge connectivity for G, or local edge connectivity if source + and target were provided + + Examples + -------- + >>> # Platonic icosahedral graph is 5-edge-connected + >>> G = nx.icosahedral_graph() + >>> nx.edge_connectivity(G) + 5 + + You can use alternative flow algorithms for the underlying + maximum flow computation. In dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better + than the default :meth:`edmonds_karp`, which is faster for + sparse networks with highly skewed degree distributions. + Alternative flow functions have to be explicitly imported + from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path) + 5 + + If you specify a pair of nodes (source and target) as parameters, + this function returns the value of local edge connectivity. + + >>> nx.edge_connectivity(G, 3, 7) + 5 + + If you need to perform several local computations among different + pairs of nodes on the same graph, it is recommended that you reuse + the data structures used in the maximum flow computations. See + :meth:`local_edge_connectivity` for details. + + Notes + ----- + This is a flow based implementation of global edge connectivity. + For undirected graphs the algorithm works by finding a 'small' + dominating set of nodes of G (see algorithm 7 in [1]_ ) and + computing local maximum flow (see :meth:`local_edge_connectivity`) + between an arbitrary node in the dominating set and the rest of + nodes in it. This is an implementation of algorithm 6 in [1]_ . + For directed graphs, the algorithm does n calls to the maximum + flow function. This is an implementation of algorithm 8 in [1]_ . + + See also + -------- + :meth:`local_edge_connectivity` + :meth:`local_node_connectivity` + :meth:`node_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + :meth:`k_edge_components` + :meth:`k_edge_subgraphs` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if (s is not None and t is None) or (s is None and t is not None): + raise nx.NetworkXError("Both source and target must be specified.") + + # Local edge connectivity + if s is not None and t is not None: + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + return local_edge_connectivity(G, s, t, flow_func=flow_func, cutoff=cutoff) + + # Global edge connectivity + # reuse auxiliary digraph and residual network + H = build_auxiliary_edge_connectivity(G) + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} + + if G.is_directed(): + # Algorithm 8 in [1] + if not nx.is_weakly_connected(G): + return 0 + + # initial value for \lambda is minimum degree + L = min(d for n, d in G.degree()) + nodes = list(G) + n = len(nodes) + + if cutoff is not None: + L = min(cutoff, L) + + for i in range(n): + kwargs["cutoff"] = L + try: + L = min(L, local_edge_connectivity(G, nodes[i], nodes[i + 1], **kwargs)) + except IndexError: # last node! + L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs)) + return L + else: # undirected + # Algorithm 6 in [1] + if not nx.is_connected(G): + return 0 + + # initial value for \lambda is minimum degree + L = min(d for n, d in G.degree()) + + if cutoff is not None: + L = min(cutoff, L) + + # A dominating set is \lambda-covering + # We need a dominating set with at least two nodes + for node in G: + D = nx.dominating_set(G, start_with=node) + v = D.pop() + if D: + break + else: + # in complete graphs the dominating sets will always be of one node + # thus we return min degree + return L + + for w in D: + kwargs["cutoff"] = L + L = min(L, local_edge_connectivity(G, v, w, **kwargs)) + + return L diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/cuts.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/cuts.py new file mode 100644 index 0000000000000000000000000000000000000000..d5883ba8f8e08563946565c28a95a36f13ec547b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/cuts.py @@ -0,0 +1,615 @@ +""" +Flow based cut algorithms +""" +import itertools + +import networkx as nx + +# Define the default maximum flow function to use in all flow based +# cut algorithms. +from networkx.algorithms.flow import build_residual_network, edmonds_karp + +default_flow_func = edmonds_karp + +from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity + +__all__ = [ + "minimum_st_node_cut", + "minimum_node_cut", + "minimum_st_edge_cut", + "minimum_edge_cut", +] + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 4, "residual?": 5}, + preserve_edge_attrs={ + "auxiliary": {"capacity": float("inf")}, + "residual": {"capacity": float("inf")}, + }, + preserve_graph_attrs={"auxiliary", "residual"}, +) +def minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None): + """Returns the edges of the cut-set of a minimum (s, t)-cut. + + This function returns the set of edges of minimum cardinality that, + if removed, would destroy all paths among source and target in G. + Edge weights are not considered. See :meth:`minimum_cut` for + computing minimum cuts considering edge weights. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + auxiliary : NetworkX DiGraph + Auxiliary digraph to compute flow based node connectivity. It has + to have a graph attribute called mapping with a dictionary mapping + node names in G and in the auxiliary digraph. If provided + it will be reused instead of recreated. Default value: None. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See :meth:`node_connectivity` for + details. The choice of the default function may change from version + to version and should not be relied on. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + Returns + ------- + cutset : set + Set of edges that, if removed from the graph, will disconnect it. + + See also + -------- + :meth:`minimum_cut` + :meth:`minimum_node_cut` + :meth:`minimum_edge_cut` + :meth:`stoer_wagner` + :meth:`node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Examples + -------- + This function is not imported in the base NetworkX namespace, so you + have to explicitly import it from the connectivity package: + + >>> from networkx.algorithms.connectivity import minimum_st_edge_cut + + We use in this example the platonic icosahedral graph, which has edge + connectivity 5. + + >>> G = nx.icosahedral_graph() + >>> len(minimum_st_edge_cut(G, 0, 6)) + 5 + + If you need to compute local edge cuts on several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for edge connectivity, and the residual + network for the underlying maximum flow computation. + + Example of how to compute local edge cuts among all pairs of + nodes of the platonic icosahedral graph reusing the data + structures. + + >>> import itertools + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity + >>> H = build_auxiliary_edge_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> result = dict.fromkeys(G, dict()) + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as parameters + >>> for u, v in itertools.combinations(G, 2): + ... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R)) + ... result[u][v] = k + >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) + True + + You can also use alternative flow algorithms for computing edge + cuts. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path)) + 5 + + """ + if flow_func is None: + flow_func = default_flow_func + + if auxiliary is None: + H = build_auxiliary_edge_connectivity(G) + else: + H = auxiliary + + kwargs = {"capacity": "capacity", "flow_func": flow_func, "residual": residual} + + cut_value, partition = nx.minimum_cut(H, s, t, **kwargs) + reachable, non_reachable = partition + # Any edge in the original graph linking the two sets in the + # partition is part of the edge cutset + cutset = set() + for u, nbrs in ((n, G[n]) for n in reachable): + cutset.update((u, v) for v in nbrs if v in non_reachable) + + return cutset + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 4, "residual?": 5}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_node_attrs={"auxiliary": {"id": None}}, + preserve_graph_attrs={"auxiliary", "residual"}, +) +def minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None): + r"""Returns a set of nodes of minimum cardinality that disconnect source + from target in G. + + This function returns the set of nodes of minimum cardinality that, + if removed, would destroy all paths among source and target in G. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node. + + t : node + Target node. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The choice + of the default function may change from version to version and + should not be relied on. Default value: None. + + auxiliary : NetworkX DiGraph + Auxiliary digraph to compute flow based node connectivity. It has + to have a graph attribute called mapping with a dictionary mapping + node names in G and in the auxiliary digraph. If provided + it will be reused instead of recreated. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + Returns + ------- + cutset : set + Set of nodes that, if removed, would destroy all paths between + source and target in G. + + Examples + -------- + This function is not imported in the base NetworkX namespace, so you + have to explicitly import it from the connectivity package: + + >>> from networkx.algorithms.connectivity import minimum_st_node_cut + + We use in this example the platonic icosahedral graph, which has node + connectivity 5. + + >>> G = nx.icosahedral_graph() + >>> len(minimum_st_node_cut(G, 0, 6)) + 5 + + If you need to compute local st cuts between several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for node connectivity and node cuts, and the + residual network for the underlying maximum flow computation. + + Example of how to compute local st node cuts reusing the data + structures: + + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity + >>> H = build_auxiliary_node_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as parameters + >>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R)) + 5 + + You can also use alternative flow algorithms for computing minimum st + node cuts. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path)) + 5 + + Notes + ----- + This is a flow based implementation of minimum node cut. The algorithm + is based in solving a number of maximum flow computations to determine + the capacity of the minimum cut on an auxiliary directed network that + corresponds to the minimum node cut of G. It handles both directed + and undirected graphs. This implementation is based on algorithm 11 + in [1]_. + + See also + -------- + :meth:`minimum_node_cut` + :meth:`minimum_edge_cut` + :meth:`stoer_wagner` + :meth:`node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if auxiliary is None: + H = build_auxiliary_node_connectivity(G) + else: + H = auxiliary + + mapping = H.graph.get("mapping", None) + if mapping is None: + raise nx.NetworkXError("Invalid auxiliary digraph.") + if G.has_edge(s, t) or G.has_edge(t, s): + return {} + kwargs = {"flow_func": flow_func, "residual": residual, "auxiliary": H} + + # The edge cut in the auxiliary digraph corresponds to the node cut in the + # original graph. + edge_cut = minimum_st_edge_cut(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs) + # Each node in the original graph maps to two nodes of the auxiliary graph + node_cut = {H.nodes[node]["id"] for edge in edge_cut for node in edge} + return node_cut - {s, t} + + +@nx._dispatch +def minimum_node_cut(G, s=None, t=None, flow_func=None): + r"""Returns a set of nodes of minimum cardinality that disconnects G. + + If source and target nodes are provided, this function returns the + set of nodes of minimum cardinality that, if removed, would destroy + all paths among source and target in G. If not, it returns a set + of nodes of minimum cardinality that disconnects G. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node. Optional. Default value: None. + + t : node + Target node. Optional. Default value: None. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + Returns + ------- + cutset : set + Set of nodes that, if removed, would disconnect G. If source + and target nodes are provided, the set contains the nodes that + if removed, would destroy all paths between source and target. + + Examples + -------- + >>> # Platonic icosahedral graph has node connectivity 5 + >>> G = nx.icosahedral_graph() + >>> node_cut = nx.minimum_node_cut(G) + >>> len(node_cut) + 5 + + You can use alternative flow algorithms for the underlying maximum + flow computation. In dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better + than the default :meth:`edmonds_karp`, which is faster for + sparse networks with highly skewed degree distributions. Alternative + flow functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path) + True + + If you specify a pair of nodes (source and target) as parameters, + this function returns a local st node cut. + + >>> len(nx.minimum_node_cut(G, 3, 7)) + 5 + + If you need to perform several local st cuts among different + pairs of nodes on the same graph, it is recommended that you reuse + the data structures used in the maximum flow computations. See + :meth:`minimum_st_node_cut` for details. + + Notes + ----- + This is a flow based implementation of minimum node cut. The algorithm + is based in solving a number of maximum flow computations to determine + the capacity of the minimum cut on an auxiliary directed network that + corresponds to the minimum node cut of G. It handles both directed + and undirected graphs. This implementation is based on algorithm 11 + in [1]_. + + See also + -------- + :meth:`minimum_st_node_cut` + :meth:`minimum_cut` + :meth:`minimum_edge_cut` + :meth:`stoer_wagner` + :meth:`node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if (s is not None and t is None) or (s is None and t is not None): + raise nx.NetworkXError("Both source and target must be specified.") + + # Local minimum node cut. + if s is not None and t is not None: + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + return minimum_st_node_cut(G, s, t, flow_func=flow_func) + + # Global minimum node cut. + # Analog to the algorithm 11 for global node connectivity in [1]. + if G.is_directed(): + if not nx.is_weakly_connected(G): + raise nx.NetworkXError("Input graph is not connected") + iter_func = itertools.permutations + + def neighbors(v): + return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)]) + + else: + if not nx.is_connected(G): + raise nx.NetworkXError("Input graph is not connected") + iter_func = itertools.combinations + neighbors = G.neighbors + + # Reuse the auxiliary digraph and the residual network. + H = build_auxiliary_node_connectivity(G) + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} + + # Choose a node with minimum degree. + v = min(G, key=G.degree) + # Initial node cutset is all neighbors of the node with minimum degree. + min_cut = set(G[v]) + # Compute st node cuts between v and all its non-neighbors nodes in G. + for w in set(G) - set(neighbors(v)) - {v}: + this_cut = minimum_st_node_cut(G, v, w, **kwargs) + if len(min_cut) >= len(this_cut): + min_cut = this_cut + # Also for non adjacent pairs of neighbors of v. + for x, y in iter_func(neighbors(v), 2): + if y in G[x]: + continue + this_cut = minimum_st_node_cut(G, x, y, **kwargs) + if len(min_cut) >= len(this_cut): + min_cut = this_cut + + return min_cut + + +@nx._dispatch +def minimum_edge_cut(G, s=None, t=None, flow_func=None): + r"""Returns a set of edges of minimum cardinality that disconnects G. + + If source and target nodes are provided, this function returns the + set of edges of minimum cardinality that, if removed, would break + all paths among source and target in G. If not, it returns a set of + edges of minimum cardinality that disconnects G. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node. Optional. Default value: None. + + t : node + Target node. Optional. Default value: None. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The + choice of the default function may change from version + to version and should not be relied on. Default value: None. + + Returns + ------- + cutset : set + Set of edges that, if removed, would disconnect G. If source + and target nodes are provided, the set contains the edges that + if removed, would destroy all paths between source and target. + + Examples + -------- + >>> # Platonic icosahedral graph has edge connectivity 5 + >>> G = nx.icosahedral_graph() + >>> len(nx.minimum_edge_cut(G)) + 5 + + You can use alternative flow algorithms for the underlying + maximum flow computation. In dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better + than the default :meth:`edmonds_karp`, which is faster for + sparse networks with highly skewed degree distributions. + Alternative flow functions have to be explicitly imported + from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path)) + 5 + + If you specify a pair of nodes (source and target) as parameters, + this function returns the value of local edge connectivity. + + >>> nx.edge_connectivity(G, 3, 7) + 5 + + If you need to perform several local computations among different + pairs of nodes on the same graph, it is recommended that you reuse + the data structures used in the maximum flow computations. See + :meth:`local_edge_connectivity` for details. + + Notes + ----- + This is a flow based implementation of minimum edge cut. For + undirected graphs the algorithm works by finding a 'small' dominating + set of nodes of G (see algorithm 7 in [1]_) and computing the maximum + flow between an arbitrary node in the dominating set and the rest of + nodes in it. This is an implementation of algorithm 6 in [1]_. For + directed graphs, the algorithm does n calls to the max flow function. + The function raises an error if the directed graph is not weakly + connected and returns an empty set if it is weakly connected. + It is an implementation of algorithm 8 in [1]_. + + See also + -------- + :meth:`minimum_st_edge_cut` + :meth:`minimum_node_cut` + :meth:`stoer_wagner` + :meth:`node_connectivity` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + + """ + if (s is not None and t is None) or (s is None and t is not None): + raise nx.NetworkXError("Both source and target must be specified.") + + # reuse auxiliary digraph and residual network + H = build_auxiliary_edge_connectivity(G) + R = build_residual_network(H, "capacity") + kwargs = {"flow_func": flow_func, "residual": R, "auxiliary": H} + + # Local minimum edge cut if s and t are not None + if s is not None and t is not None: + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + return minimum_st_edge_cut(H, s, t, **kwargs) + + # Global minimum edge cut + # Analog to the algorithm for global edge connectivity + if G.is_directed(): + # Based on algorithm 8 in [1] + if not nx.is_weakly_connected(G): + raise nx.NetworkXError("Input graph is not connected") + + # Initial cutset is all edges of a node with minimum degree + node = min(G, key=G.degree) + min_cut = set(G.edges(node)) + nodes = list(G) + n = len(nodes) + for i in range(n): + try: + this_cut = minimum_st_edge_cut(H, nodes[i], nodes[i + 1], **kwargs) + if len(this_cut) <= len(min_cut): + min_cut = this_cut + except IndexError: # Last node! + this_cut = minimum_st_edge_cut(H, nodes[i], nodes[0], **kwargs) + if len(this_cut) <= len(min_cut): + min_cut = this_cut + + return min_cut + + else: # undirected + # Based on algorithm 6 in [1] + if not nx.is_connected(G): + raise nx.NetworkXError("Input graph is not connected") + + # Initial cutset is all edges of a node with minimum degree + node = min(G, key=G.degree) + min_cut = set(G.edges(node)) + # A dominating set is \lambda-covering + # We need a dominating set with at least two nodes + for node in G: + D = nx.dominating_set(G, start_with=node) + v = D.pop() + if D: + break + else: + # in complete graphs the dominating set will always be of one node + # thus we return min_cut, which now contains the edges of a node + # with minimum degree + return min_cut + for w in D: + this_cut = minimum_st_edge_cut(H, v, w, **kwargs) + if len(this_cut) <= len(min_cut): + min_cut = this_cut + + return min_cut diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/disjoint_paths.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/disjoint_paths.py new file mode 100644 index 0000000000000000000000000000000000000000..3fe450517d52454b3086175a76eb40795c3565e4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/disjoint_paths.py @@ -0,0 +1,412 @@ +"""Flow based node and edge disjoint paths.""" +import networkx as nx + +# Define the default maximum flow function to use for the underlying +# maximum flow computations +from networkx.algorithms.flow import ( + edmonds_karp, + preflow_push, + shortest_augmenting_path, +) +from networkx.exception import NetworkXNoPath + +default_flow_func = edmonds_karp +from itertools import filterfalse as _filterfalse + +# Functions to build auxiliary data structures. +from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity + +__all__ = ["edge_disjoint_paths", "node_disjoint_paths"] + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 5, "residual?": 6}, + preserve_edge_attrs={ + "auxiliary": {"capacity": float("inf")}, + "residual": {"capacity": float("inf")}, + }, + preserve_graph_attrs={"residual"}, +) +def edge_disjoint_paths( + G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None +): + """Returns the edges disjoint paths between source and target. + + Edge disjoint paths are paths that do not share any edge. The + number of edge disjoint paths between source and target is equal + to their edge connectivity. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. The choice of the default function + may change from version to version and should not be relied on. + Default value: None. + + cutoff : integer or None (default: None) + Maximum number of paths to yield. If specified, the maximum flow + algorithm will terminate when the flow value reaches or exceeds the + cutoff. This only works for flows that support the cutoff parameter + (most do) and is ignored otherwise. + + auxiliary : NetworkX DiGraph + Auxiliary digraph to compute flow based edge connectivity. It has + to have a graph attribute called mapping with a dictionary mapping + node names in G and in the auxiliary digraph. If provided + it will be reused instead of recreated. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + Returns + ------- + paths : generator + A generator of edge independent paths. + + Raises + ------ + NetworkXNoPath + If there is no path between source and target. + + NetworkXError + If source or target are not in the graph G. + + See also + -------- + :meth:`node_disjoint_paths` + :meth:`edge_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Examples + -------- + We use in this example the platonic icosahedral graph, which has node + edge connectivity 5, thus there are 5 edge disjoint paths between any + pair of nodes. + + >>> G = nx.icosahedral_graph() + >>> len(list(nx.edge_disjoint_paths(G, 0, 6))) + 5 + + + If you need to compute edge disjoint paths on several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for edge connectivity, and the residual + network for the underlying maximum flow computation. + + Example of how to compute edge disjoint paths among all pairs of + nodes of the platonic icosahedral graph reusing the data + structures. + + >>> import itertools + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity + >>> H = build_auxiliary_edge_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> result = {n: {} for n in G} + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as arguments + >>> for u, v in itertools.combinations(G, 2): + ... k = len(list(nx.edge_disjoint_paths(G, u, v, auxiliary=H, residual=R))) + ... result[u][v] = k + >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) + True + + You can also use alternative flow algorithms for computing edge disjoint + paths. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> len(list(nx.edge_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path))) + 5 + + Notes + ----- + This is a flow based implementation of edge disjoint paths. We compute + the maximum flow between source and target on an auxiliary directed + network. The saturated edges in the residual network after running the + maximum flow algorithm correspond to edge disjoint paths between source + and target in the original network. This function handles both directed + and undirected graphs, and can use all flow algorithms from NetworkX flow + package. + + """ + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + + if flow_func is None: + flow_func = default_flow_func + + if auxiliary is None: + H = build_auxiliary_edge_connectivity(G) + else: + H = auxiliary + + # Maximum possible edge disjoint paths + possible = min(H.out_degree(s), H.in_degree(t)) + if not possible: + raise NetworkXNoPath + + if cutoff is None: + cutoff = possible + else: + cutoff = min(cutoff, possible) + + # Compute maximum flow between source and target. Flow functions in + # NetworkX return a residual network. + kwargs = { + "capacity": "capacity", + "residual": residual, + "cutoff": cutoff, + "value_only": True, + } + if flow_func is preflow_push: + del kwargs["cutoff"] + if flow_func is shortest_augmenting_path: + kwargs["two_phase"] = True + R = flow_func(H, s, t, **kwargs) + + if R.graph["flow_value"] == 0: + raise NetworkXNoPath + + # Saturated edges in the residual network form the edge disjoint paths + # between source and target + cutset = [ + (u, v) + for u, v, d in R.edges(data=True) + if d["capacity"] == d["flow"] and d["flow"] > 0 + ] + # This is equivalent of what flow.utils.build_flow_dict returns, but + # only for the nodes with saturated edges and without reporting 0 flows. + flow_dict = {n: {} for edge in cutset for n in edge} + for u, v in cutset: + flow_dict[u][v] = 1 + + # Rebuild the edge disjoint paths from the flow dictionary. + paths_found = 0 + for v in list(flow_dict[s]): + if paths_found >= cutoff: + # preflow_push does not support cutoff: we have to + # keep track of the paths founds and stop at cutoff. + break + path = [s] + if v == t: + path.append(v) + yield path + continue + u = v + while u != t: + path.append(u) + try: + u, _ = flow_dict[u].popitem() + except KeyError: + break + else: + path.append(t) + yield path + paths_found += 1 + + +@nx._dispatch( + graphs={"G": 0, "auxiliary?": 5, "residual?": 6}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_node_attrs={"auxiliary": {"id": None}}, + preserve_graph_attrs={"auxiliary", "residual"}, +) +def node_disjoint_paths( + G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None +): + r"""Computes node disjoint paths between source and target. + + Node disjoint paths are paths that only share their first and last + nodes. The number of node independent paths between two nodes is + equal to their local node connectivity. + + Parameters + ---------- + G : NetworkX graph + + s : node + Source node. + + t : node + Target node. + + flow_func : function + A function for computing the maximum flow among a pair of nodes. + The function has to accept at least three parameters: a Digraph, + a source node, and a target node. And return a residual network + that follows NetworkX conventions (see :meth:`maximum_flow` for + details). If flow_func is None, the default maximum flow function + (:meth:`edmonds_karp`) is used. See below for details. The choice + of the default function may change from version to version and + should not be relied on. Default value: None. + + cutoff : integer or None (default: None) + Maximum number of paths to yield. If specified, the maximum flow + algorithm will terminate when the flow value reaches or exceeds the + cutoff. This only works for flows that support the cutoff parameter + (most do) and is ignored otherwise. + + auxiliary : NetworkX DiGraph + Auxiliary digraph to compute flow based node connectivity. It has + to have a graph attribute called mapping with a dictionary mapping + node names in G and in the auxiliary digraph. If provided + it will be reused instead of recreated. Default value: None. + + residual : NetworkX DiGraph + Residual network to compute maximum flow. If provided it will be + reused instead of recreated. Default value: None. + + Returns + ------- + paths : generator + Generator of node disjoint paths. + + Raises + ------ + NetworkXNoPath + If there is no path between source and target. + + NetworkXError + If source or target are not in the graph G. + + Examples + -------- + We use in this example the platonic icosahedral graph, which has node + connectivity 5, thus there are 5 node disjoint paths between any pair + of non neighbor nodes. + + >>> G = nx.icosahedral_graph() + >>> len(list(nx.node_disjoint_paths(G, 0, 6))) + 5 + + If you need to compute node disjoint paths between several pairs of + nodes in the same graph, it is recommended that you reuse the + data structures that NetworkX uses in the computation: the + auxiliary digraph for node connectivity and node cuts, and the + residual network for the underlying maximum flow computation. + + Example of how to compute node disjoint paths reusing the data + structures: + + >>> # You also have to explicitly import the function for + >>> # building the auxiliary digraph from the connectivity package + >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity + >>> H = build_auxiliary_node_connectivity(G) + >>> # And the function for building the residual network from the + >>> # flow package + >>> from networkx.algorithms.flow import build_residual_network + >>> # Note that the auxiliary digraph has an edge attribute named capacity + >>> R = build_residual_network(H, "capacity") + >>> # Reuse the auxiliary digraph and the residual network by passing them + >>> # as arguments + >>> len(list(nx.node_disjoint_paths(G, 0, 6, auxiliary=H, residual=R))) + 5 + + You can also use alternative flow algorithms for computing node disjoint + paths. For instance, in dense networks the algorithm + :meth:`shortest_augmenting_path` will usually perform better than + the default :meth:`edmonds_karp` which is faster for sparse + networks with highly skewed degree distributions. Alternative flow + functions have to be explicitly imported from the flow package. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> len(list(nx.node_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path))) + 5 + + Notes + ----- + This is a flow based implementation of node disjoint paths. We compute + the maximum flow between source and target on an auxiliary directed + network. The saturated edges in the residual network after running the + maximum flow algorithm correspond to node disjoint paths between source + and target in the original network. This function handles both directed + and undirected graphs, and can use all flow algorithms from NetworkX flow + package. + + See also + -------- + :meth:`edge_disjoint_paths` + :meth:`node_connectivity` + :meth:`maximum_flow` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + """ + if s not in G: + raise nx.NetworkXError(f"node {s} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {t} not in graph") + + if auxiliary is None: + H = build_auxiliary_node_connectivity(G) + else: + H = auxiliary + + mapping = H.graph.get("mapping", None) + if mapping is None: + raise nx.NetworkXError("Invalid auxiliary digraph.") + + # Maximum possible edge disjoint paths + possible = min(H.out_degree(f"{mapping[s]}B"), H.in_degree(f"{mapping[t]}A")) + if not possible: + raise NetworkXNoPath + + if cutoff is None: + cutoff = possible + else: + cutoff = min(cutoff, possible) + + kwargs = { + "flow_func": flow_func, + "residual": residual, + "auxiliary": H, + "cutoff": cutoff, + } + + # The edge disjoint paths in the auxiliary digraph correspond to the node + # disjoint paths in the original graph. + paths_edges = edge_disjoint_paths(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs) + for path in paths_edges: + # Each node in the original graph maps to two nodes in auxiliary graph + yield list(_unique_everseen(H.nodes[node]["id"] for node in path)) + + +def _unique_everseen(iterable): + # Adapted from https://docs.python.org/3/library/itertools.html examples + "List unique elements, preserving order. Remember all elements ever seen." + # unique_everseen('AAAABBBCCDAABBB') --> A B C D + seen = set() + seen_add = seen.add + for element in _filterfalse(seen.__contains__, iterable): + seen_add(element) + yield element diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_augmentation.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_augmentation.py new file mode 100644 index 0000000000000000000000000000000000000000..c1215509e8860fbc62b16f87c6d01f784a1bec3f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_augmentation.py @@ -0,0 +1,1269 @@ +""" +Algorithms for finding k-edge-augmentations + +A k-edge-augmentation is a set of edges, that once added to a graph, ensures +that the graph is k-edge-connected; i.e. the graph cannot be disconnected +unless k or more edges are removed. Typically, the goal is to find the +augmentation with minimum weight. In general, it is not guaranteed that a +k-edge-augmentation exists. + +See Also +-------- +:mod:`edge_kcomponents` : algorithms for finding k-edge-connected components +:mod:`connectivity` : algorithms for determining edge connectivity. +""" +import itertools as it +import math +from collections import defaultdict, namedtuple + +import networkx as nx +from networkx.utils import not_implemented_for, py_random_state + +__all__ = ["k_edge_augmentation", "is_k_edge_connected", "is_locally_k_edge_connected"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch +def is_k_edge_connected(G, k): + """Tests to see if a graph is k-edge-connected. + + Is it impossible to disconnect the graph by removing fewer than k edges? + If so, then G is k-edge-connected. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + k : integer + edge connectivity to test for + + Returns + ------- + boolean + True if G is k-edge-connected. + + See Also + -------- + :func:`is_locally_k_edge_connected` + + Examples + -------- + >>> G = nx.barbell_graph(10, 0) + >>> nx.is_k_edge_connected(G, k=1) + True + >>> nx.is_k_edge_connected(G, k=2) + False + """ + if k < 1: + raise ValueError(f"k must be positive, not {k}") + # First try to quickly determine if G is not k-edge-connected + if G.number_of_nodes() < k + 1: + return False + elif any(d < k for n, d in G.degree()): + return False + else: + # Otherwise perform the full check + if k == 1: + return nx.is_connected(G) + elif k == 2: + return nx.is_connected(G) and not nx.has_bridges(G) + else: + return nx.edge_connectivity(G, cutoff=k) >= k + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch +def is_locally_k_edge_connected(G, s, t, k): + """Tests to see if an edge in a graph is locally k-edge-connected. + + Is it impossible to disconnect s and t by removing fewer than k edges? + If so, then s and t are locally k-edge-connected in G. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + s : node + Source node + + t : node + Target node + + k : integer + local edge connectivity for nodes s and t + + Returns + ------- + boolean + True if s and t are locally k-edge-connected in G. + + See Also + -------- + :func:`is_k_edge_connected` + + Examples + -------- + >>> from networkx.algorithms.connectivity import is_locally_k_edge_connected + >>> G = nx.barbell_graph(10, 0) + >>> is_locally_k_edge_connected(G, 5, 15, k=1) + True + >>> is_locally_k_edge_connected(G, 5, 15, k=2) + False + >>> is_locally_k_edge_connected(G, 1, 5, k=2) + True + """ + if k < 1: + raise ValueError(f"k must be positive, not {k}") + + # First try to quickly determine s, t is not k-locally-edge-connected in G + if G.degree(s) < k or G.degree(t) < k: + return False + else: + # Otherwise perform the full check + if k == 1: + return nx.has_path(G, s, t) + else: + localk = nx.connectivity.local_edge_connectivity(G, s, t, cutoff=k) + return localk >= k + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch +def k_edge_augmentation(G, k, avail=None, weight=None, partial=False): + """Finds set of edges to k-edge-connect G. + + Adding edges from the augmentation to G make it impossible to disconnect G + unless k or more edges are removed. This function uses the most efficient + function available (depending on the value of k and if the problem is + weighted or unweighted) to search for a minimum weight subset of available + edges that k-edge-connects G. In general, finding a k-edge-augmentation is + NP-hard, so solutions are not guaranteed to be minimal. Furthermore, a + k-edge-augmentation may not exist. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + k : integer + Desired edge connectivity + + avail : dict or a set of 2 or 3 tuples + The available edges that can be used in the augmentation. + + If unspecified, then all edges in the complement of G are available. + Otherwise, each item is an available edge (with an optional weight). + + In the unweighted case, each item is an edge ``(u, v)``. + + In the weighted case, each item is a 3-tuple ``(u, v, d)`` or a dict + with items ``(u, v): d``. The third item, ``d``, can be a dictionary + or a real number. If ``d`` is a dictionary ``d[weight]`` + correspondings to the weight. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples where the + third item in each tuple is a dictionary. + + partial : boolean + If partial is True and no feasible k-edge-augmentation exists, then all + a partial k-edge-augmentation is generated. Adding the edges in a + partial augmentation to G, minimizes the number of k-edge-connected + components and maximizes the edge connectivity between those + components. For details, see :func:`partial_k_edge_augmentation`. + + Yields + ------ + edge : tuple + Edges that, once added to G, would cause G to become k-edge-connected. + If partial is False, an error is raised if this is not possible. + Otherwise, generated edges form a partial augmentation, which + k-edge-connects any part of G where it is possible, and maximally + connects the remaining parts. + + Raises + ------ + NetworkXUnfeasible + If partial is False and no k-edge-augmentation exists. + + NetworkXNotImplemented + If the input graph is directed or a multigraph. + + ValueError: + If k is less than 1 + + Notes + ----- + When k=1 this returns an optimal solution. + + When k=2 and ``avail`` is None, this returns an optimal solution. + Otherwise when k=2, this returns a 2-approximation of the optimal solution. + + For k>3, this problem is NP-hard and this uses a randomized algorithm that + produces a feasible solution, but provides no guarantees on the + solution weight. + + Examples + -------- + >>> # Unweighted cases + >>> G = nx.path_graph((1, 2, 3, 4)) + >>> G.add_node(5) + >>> sorted(nx.k_edge_augmentation(G, k=1)) + [(1, 5)] + >>> sorted(nx.k_edge_augmentation(G, k=2)) + [(1, 5), (5, 4)] + >>> sorted(nx.k_edge_augmentation(G, k=3)) + [(1, 4), (1, 5), (2, 5), (3, 5), (4, 5)] + >>> complement = list(nx.k_edge_augmentation(G, k=5, partial=True)) + >>> G.add_edges_from(complement) + >>> nx.edge_connectivity(G) + 4 + + >>> # Weighted cases + >>> G = nx.path_graph((1, 2, 3, 4)) + >>> G.add_node(5) + >>> # avail can be a tuple with a dict + >>> avail = [(1, 5, {"weight": 11}), (2, 5, {"weight": 10})] + >>> sorted(nx.k_edge_augmentation(G, k=1, avail=avail, weight="weight")) + [(2, 5)] + >>> # or avail can be a 3-tuple with a real number + >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)] + >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail)) + [(1, 5), (2, 5), (4, 5)] + >>> # or avail can be a dict + >>> avail = {(1, 5): 11, (2, 5): 10, (4, 3): 1, (4, 5): 51} + >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail)) + [(1, 5), (2, 5), (4, 5)] + >>> # If augmentation is infeasible, then a partial solution can be found + >>> avail = {(1, 5): 11} + >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail, partial=True)) + [(1, 5)] + """ + try: + if k <= 0: + raise ValueError(f"k must be a positive integer, not {k}") + elif G.number_of_nodes() < k + 1: + msg = f"impossible to {k} connect in graph with less than {k + 1} nodes" + raise nx.NetworkXUnfeasible(msg) + elif avail is not None and len(avail) == 0: + if not nx.is_k_edge_connected(G, k): + raise nx.NetworkXUnfeasible("no available edges") + aug_edges = [] + elif k == 1: + aug_edges = one_edge_augmentation( + G, avail=avail, weight=weight, partial=partial + ) + elif k == 2: + aug_edges = bridge_augmentation(G, avail=avail, weight=weight) + else: + # raise NotImplementedError(f'not implemented for k>2. k={k}') + aug_edges = greedy_k_edge_augmentation( + G, k=k, avail=avail, weight=weight, seed=0 + ) + # Do eager evaluation so we can catch any exceptions + # Before executing partial code. + yield from list(aug_edges) + except nx.NetworkXUnfeasible: + if partial: + # Return all available edges + if avail is None: + aug_edges = complement_edges(G) + else: + # If we can't k-edge-connect the entire graph, try to + # k-edge-connect as much as possible + aug_edges = partial_k_edge_augmentation( + G, k=k, avail=avail, weight=weight + ) + yield from aug_edges + else: + raise + + +@nx._dispatch +def partial_k_edge_augmentation(G, k, avail, weight=None): + """Finds augmentation that k-edge-connects as much of the graph as possible. + + When a k-edge-augmentation is not possible, we can still try to find a + small set of edges that partially k-edge-connects as much of the graph as + possible. All possible edges are generated between remaining parts. + This minimizes the number of k-edge-connected subgraphs in the resulting + graph and maximizes the edge connectivity between those subgraphs. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + k : integer + Desired edge connectivity + + avail : dict or a set of 2 or 3 tuples + For more details, see :func:`k_edge_augmentation`. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples. + For more details, see :func:`k_edge_augmentation`. + + Yields + ------ + edge : tuple + Edges in the partial augmentation of G. These edges k-edge-connect any + part of G where it is possible, and maximally connects the remaining + parts. In other words, all edges from avail are generated except for + those within subgraphs that have already become k-edge-connected. + + Notes + ----- + Construct H that augments G with all edges in avail. + Find the k-edge-subgraphs of H. + For each k-edge-subgraph, if the number of nodes is more than k, then find + the k-edge-augmentation of that graph and add it to the solution. Then add + all edges in avail between k-edge subgraphs to the solution. + + See Also + -------- + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7)) + >>> G.add_node(8) + >>> avail = [(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (1, 8)] + >>> sorted(partial_k_edge_augmentation(G, k=2, avail=avail)) + [(1, 5), (1, 8)] + """ + + def _edges_between_disjoint(H, only1, only2): + """finds edges between disjoint nodes""" + only1_adj = {u: set(H.adj[u]) for u in only1} + for u, neighbs in only1_adj.items(): + # Find the neighbors of u in only1 that are also in only2 + neighbs12 = neighbs.intersection(only2) + for v in neighbs12: + yield (u, v) + + avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G) + + # Find which parts of the graph can be k-edge-connected + H = G.copy() + H.add_edges_from( + ( + (u, v, {"weight": w, "generator": (u, v)}) + for (u, v), w in zip(avail, avail_w) + ) + ) + k_edge_subgraphs = list(nx.k_edge_subgraphs(H, k=k)) + + # Generate edges to k-edge-connect internal subgraphs + for nodes in k_edge_subgraphs: + if len(nodes) > 1: + # Get the k-edge-connected subgraph + C = H.subgraph(nodes).copy() + # Find the internal edges that were available + sub_avail = { + d["generator"]: d["weight"] + for (u, v, d) in C.edges(data=True) + if "generator" in d + } + # Remove potential augmenting edges + C.remove_edges_from(sub_avail.keys()) + # Find a subset of these edges that makes the component + # k-edge-connected and ignore the rest + yield from nx.k_edge_augmentation(C, k=k, avail=sub_avail) + + # Generate all edges between CCs that could not be k-edge-connected + for cc1, cc2 in it.combinations(k_edge_subgraphs, 2): + for u, v in _edges_between_disjoint(H, cc1, cc2): + d = H.get_edge_data(u, v) + edge = d.get("generator", None) + if edge is not None: + yield edge + + +@not_implemented_for("multigraph") +@not_implemented_for("directed") +@nx._dispatch +def one_edge_augmentation(G, avail=None, weight=None, partial=False): + """Finds minimum weight set of edges to connect G. + + Equivalent to :func:`k_edge_augmentation` when k=1. Adding the resulting + edges to G will make it 1-edge-connected. The solution is optimal for both + weighted and non-weighted variants. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + avail : dict or a set of 2 or 3 tuples + For more details, see :func:`k_edge_augmentation`. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples. + For more details, see :func:`k_edge_augmentation`. + + partial : boolean + If partial is True and no feasible k-edge-augmentation exists, then the + augmenting edges minimize the number of connected components. + + Yields + ------ + edge : tuple + Edges in the one-augmentation of G + + Raises + ------ + NetworkXUnfeasible + If partial is False and no one-edge-augmentation exists. + + Notes + ----- + Uses either :func:`unconstrained_one_edge_augmentation` or + :func:`weighted_one_edge_augmentation` depending on whether ``avail`` is + specified. Both algorithms are based on finding a minimum spanning tree. + As such both algorithms find optimal solutions and run in linear time. + + See Also + -------- + :func:`k_edge_augmentation` + """ + if avail is None: + return unconstrained_one_edge_augmentation(G) + else: + return weighted_one_edge_augmentation( + G, avail=avail, weight=weight, partial=partial + ) + + +@not_implemented_for("multigraph") +@not_implemented_for("directed") +@nx._dispatch +def bridge_augmentation(G, avail=None, weight=None): + """Finds the a set of edges that bridge connects G. + + Equivalent to :func:`k_edge_augmentation` when k=2, and partial=False. + Adding the resulting edges to G will make it 2-edge-connected. If no + constraints are specified the returned set of edges is minimum an optimal, + otherwise the solution is approximated. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + avail : dict or a set of 2 or 3 tuples + For more details, see :func:`k_edge_augmentation`. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples. + For more details, see :func:`k_edge_augmentation`. + + Yields + ------ + edge : tuple + Edges in the bridge-augmentation of G + + Raises + ------ + NetworkXUnfeasible + If no bridge-augmentation exists. + + Notes + ----- + If there are no constraints the solution can be computed in linear time + using :func:`unconstrained_bridge_augmentation`. Otherwise, the problem + becomes NP-hard and is the solution is approximated by + :func:`weighted_bridge_augmentation`. + + See Also + -------- + :func:`k_edge_augmentation` + """ + if G.number_of_nodes() < 3: + raise nx.NetworkXUnfeasible("impossible to bridge connect less than 3 nodes") + if avail is None: + return unconstrained_bridge_augmentation(G) + else: + return weighted_bridge_augmentation(G, avail, weight=weight) + + +# --- Algorithms and Helpers --- + + +def _ordered(u, v): + """Returns the nodes in an undirected edge in lower-triangular order""" + return (u, v) if u < v else (v, u) + + +def _unpack_available_edges(avail, weight=None, G=None): + """Helper to separate avail into edges and corresponding weights""" + if weight is None: + weight = "weight" + if isinstance(avail, dict): + avail_uv = list(avail.keys()) + avail_w = list(avail.values()) + else: + + def _try_getitem(d): + try: + return d[weight] + except TypeError: + return d + + avail_uv = [tup[0:2] for tup in avail] + avail_w = [1 if len(tup) == 2 else _try_getitem(tup[-1]) for tup in avail] + + if G is not None: + # Edges already in the graph are filtered + flags = [not G.has_edge(u, v) for u, v in avail_uv] + avail_uv = list(it.compress(avail_uv, flags)) + avail_w = list(it.compress(avail_w, flags)) + return avail_uv, avail_w + + +MetaEdge = namedtuple("MetaEdge", ("meta_uv", "uv", "w")) + + +def _lightest_meta_edges(mapping, avail_uv, avail_w): + """Maps available edges in the original graph to edges in the metagraph. + + Parameters + ---------- + mapping : dict + mapping produced by :func:`collapse`, that maps each node in the + original graph to a node in the meta graph + + avail_uv : list + list of edges + + avail_w : list + list of edge weights + + Notes + ----- + Each node in the metagraph is a k-edge-connected component in the original + graph. We don't care about any edge within the same k-edge-connected + component, so we ignore self edges. We also are only interested in the + minimum weight edge bridging each k-edge-connected component so, we group + the edges by meta-edge and take the lightest in each group. + + Examples + -------- + >>> # Each group represents a meta-node + >>> groups = ([1, 2, 3], [4, 5], [6]) + >>> mapping = {n: meta_n for meta_n, ns in enumerate(groups) for n in ns} + >>> avail_uv = [(1, 2), (3, 6), (1, 4), (5, 2), (6, 1), (2, 6), (3, 1)] + >>> avail_w = [20, 99, 20, 15, 50, 99, 20] + >>> sorted(_lightest_meta_edges(mapping, avail_uv, avail_w)) + [MetaEdge(meta_uv=(0, 1), uv=(5, 2), w=15), MetaEdge(meta_uv=(0, 2), uv=(6, 1), w=50)] + """ + grouped_wuv = defaultdict(list) + for w, (u, v) in zip(avail_w, avail_uv): + # Order the meta-edge so it can be used as a dict key + meta_uv = _ordered(mapping[u], mapping[v]) + # Group each available edge using the meta-edge as a key + grouped_wuv[meta_uv].append((w, u, v)) + + # Now that all available edges are grouped, choose one per group + for (mu, mv), choices_wuv in grouped_wuv.items(): + # Ignore available edges within the same meta-node + if mu != mv: + # Choose the lightest available edge belonging to each meta-edge + w, u, v = min(choices_wuv) + yield MetaEdge((mu, mv), (u, v), w) + + +@nx._dispatch +def unconstrained_one_edge_augmentation(G): + """Finds the smallest set of edges to connect G. + + This is a variant of the unweighted MST problem. + If G is not empty, a feasible solution always exists. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + Yields + ------ + edge : tuple + Edges in the one-edge-augmentation of G + + See Also + -------- + :func:`one_edge_augmentation` + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)]) + >>> G.add_nodes_from([6, 7, 8]) + >>> sorted(unconstrained_one_edge_augmentation(G)) + [(1, 4), (4, 6), (6, 7), (7, 8)] + """ + ccs1 = list(nx.connected_components(G)) + C = collapse(G, ccs1) + # When we are not constrained, we can just make a meta graph tree. + meta_nodes = list(C.nodes()) + # build a path in the metagraph + meta_aug = list(zip(meta_nodes, meta_nodes[1:])) + # map that path to the original graph + inverse = defaultdict(list) + for k, v in C.graph["mapping"].items(): + inverse[v].append(k) + for mu, mv in meta_aug: + yield (inverse[mu][0], inverse[mv][0]) + + +@nx._dispatch +def weighted_one_edge_augmentation(G, avail, weight=None, partial=False): + """Finds the minimum weight set of edges to connect G if one exists. + + This is a variant of the weighted MST problem. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + avail : dict or a set of 2 or 3 tuples + For more details, see :func:`k_edge_augmentation`. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples. + For more details, see :func:`k_edge_augmentation`. + + partial : boolean + If partial is True and no feasible k-edge-augmentation exists, then the + augmenting edges minimize the number of connected components. + + Yields + ------ + edge : tuple + Edges in the subset of avail chosen to connect G. + + See Also + -------- + :func:`one_edge_augmentation` + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)]) + >>> G.add_nodes_from([6, 7, 8]) + >>> # any edge not in avail has an implicit weight of infinity + >>> avail = [(1, 3), (1, 5), (4, 7), (4, 8), (6, 1), (8, 1), (8, 2)] + >>> sorted(weighted_one_edge_augmentation(G, avail)) + [(1, 5), (4, 7), (6, 1), (8, 1)] + >>> # find another solution by giving large weights to edges in the + >>> # previous solution (note some of the old edges must be used) + >>> avail = [(1, 3), (1, 5, 99), (4, 7, 9), (6, 1, 99), (8, 1, 99), (8, 2)] + >>> sorted(weighted_one_edge_augmentation(G, avail)) + [(1, 5), (4, 7), (6, 1), (8, 2)] + """ + avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G) + # Collapse CCs in the original graph into nodes in a metagraph + # Then find an MST of the metagraph instead of the original graph + C = collapse(G, nx.connected_components(G)) + mapping = C.graph["mapping"] + # Assign each available edge to an edge in the metagraph + candidate_mapping = _lightest_meta_edges(mapping, avail_uv, avail_w) + # nx.set_edge_attributes(C, name='weight', values=0) + C.add_edges_from( + (mu, mv, {"weight": w, "generator": uv}) + for (mu, mv), uv, w in candidate_mapping + ) + # Find MST of the meta graph + meta_mst = nx.minimum_spanning_tree(C) + if not partial and not nx.is_connected(meta_mst): + raise nx.NetworkXUnfeasible("Not possible to connect G with available edges") + # Yield the edge that generated the meta-edge + for mu, mv, d in meta_mst.edges(data=True): + if "generator" in d: + edge = d["generator"] + yield edge + + +@nx._dispatch +def unconstrained_bridge_augmentation(G): + """Finds an optimal 2-edge-augmentation of G using the fewest edges. + + This is an implementation of the algorithm detailed in [1]_. + The basic idea is to construct a meta-graph of bridge-ccs, connect leaf + nodes of the trees to connect the entire graph, and finally connect the + leafs of the tree in dfs-preorder to bridge connect the entire graph. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + Yields + ------ + edge : tuple + Edges in the bridge augmentation of G + + Notes + ----- + Input: a graph G. + First find the bridge components of G and collapse each bridge-cc into a + node of a metagraph graph C, which is guaranteed to be a forest of trees. + + C contains p "leafs" --- nodes with exactly one incident edge. + C contains q "isolated nodes" --- nodes with no incident edges. + + Theorem: If p + q > 1, then at least :math:`ceil(p / 2) + q` edges are + needed to bridge connect C. This algorithm achieves this min number. + + The method first adds enough edges to make G into a tree and then pairs + leafs in a simple fashion. + + Let n be the number of trees in C. Let v(i) be an isolated vertex in the + i-th tree if one exists, otherwise it is a pair of distinct leafs nodes + in the i-th tree. Alternating edges from these sets (i.e. adding edges + A1 = [(v(i)[0], v(i + 1)[1]), v(i + 1)[0], v(i + 2)[1])...]) connects C + into a tree T. This tree has p' = p + 2q - 2(n -1) leafs and no isolated + vertices. A1 has n - 1 edges. The next step finds ceil(p' / 2) edges to + biconnect any tree with p' leafs. + + Convert T into an arborescence T' by picking an arbitrary root node with + degree >= 2 and directing all edges away from the root. Note the + implementation implicitly constructs T'. + + The leafs of T are the nodes with no existing edges in T'. + Order the leafs of T' by DFS preorder. Then break this list in half + and add the zipped pairs to A2. + + The set A = A1 + A2 is the minimum augmentation in the metagraph. + + To convert this to edges in the original graph + + References + ---------- + .. [1] Eswaran, Kapali P., and R. Endre Tarjan. (1975) Augmentation problems. + http://epubs.siam.org/doi/abs/10.1137/0205044 + + See Also + -------- + :func:`bridge_augmentation` + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7)) + >>> sorted(unconstrained_bridge_augmentation(G)) + [(1, 7)] + >>> G = nx.path_graph((1, 2, 3, 2, 4, 5, 6, 7)) + >>> sorted(unconstrained_bridge_augmentation(G)) + [(1, 3), (3, 7)] + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)]) + >>> G.add_node(4) + >>> sorted(unconstrained_bridge_augmentation(G)) + [(1, 4), (4, 0)] + """ + # ----- + # Mapping of terms from (Eswaran and Tarjan): + # G = G_0 - the input graph + # C = G_0' - the bridge condensation of G. (This is a forest of trees) + # A1 = A_1 - the edges to connect the forest into a tree + # leaf = pendant - a node with degree of 1 + + # alpha(v) = maps the node v in G to its meta-node in C + # beta(x) = maps the meta-node x in C to any node in the bridge + # component of G corresponding to x. + + # find the 2-edge-connected components of G + bridge_ccs = list(nx.connectivity.bridge_components(G)) + # condense G into an forest C + C = collapse(G, bridge_ccs) + + # Choose pairs of distinct leaf nodes in each tree. If this is not + # possible then make a pair using the single isolated node in the tree. + vset1 = [ + tuple(cc) * 2 # case1: an isolated node + if len(cc) == 1 + else sorted(cc, key=C.degree)[0:2] # case2: pair of leaf nodes + for cc in nx.connected_components(C) + ] + if len(vset1) > 1: + # Use this set to construct edges that connect C into a tree. + nodes1 = [vs[0] for vs in vset1] + nodes2 = [vs[1] for vs in vset1] + A1 = list(zip(nodes1[1:], nodes2)) + else: + A1 = [] + # Connect each tree in the forest to construct an arborescence + T = C.copy() + T.add_edges_from(A1) + + # If there are only two leaf nodes, we simply connect them. + leafs = [n for n, d in T.degree() if d == 1] + if len(leafs) == 1: + A2 = [] + if len(leafs) == 2: + A2 = [tuple(leafs)] + else: + # Choose an arbitrary non-leaf root + try: + root = next(n for n, d in T.degree() if d > 1) + except StopIteration: # no nodes found with degree > 1 + return + # order the leaves of C by (induced directed) preorder + v2 = [n for n in nx.dfs_preorder_nodes(T, root) if T.degree(n) == 1] + # connecting first half of the leafs in pre-order to the second + # half will bridge connect the tree with the fewest edges. + half = math.ceil(len(v2) / 2) + A2 = list(zip(v2[:half], v2[-half:])) + + # collect the edges used to augment the original forest + aug_tree_edges = A1 + A2 + + # Construct the mapping (beta) from meta-nodes to regular nodes + inverse = defaultdict(list) + for k, v in C.graph["mapping"].items(): + inverse[v].append(k) + # sort so we choose minimum degree nodes first + inverse = { + mu: sorted(mapped, key=lambda u: (G.degree(u), u)) + for mu, mapped in inverse.items() + } + + # For each meta-edge, map back to an arbitrary pair in the original graph + G2 = G.copy() + for mu, mv in aug_tree_edges: + # Find the first available edge that doesn't exist and return it + for u, v in it.product(inverse[mu], inverse[mv]): + if not G2.has_edge(u, v): + G2.add_edge(u, v) + yield u, v + break + + +@nx._dispatch +def weighted_bridge_augmentation(G, avail, weight=None): + """Finds an approximate min-weight 2-edge-augmentation of G. + + This is an implementation of the approximation algorithm detailed in [1]_. + It chooses a set of edges from avail to add to G that renders it + 2-edge-connected if such a subset exists. This is done by finding a + minimum spanning arborescence of a specially constructed metagraph. + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + avail : set of 2 or 3 tuples. + candidate edges (with optional weights) to choose from + + weight : string + key to use to find weights if avail is a set of 3-tuples where the + third item in each tuple is a dictionary. + + Yields + ------ + edge : tuple + Edges in the subset of avail chosen to bridge augment G. + + Notes + ----- + Finding a weighted 2-edge-augmentation is NP-hard. + Any edge not in ``avail`` is considered to have a weight of infinity. + The approximation factor is 2 if ``G`` is connected and 3 if it is not. + Runs in :math:`O(m + n log(n))` time + + References + ---------- + .. [1] Khuller, Samir, and Ramakrishna Thurimella. (1993) Approximation + algorithms for graph augmentation. + http://www.sciencedirect.com/science/article/pii/S0196677483710102 + + See Also + -------- + :func:`bridge_augmentation` + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.path_graph((1, 2, 3, 4)) + >>> # When the weights are equal, (1, 4) is the best + >>> avail = [(1, 4, 1), (1, 3, 1), (2, 4, 1)] + >>> sorted(weighted_bridge_augmentation(G, avail)) + [(1, 4)] + >>> # Giving (1, 4) a high weight makes the two edge solution the best. + >>> avail = [(1, 4, 1000), (1, 3, 1), (2, 4, 1)] + >>> sorted(weighted_bridge_augmentation(G, avail)) + [(1, 3), (2, 4)] + >>> # ------ + >>> G = nx.path_graph((1, 2, 3, 4)) + >>> G.add_node(5) + >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 1)] + >>> sorted(weighted_bridge_augmentation(G, avail=avail)) + [(1, 5), (4, 5)] + >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)] + >>> sorted(weighted_bridge_augmentation(G, avail=avail)) + [(1, 5), (2, 5), (4, 5)] + """ + + if weight is None: + weight = "weight" + + # If input G is not connected the approximation factor increases to 3 + if not nx.is_connected(G): + H = G.copy() + connectors = list(one_edge_augmentation(H, avail=avail, weight=weight)) + H.add_edges_from(connectors) + + yield from connectors + else: + connectors = [] + H = G + + if len(avail) == 0: + if nx.has_bridges(H): + raise nx.NetworkXUnfeasible("no augmentation possible") + + avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=H) + + # Collapse input into a metagraph. Meta nodes are bridge-ccs + bridge_ccs = nx.connectivity.bridge_components(H) + C = collapse(H, bridge_ccs) + + # Use the meta graph to shrink avail to a small feasible subset + mapping = C.graph["mapping"] + # Choose the minimum weight feasible edge in each group + meta_to_wuv = { + (mu, mv): (w, uv) + for (mu, mv), uv, w in _lightest_meta_edges(mapping, avail_uv, avail_w) + } + + # Mapping of terms from (Khuller and Thurimella): + # C : G_0 = (V, E^0) + # This is the metagraph where each node is a 2-edge-cc in G. + # The edges in C represent bridges in the original graph. + # (mu, mv) : E - E^0 # they group both avail and given edges in E + # T : \Gamma + # D : G^D = (V, E_D) + + # The paper uses ancestor because children point to parents, which is + # contrary to networkx standards. So, we actually need to run + # nx.least_common_ancestor on the reversed Tree. + + # Pick an arbitrary leaf from C as the root + try: + root = next(n for n, d in C.degree() if d == 1) + except StopIteration: # no nodes found with degree == 1 + return + # Root C into a tree TR by directing all edges away from the root + # Note in their paper T directs edges towards the root + TR = nx.dfs_tree(C, root) + + # Add to D the directed edges of T and set their weight to zero + # This indicates that it costs nothing to use edges that were given. + D = nx.reverse(TR).copy() + + nx.set_edge_attributes(D, name="weight", values=0) + + # The LCA of mu and mv in T is the shared ancestor of mu and mv that is + # located farthest from the root. + lca_gen = nx.tree_all_pairs_lowest_common_ancestor( + TR, root=root, pairs=meta_to_wuv.keys() + ) + + for (mu, mv), lca in lca_gen: + w, uv = meta_to_wuv[(mu, mv)] + if lca == mu: + # If u is an ancestor of v in TR, then add edge u->v to D + D.add_edge(lca, mv, weight=w, generator=uv) + elif lca == mv: + # If v is an ancestor of u in TR, then add edge v->u to D + D.add_edge(lca, mu, weight=w, generator=uv) + else: + # If neither u nor v is a ancestor of the other in TR + # let t = lca(TR, u, v) and add edges t->u and t->v + # Track the original edge that GENERATED these edges. + D.add_edge(lca, mu, weight=w, generator=uv) + D.add_edge(lca, mv, weight=w, generator=uv) + + # Then compute a minimum rooted branching + try: + # Note the original edges must be directed towards to root for the + # branching to give us a bridge-augmentation. + A = _minimum_rooted_branching(D, root) + except nx.NetworkXException as err: + # If there is no branching then augmentation is not possible + raise nx.NetworkXUnfeasible("no 2-edge-augmentation possible") from err + + # For each edge e, in the branching that did not belong to the directed + # tree T, add the corresponding edge that **GENERATED** it (this is not + # necessarily e itself!) + + # ensure the third case does not generate edges twice + bridge_connectors = set() + for mu, mv in A.edges(): + data = D.get_edge_data(mu, mv) + if "generator" in data: + # Add the avail edge that generated the branching edge. + edge = data["generator"] + bridge_connectors.add(edge) + + yield from bridge_connectors + + +def _minimum_rooted_branching(D, root): + """Helper function to compute a minimum rooted branching (aka rooted + arborescence) + + Before the branching can be computed, the directed graph must be rooted by + removing the predecessors of root. + + A branching / arborescence of rooted graph G is a subgraph that contains a + directed path from the root to every other vertex. It is the directed + analog of the minimum spanning tree problem. + + References + ---------- + [1] Khuller, Samir (2002) Advanced Algorithms Lecture 24 Notes. + https://web.archive.org/web/20121030033722/https://www.cs.umd.edu/class/spring2011/cmsc651/lec07.pdf + """ + rooted = D.copy() + # root the graph by removing all predecessors to `root`. + rooted.remove_edges_from([(u, root) for u in D.predecessors(root)]) + # Then compute the branching / arborescence. + A = nx.minimum_spanning_arborescence(rooted) + return A + + +@nx._dispatch +def collapse(G, grouped_nodes): + """Collapses each group of nodes into a single node. + + This is similar to condensation, but works on undirected graphs. + + Parameters + ---------- + G : NetworkX Graph + + grouped_nodes: list or generator + Grouping of nodes to collapse. The grouping must be disjoint. + If grouped_nodes are strongly_connected_components then this is + equivalent to :func:`condensation`. + + Returns + ------- + C : NetworkX Graph + The collapsed graph C of G with respect to the node grouping. The node + labels are integers corresponding to the index of the component in the + list of grouped_nodes. C has a graph attribute named 'mapping' with a + dictionary mapping the original nodes to the nodes in C to which they + belong. Each node in C also has a node attribute 'members' with the set + of original nodes in G that form the group that the node in C + represents. + + Examples + -------- + >>> # Collapses a graph using disjoint groups, but not necessarily connected + >>> G = nx.Graph([(1, 0), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (5, 7)]) + >>> G.add_node("A") + >>> grouped_nodes = [{0, 1, 2, 3}, {5, 6, 7}] + >>> C = collapse(G, grouped_nodes) + >>> members = nx.get_node_attributes(C, "members") + >>> sorted(members.keys()) + [0, 1, 2, 3] + >>> member_values = set(map(frozenset, members.values())) + >>> assert {0, 1, 2, 3} in member_values + >>> assert {4} in member_values + >>> assert {5, 6, 7} in member_values + >>> assert {"A"} in member_values + """ + mapping = {} + members = {} + C = G.__class__() + i = 0 # required if G is empty + remaining = set(G.nodes()) + for i, group in enumerate(grouped_nodes): + group = set(group) + assert remaining.issuperset( + group + ), "grouped nodes must exist in G and be disjoint" + remaining.difference_update(group) + members[i] = group + mapping.update((n, i) for n in group) + # remaining nodes are in their own group + for i, node in enumerate(remaining, start=i + 1): + group = {node} + members[i] = group + mapping.update((n, i) for n in group) + number_of_groups = i + 1 + C.add_nodes_from(range(number_of_groups)) + C.add_edges_from( + (mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v] + ) + # Add a list of members (ie original nodes) to each node (ie scc) in C. + nx.set_node_attributes(C, name="members", values=members) + # Add mapping dict as graph attribute + C.graph["mapping"] = mapping + return C + + +@nx._dispatch +def complement_edges(G): + """Returns only the edges in the complement of G + + Parameters + ---------- + G : NetworkX Graph + + Yields + ------ + edge : tuple + Edges in the complement of G + + Examples + -------- + >>> G = nx.path_graph((1, 2, 3, 4)) + >>> sorted(complement_edges(G)) + [(1, 3), (1, 4), (2, 4)] + >>> G = nx.path_graph((1, 2, 3, 4), nx.DiGraph()) + >>> sorted(complement_edges(G)) + [(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)] + >>> G = nx.complete_graph(1000) + >>> sorted(complement_edges(G)) + [] + """ + G_adj = G._adj # Store as a variable to eliminate attribute lookup + if G.is_directed(): + for u, v in it.combinations(G.nodes(), 2): + if v not in G_adj[u]: + yield (u, v) + if u not in G_adj[v]: + yield (v, u) + else: + for u, v in it.combinations(G.nodes(), 2): + if v not in G_adj[u]: + yield (u, v) + + +def _compat_shuffle(rng, input): + """wrapper around rng.shuffle for python 2 compatibility reasons""" + rng.shuffle(input) + + +@not_implemented_for("multigraph") +@not_implemented_for("directed") +@py_random_state(4) +@nx._dispatch +def greedy_k_edge_augmentation(G, k, avail=None, weight=None, seed=None): + """Greedy algorithm for finding a k-edge-augmentation + + Parameters + ---------- + G : NetworkX graph + An undirected graph. + + k : integer + Desired edge connectivity + + avail : dict or a set of 2 or 3 tuples + For more details, see :func:`k_edge_augmentation`. + + weight : string + key to use to find weights if ``avail`` is a set of 3-tuples. + For more details, see :func:`k_edge_augmentation`. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Yields + ------ + edge : tuple + Edges in the greedy augmentation of G + + Notes + ----- + The algorithm is simple. Edges are incrementally added between parts of the + graph that are not yet locally k-edge-connected. Then edges are from the + augmenting set are pruned as long as local-edge-connectivity is not broken. + + This algorithm is greedy and does not provide optimality guarantees. It + exists only to provide :func:`k_edge_augmentation` with the ability to + generate a feasible solution for arbitrary k. + + See Also + -------- + :func:`k_edge_augmentation` + + Examples + -------- + >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7)) + >>> sorted(greedy_k_edge_augmentation(G, k=2)) + [(1, 7)] + >>> sorted(greedy_k_edge_augmentation(G, k=1, avail=[])) + [] + >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7)) + >>> avail = {(u, v): 1 for (u, v) in complement_edges(G)} + >>> # randomized pruning process can produce different solutions + >>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=2)) + [(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (3, 7), (5, 7)] + >>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=3)) + [(1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 7), (4, 7), (5, 7)] + """ + # Result set + aug_edges = [] + + done = is_k_edge_connected(G, k) + if done: + return + if avail is None: + # all edges are available + avail_uv = list(complement_edges(G)) + avail_w = [1] * len(avail_uv) + else: + # Get the unique set of unweighted edges + avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G) + + # Greedy: order lightest edges. Use degree sum to tie-break + tiebreaker = [sum(map(G.degree, uv)) for uv in avail_uv] + avail_wduv = sorted(zip(avail_w, tiebreaker, avail_uv)) + avail_uv = [uv for w, d, uv in avail_wduv] + + # Incrementally add edges in until we are k-connected + H = G.copy() + for u, v in avail_uv: + done = False + if not is_locally_k_edge_connected(H, u, v, k=k): + # Only add edges in parts that are not yet locally k-edge-connected + aug_edges.append((u, v)) + H.add_edge(u, v) + # Did adding this edge help? + if H.degree(u) >= k and H.degree(v) >= k: + done = is_k_edge_connected(H, k) + if done: + break + + # Check for feasibility + if not done: + raise nx.NetworkXUnfeasible("not able to k-edge-connect with available edges") + + # Randomized attempt to reduce the size of the solution + _compat_shuffle(seed, aug_edges) + for u, v in list(aug_edges): + # Don't remove if we know it would break connectivity + if H.degree(u) <= k or H.degree(v) <= k: + continue + H.remove_edge(u, v) + aug_edges.remove((u, v)) + if not is_k_edge_connected(H, k=k): + # If removing this edge breaks feasibility, undo + H.add_edge(u, v) + aug_edges.append((u, v)) + + # Generate results + yield from aug_edges diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py new file mode 100644 index 0000000000000000000000000000000000000000..e602c33aaeed31266293feee93d12429ebe05f7b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py @@ -0,0 +1,584 @@ +""" +Algorithms for finding k-edge-connected components and subgraphs. + +A k-edge-connected component (k-edge-cc) is a maximal set of nodes in G, such +that all pairs of node have an edge-connectivity of at least k. + +A k-edge-connected subgraph (k-edge-subgraph) is a maximal set of nodes in G, +such that the subgraph of G defined by the nodes has an edge-connectivity at +least k. +""" +import itertools as it +from functools import partial + +import networkx as nx +from networkx.utils import arbitrary_element, not_implemented_for + +__all__ = [ + "k_edge_components", + "k_edge_subgraphs", + "bridge_components", + "EdgeComponentAuxGraph", +] + + +@not_implemented_for("multigraph") +@nx._dispatch +def k_edge_components(G, k): + """Generates nodes in each maximal k-edge-connected component in G. + + Parameters + ---------- + G : NetworkX graph + + k : Integer + Desired edge connectivity + + Returns + ------- + k_edge_components : a generator of k-edge-ccs. Each set of returned nodes + will have k-edge-connectivity in the graph G. + + See Also + -------- + :func:`local_edge_connectivity` + :func:`k_edge_subgraphs` : similar to this function, but the subgraph + defined by the nodes must also have k-edge-connectivity. + :func:`k_components` : similar to this function, but uses node-connectivity + instead of edge-connectivity + + Raises + ------ + NetworkXNotImplemented + If the input graph is a multigraph. + + ValueError: + If k is less than 1 + + Notes + ----- + Attempts to use the most efficient implementation available based on k. + If k=1, this is simply connected components for directed graphs and + connected components for undirected graphs. + If k=2 on an efficient bridge connected component algorithm from _[1] is + run based on the chain decomposition. + Otherwise, the algorithm from _[2] is used. + + Examples + -------- + >>> import itertools as it + >>> from networkx.utils import pairwise + >>> paths = [ + ... (1, 2, 4, 3, 1, 4), + ... (5, 6, 7, 8, 5, 7, 8, 6), + ... ] + >>> G = nx.Graph() + >>> G.add_nodes_from(it.chain(*paths)) + >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + >>> # note this returns {1, 4} unlike k_edge_subgraphs + >>> sorted(map(sorted, nx.k_edge_components(G, k=3))) + [[1, 4], [2], [3], [5, 6, 7, 8]] + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29 + .. [2] Wang, Tianhao, et al. (2015) A simple algorithm for finding all + k-edge-connected components. + http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + """ + # Compute k-edge-ccs using the most efficient algorithms available. + if k < 1: + raise ValueError("k cannot be less than 1") + if G.is_directed(): + if k == 1: + return nx.strongly_connected_components(G) + else: + # TODO: investigate https://arxiv.org/abs/1412.6466 for k=2 + aux_graph = EdgeComponentAuxGraph.construct(G) + return aux_graph.k_edge_components(k) + else: + if k == 1: + return nx.connected_components(G) + elif k == 2: + return bridge_components(G) + else: + aux_graph = EdgeComponentAuxGraph.construct(G) + return aux_graph.k_edge_components(k) + + +@not_implemented_for("multigraph") +@nx._dispatch +def k_edge_subgraphs(G, k): + """Generates nodes in each maximal k-edge-connected subgraph in G. + + Parameters + ---------- + G : NetworkX graph + + k : Integer + Desired edge connectivity + + Returns + ------- + k_edge_subgraphs : a generator of k-edge-subgraphs + Each k-edge-subgraph is a maximal set of nodes that defines a subgraph + of G that is k-edge-connected. + + See Also + -------- + :func:`edge_connectivity` + :func:`k_edge_components` : similar to this function, but nodes only + need to have k-edge-connectivity within the graph G and the subgraphs + might not be k-edge-connected. + + Raises + ------ + NetworkXNotImplemented + If the input graph is a multigraph. + + ValueError: + If k is less than 1 + + Notes + ----- + Attempts to use the most efficient implementation available based on k. + If k=1, or k=2 and the graph is undirected, then this simply calls + `k_edge_components`. Otherwise the algorithm from _[1] is used. + + Examples + -------- + >>> import itertools as it + >>> from networkx.utils import pairwise + >>> paths = [ + ... (1, 2, 4, 3, 1, 4), + ... (5, 6, 7, 8, 5, 7, 8, 6), + ... ] + >>> G = nx.Graph() + >>> G.add_nodes_from(it.chain(*paths)) + >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + >>> # note this does not return {1, 4} unlike k_edge_components + >>> sorted(map(sorted, nx.k_edge_subgraphs(G, k=3))) + [[1], [2], [3], [4], [5, 6, 7, 8]] + + References + ---------- + .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs + from a large graph. ACM International Conference on Extending Database + Technology 2012 480-–491. + https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf + """ + if k < 1: + raise ValueError("k cannot be less than 1") + if G.is_directed(): + if k <= 1: + # For directed graphs , + # When k == 1, k-edge-ccs and k-edge-subgraphs are the same + return k_edge_components(G, k) + else: + return _k_edge_subgraphs_nodes(G, k) + else: + if k <= 2: + # For undirected graphs, + # when k <= 2, k-edge-ccs and k-edge-subgraphs are the same + return k_edge_components(G, k) + else: + return _k_edge_subgraphs_nodes(G, k) + + +def _k_edge_subgraphs_nodes(G, k): + """Helper to get the nodes from the subgraphs. + + This allows k_edge_subgraphs to return a generator. + """ + for C in general_k_edge_subgraphs(G, k): + yield set(C.nodes()) + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch +def bridge_components(G): + """Finds all bridge-connected components G. + + Parameters + ---------- + G : NetworkX undirected graph + + Returns + ------- + bridge_components : a generator of 2-edge-connected components + + + See Also + -------- + :func:`k_edge_subgraphs` : this function is a special case for an + undirected graph where k=2. + :func:`biconnected_components` : similar to this function, but is defined + using 2-node-connectivity instead of 2-edge-connectivity. + + Raises + ------ + NetworkXNotImplemented + If the input graph is directed or a multigraph. + + Notes + ----- + Bridge-connected components are also known as 2-edge-connected components. + + Examples + -------- + >>> # The barbell graph with parameter zero has a single bridge + >>> G = nx.barbell_graph(5, 0) + >>> from networkx.algorithms.connectivity.edge_kcomponents import bridge_components + >>> sorted(map(sorted, bridge_components(G))) + [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] + """ + H = G.copy() + H.remove_edges_from(nx.bridges(G)) + yield from nx.connected_components(H) + + +class EdgeComponentAuxGraph: + r"""A simple algorithm to find all k-edge-connected components in a graph. + + Constructing the auxiliary graph (which may take some time) allows for the + k-edge-ccs to be found in linear time for arbitrary k. + + Notes + ----- + This implementation is based on [1]_. The idea is to construct an auxiliary + graph from which the k-edge-ccs can be extracted in linear time. The + auxiliary graph is constructed in $O(|V|\cdot F)$ operations, where F is the + complexity of max flow. Querying the components takes an additional $O(|V|)$ + operations. This algorithm can be slow for large graphs, but it handles an + arbitrary k and works for both directed and undirected inputs. + + The undirected case for k=1 is exactly connected components. + The undirected case for k=2 is exactly bridge connected components. + The directed case for k=1 is exactly strongly connected components. + + References + ---------- + .. [1] Wang, Tianhao, et al. (2015) A simple algorithm for finding all + k-edge-connected components. + http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + + Examples + -------- + >>> import itertools as it + >>> from networkx.utils import pairwise + >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph + >>> # Build an interesting graph with multiple levels of k-edge-ccs + >>> paths = [ + ... (1, 2, 3, 4, 1, 3, 4, 2), # a 3-edge-cc (a 4 clique) + ... (5, 6, 7, 5), # a 2-edge-cc (a 3 clique) + ... (1, 5), # combine first two ccs into a 1-edge-cc + ... (0,), # add an additional disconnected 1-edge-cc + ... ] + >>> G = nx.Graph() + >>> G.add_nodes_from(it.chain(*paths)) + >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + >>> # Constructing the AuxGraph takes about O(n ** 4) + >>> aux_graph = EdgeComponentAuxGraph.construct(G) + >>> # Once constructed, querying takes O(n) + >>> sorted(map(sorted, aux_graph.k_edge_components(k=1))) + [[0], [1, 2, 3, 4, 5, 6, 7]] + >>> sorted(map(sorted, aux_graph.k_edge_components(k=2))) + [[0], [1, 2, 3, 4], [5, 6, 7]] + >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) + [[0], [1, 2, 3, 4], [5], [6], [7]] + >>> sorted(map(sorted, aux_graph.k_edge_components(k=4))) + [[0], [1], [2], [3], [4], [5], [6], [7]] + + The auxiliary graph is primarily used for k-edge-ccs but it + can also speed up the queries of k-edge-subgraphs by refining the + search space. + + >>> import itertools as it + >>> from networkx.utils import pairwise + >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph + >>> paths = [ + ... (1, 2, 4, 3, 1, 4), + ... ] + >>> G = nx.Graph() + >>> G.add_nodes_from(it.chain(*paths)) + >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + >>> aux_graph = EdgeComponentAuxGraph.construct(G) + >>> sorted(map(sorted, aux_graph.k_edge_subgraphs(k=3))) + [[1], [2], [3], [4]] + >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) + [[1, 4], [2], [3]] + """ + + # @not_implemented_for('multigraph') # TODO: fix decor for classmethods + @classmethod + def construct(EdgeComponentAuxGraph, G): + """Builds an auxiliary graph encoding edge-connectivity between nodes. + + Notes + ----- + Given G=(V, E), initialize an empty auxiliary graph A. + Choose an arbitrary source node s. Initialize a set N of available + nodes (that can be used as the sink). The algorithm picks an + arbitrary node t from N - {s}, and then computes the minimum st-cut + (S, T) with value w. If G is directed the minimum of the st-cut or + the ts-cut is used instead. Then, the edge (s, t) is added to the + auxiliary graph with weight w. The algorithm is called recursively + first using S as the available nodes and s as the source, and then + using T and t. Recursion stops when the source is the only available + node. + + Parameters + ---------- + G : NetworkX graph + """ + # workaround for classmethod decorator + not_implemented_for("multigraph")(lambda G: G)(G) + + def _recursive_build(H, A, source, avail): + # Terminate once the flow has been compute to every node. + if {source} == avail: + return + # pick an arbitrary node as the sink + sink = arbitrary_element(avail - {source}) + # find the minimum cut and its weight + value, (S, T) = nx.minimum_cut(H, source, sink) + if H.is_directed(): + # check if the reverse direction has a smaller cut + value_, (T_, S_) = nx.minimum_cut(H, sink, source) + if value_ < value: + value, S, T = value_, S_, T_ + # add edge with weight of cut to the aux graph + A.add_edge(source, sink, weight=value) + # recursively call until all but one node is used + _recursive_build(H, A, source, avail.intersection(S)) + _recursive_build(H, A, sink, avail.intersection(T)) + + # Copy input to ensure all edges have unit capacity + H = G.__class__() + H.add_nodes_from(G.nodes()) + H.add_edges_from(G.edges(), capacity=1) + + # A is the auxiliary graph to be constructed + # It is a weighted undirected tree + A = nx.Graph() + + # Pick an arbitrary node as the source + if H.number_of_nodes() > 0: + source = arbitrary_element(H.nodes()) + # Initialize a set of elements that can be chosen as the sink + avail = set(H.nodes()) + + # This constructs A + _recursive_build(H, A, source, avail) + + # This class is a container the holds the auxiliary graph A and + # provides access the k_edge_components function. + self = EdgeComponentAuxGraph() + self.A = A + self.H = H + return self + + def k_edge_components(self, k): + """Queries the auxiliary graph for k-edge-connected components. + + Parameters + ---------- + k : Integer + Desired edge connectivity + + Returns + ------- + k_edge_components : a generator of k-edge-ccs + + Notes + ----- + Given the auxiliary graph, the k-edge-connected components can be + determined in linear time by removing all edges with weights less than + k from the auxiliary graph. The resulting connected components are the + k-edge-ccs in the original graph. + """ + if k < 1: + raise ValueError("k cannot be less than 1") + A = self.A + # "traverse the auxiliary graph A and delete all edges with weights less + # than k" + aux_weights = nx.get_edge_attributes(A, "weight") + # Create a relevant graph with the auxiliary edges with weights >= k + R = nx.Graph() + R.add_nodes_from(A.nodes()) + R.add_edges_from(e for e, w in aux_weights.items() if w >= k) + + # Return the nodes that are k-edge-connected in the original graph + yield from nx.connected_components(R) + + def k_edge_subgraphs(self, k): + """Queries the auxiliary graph for k-edge-connected subgraphs. + + Parameters + ---------- + k : Integer + Desired edge connectivity + + Returns + ------- + k_edge_subgraphs : a generator of k-edge-subgraphs + + Notes + ----- + Refines the k-edge-ccs into k-edge-subgraphs. The running time is more + than $O(|V|)$. + + For single values of k it is faster to use `nx.k_edge_subgraphs`. + But for multiple values of k, it can be faster to build AuxGraph and + then use this method. + """ + if k < 1: + raise ValueError("k cannot be less than 1") + H = self.H + A = self.A + # "traverse the auxiliary graph A and delete all edges with weights less + # than k" + aux_weights = nx.get_edge_attributes(A, "weight") + # Create a relevant graph with the auxiliary edges with weights >= k + R = nx.Graph() + R.add_nodes_from(A.nodes()) + R.add_edges_from(e for e, w in aux_weights.items() if w >= k) + + # Return the components whose subgraphs are k-edge-connected + for cc in nx.connected_components(R): + if len(cc) < k: + # Early return optimization + for node in cc: + yield {node} + else: + # Call subgraph solution to refine the results + C = H.subgraph(cc) + yield from k_edge_subgraphs(C, k) + + +def _low_degree_nodes(G, k, nbunch=None): + """Helper for finding nodes with degree less than k.""" + # Nodes with degree less than k cannot be k-edge-connected. + if G.is_directed(): + # Consider both in and out degree in the directed case + seen = set() + for node, degree in G.out_degree(nbunch): + if degree < k: + seen.add(node) + yield node + for node, degree in G.in_degree(nbunch): + if node not in seen and degree < k: + seen.add(node) + yield node + else: + # Only the degree matters in the undirected case + for node, degree in G.degree(nbunch): + if degree < k: + yield node + + +def _high_degree_components(G, k): + """Helper for filtering components that can't be k-edge-connected. + + Removes and generates each node with degree less than k. Then generates + remaining components where all nodes have degree at least k. + """ + # Iteratively remove parts of the graph that are not k-edge-connected + H = G.copy() + singletons = set(_low_degree_nodes(H, k)) + while singletons: + # Only search neighbors of removed nodes + nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons))) + nbunch.difference_update(singletons) + H.remove_nodes_from(singletons) + for node in singletons: + yield {node} + singletons = set(_low_degree_nodes(H, k, nbunch)) + + # Note: remaining connected components may not be k-edge-connected + if G.is_directed(): + yield from nx.strongly_connected_components(H) + else: + yield from nx.connected_components(H) + + +@nx._dispatch +def general_k_edge_subgraphs(G, k): + """General algorithm to find all maximal k-edge-connected subgraphs in G. + + Returns + ------- + k_edge_subgraphs : a generator of nx.Graphs that are k-edge-subgraphs + Each k-edge-subgraph is a maximal set of nodes that defines a subgraph + of G that is k-edge-connected. + + Notes + ----- + Implementation of the basic algorithm from _[1]. The basic idea is to find + a global minimum cut of the graph. If the cut value is at least k, then the + graph is a k-edge-connected subgraph and can be added to the results. + Otherwise, the cut is used to split the graph in two and the procedure is + applied recursively. If the graph is just a single node, then it is also + added to the results. At the end, each result is either guaranteed to be + a single node or a subgraph of G that is k-edge-connected. + + This implementation contains optimizations for reducing the number of calls + to max-flow, but there are other optimizations in _[1] that could be + implemented. + + References + ---------- + .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs + from a large graph. ACM International Conference on Extending Database + Technology 2012 480-–491. + https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf + + Examples + -------- + >>> from networkx.utils import pairwise + >>> paths = [ + ... (11, 12, 13, 14, 11, 13, 14, 12), # a 4-clique + ... (21, 22, 23, 24, 21, 23, 24, 22), # another 4-clique + ... # connect the cliques with high degree but low connectivity + ... (50, 13), + ... (12, 50, 22), + ... (13, 102, 23), + ... (14, 101, 24), + ... ] + >>> G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + >>> sorted(map(len, k_edge_subgraphs(G, k=3))) + [1, 1, 1, 4, 4] + """ + if k < 1: + raise ValueError("k cannot be less than 1") + + # Node pruning optimization (incorporates early return) + # find_ccs is either connected_components/strongly_connected_components + find_ccs = partial(_high_degree_components, k=k) + + # Quick return optimization + if G.number_of_nodes() < k: + for node in G.nodes(): + yield G.subgraph([node]).copy() + return + + # Intermediate results + R0 = {G.subgraph(cc).copy() for cc in find_ccs(G)} + # Subdivide CCs in the intermediate results until they are k-conn + while R0: + G1 = R0.pop() + if G1.number_of_nodes() == 1: + yield G1 + else: + # Find a global minimum cut + cut_edges = nx.minimum_edge_cut(G1) + cut_value = len(cut_edges) + if cut_value < k: + # G1 is not k-edge-connected, so subdivide it + G1.remove_edges_from(cut_edges) + for cc in find_ccs(G1): + R0.add(G1.subgraph(cc).copy()) + else: + # Otherwise we found a k-edge-connected subgraph + yield G1 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcomponents.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcomponents.py new file mode 100644 index 0000000000000000000000000000000000000000..19a6e486b8477be111ab0ce6b10fd17039e6fb91 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcomponents.py @@ -0,0 +1,222 @@ +""" +Moody and White algorithm for k-components +""" +from collections import defaultdict +from itertools import combinations +from operator import itemgetter + +import networkx as nx + +# Define the default maximum flow function. +from networkx.algorithms.flow import edmonds_karp +from networkx.utils import not_implemented_for + +default_flow_func = edmonds_karp + +__all__ = ["k_components"] + + +@not_implemented_for("directed") +@nx._dispatch +def k_components(G, flow_func=None): + r"""Returns the k-component structure of a graph G. + + A `k`-component is a maximal subgraph of a graph G that has, at least, + node connectivity `k`: we need to remove at least `k` nodes to break it + into more components. `k`-components have an inherent hierarchical + structure because they are nested in terms of connectivity: a connected + graph can contain several 2-components, each of which can contain + one or more 3-components, and so forth. + + Parameters + ---------- + G : NetworkX graph + + flow_func : function + Function to perform the underlying flow computations. Default value + :meth:`edmonds_karp`. This function performs better in sparse graphs with + right tailed degree distributions. :meth:`shortest_augmenting_path` will + perform better in denser graphs. + + Returns + ------- + k_components : dict + Dictionary with all connectivity levels `k` in the input Graph as keys + and a list of sets of nodes that form a k-component of level `k` as + values. + + Raises + ------ + NetworkXNotImplemented + If the input graph is directed. + + Examples + -------- + >>> # Petersen graph has 10 nodes and it is triconnected, thus all + >>> # nodes are in a single component on all three connectivity levels + >>> G = nx.petersen_graph() + >>> k_components = nx.k_components(G) + + Notes + ----- + Moody and White [1]_ (appendix A) provide an algorithm for identifying + k-components in a graph, which is based on Kanevsky's algorithm [2]_ + for finding all minimum-size node cut-sets of a graph (implemented in + :meth:`all_node_cuts` function): + + 1. Compute node connectivity, k, of the input graph G. + + 2. Identify all k-cutsets at the current level of connectivity using + Kanevsky's algorithm. + + 3. Generate new graph components based on the removal of + these cutsets. Nodes in a cutset belong to both sides + of the induced cut. + + 4. If the graph is neither complete nor trivial, return to 1; + else end. + + This implementation also uses some heuristics (see [3]_ for details) + to speed up the computation. + + See also + -------- + node_connectivity + all_node_cuts + biconnected_components : special case of this function when k=2 + k_edge_components : similar to this function, but uses edge-connectivity + instead of node-connectivity + + References + ---------- + .. [1] Moody, J. and D. White (2003). Social cohesion and embeddedness: + A hierarchical conception of social groups. + American Sociological Review 68(1), 103--28. + http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf + + .. [2] Kanevsky, A. (1993). Finding all minimum-size separating vertex + sets in a graph. Networks 23(6), 533--541. + http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract + + .. [3] Torrents, J. and F. Ferraro (2015). Structural Cohesion: + Visualization and Heuristics for Fast Computation. + https://arxiv.org/pdf/1503.04476v1 + + """ + # Dictionary with connectivity level (k) as keys and a list of + # sets of nodes that form a k-component as values. Note that + # k-components can overlap (but only k - 1 nodes). + k_components = defaultdict(list) + # Define default flow function + if flow_func is None: + flow_func = default_flow_func + # Bicomponents as a base to check for higher order k-components + for component in nx.connected_components(G): + # isolated nodes have connectivity 0 + comp = set(component) + if len(comp) > 1: + k_components[1].append(comp) + bicomponents = [G.subgraph(c) for c in nx.biconnected_components(G)] + for bicomponent in bicomponents: + bicomp = set(bicomponent) + # avoid considering dyads as bicomponents + if len(bicomp) > 2: + k_components[2].append(bicomp) + for B in bicomponents: + if len(B) <= 2: + continue + k = nx.node_connectivity(B, flow_func=flow_func) + if k > 2: + k_components[k].append(set(B)) + # Perform cuts in a DFS like order. + cuts = list(nx.all_node_cuts(B, k=k, flow_func=flow_func)) + stack = [(k, _generate_partition(B, cuts, k))] + while stack: + (parent_k, partition) = stack[-1] + try: + nodes = next(partition) + C = B.subgraph(nodes) + this_k = nx.node_connectivity(C, flow_func=flow_func) + if this_k > parent_k and this_k > 2: + k_components[this_k].append(set(C)) + cuts = list(nx.all_node_cuts(C, k=this_k, flow_func=flow_func)) + if cuts: + stack.append((this_k, _generate_partition(C, cuts, this_k))) + except StopIteration: + stack.pop() + + # This is necessary because k-components may only be reported at their + # maximum k level. But we want to return a dictionary in which keys are + # connectivity levels and values list of sets of components, without + # skipping any connectivity level. Also, it's possible that subsets of + # an already detected k-component appear at a level k. Checking for this + # in the while loop above penalizes the common case. Thus we also have to + # _consolidate all connectivity levels in _reconstruct_k_components. + return _reconstruct_k_components(k_components) + + +def _consolidate(sets, k): + """Merge sets that share k or more elements. + + See: http://rosettacode.org/wiki/Set_consolidation + + The iterative python implementation posted there is + faster than this because of the overhead of building a + Graph and calling nx.connected_components, but it's not + clear for us if we can use it in NetworkX because there + is no licence for the code. + + """ + G = nx.Graph() + nodes = dict(enumerate(sets)) + G.add_nodes_from(nodes) + G.add_edges_from( + (u, v) for u, v in combinations(nodes, 2) if len(nodes[u] & nodes[v]) >= k + ) + for component in nx.connected_components(G): + yield set.union(*[nodes[n] for n in component]) + + +def _generate_partition(G, cuts, k): + def has_nbrs_in_partition(G, node, partition): + return any(n in partition for n in G[node]) + + components = [] + nodes = {n for n, d in G.degree() if d > k} - {n for cut in cuts for n in cut} + H = G.subgraph(nodes) + for cc in nx.connected_components(H): + component = set(cc) + for cut in cuts: + for node in cut: + if has_nbrs_in_partition(G, node, cc): + component.add(node) + if len(component) < G.order(): + components.append(component) + yield from _consolidate(components, k + 1) + + +def _reconstruct_k_components(k_comps): + result = {} + max_k = max(k_comps) + for k in reversed(range(1, max_k + 1)): + if k == max_k: + result[k] = list(_consolidate(k_comps[k], k)) + elif k not in k_comps: + result[k] = list(_consolidate(result[k + 1], k)) + else: + nodes_at_k = set.union(*k_comps[k]) + to_add = [c for c in result[k + 1] if any(n not in nodes_at_k for n in c)] + if to_add: + result[k] = list(_consolidate(k_comps[k] + to_add, k)) + else: + result[k] = list(_consolidate(k_comps[k], k)) + return result + + +def build_k_number_dict(kcomps): + result = {} + for k, comps in sorted(kcomps.items(), key=itemgetter(0)): + for comp in comps: + for node in comp: + result[node] = k + return result diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcutsets.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcutsets.py new file mode 100644 index 0000000000000000000000000000000000000000..bc04ed185893fb119957052ae9574ab58eff47c1 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/kcutsets.py @@ -0,0 +1,233 @@ +""" +Kanevsky all minimum node k cutsets algorithm. +""" +import copy +from collections import defaultdict +from itertools import combinations +from operator import itemgetter + +import networkx as nx +from networkx.algorithms.flow import ( + build_residual_network, + edmonds_karp, + shortest_augmenting_path, +) + +from .utils import build_auxiliary_node_connectivity + +default_flow_func = edmonds_karp + + +__all__ = ["all_node_cuts"] + + +@nx._dispatch +def all_node_cuts(G, k=None, flow_func=None): + r"""Returns all minimum k cutsets of an undirected graph G. + + This implementation is based on Kanevsky's algorithm [1]_ for finding all + minimum-size node cut-sets of an undirected graph G; ie the set (or sets) + of nodes of cardinality equal to the node connectivity of G. Thus if + removed, would break G into two or more connected components. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + k : Integer + Node connectivity of the input graph. If k is None, then it is + computed. Default value: None. + + flow_func : function + Function to perform the underlying flow computations. Default value is + :func:`~networkx.algorithms.flow.edmonds_karp`. This function performs + better in sparse graphs with right tailed degree distributions. + :func:`~networkx.algorithms.flow.shortest_augmenting_path` will + perform better in denser graphs. + + + Returns + ------- + cuts : a generator of node cutsets + Each node cutset has cardinality equal to the node connectivity of + the input graph. + + Examples + -------- + >>> # A two-dimensional grid graph has 4 cutsets of cardinality 2 + >>> G = nx.grid_2d_graph(5, 5) + >>> cutsets = list(nx.all_node_cuts(G)) + >>> len(cutsets) + 4 + >>> all(2 == len(cutset) for cutset in cutsets) + True + >>> nx.node_connectivity(G) + 2 + + Notes + ----- + This implementation is based on the sequential algorithm for finding all + minimum-size separating vertex sets in a graph [1]_. The main idea is to + compute minimum cuts using local maximum flow computations among a set + of nodes of highest degree and all other non-adjacent nodes in the Graph. + Once we find a minimum cut, we add an edge between the high degree + node and the target node of the local maximum flow computation to make + sure that we will not find that minimum cut again. + + See also + -------- + node_connectivity + edmonds_karp + shortest_augmenting_path + + References + ---------- + .. [1] Kanevsky, A. (1993). Finding all minimum-size separating vertex + sets in a graph. Networks 23(6), 533--541. + http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract + + """ + if not nx.is_connected(G): + raise nx.NetworkXError("Input graph is disconnected.") + + # Address some corner cases first. + # For complete Graphs + if nx.density(G) == 1: + for cut_set in combinations(G, len(G) - 1): + yield set(cut_set) + return + # Initialize data structures. + # Keep track of the cuts already computed so we do not repeat them. + seen = [] + # Even-Tarjan reduction is what we call auxiliary digraph + # for node connectivity. + H = build_auxiliary_node_connectivity(G) + H_nodes = H.nodes # for speed + mapping = H.graph["mapping"] + # Keep a copy of original predecessors, H will be modified later. + # Shallow copy is enough. + original_H_pred = copy.copy(H._pred) + R = build_residual_network(H, "capacity") + kwargs = {"capacity": "capacity", "residual": R} + # Define default flow function + if flow_func is None: + flow_func = default_flow_func + if flow_func is shortest_augmenting_path: + kwargs["two_phase"] = True + # Begin the actual algorithm + # step 1: Find node connectivity k of G + if k is None: + k = nx.node_connectivity(G, flow_func=flow_func) + # step 2: + # Find k nodes with top degree, call it X: + X = {n for n, d in sorted(G.degree(), key=itemgetter(1), reverse=True)[:k]} + # Check if X is a k-node-cutset + if _is_separating_set(G, X): + seen.append(X) + yield X + + for x in X: + # step 3: Compute local connectivity flow of x with all other + # non adjacent nodes in G + non_adjacent = set(G) - X - set(G[x]) + for v in non_adjacent: + # step 4: compute maximum flow in an Even-Tarjan reduction H of G + # and step 5: build the associated residual network R + R = flow_func(H, f"{mapping[x]}B", f"{mapping[v]}A", **kwargs) + flow_value = R.graph["flow_value"] + + if flow_value == k: + # Find the nodes incident to the flow. + E1 = flowed_edges = [ + (u, w) for (u, w, d) in R.edges(data=True) if d["flow"] != 0 + ] + VE1 = incident_nodes = {n for edge in E1 for n in edge} + # Remove saturated edges form the residual network. + # Note that reversed edges are introduced with capacity 0 + # in the residual graph and they need to be removed too. + saturated_edges = [ + (u, w, d) + for (u, w, d) in R.edges(data=True) + if d["capacity"] == d["flow"] or d["capacity"] == 0 + ] + R.remove_edges_from(saturated_edges) + R_closure = nx.transitive_closure(R) + # step 6: shrink the strongly connected components of + # residual flow network R and call it L. + L = nx.condensation(R) + cmap = L.graph["mapping"] + inv_cmap = defaultdict(list) + for n, scc in cmap.items(): + inv_cmap[scc].append(n) + # Find the incident nodes in the condensed graph. + VE1 = {cmap[n] for n in VE1} + # step 7: Compute all antichains of L; + # they map to closed sets in H. + # Any edge in H that links a closed set is part of a cutset. + for antichain in nx.antichains(L): + # Only antichains that are subsets of incident nodes counts. + # Lemma 8 in reference. + if not set(antichain).issubset(VE1): + continue + # Nodes in an antichain of the condensation graph of + # the residual network map to a closed set of nodes that + # define a node partition of the auxiliary digraph H + # through taking all of antichain's predecessors in the + # transitive closure. + S = set() + for scc in antichain: + S.update(inv_cmap[scc]) + S_ancestors = set() + for n in S: + S_ancestors.update(R_closure._pred[n]) + S.update(S_ancestors) + if f"{mapping[x]}B" not in S or f"{mapping[v]}A" in S: + continue + # Find the cutset that links the node partition (S,~S) in H + cutset = set() + for u in S: + cutset.update((u, w) for w in original_H_pred[u] if w not in S) + # The edges in H that form the cutset are internal edges + # (ie edges that represent a node of the original graph G) + if any(H_nodes[u]["id"] != H_nodes[w]["id"] for u, w in cutset): + continue + node_cut = {H_nodes[u]["id"] for u, _ in cutset} + + if len(node_cut) == k: + # The cut is invalid if it includes internal edges of + # end nodes. The other half of Lemma 8 in ref. + if x in node_cut or v in node_cut: + continue + if node_cut not in seen: + yield node_cut + seen.append(node_cut) + + # Add an edge (x, v) to make sure that we do not + # find this cutset again. This is equivalent + # of adding the edge in the input graph + # G.add_edge(x, v) and then regenerate H and R: + # Add edges to the auxiliary digraph. + # See build_residual_network for convention we used + # in residual graphs. + H.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1) + H.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1) + # Add edges to the residual network. + R.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1) + R.add_edge(f"{mapping[v]}A", f"{mapping[x]}B", capacity=0) + R.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1) + R.add_edge(f"{mapping[x]}A", f"{mapping[v]}B", capacity=0) + + # Add again the saturated edges to reuse the residual network + R.add_edges_from(saturated_edges) + + +def _is_separating_set(G, cut): + """Assumes that the input graph is connected""" + if len(cut) == len(G) - 1: + return True + + H = nx.restricted_view(G, cut, []) + if nx.is_connected(H): + return False + return True diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/stoerwagner.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/stoerwagner.py new file mode 100644 index 0000000000000000000000000000000000000000..dc95877e221d7214bc476a672c74cb19330a03ec --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/stoerwagner.py @@ -0,0 +1,150 @@ +""" +Stoer-Wagner minimum cut algorithm. +""" +from itertools import islice + +import networkx as nx + +from ...utils import BinaryHeap, arbitrary_element, not_implemented_for + +__all__ = ["stoer_wagner"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch(edge_attrs="weight") +def stoer_wagner(G, weight="weight", heap=BinaryHeap): + r"""Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. + + Determine the minimum edge cut of a connected graph using the + Stoer-Wagner algorithm. In weighted cases, all weights must be + nonnegative. + + The running time of the algorithm depends on the type of heaps used: + + ============== ============================================= + Type of heap Running time + ============== ============================================= + Binary heap $O(n (m + n) \log n)$ + Fibonacci heap $O(nm + n^2 \log n)$ + Pairing heap $O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)$ + ============== ============================================= + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute named by the + weight parameter below. If this attribute is not present, the edge is + considered to have unit weight. + + weight : string + Name of the weight attribute of the edges. If the attribute is not + present, unit weight is assumed. Default value: 'weight'. + + heap : class + Type of heap to be used in the algorithm. It should be a subclass of + :class:`MinHeap` or implement a compatible interface. + + If a stock heap implementation is to be used, :class:`BinaryHeap` is + recommended over :class:`PairingHeap` for Python implementations without + optimized attribute accesses (e.g., CPython) despite a slower + asymptotic running time. For Python implementations with optimized + attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better + performance. Default value: :class:`BinaryHeap`. + + Returns + ------- + cut_value : integer or float + The sum of weights of edges in a minimum cut. + + partition : pair of node lists + A partitioning of the nodes that defines a minimum cut. + + Raises + ------ + NetworkXNotImplemented + If the graph is directed or a multigraph. + + NetworkXError + If the graph has less than two nodes, is not connected or has a + negative-weighted edge. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edge("x", "a", weight=3) + >>> G.add_edge("x", "b", weight=1) + >>> G.add_edge("a", "c", weight=3) + >>> G.add_edge("b", "c", weight=5) + >>> G.add_edge("b", "d", weight=4) + >>> G.add_edge("d", "e", weight=2) + >>> G.add_edge("c", "y", weight=2) + >>> G.add_edge("e", "y", weight=3) + >>> cut_value, partition = nx.stoer_wagner(G) + >>> cut_value + 4 + """ + n = len(G) + if n < 2: + raise nx.NetworkXError("graph has less than two nodes.") + if not nx.is_connected(G): + raise nx.NetworkXError("graph is not connected.") + + # Make a copy of the graph for internal use. + G = nx.Graph( + (u, v, {"weight": e.get(weight, 1)}) for u, v, e in G.edges(data=True) if u != v + ) + + for u, v, e in G.edges(data=True): + if e["weight"] < 0: + raise nx.NetworkXError("graph has a negative-weighted edge.") + + cut_value = float("inf") + nodes = set(G) + contractions = [] # contracted node pairs + + # Repeatedly pick a pair of nodes to contract until only one node is left. + for i in range(n - 1): + # Pick an arbitrary node u and create a set A = {u}. + u = arbitrary_element(G) + A = {u} + # Repeatedly pick the node "most tightly connected" to A and add it to + # A. The tightness of connectivity of a node not in A is defined by the + # of edges connecting it to nodes in A. + h = heap() # min-heap emulating a max-heap + for v, e in G[u].items(): + h.insert(v, -e["weight"]) + # Repeat until all but one node has been added to A. + for j in range(n - i - 2): + u = h.pop()[0] + A.add(u) + for v, e in G[u].items(): + if v not in A: + h.insert(v, h.get(v, 0) - e["weight"]) + # A and the remaining node v define a "cut of the phase". There is a + # minimum cut of the original graph that is also a cut of the phase. + # Due to contractions in earlier phases, v may in fact represent + # multiple nodes in the original graph. + v, w = h.min() + w = -w + if w < cut_value: + cut_value = w + best_phase = i + # Contract v and the last node added to A. + contractions.append((u, v)) + for w, e in G[v].items(): + if w != u: + if w not in G[u]: + G.add_edge(u, w, weight=e["weight"]) + else: + G[u][w]["weight"] += e["weight"] + G.remove_node(v) + + # Recover the optimal partitioning from the contractions. + G = nx.Graph(islice(contractions, best_phase)) + v = contractions[best_phase][1] + G.add_node(v) + reachable = set(nx.single_source_shortest_path_length(G, v)) + partition = (list(reachable), list(nodes - reachable)) + + return cut_value, partition diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f17d8458fb7289af9ee08900eb16f28c8c6ae3d6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_connectivity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_connectivity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..23cff1f4ceefec4fcffef04094121b3795fcf8b5 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_connectivity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_cuts.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_cuts.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4419cd87c282728ef8de8e8b4fcab789762e5bbd Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_cuts.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_disjoint_paths.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_disjoint_paths.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9c885706f7b9fc6f2b2d68906244f5843c471320 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_disjoint_paths.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_augmentation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_augmentation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d7225980e50fc55c974bfe0b08721921b4b7803 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_augmentation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_kcomponents.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_kcomponents.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2638d2bd058d4f56eb4e9e5c2f8ab1bc6102789 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_edge_kcomponents.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcomponents.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcomponents.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df7bc2d06ff6741b2015fb5b5ab3aee8881f14e8 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcomponents.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcutsets.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcutsets.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc7b28a505b5eda1dbcca7d06b82c85691ac4b2b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_kcutsets.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_stoer_wagner.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_stoer_wagner.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fbd2cb80fc6b5004a8d8ea96fe7b9820c60562da Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/__pycache__/test_stoer_wagner.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py new file mode 100644 index 0000000000000000000000000000000000000000..7aef2477d1331bcefc7e5dfdacd415b27ffcd3c8 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_connectivity.py @@ -0,0 +1,421 @@ +import itertools + +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity import ( + local_edge_connectivity, + local_node_connectivity, +) + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +# helper functions for tests + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {max_attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_average_connectivity(): + # figure 1 from: + # Beineke, L., O. Oellermann, and R. Pippert (2002). The average + # connectivity of a graph. Discrete mathematics 252(1-3), 31-45 + # http://www.sciencedirect.com/science/article/pii/S0012365X01001807 + G1 = nx.path_graph(3) + G1.add_edges_from([(1, 3), (1, 4)]) + G2 = nx.path_graph(3) + G2.add_edges_from([(1, 3), (1, 4), (0, 3), (0, 4), (3, 4)]) + G3 = nx.Graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.average_node_connectivity(G1, **kwargs) == 1, errmsg + assert nx.average_node_connectivity(G2, **kwargs) == 2.2, errmsg + assert nx.average_node_connectivity(G3, **kwargs) == 0, errmsg + + +def test_average_connectivity_directed(): + G = nx.DiGraph([(1, 3), (1, 4), (1, 5)]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.average_node_connectivity(G) == 0.25, errmsg + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for flow_func in flow_funcs: + for i in range(3): + G = next(Ggen) + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G, flow_func=flow_func) == 1, errmsg + + +def test_brandes_erlebach(): + # Figure 1 chapter 7: Connectivity + # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == local_edge_connectivity(G, 1, 11, **kwargs), errmsg + assert 3 == nx.edge_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == local_node_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == nx.node_connectivity(G, 1, 11, **kwargs), errmsg + assert 2 == nx.edge_connectivity(G, **kwargs), errmsg + assert 2 == nx.node_connectivity(G, **kwargs), errmsg + if flow_func is flow.preflow_push: + assert 3 == nx.edge_connectivity(G, 1, 11, cutoff=2, **kwargs), errmsg + else: + assert 2 == nx.edge_connectivity(G, 1, 11, cutoff=2, **kwargs), errmsg + + +def test_white_harary_1(): + # Figure 1b white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + # A graph with high adhesion (edge connectivity) and low cohesion + # (vertex connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_white_harary_2(): + # Figure 8 white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.add_edge(0, 4) + # kappa <= lambda <= delta + assert 3 == min(nx.core_number(G).values()) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_complete_graphs(): + for n in range(5, 20, 5): + for flow_func in flow_funcs: + G = nx.complete_graph(n) + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert n - 1 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert n - 1 == nx.node_connectivity( + G.to_directed(), flow_func=flow_func + ), errmsg + assert n - 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + assert n - 1 == nx.edge_connectivity( + G.to_directed(), flow_func=flow_func + ), errmsg + + +def test_empty_graphs(): + for k in range(5, 25, 5): + G = nx.empty_graph(k) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 0 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 0 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_petersen(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_tutte(): + G = nx.tutte_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_dodecahedral(): + G = nx.dodecahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 3 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 3 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_octahedral(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 4 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 4 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_icosahedral(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 5 == nx.node_connectivity(G, flow_func=flow_func), errmsg + assert 5 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + + +def test_missing_source(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.node_connectivity, G, 10, 1, flow_func=flow_func + ) + + +def test_missing_target(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.node_connectivity, G, 1, 10, flow_func=flow_func + ) + + +def test_edge_missing_source(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.edge_connectivity, G, 10, 1, flow_func=flow_func + ) + + +def test_edge_missing_target(): + G = nx.path_graph(4) + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, nx.edge_connectivity, G, 1, 10, flow_func=flow_func + ) + + +def test_not_weakly_connected(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G) == 0, errmsg + assert nx.edge_connectivity(G) == 0, errmsg + + +def test_not_connected(): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert nx.node_connectivity(G) == 0, errmsg + assert nx.edge_connectivity(G) == 0, errmsg + + +def test_directed_edge_connectivity(): + G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction + D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert 1 == nx.edge_connectivity(G, flow_func=flow_func), errmsg + assert 1 == local_edge_connectivity(G, 1, 4, flow_func=flow_func), errmsg + assert 1 == nx.edge_connectivity(G, 1, 4, flow_func=flow_func), errmsg + assert 2 == nx.edge_connectivity(D, flow_func=flow_func), errmsg + assert 2 == local_edge_connectivity(D, 1, 4, flow_func=flow_func), errmsg + assert 2 == nx.edge_connectivity(D, 1, 4, flow_func=flow_func), errmsg + + +def test_cutoff(): + G = nx.complete_graph(5) + for local_func in [local_edge_connectivity, local_node_connectivity]: + for flow_func in flow_funcs: + if flow_func is flow.preflow_push: + # cutoff is not supported by preflow_push + continue + for cutoff in [3, 2, 1]: + result = local_func(G, 0, 4, flow_func=flow_func, cutoff=cutoff) + assert cutoff == result, f"cutoff error in {flow_func.__name__}" + + +def test_invalid_auxiliary(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, local_node_connectivity, G, 0, 3, auxiliary=G) + + +def test_interface_only_source(): + G = nx.complete_graph(5) + for interface_func in [nx.node_connectivity, nx.edge_connectivity]: + pytest.raises(nx.NetworkXError, interface_func, G, s=0) + + +def test_interface_only_target(): + G = nx.complete_graph(5) + for interface_func in [nx.node_connectivity, nx.edge_connectivity]: + pytest.raises(nx.NetworkXError, interface_func, G, t=3) + + +def test_edge_connectivity_flow_vs_stoer_wagner(): + graph_funcs = [nx.icosahedral_graph, nx.octahedral_graph, nx.dodecahedral_graph] + for graph_func in graph_funcs: + G = graph_func() + assert nx.stoer_wagner(G)[0] == nx.edge_connectivity(G) + + +class TestAllPairsNodeConnectivity: + @classmethod + def setup_class(cls): + cls.path = nx.path_graph(7) + cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph()) + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + cls.gnp = nx.gnp_random_graph(30, 0.1, seed=42) + cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True, seed=42) + cls.K20 = nx.complete_graph(20) + cls.K10 = nx.complete_graph(10) + cls.K5 = nx.complete_graph(5) + cls.G_list = [ + cls.path, + cls.directed_path, + cls.cycle, + cls.directed_cycle, + cls.gnp, + cls.directed_gnp, + cls.K10, + cls.K5, + cls.K20, + ] + + def test_cycles(self): + K_undir = nx.all_pairs_node_connectivity(self.cycle) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 2 + K_dir = nx.all_pairs_node_connectivity(self.directed_cycle) + for source in K_dir: + for target, k in K_dir[source].items(): + assert k == 1 + + def test_complete(self): + for G in [self.K10, self.K5, self.K20]: + K = nx.all_pairs_node_connectivity(G) + for source in K: + for target, k in K[source].items(): + assert k == len(G) - 1 + + def test_paths(self): + K_undir = nx.all_pairs_node_connectivity(self.path) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 1 + K_dir = nx.all_pairs_node_connectivity(self.directed_path) + for source in K_dir: + for target, k in K_dir[source].items(): + if source < target: + assert k == 1 + else: + assert k == 0 + + def test_all_pairs_connectivity_nbunch(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + C = nx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert len(C) == len(nbunch) + + def test_all_pairs_connectivity_icosahedral(self): + G = nx.icosahedral_graph() + C = nx.all_pairs_node_connectivity(G) + assert all(5 == C[u][v] for u, v in itertools.combinations(G, 2)) + + def test_all_pairs_connectivity(self): + G = nx.Graph() + nodes = [0, 1, 2, 3] + nx.add_path(G, nodes) + A = {n: {} for n in G} + for u, v in itertools.combinations(nodes, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_directed(self): + G = nx.DiGraph() + nodes = [0, 1, 2, 3] + nx.add_path(G, nodes) + A = {n: {} for n in G} + for u, v in itertools.permutations(nodes, 2): + A[u][v] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_nbunch_combinations(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + A = {n: {} for n in nbunch} + for u, v in itertools.combinations(nbunch, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) + + def test_all_pairs_connectivity_nbunch_iter(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + A = {n: {} for n in nbunch} + for u, v in itertools.combinations(nbunch, 2): + A[u][v] = A[v][u] = nx.node_connectivity(G, u, v) + C = nx.all_pairs_node_connectivity(G, nbunch=iter(nbunch)) + assert sorted((k, sorted(v)) for k, v in A.items()) == sorted( + (k, sorted(v)) for k, v in C.items() + ) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py new file mode 100644 index 0000000000000000000000000000000000000000..7a485be399d87db147f7e4567f903fb5271ad63b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_cuts.py @@ -0,0 +1,309 @@ +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity import minimum_st_edge_cut, minimum_st_node_cut +from networkx.utils import arbitrary_element + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + +# Tests for node and edge cutsets + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(1): # change 1 to 3 or more for more realizations. + G = next(Ggen) + cut = nx.minimum_node_cut(G, flow_func=flow_func) + assert len(cut) == 1, errmsg + assert cut.pop() in set(nx.articulation_points(G)), errmsg + + +def test_brandes_erlebach_book(): + # Figure 1 chapter 7: Connectivity + # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cutsets + assert 3 == len(nx.minimum_edge_cut(G, 1, 11, **kwargs)), errmsg + edge_cut = nx.minimum_edge_cut(G, **kwargs) + # Node 5 has only two edges + assert 2 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + assert {6, 7} == minimum_st_node_cut(G, 1, 11, **kwargs), errmsg + assert {6, 7} == nx.minimum_node_cut(G, 1, 11, **kwargs), errmsg + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 2 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_white_harary_paper(): + # Figure 1b white and harary (2001) + # https://doi.org/10.1111/0081-1750.00098 + # A graph with high adhesion (edge connectivity) and low cohesion + # (node connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 3 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert {0} == node_cut, errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_petersen_cutset(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 3 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 3 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_octahedral_cutset(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 4 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 4 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_icosahedral_cutset(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge cuts + edge_cut = nx.minimum_edge_cut(G, **kwargs) + assert 5 == len(edge_cut), errmsg + H = G.copy() + H.remove_edges_from(edge_cut) + assert not nx.is_connected(H), errmsg + # node cuts + node_cut = nx.minimum_node_cut(G, **kwargs) + assert 5 == len(node_cut), errmsg + H = G.copy() + H.remove_nodes_from(node_cut) + assert not nx.is_connected(H), errmsg + + +def test_node_cutset_exception(): + G = nx.Graph() + G.add_edges_from([(1, 2), (3, 4)]) + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, nx.minimum_node_cut, G, flow_func=flow_func) + + +def test_node_cutset_random_graphs(): + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(3): + G = nx.fast_gnp_random_graph(50, 0.25, seed=42) + if not nx.is_connected(G): + ccs = iter(nx.connected_components(G)) + start = arbitrary_element(next(ccs)) + G.add_edges_from((start, arbitrary_element(c)) for c in ccs) + cutset = nx.minimum_node_cut(G, flow_func=flow_func) + assert nx.node_connectivity(G) == len(cutset), errmsg + G.remove_nodes_from(cutset) + assert not nx.is_connected(G), errmsg + + +def test_edge_cutset_random_graphs(): + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for i in range(3): + G = nx.fast_gnp_random_graph(50, 0.25, seed=42) + if not nx.is_connected(G): + ccs = iter(nx.connected_components(G)) + start = arbitrary_element(next(ccs)) + G.add_edges_from((start, arbitrary_element(c)) for c in ccs) + cutset = nx.minimum_edge_cut(G, flow_func=flow_func) + assert nx.edge_connectivity(G) == len(cutset), errmsg + G.remove_edges_from(cutset) + assert not nx.is_connected(G), errmsg + + +def test_empty_graphs(): + G = nx.Graph() + D = nx.DiGraph() + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXPointlessConcept, interface_func, G, flow_func=flow_func + ) + pytest.raises( + nx.NetworkXPointlessConcept, interface_func, D, flow_func=flow_func + ) + + +def test_unbounded(): + G = nx.complete_graph(5) + for flow_func in flow_funcs: + assert 4 == len(minimum_st_edge_cut(G, 1, 4, flow_func=flow_func)) + + +def test_missing_source(): + G = nx.path_graph(4) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, interface_func, G, 10, 1, flow_func=flow_func + ) + + +def test_missing_target(): + G = nx.path_graph(4) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises( + nx.NetworkXError, interface_func, G, 1, 10, flow_func=flow_func + ) + + +def test_not_weakly_connected(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) + + +def test_not_connected(): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + pytest.raises(nx.NetworkXError, interface_func, G, flow_func=flow_func) + + +def tests_min_cut_complete(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + assert 4 == len(interface_func(G, flow_func=flow_func)) + + +def tests_min_cut_complete_directed(): + G = nx.complete_graph(5) + G = G.to_directed() + for interface_func in [nx.minimum_edge_cut, nx.minimum_node_cut]: + for flow_func in flow_funcs: + assert 4 == len(interface_func(G, flow_func=flow_func)) + + +def tests_minimum_st_node_cut(): + G = nx.Graph() + G.add_nodes_from([0, 1, 2, 3, 7, 8, 11, 12]) + G.add_edges_from([(7, 11), (1, 11), (1, 12), (12, 8), (0, 1)]) + nodelist = minimum_st_node_cut(G, 7, 11) + assert nodelist == {} + + +def test_invalid_auxiliary(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, minimum_st_node_cut, G, 0, 3, auxiliary=G) + + +def test_interface_only_source(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + pytest.raises(nx.NetworkXError, interface_func, G, s=0) + + +def test_interface_only_target(): + G = nx.complete_graph(5) + for interface_func in [nx.minimum_node_cut, nx.minimum_edge_cut]: + pytest.raises(nx.NetworkXError, interface_func, G, t=3) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py new file mode 100644 index 0000000000000000000000000000000000000000..0c0fad9f5ca474a6b547a399f8f284f7ff6e33a4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_disjoint_paths.py @@ -0,0 +1,249 @@ +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.utils import pairwise + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.edmonds_karp, + flow.dinitz, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +def is_path(G, path): + return all(v in G[u] for u, v in pairwise(path)) + + +def are_edge_disjoint_paths(G, paths): + if not paths: + return False + for path in paths: + assert is_path(G, path) + paths_edges = [list(pairwise(p)) for p in paths] + num_of_edges = sum(len(e) for e in paths_edges) + num_unique_edges = len(set.union(*[set(es) for es in paths_edges])) + if num_of_edges == num_unique_edges: + return True + return False + + +def are_node_disjoint_paths(G, paths): + if not paths: + return False + for path in paths: + assert is_path(G, path) + # first and last nodes are source and target + st = {paths[0][0], paths[0][-1]} + num_of_nodes = len([n for path in paths for n in path if n not in st]) + num_unique_nodes = len({n for path in paths for n in path if n not in st}) + if num_of_nodes == num_unique_nodes: + return True + return False + + +def test_graph_from_pr_2053(): + G = nx.Graph() + G.add_edges_from( + [ + ("A", "B"), + ("A", "D"), + ("A", "F"), + ("A", "G"), + ("B", "C"), + ("B", "D"), + ("B", "G"), + ("C", "D"), + ("C", "E"), + ("C", "Z"), + ("D", "E"), + ("D", "F"), + ("E", "F"), + ("E", "Z"), + ("F", "Z"), + ("G", "Z"), + ] + ) + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_paths = list(nx.edge_disjoint_paths(G, "A", "Z", **kwargs)) + assert are_edge_disjoint_paths(G, edge_paths), errmsg + assert nx.edge_connectivity(G, "A", "Z") == len(edge_paths), errmsg + # node disjoint paths + node_paths = list(nx.node_disjoint_paths(G, "A", "Z", **kwargs)) + assert are_node_disjoint_paths(G, node_paths), errmsg + assert nx.node_connectivity(G, "A", "Z") == len(node_paths), errmsg + + +def test_florentine_families(): + G = nx.florentine_families_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, "Medici", "Strozzi", **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert nx.edge_connectivity(G, "Medici", "Strozzi") == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, "Medici", "Strozzi", **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert nx.node_connectivity(G, "Medici", "Strozzi") == len(node_dpaths), errmsg + + +def test_karate(): + G = nx.karate_club_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 33, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert nx.edge_connectivity(G, 0, 33) == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 33, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert nx.node_connectivity(G, 0, 33) == len(node_dpaths), errmsg + + +def test_petersen_disjoint_paths(): + G = nx.petersen_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 3 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 3 == len(node_dpaths), errmsg + + +def test_octahedral_disjoint_paths(): + G = nx.octahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 5, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 4 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 5, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 4 == len(node_dpaths), errmsg + + +def test_icosahedral_disjoint_paths(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert 5 == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert 5 == len(node_dpaths), errmsg + + +def test_cutoff_disjoint_paths(): + G = nx.icosahedral_graph() + for flow_func in flow_funcs: + kwargs = {"flow_func": flow_func} + errmsg = f"Assertion failed in function: {flow_func.__name__}" + for cutoff in [2, 4]: + kwargs["cutoff"] = cutoff + # edge disjoint paths + edge_dpaths = list(nx.edge_disjoint_paths(G, 0, 6, **kwargs)) + assert are_edge_disjoint_paths(G, edge_dpaths), errmsg + assert cutoff == len(edge_dpaths), errmsg + # node disjoint paths + node_dpaths = list(nx.node_disjoint_paths(G, 0, 6, **kwargs)) + assert are_node_disjoint_paths(G, node_dpaths), errmsg + assert cutoff == len(node_dpaths), errmsg + + +def test_missing_source_edge_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.edge_disjoint_paths(G, 10, 1)) + + +def test_missing_source_node_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.node_disjoint_paths(G, 10, 1)) + + +def test_missing_target_edge_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.edge_disjoint_paths(G, 1, 10)) + + +def test_missing_target_node_paths(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + list(nx.node_disjoint_paths(G, 1, 10)) + + +def test_not_weakly_connected_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_not_weakly_connected_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_not_connected_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_not_connected_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_isolated_edges(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + G.add_node(1) + nx.add_path(G, [4, 5]) + list(nx.edge_disjoint_paths(G, 1, 5)) + + +def test_isolated_nodes(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + G.add_node(1) + nx.add_path(G, [4, 5]) + list(nx.node_disjoint_paths(G, 1, 5)) + + +def test_invalid_auxiliary(): + with pytest.raises(nx.NetworkXError): + G = nx.complete_graph(5) + list(nx.node_disjoint_paths(G, 0, 3, auxiliary=G)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py new file mode 100644 index 0000000000000000000000000000000000000000..e1d92d99616ac593d3d0ed358a804732d629f62e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_augmentation.py @@ -0,0 +1,502 @@ +import itertools as it +import random + +import pytest + +import networkx as nx +from networkx.algorithms.connectivity import k_edge_augmentation +from networkx.algorithms.connectivity.edge_augmentation import ( + _unpack_available_edges, + collapse, + complement_edges, + is_k_edge_connected, + is_locally_k_edge_connected, +) +from networkx.utils import pairwise + +# This should be set to the largest k for which an efficient algorithm is +# explicitly defined. +MAX_EFFICIENT_K = 2 + + +def tarjan_bridge_graph(): + # graph from tarjan paper + # RE Tarjan - "A note on finding the bridges of a graph" + # Information Processing Letters, 1974 - Elsevier + # doi:10.1016/0020-0190(74)90003-9. + # define 2-connected components and bridges + ccs = [ + (1, 2, 4, 3, 1, 4), + (5, 6, 7, 5), + (8, 9, 10, 8), + (17, 18, 16, 15, 17), + (11, 12, 14, 13, 11, 14), + ] + bridges = [(4, 8), (3, 5), (3, 17)] + G = nx.Graph(it.chain(*(pairwise(path) for path in ccs + bridges))) + return G + + +def test_weight_key(): + G = nx.Graph() + G.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9]) + G.add_edges_from([(3, 8), (1, 2), (2, 3)]) + impossible = {(3, 6), (3, 9)} + rng = random.Random(0) + avail_uv = list(set(complement_edges(G)) - impossible) + avail = [(u, v, {"cost": rng.random()}) for u, v in avail_uv] + + _augment_and_check(G, k=1) + _augment_and_check(G, k=1, avail=avail_uv) + _augment_and_check(G, k=1, avail=avail, weight="cost") + + _check_augmentations(G, avail, weight="cost") + + +def test_is_locally_k_edge_connected_exceptions(): + pytest.raises(nx.NetworkXNotImplemented, is_k_edge_connected, nx.DiGraph(), k=0) + pytest.raises(nx.NetworkXNotImplemented, is_k_edge_connected, nx.MultiGraph(), k=0) + pytest.raises(ValueError, is_k_edge_connected, nx.Graph(), k=0) + + +def test_is_k_edge_connected(): + G = nx.barbell_graph(10, 0) + assert is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + + G = nx.Graph() + G.add_nodes_from([5, 15]) + assert not is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + + G = nx.complete_graph(5) + assert is_k_edge_connected(G, k=1) + assert is_k_edge_connected(G, k=2) + assert is_k_edge_connected(G, k=3) + assert is_k_edge_connected(G, k=4) + + G = nx.compose(nx.complete_graph([0, 1, 2]), nx.complete_graph([3, 4, 5])) + assert not is_k_edge_connected(G, k=1) + assert not is_k_edge_connected(G, k=2) + assert not is_k_edge_connected(G, k=3) + + +def test_is_k_edge_connected_exceptions(): + pytest.raises( + nx.NetworkXNotImplemented, is_locally_k_edge_connected, nx.DiGraph(), 1, 2, k=0 + ) + pytest.raises( + nx.NetworkXNotImplemented, + is_locally_k_edge_connected, + nx.MultiGraph(), + 1, + 2, + k=0, + ) + pytest.raises(ValueError, is_locally_k_edge_connected, nx.Graph(), 1, 2, k=0) + + +def test_is_locally_k_edge_connected(): + G = nx.barbell_graph(10, 0) + assert is_locally_k_edge_connected(G, 5, 15, k=1) + assert not is_locally_k_edge_connected(G, 5, 15, k=2) + + G = nx.Graph() + G.add_nodes_from([5, 15]) + assert not is_locally_k_edge_connected(G, 5, 15, k=2) + + +def test_null_graph(): + G = nx.Graph() + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_cliques(): + for n in range(1, 10): + G = nx.complete_graph(n) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_clique_and_node(): + for n in range(1, 10): + G = nx.complete_graph(n) + G.add_node(n + 1) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_point_graph(): + G = nx.Graph() + G.add_node(1) + _check_augmentations(G, max_k=MAX_EFFICIENT_K + 2) + + +def test_edgeless_graph(): + G = nx.Graph() + G.add_nodes_from([1, 2, 3, 4]) + _check_augmentations(G) + + +def test_invalid_k(): + G = nx.Graph() + pytest.raises(ValueError, list, k_edge_augmentation(G, k=-1)) + pytest.raises(ValueError, list, k_edge_augmentation(G, k=0)) + + +def test_unfeasible(): + G = tarjan_bridge_graph() + pytest.raises(nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=1, avail=[])) + + pytest.raises(nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=2, avail=[])) + + pytest.raises( + nx.NetworkXUnfeasible, list, k_edge_augmentation(G, k=2, avail=[(7, 9)]) + ) + + # partial solutions should not error if real solutions are infeasible + aug_edges = list(k_edge_augmentation(G, k=2, avail=[(7, 9)], partial=True)) + assert aug_edges == [(7, 9)] + + _check_augmentations(G, avail=[], max_k=MAX_EFFICIENT_K + 2) + + _check_augmentations(G, avail=[(7, 9)], max_k=MAX_EFFICIENT_K + 2) + + +def test_tarjan(): + G = tarjan_bridge_graph() + + aug_edges = set(_augment_and_check(G, k=2)[0]) + print(f"aug_edges = {aug_edges!r}") + # can't assert edge exactly equality due to non-determinant edge order + # but we do know the size of the solution must be 3 + assert len(aug_edges) == 3 + + avail = [ + (9, 7), + (8, 5), + (2, 10), + (6, 13), + (11, 18), + (1, 17), + (2, 3), + (16, 17), + (18, 14), + (15, 14), + ] + aug_edges = set(_augment_and_check(G, avail=avail, k=2)[0]) + + # Can't assert exact length since approximation depends on the order of a + # dict traversal. + assert len(aug_edges) <= 3 * 2 + + _check_augmentations(G, avail) + + +def test_configuration(): + # seeds = [2718183590, 2470619828, 1694705158, 3001036531, 2401251497] + seeds = [1001, 1002, 1003, 1004] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.Graph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_augmentations(G) + + +def test_shell(): + # seeds = [2057382236, 3331169846, 1840105863, 476020778, 2247498425] + seeds = [18] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed) + _check_augmentations(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_augmentations(G) + + +def test_star(): + G = nx.star_graph(3) + _check_augmentations(G) + + G = nx.star_graph(5) + _check_augmentations(G) + + G = nx.star_graph(10) + _check_augmentations(G) + + +def test_barbell(): + G = nx.barbell_graph(5, 0) + _check_augmentations(G) + + G = nx.barbell_graph(5, 2) + _check_augmentations(G) + + G = nx.barbell_graph(5, 3) + _check_augmentations(G) + + G = nx.barbell_graph(5, 4) + _check_augmentations(G) + + +def test_bridge(): + G = nx.Graph([(2393, 2257), (2393, 2685), (2685, 2257), (1758, 2257)]) + _check_augmentations(G) + + +def test_gnp_augmentation(): + rng = random.Random(0) + G = nx.gnp_random_graph(30, 0.005, seed=0) + # Randomly make edges available + avail = { + (u, v): 1 + rng.random() for u, v in complement_edges(G) if rng.random() < 0.25 + } + _check_augmentations(G, avail) + + +def _assert_solution_properties(G, aug_edges, avail_dict=None): + """Checks that aug_edges are consistently formatted""" + if avail_dict is not None: + assert all( + e in avail_dict for e in aug_edges + ), "when avail is specified aug-edges should be in avail" + + unique_aug = set(map(tuple, map(sorted, aug_edges))) + unique_aug = list(map(tuple, map(sorted, aug_edges))) + assert len(aug_edges) == len(unique_aug), "edges should be unique" + + assert not any(u == v for u, v in unique_aug), "should be no self-edges" + + assert not any( + G.has_edge(u, v) for u, v in unique_aug + ), "aug edges and G.edges should be disjoint" + + +def _augment_and_check( + G, k, avail=None, weight=None, verbose=False, orig_k=None, max_aug_k=None +): + """ + Does one specific augmentation and checks for properties of the result + """ + if orig_k is None: + try: + orig_k = nx.edge_connectivity(G) + except nx.NetworkXPointlessConcept: + orig_k = 0 + info = {} + try: + if avail is not None: + # ensure avail is in dict form + avail_dict = dict(zip(*_unpack_available_edges(avail, weight=weight))) + else: + avail_dict = None + try: + # Find the augmentation if possible + generator = nx.k_edge_augmentation(G, k=k, weight=weight, avail=avail) + assert not isinstance(generator, list), "should always return an iter" + aug_edges = [] + for edge in generator: + aug_edges.append(edge) + except nx.NetworkXUnfeasible: + infeasible = True + info["infeasible"] = True + assert len(aug_edges) == 0, "should not generate anything if unfeasible" + + if avail is None: + n_nodes = G.number_of_nodes() + assert n_nodes <= k, ( + "unconstrained cases are only unfeasible if |V| <= k. " + f"Got |V|={n_nodes} and k={k}" + ) + else: + if max_aug_k is None: + G_aug_all = G.copy() + G_aug_all.add_edges_from(avail_dict.keys()) + try: + max_aug_k = nx.edge_connectivity(G_aug_all) + except nx.NetworkXPointlessConcept: + max_aug_k = 0 + + assert max_aug_k < k, ( + "avail should only be unfeasible if using all edges " + "does not achieve k-edge-connectivity" + ) + + # Test for a partial solution + partial_edges = list( + nx.k_edge_augmentation(G, k=k, weight=weight, partial=True, avail=avail) + ) + + info["n_partial_edges"] = len(partial_edges) + + if avail_dict is None: + assert set(partial_edges) == set( + complement_edges(G) + ), "unweighted partial solutions should be the complement" + elif len(avail_dict) > 0: + H = G.copy() + + # Find the partial / full augmented connectivity + H.add_edges_from(partial_edges) + partial_conn = nx.edge_connectivity(H) + + H.add_edges_from(set(avail_dict.keys())) + full_conn = nx.edge_connectivity(H) + + # Full connectivity should be no better than our partial + # solution. + assert ( + partial_conn == full_conn + ), "adding more edges should not increase k-conn" + + # Find the new edge-connectivity after adding the augmenting edges + aug_edges = partial_edges + else: + infeasible = False + + # Find the weight of the augmentation + num_edges = len(aug_edges) + if avail is not None: + total_weight = sum(avail_dict[e] for e in aug_edges) + else: + total_weight = num_edges + + info["total_weight"] = total_weight + info["num_edges"] = num_edges + + # Find the new edge-connectivity after adding the augmenting edges + G_aug = G.copy() + G_aug.add_edges_from(aug_edges) + try: + aug_k = nx.edge_connectivity(G_aug) + except nx.NetworkXPointlessConcept: + aug_k = 0 + info["aug_k"] = aug_k + + # Do checks + if not infeasible and orig_k < k: + assert info["aug_k"] >= k, f"connectivity should increase to k={k} or more" + + assert info["aug_k"] >= orig_k, "augmenting should never reduce connectivity" + + _assert_solution_properties(G, aug_edges, avail_dict) + + except Exception: + info["failed"] = True + print(f"edges = {list(G.edges())}") + print(f"nodes = {list(G.nodes())}") + print(f"aug_edges = {list(aug_edges)}") + print(f"info = {info}") + raise + else: + if verbose: + print(f"info = {info}") + + if infeasible: + aug_edges = None + return aug_edges, info + + +def _check_augmentations(G, avail=None, max_k=None, weight=None, verbose=False): + """Helper to check weighted/unweighted cases with multiple values of k""" + # Using all available edges, find the maximum edge-connectivity + try: + orig_k = nx.edge_connectivity(G) + except nx.NetworkXPointlessConcept: + orig_k = 0 + + if avail is not None: + all_aug_edges = _unpack_available_edges(avail, weight=weight)[0] + G_aug_all = G.copy() + G_aug_all.add_edges_from(all_aug_edges) + try: + max_aug_k = nx.edge_connectivity(G_aug_all) + except nx.NetworkXPointlessConcept: + max_aug_k = 0 + else: + max_aug_k = G.number_of_nodes() - 1 + + if max_k is None: + max_k = min(4, max_aug_k) + + avail_uniform = {e: 1 for e in complement_edges(G)} + + if verbose: + print("\n=== CHECK_AUGMENTATION ===") + print(f"G.number_of_nodes = {G.number_of_nodes()!r}") + print(f"G.number_of_edges = {G.number_of_edges()!r}") + print(f"max_k = {max_k!r}") + print(f"max_aug_k = {max_aug_k!r}") + print(f"orig_k = {orig_k!r}") + + # check augmentation for multiple values of k + for k in range(1, max_k + 1): + if verbose: + print("---------------") + print(f"Checking k = {k}") + + # Check the unweighted version + if verbose: + print("unweighted case") + aug_edges1, info1 = _augment_and_check(G, k=k, verbose=verbose, orig_k=orig_k) + + # Check that the weighted version with all available edges and uniform + # weights gives a similar solution to the unweighted case. + if verbose: + print("weighted uniform case") + aug_edges2, info2 = _augment_and_check( + G, + k=k, + avail=avail_uniform, + verbose=verbose, + orig_k=orig_k, + max_aug_k=G.number_of_nodes() - 1, + ) + + # Check the weighted version + if avail is not None: + if verbose: + print("weighted case") + aug_edges3, info3 = _augment_and_check( + G, + k=k, + avail=avail, + weight=weight, + verbose=verbose, + max_aug_k=max_aug_k, + orig_k=orig_k, + ) + + if aug_edges1 is not None: + # Check approximation ratios + if k == 1: + # when k=1, both solutions should be optimal + assert info2["total_weight"] == info1["total_weight"] + if k == 2: + # when k=2, the weighted version is an approximation + if orig_k == 0: + # the approximation ratio is 3 if G is not connected + assert info2["total_weight"] <= info1["total_weight"] * 3 + else: + # the approximation ratio is 2 if G is was connected + assert info2["total_weight"] <= info1["total_weight"] * 2 + _check_unconstrained_bridge_property(G, info1) + + +def _check_unconstrained_bridge_property(G, info1): + # Check Theorem 5 from Eswaran and Tarjan. (1975) Augmentation problems + import math + + bridge_ccs = list(nx.connectivity.bridge_components(G)) + # condense G into an forest C + C = collapse(G, bridge_ccs) + + p = len([n for n, d in C.degree() if d == 1]) # leafs + q = len([n for n, d in C.degree() if d == 0]) # isolated + if p + q > 1: + size_target = math.ceil(p / 2) + q + size_aug = info1["num_edges"] + assert ( + size_aug == size_target + ), "augmentation size is different from what theory predicts" diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py new file mode 100644 index 0000000000000000000000000000000000000000..4a1f681ab3da3f1f965ecbbf8dcf84eb49a512b9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_edge_kcomponents.py @@ -0,0 +1,488 @@ +import itertools as it + +import pytest + +import networkx as nx +from networkx.algorithms.connectivity import EdgeComponentAuxGraph, bridge_components +from networkx.algorithms.connectivity.edge_kcomponents import general_k_edge_subgraphs +from networkx.utils import pairwise + +# ---------------- +# Helper functions +# ---------------- + + +def fset(list_of_sets): + """allows == to be used for list of sets""" + return set(map(frozenset, list_of_sets)) + + +def _assert_subgraph_edge_connectivity(G, ccs_subgraph, k): + """ + tests properties of k-edge-connected subgraphs + + the actual edge connectivity should be no less than k unless the cc is a + single node. + """ + for cc in ccs_subgraph: + C = G.subgraph(cc) + if len(cc) > 1: + connectivity = nx.edge_connectivity(C) + assert connectivity >= k + + +def _memo_connectivity(G, u, v, memo): + edge = (u, v) + if edge in memo: + return memo[edge] + if not G.is_directed(): + redge = (v, u) + if redge in memo: + return memo[redge] + memo[edge] = nx.edge_connectivity(G, *edge) + return memo[edge] + + +def _all_pairs_connectivity(G, cc, k, memo): + # Brute force check + for u, v in it.combinations(cc, 2): + # Use a memoization dict to save on computation + connectivity = _memo_connectivity(G, u, v, memo) + if G.is_directed(): + connectivity = min(connectivity, _memo_connectivity(G, v, u, memo)) + assert connectivity >= k + + +def _assert_local_cc_edge_connectivity(G, ccs_local, k, memo): + """ + tests properties of k-edge-connected components + + the local edge connectivity between each pair of nodes in the original + graph should be no less than k unless the cc is a single node. + """ + for cc in ccs_local: + if len(cc) > 1: + # Strategy for testing a bit faster: If the subgraph has high edge + # connectivity then it must have local connectivity + C = G.subgraph(cc) + connectivity = nx.edge_connectivity(C) + if connectivity < k: + # Otherwise do the brute force (with memoization) check + _all_pairs_connectivity(G, cc, k, memo) + + +# Helper function +def _check_edge_connectivity(G): + """ + Helper - generates all k-edge-components using the aux graph. Checks the + both local and subgraph edge connectivity of each cc. Also checks that + alternate methods of computing the k-edge-ccs generate the same result. + """ + # Construct the auxiliary graph that can be used to make each k-cc or k-sub + aux_graph = EdgeComponentAuxGraph.construct(G) + + # memoize the local connectivity in this graph + memo = {} + + for k in it.count(1): + # Test "local" k-edge-components and k-edge-subgraphs + ccs_local = fset(aux_graph.k_edge_components(k)) + ccs_subgraph = fset(aux_graph.k_edge_subgraphs(k)) + + # Check connectivity properties that should be guaranteed by the + # algorithms. + _assert_local_cc_edge_connectivity(G, ccs_local, k, memo) + _assert_subgraph_edge_connectivity(G, ccs_subgraph, k) + + if k == 1 or k == 2 and not G.is_directed(): + assert ( + ccs_local == ccs_subgraph + ), "Subgraphs and components should be the same when k == 1 or (k == 2 and not G.directed())" + + if G.is_directed(): + # Test special case methods are the same as the aux graph + if k == 1: + alt_sccs = fset(nx.strongly_connected_components(G)) + assert alt_sccs == ccs_local, "k=1 failed alt" + assert alt_sccs == ccs_subgraph, "k=1 failed alt" + else: + # Test special case methods are the same as the aux graph + if k == 1: + alt_ccs = fset(nx.connected_components(G)) + assert alt_ccs == ccs_local, "k=1 failed alt" + assert alt_ccs == ccs_subgraph, "k=1 failed alt" + elif k == 2: + alt_bridge_ccs = fset(bridge_components(G)) + assert alt_bridge_ccs == ccs_local, "k=2 failed alt" + assert alt_bridge_ccs == ccs_subgraph, "k=2 failed alt" + # if new methods for k == 3 or k == 4 are implemented add them here + + # Check the general subgraph method works by itself + alt_subgraph_ccs = fset( + [set(C.nodes()) for C in general_k_edge_subgraphs(G, k=k)] + ) + assert alt_subgraph_ccs == ccs_subgraph, "alt subgraph method failed" + + # Stop once k is larger than all special case methods + # and we cannot break down ccs any further. + if k > 2 and all(len(cc) == 1 for cc in ccs_local): + break + + +# ---------------- +# Misc tests +# ---------------- + + +def test_zero_k_exception(): + G = nx.Graph() + # functions that return generators error immediately + pytest.raises(ValueError, nx.k_edge_components, G, k=0) + pytest.raises(ValueError, nx.k_edge_subgraphs, G, k=0) + + # actual generators only error when you get the first item + aux_graph = EdgeComponentAuxGraph.construct(G) + pytest.raises(ValueError, list, aux_graph.k_edge_components(k=0)) + pytest.raises(ValueError, list, aux_graph.k_edge_subgraphs(k=0)) + + pytest.raises(ValueError, list, general_k_edge_subgraphs(G, k=0)) + + +def test_empty_input(): + G = nx.Graph() + assert [] == list(nx.k_edge_components(G, k=5)) + assert [] == list(nx.k_edge_subgraphs(G, k=5)) + + G = nx.DiGraph() + assert [] == list(nx.k_edge_components(G, k=5)) + assert [] == list(nx.k_edge_subgraphs(G, k=5)) + + +def test_not_implemented(): + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, EdgeComponentAuxGraph.construct, G) + pytest.raises(nx.NetworkXNotImplemented, nx.k_edge_components, G, k=2) + pytest.raises(nx.NetworkXNotImplemented, nx.k_edge_subgraphs, G, k=2) + with pytest.raises(nx.NetworkXNotImplemented): + next(bridge_components(G)) + with pytest.raises(nx.NetworkXNotImplemented): + next(bridge_components(nx.DiGraph())) + + +def test_general_k_edge_subgraph_quick_return(): + # tests quick return optimization + G = nx.Graph() + G.add_node(0) + subgraphs = list(general_k_edge_subgraphs(G, k=1)) + assert len(subgraphs) == 1 + for subgraph in subgraphs: + assert subgraph.number_of_nodes() == 1 + + G.add_node(1) + subgraphs = list(general_k_edge_subgraphs(G, k=1)) + assert len(subgraphs) == 2 + for subgraph in subgraphs: + assert subgraph.number_of_nodes() == 1 + + +# ---------------- +# Undirected tests +# ---------------- + + +def test_random_gnp(): + # seeds = [1550709854, 1309423156, 4208992358, 2785630813, 1915069929] + seeds = [12, 13] + + for seed in seeds: + G = nx.gnp_random_graph(20, 0.2, seed=seed) + _check_edge_connectivity(G) + + +def test_configuration(): + # seeds = [2718183590, 2470619828, 1694705158, 3001036531, 2401251497] + seeds = [14, 15] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.Graph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_edge_connectivity(G) + + +def test_shell(): + # seeds = [2057382236, 3331169846, 1840105863, 476020778, 2247498425] + seeds = [20] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed) + _check_edge_connectivity(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_edge_connectivity(G) + + +def test_tarjan_bridge(): + # graph from tarjan paper + # RE Tarjan - "A note on finding the bridges of a graph" + # Information Processing Letters, 1974 - Elsevier + # doi:10.1016/0020-0190(74)90003-9. + # define 2-connected components and bridges + ccs = [ + (1, 2, 4, 3, 1, 4), + (5, 6, 7, 5), + (8, 9, 10, 8), + (17, 18, 16, 15, 17), + (11, 12, 14, 13, 11, 14), + ] + bridges = [(4, 8), (3, 5), (3, 17)] + G = nx.Graph(it.chain(*(pairwise(path) for path in ccs + bridges))) + _check_edge_connectivity(G) + + +def test_bridge_cc(): + # define 2-connected components and bridges + cc2 = [(1, 2, 4, 3, 1, 4), (8, 9, 10, 8), (11, 12, 13, 11)] + bridges = [(4, 8), (3, 5), (20, 21), (22, 23, 24)] + G = nx.Graph(it.chain(*(pairwise(path) for path in cc2 + bridges))) + bridge_ccs = fset(bridge_components(G)) + target_ccs = fset( + [{1, 2, 3, 4}, {5}, {8, 9, 10}, {11, 12, 13}, {20}, {21}, {22}, {23}, {24}] + ) + assert bridge_ccs == target_ccs + _check_edge_connectivity(G) + + +def test_undirected_aux_graph(): + # Graph similar to the one in + # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + a, b, c, d, e, f, g, h, i = "abcdefghi" + paths = [ + (a, d, b, f, c), + (a, e, b), + (a, e, b, c, g, b, a), + (c, b), + (f, g, f), + (h, i), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) + target_1 = fset([{a, b, c, d, e, f, g}, {h, i}]) + assert target_1 == components_1 + + # Check that the undirected case for k=1 agrees with CCs + alt_1 = fset(nx.k_edge_subgraphs(G, k=1)) + assert alt_1 == components_1 + + components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) + target_2 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) + assert target_2 == components_2 + + # Check that the undirected case for k=2 agrees with bridge components + alt_2 = fset(nx.k_edge_subgraphs(G, k=2)) + assert alt_2 == components_2 + + components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) + target_3 = fset([{a}, {b, c, f, g}, {d}, {e}, {h}, {i}]) + assert target_3 == components_3 + + components_4 = fset(aux_graph.k_edge_subgraphs(k=4)) + target_4 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) + assert target_4 == components_4 + + _check_edge_connectivity(G) + + +def test_local_subgraph_difference(): + paths = [ + (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique + (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique + # paths connecting each node of the 4 cliques + (11, 101, 21), + (12, 102, 22), + (13, 103, 23), + (14, 104, 24), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + # Each clique is returned separately in k-edge-subgraphs + subgraph_ccs = fset(aux_graph.k_edge_subgraphs(3)) + subgraph_target = fset( + [{101}, {102}, {103}, {104}, {21, 22, 23, 24}, {11, 12, 13, 14}] + ) + assert subgraph_ccs == subgraph_target + + # But in k-edge-ccs they are returned together + # because they are locally 3-edge-connected + local_ccs = fset(aux_graph.k_edge_components(3)) + local_target = fset([{101}, {102}, {103}, {104}, {11, 12, 13, 14, 21, 22, 23, 24}]) + assert local_ccs == local_target + + +def test_local_subgraph_difference_directed(): + dipaths = [(1, 2, 3, 4, 1), (1, 3, 1)] + G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) + + assert fset(nx.k_edge_components(G, k=1)) == fset(nx.k_edge_subgraphs(G, k=1)) + + # Unlike undirected graphs, when k=2, for directed graphs there is a case + # where the k-edge-ccs are not the same as the k-edge-subgraphs. + # (in directed graphs ccs and subgraphs are the same when k=2) + assert fset(nx.k_edge_components(G, k=2)) != fset(nx.k_edge_subgraphs(G, k=2)) + + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + _check_edge_connectivity(G) + + +def test_triangles(): + paths = [ + (11, 12, 13, 11), # first 3-clique + (21, 22, 23, 21), # second 3-clique + (11, 21), # connected by an edge + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + + # subgraph and ccs are the same in all cases here + assert fset(nx.k_edge_components(G, k=1)) == fset(nx.k_edge_subgraphs(G, k=1)) + + assert fset(nx.k_edge_components(G, k=2)) == fset(nx.k_edge_subgraphs(G, k=2)) + + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + _check_edge_connectivity(G) + + +def test_four_clique(): + paths = [ + (11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique + (21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique + # paths connecting the 4 cliques such that they are + # 3-connected in G, but not in the subgraph. + # Case where the nodes bridging them do not have degree less than 3. + (100, 13), + (12, 100, 22), + (13, 200, 23), + (14, 300, 24), + ] + G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) + + # The subgraphs and ccs are different for k=3 + local_ccs = fset(nx.k_edge_components(G, k=3)) + subgraphs = fset(nx.k_edge_subgraphs(G, k=3)) + assert local_ccs != subgraphs + + # The cliques ares in the same cc + clique1 = frozenset(paths[0]) + clique2 = frozenset(paths[1]) + assert clique1.union(clique2).union({100}) in local_ccs + + # but different subgraphs + assert clique1 in subgraphs + assert clique2 in subgraphs + + assert G.degree(100) == 3 + + _check_edge_connectivity(G) + + +def test_five_clique(): + # Make a graph that can be disconnected less than 4 edges, but no node has + # degree less than 4. + G = nx.disjoint_union(nx.complete_graph(5), nx.complete_graph(5)) + paths = [ + # add aux-connections + (1, 100, 6), + (2, 100, 7), + (3, 200, 8), + (4, 200, 100), + ] + G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) + assert min(dict(nx.degree(G)).values()) == 4 + + # For k=3 they are the same + assert fset(nx.k_edge_components(G, k=3)) == fset(nx.k_edge_subgraphs(G, k=3)) + + # For k=4 they are the different + # the aux nodes are in the same CC as clique 1 but no the same subgraph + assert fset(nx.k_edge_components(G, k=4)) != fset(nx.k_edge_subgraphs(G, k=4)) + + # For k=5 they are not the same + assert fset(nx.k_edge_components(G, k=5)) != fset(nx.k_edge_subgraphs(G, k=5)) + + # For k=6 they are the same + assert fset(nx.k_edge_components(G, k=6)) == fset(nx.k_edge_subgraphs(G, k=6)) + _check_edge_connectivity(G) + + +# ---------------- +# Undirected tests +# ---------------- + + +def test_directed_aux_graph(): + # Graph similar to the one in + # http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 + a, b, c, d, e, f, g, h, i = "abcdefghi" + dipaths = [ + (a, d, b, f, c), + (a, e, b), + (a, e, b, c, g, b, a), + (c, b), + (f, g, f), + (h, i), + ] + G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths])) + aux_graph = EdgeComponentAuxGraph.construct(G) + + components_1 = fset(aux_graph.k_edge_subgraphs(k=1)) + target_1 = fset([{a, b, c, d, e, f, g}, {h}, {i}]) + assert target_1 == components_1 + + # Check that the directed case for k=1 agrees with SCCs + alt_1 = fset(nx.strongly_connected_components(G)) + assert alt_1 == components_1 + + components_2 = fset(aux_graph.k_edge_subgraphs(k=2)) + target_2 = fset([{i}, {e}, {d}, {b, c, f, g}, {h}, {a}]) + assert target_2 == components_2 + + components_3 = fset(aux_graph.k_edge_subgraphs(k=3)) + target_3 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}]) + assert target_3 == components_3 + + +def test_random_gnp_directed(): + # seeds = [3894723670, 500186844, 267231174, 2181982262, 1116750056] + seeds = [21] + for seed in seeds: + G = nx.gnp_random_graph(20, 0.2, directed=True, seed=seed) + _check_edge_connectivity(G) + + +def test_configuration_directed(): + # seeds = [671221681, 2403749451, 124433910, 672335939, 1193127215] + seeds = [67] + for seed in seeds: + deg_seq = nx.random_powerlaw_tree_sequence(20, seed=seed, tries=5000) + G = nx.DiGraph(nx.configuration_model(deg_seq, seed=seed)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_edge_connectivity(G) + + +def test_shell_directed(): + # seeds = [3134027055, 4079264063, 1350769518, 1405643020, 530038094] + seeds = [31] + for seed in seeds: + constructor = [(12, 70, 0.8), (15, 40, 0.6)] + G = nx.random_shell_graph(constructor, seed=seed).to_directed() + _check_edge_connectivity(G) + + +def test_karate_directed(): + G = nx.karate_club_graph().to_directed() + _check_edge_connectivity(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py new file mode 100644 index 0000000000000000000000000000000000000000..f4436acd07fe57cb510fee138b36f10923a9688a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcomponents.py @@ -0,0 +1,296 @@ +# Test for Moody and White k-components algorithm +import pytest + +import networkx as nx +from networkx.algorithms.connectivity.kcomponents import ( + _consolidate, + build_k_number_dict, +) + +## +# A nice synthetic graph +## + + +def torrents_and_ferraro_graph(): + # Graph from https://arxiv.org/pdf/1503.04476v1 p.26 + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # This edge makes the graph biconnected; it's + # needed because K5s share only one node. + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +def test_directed(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.gnp_random_graph(10, 0.2, directed=True, seed=42) + nx.k_components(G) + + +# Helper function +def _check_connectivity(G, k_components): + for k, components in k_components.items(): + if k < 3: + continue + # check that k-components have node connectivity >= k. + for component in components: + C = G.subgraph(component) + K = nx.node_connectivity(C) + assert K >= k + + +@pytest.mark.slow +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + # In this example graph there are 8 3-components, 4 with 15 nodes + # and 4 with 5 nodes. + assert len(result[3]) == 8 + assert len([c for c in result[3] if len(c) == 15]) == 4 + assert len([c for c in result[3] if len(c) == 5]) == 4 + # There are also 8 4-components all with 5 nodes. + assert len(result[4]) == 8 + assert all(len(c) == 5 for c in result[4]) + + +@pytest.mark.slow +def test_random_gnp(): + G = nx.gnp_random_graph(50, 0.2, seed=42) + result = nx.k_components(G) + _check_connectivity(G, result) + + +@pytest.mark.slow +def test_shell(): + constructor = [(20, 80, 0.8), (80, 180, 0.6)] + G = nx.random_shell_graph(constructor, seed=42) + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_configuration(): + deg_seq = nx.random_powerlaw_tree_sequence(100, tries=5, seed=72) + G = nx.Graph(nx.configuration_model(deg_seq)) + G.remove_edges_from(nx.selfloop_edges(G)) + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_karate(): + G = nx.karate_club_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_karate_component_number(): + karate_k_num = { + 0: 4, + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 3, + 7: 4, + 8: 4, + 9: 2, + 10: 3, + 11: 1, + 12: 2, + 13: 4, + 14: 2, + 15: 2, + 16: 2, + 17: 2, + 18: 2, + 19: 3, + 20: 2, + 21: 2, + 22: 2, + 23: 3, + 24: 3, + 25: 3, + 26: 2, + 27: 3, + 28: 3, + 29: 3, + 30: 4, + 31: 3, + 32: 4, + 33: 4, + } + G = nx.karate_club_graph() + k_components = nx.k_components(G) + k_num = build_k_number_dict(k_components) + assert karate_k_num == k_num + + +def test_davis_southern_women(): + G = nx.davis_southern_women_graph() + result = nx.k_components(G) + _check_connectivity(G, result) + + +def test_davis_southern_women_detail_3_and_4(): + solution = { + 3: [ + { + "Nora Fayette", + "E10", + "Myra Liddel", + "E12", + "E14", + "Frances Anderson", + "Evelyn Jefferson", + "Ruth DeSand", + "Helen Lloyd", + "Eleanor Nye", + "E9", + "E8", + "E5", + "E4", + "E7", + "E6", + "E1", + "Verne Sanderson", + "E3", + "E2", + "Theresa Anderson", + "Pearl Oglethorpe", + "Katherina Rogers", + "Brenda Rogers", + "E13", + "Charlotte McDowd", + "Sylvia Avondale", + "Laura Mandeville", + } + ], + 4: [ + { + "Nora Fayette", + "E10", + "Verne Sanderson", + "E12", + "Frances Anderson", + "Evelyn Jefferson", + "Ruth DeSand", + "Helen Lloyd", + "Eleanor Nye", + "E9", + "E8", + "E5", + "E4", + "E7", + "E6", + "Myra Liddel", + "E3", + "Theresa Anderson", + "Katherina Rogers", + "Brenda Rogers", + "Charlotte McDowd", + "Sylvia Avondale", + "Laura Mandeville", + } + ], + } + G = nx.davis_southern_women_graph() + result = nx.k_components(G) + for k, components in result.items(): + if k < 3: + continue + assert len(components) == len(solution[k]) + for component in components: + assert component in solution[k] + + +def test_set_consolidation_rosettacode(): + # Tests from http://rosettacode.org/wiki/Set_consolidation + def list_of_sets_equal(result, solution): + assert {frozenset(s) for s in result} == {frozenset(s) for s in solution} + + question = [{"A", "B"}, {"C", "D"}] + solution = [{"A", "B"}, {"C", "D"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"A", "B"}, {"B", "C"}] + solution = [{"A", "B", "C"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"A", "B"}, {"C", "D"}, {"D", "B"}] + solution = [{"A", "C", "B", "D"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [{"H", "I", "K"}, {"A", "B"}, {"C", "D"}, {"D", "B"}, {"F", "G", "H"}] + solution = [{"A", "C", "B", "D"}, {"G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [ + {"A", "H"}, + {"H", "I", "K"}, + {"A", "B"}, + {"C", "D"}, + {"D", "B"}, + {"F", "G", "H"}, + ] + solution = [{"A", "C", "B", "D", "G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) + question = [ + {"H", "I", "K"}, + {"A", "B"}, + {"C", "D"}, + {"D", "B"}, + {"F", "G", "H"}, + {"A", "H"}, + ] + solution = [{"A", "C", "B", "D", "G", "F", "I", "H", "K"}] + list_of_sets_equal(_consolidate(question, 1), solution) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py new file mode 100644 index 0000000000000000000000000000000000000000..d5b3b089e23bc41201fb4350a51549daa79495e1 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_kcutsets.py @@ -0,0 +1,266 @@ +# Jordi Torrents +# Test for k-cutsets +import itertools + +import pytest + +import networkx as nx +from networkx.algorithms import flow +from networkx.algorithms.connectivity.kcutsets import _is_separating_set + +MAX_CUTSETS_TO_TEST = 4 # originally 100. cut to decrease testing time + +flow_funcs = [ + flow.boykov_kolmogorov, + flow.dinitz, + flow.edmonds_karp, + flow.preflow_push, + flow.shortest_augmenting_path, +] + + +## +# Some nice synthetic graphs +## +def graph_example_1(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [ + (labels[(0, 0)], labels[(1, 0)]), + (labels[(0, 4)], labels[(1, 4)]), + (labels[(3, 0)], labels[(4, 0)]), + (labels[(3, 4)], labels[(4, 4)]), + ]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + G.add_edge(new_node + 16, new_node + 5) + return G + + +def torrents_and_ferraro_graph(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # Commenting this makes the graph not biconnected !! + # This stupid mistake make one reviewer very angry :P + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +# Helper function +def _check_separating_sets(G): + for cc in nx.connected_components(G): + if len(cc) < 3: + continue + Gc = G.subgraph(cc) + node_conn = nx.node_connectivity(Gc) + all_cuts = nx.all_node_cuts(Gc) + # Only test a limited number of cut sets to reduce test time. + for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): + assert node_conn == len(cut) + assert not nx.is_connected(nx.restricted_view(G, cut, [])) + + +@pytest.mark.slow +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + _check_separating_sets(G) + + +def test_example_1(): + G = graph_example_1() + _check_separating_sets(G) + + +def test_random_gnp(): + G = nx.gnp_random_graph(100, 0.1, seed=42) + _check_separating_sets(G) + + +def test_shell(): + constructor = [(20, 80, 0.8), (80, 180, 0.6)] + G = nx.random_shell_graph(constructor, seed=42) + _check_separating_sets(G) + + +def test_configuration(): + deg_seq = nx.random_powerlaw_tree_sequence(100, tries=5, seed=72) + G = nx.Graph(nx.configuration_model(deg_seq)) + G.remove_edges_from(nx.selfloop_edges(G)) + _check_separating_sets(G) + + +def test_karate(): + G = nx.karate_club_graph() + _check_separating_sets(G) + + +def _generate_no_biconnected(max_attempts=50): + attempts = 0 + while True: + G = nx.fast_gnp_random_graph(100, 0.0575, seed=42) + if nx.is_connected(G) and not nx.is_biconnected(G): + attempts = 0 + yield G + else: + if attempts >= max_attempts: + msg = f"Tried {attempts} times: no suitable Graph." + raise Exception(msg) + else: + attempts += 1 + + +def test_articulation_points(): + Ggen = _generate_no_biconnected() + for i in range(1): # change 1 to 3 or more for more realizations. + G = next(Ggen) + articulation_points = [{a} for a in nx.articulation_points(G)] + for cut in nx.all_node_cuts(G): + assert cut in articulation_points + + +def test_grid_2d_graph(): + # All minimum node cuts of a 2d grid + # are the four pairs of nodes that are + # neighbors of the four corner nodes. + G = nx.grid_2d_graph(5, 5) + solution = [{(0, 1), (1, 0)}, {(3, 0), (4, 1)}, {(3, 4), (4, 3)}, {(0, 3), (1, 4)}] + for cut in nx.all_node_cuts(G): + assert cut in solution + + +def test_disconnected_graph(): + G = nx.fast_gnp_random_graph(100, 0.01, seed=42) + cuts = nx.all_node_cuts(G) + pytest.raises(nx.NetworkXError, next, cuts) + + +@pytest.mark.slow +def test_alternative_flow_functions(): + graphs = [nx.grid_2d_graph(4, 4), nx.cycle_graph(5)] + for G in graphs: + node_conn = nx.node_connectivity(G) + for flow_func in flow_funcs: + all_cuts = nx.all_node_cuts(G, flow_func=flow_func) + # Only test a limited number of cut sets to reduce test time. + for cut in itertools.islice(all_cuts, MAX_CUTSETS_TO_TEST): + assert node_conn == len(cut) + assert not nx.is_connected(nx.restricted_view(G, cut, [])) + + +def test_is_separating_set_complete_graph(): + G = nx.complete_graph(5) + assert _is_separating_set(G, {0, 1, 2, 3}) + + +def test_is_separating_set(): + for i in [5, 10, 15]: + G = nx.star_graph(i) + max_degree_node = max(G, key=G.degree) + assert _is_separating_set(G, {max_degree_node}) + + +def test_non_repeated_cuts(): + # The algorithm was repeating the cut {0, 1} for the giant biconnected + # component of the Karate club graph. + K = nx.karate_club_graph() + bcc = max(list(nx.biconnected_components(K)), key=len) + G = K.subgraph(bcc) + solution = [{32, 33}, {2, 33}, {0, 3}, {0, 1}, {29, 33}] + cuts = list(nx.all_node_cuts(G)) + if len(solution) != len(cuts): + print(f"Solution: {solution}") + print(f"Result: {cuts}") + assert len(solution) == len(cuts) + for cut in cuts: + assert cut in solution + + +def test_cycle_graph(): + G = nx.cycle_graph(5) + solution = [{0, 2}, {0, 3}, {1, 3}, {1, 4}, {2, 4}] + cuts = list(nx.all_node_cuts(G)) + assert len(solution) == len(cuts) + for cut in cuts: + assert cut in solution + + +def test_complete_graph(): + G = nx.complete_graph(5) + solution = [{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {1, 2, 3, 4}] + cuts = list(nx.all_node_cuts(G)) + assert len(solution) == len(cuts) + for cut in cuts: + assert cut in solution diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py new file mode 100644 index 0000000000000000000000000000000000000000..2b9e2bab41eb29067166b6faa331e022d4074ce3 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/tests/test_stoer_wagner.py @@ -0,0 +1,102 @@ +from itertools import chain + +import pytest + +import networkx as nx + + +def _check_partition(G, cut_value, partition, weight): + assert isinstance(partition, tuple) + assert len(partition) == 2 + assert isinstance(partition[0], list) + assert isinstance(partition[1], list) + assert len(partition[0]) > 0 + assert len(partition[1]) > 0 + assert sum(map(len, partition)) == len(G) + assert set(chain.from_iterable(partition)) == set(G) + partition = tuple(map(set, partition)) + w = 0 + for u, v, e in G.edges(data=True): + if (u in partition[0]) == (v in partition[1]): + w += e.get(weight, 1) + assert w == cut_value + + +def _test_stoer_wagner(G, answer, weight="weight"): + cut_value, partition = nx.stoer_wagner(G, weight, heap=nx.utils.PairingHeap) + assert cut_value == answer + _check_partition(G, cut_value, partition, weight) + cut_value, partition = nx.stoer_wagner(G, weight, heap=nx.utils.BinaryHeap) + assert cut_value == answer + _check_partition(G, cut_value, partition, weight) + + +def test_graph1(): + G = nx.Graph() + G.add_edge("x", "a", weight=3) + G.add_edge("x", "b", weight=1) + G.add_edge("a", "c", weight=3) + G.add_edge("b", "c", weight=5) + G.add_edge("b", "d", weight=4) + G.add_edge("d", "e", weight=2) + G.add_edge("c", "y", weight=2) + G.add_edge("e", "y", weight=3) + _test_stoer_wagner(G, 4) + + +def test_graph2(): + G = nx.Graph() + G.add_edge("x", "a") + G.add_edge("x", "b") + G.add_edge("a", "c") + G.add_edge("b", "c") + G.add_edge("b", "d") + G.add_edge("d", "e") + G.add_edge("c", "y") + G.add_edge("e", "y") + _test_stoer_wagner(G, 2) + + +def test_graph3(): + # Source: + # Stoer, M. and Wagner, F. (1997). "A simple min-cut algorithm". Journal of + # the ACM 44 (4), 585-591. + G = nx.Graph() + G.add_edge(1, 2, weight=2) + G.add_edge(1, 5, weight=3) + G.add_edge(2, 3, weight=3) + G.add_edge(2, 5, weight=2) + G.add_edge(2, 6, weight=2) + G.add_edge(3, 4, weight=4) + G.add_edge(3, 7, weight=2) + G.add_edge(4, 7, weight=2) + G.add_edge(4, 8, weight=2) + G.add_edge(5, 6, weight=3) + G.add_edge(6, 7, weight=1) + G.add_edge(7, 8, weight=3) + _test_stoer_wagner(G, 4) + + +def test_weight_name(): + G = nx.Graph() + G.add_edge(1, 2, weight=1, cost=8) + G.add_edge(1, 3, cost=2) + G.add_edge(2, 3, cost=4) + _test_stoer_wagner(G, 6, weight="cost") + + +def test_exceptions(): + G = nx.Graph() + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_node(1) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_node(2) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G.add_edge(1, 2, weight=-2) + pytest.raises(nx.NetworkXError, nx.stoer_wagner, G) + G = nx.DiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) + G = nx.MultiDiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.stoer_wagner, G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/connectivity/utils.py b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..bf6860a208f0f11b50d2950e8462f1c5649b4243 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/connectivity/utils.py @@ -0,0 +1,87 @@ +""" +Utilities for connectivity package +""" +import networkx as nx + +__all__ = ["build_auxiliary_node_connectivity", "build_auxiliary_edge_connectivity"] + + +@nx._dispatch +def build_auxiliary_node_connectivity(G): + r"""Creates a directed graph D from an undirected graph G to compute flow + based node connectivity. + + For an undirected graph G having `n` nodes and `m` edges we derive a + directed graph D with `2n` nodes and `2m+n` arcs by replacing each + original node `v` with two nodes `vA`, `vB` linked by an (internal) + arc in D. Then for each edge (`u`, `v`) in G we add two arcs (`uB`, `vA`) + and (`vB`, `uA`) in D. Finally we set the attribute capacity = 1 for each + arc in D [1]_. + + For a directed graph having `n` nodes and `m` arcs we derive a + directed graph D with `2n` nodes and `m+n` arcs by replacing each + original node `v` with two nodes `vA`, `vB` linked by an (internal) + arc (`vA`, `vB`) in D. Then for each arc (`u`, `v`) in G we add one + arc (`uB`, `vA`) in D. Finally we set the attribute capacity = 1 for + each arc in D. + + A dictionary with a mapping between nodes in the original graph and the + auxiliary digraph is stored as a graph attribute: D.graph['mapping']. + + References + ---------- + .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and + Erlebach, 'Network Analysis: Methodological Foundations', Lecture + Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. + https://doi.org/10.1007/978-3-540-31955-9_7 + + """ + directed = G.is_directed() + + mapping = {} + H = nx.DiGraph() + + for i, node in enumerate(G): + mapping[node] = i + H.add_node(f"{i}A", id=node) + H.add_node(f"{i}B", id=node) + H.add_edge(f"{i}A", f"{i}B", capacity=1) + + edges = [] + for source, target in G.edges(): + edges.append((f"{mapping[source]}B", f"{mapping[target]}A")) + if not directed: + edges.append((f"{mapping[target]}B", f"{mapping[source]}A")) + H.add_edges_from(edges, capacity=1) + + # Store mapping as graph attribute + H.graph["mapping"] = mapping + return H + + +@nx._dispatch +def build_auxiliary_edge_connectivity(G): + """Auxiliary digraph for computing flow based edge connectivity + + If the input graph is undirected, we replace each edge (`u`,`v`) with + two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute + 'capacity' for each arc to 1. If the input graph is directed we simply + add the 'capacity' attribute. Part of algorithm 1 in [1]_ . + + References + ---------- + .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a + chapter, look for the reference of the book). + http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf + """ + if G.is_directed(): + H = nx.DiGraph() + H.add_nodes_from(G.nodes()) + H.add_edges_from(G.edges(), capacity=1) + return H + else: + H = nx.DiGraph() + H.add_nodes_from(G.nodes()) + for source, target in G.edges(): + H.add_edges_from([(source, target), (target, source)], capacity=1) + return H diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c5d19abed99501086359c87670edc31a680fe36c --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/__init__.py @@ -0,0 +1,11 @@ +from .maxflow import * +from .mincost import * +from .boykovkolmogorov import * +from .dinitz_alg import * +from .edmondskarp import * +from .gomory_hu import * +from .preflowpush import * +from .shortestaugmentingpath import * +from .capacityscaling import * +from .networksimplex import * +from .utils import build_flow_dict, build_residual_network diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3b8fcb982d35307ee1ec335ca71942286bd79a5 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/boykovkolmogorov.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/boykovkolmogorov.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cf2d3aaa67bd9d62fa32b98c2b9fb9f1599c1638 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/boykovkolmogorov.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/capacityscaling.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/capacityscaling.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16b661728a9a62c09b10ef80188ab5c8165c2c9b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/capacityscaling.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/dinitz_alg.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/dinitz_alg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff0895fa2c31b445c3359d7593215b5906af4990 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/dinitz_alg.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f56ba6bb733b327797c8cea9eba1cb469689bf93 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/gomory_hu.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/gomory_hu.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4616b6a0e492e5e8ecd2681f2ca103afa246a22 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/gomory_hu.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/maxflow.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/maxflow.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..63077424d226156d65a022b0b616fe70d8b8a4e0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/maxflow.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cebea48893b6d7163c183496b4ef239cfc8d1d85 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/networksimplex.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/networksimplex.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6777ce4fbc53126b7be9cf0b0919f08a4bd20ab Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/networksimplex.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/preflowpush.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/preflowpush.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3e7f39d8013abf1791933f6768e7d2cb89d07b7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/preflowpush.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/shortestaugmentingpath.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/shortestaugmentingpath.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..915b7c023df166f11c059b6484dfc0835749d888 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/shortestaugmentingpath.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/utils.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f2675fdaf300a519a19c8253ccad78d0c6985d9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/__pycache__/utils.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/boykovkolmogorov.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/boykovkolmogorov.py new file mode 100644 index 0000000000000000000000000000000000000000..f571c98aebcaf2dd4cb882fd4d466fd2551d59f5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/boykovkolmogorov.py @@ -0,0 +1,373 @@ +""" +Boykov-Kolmogorov algorithm for maximum flow problems. +""" +from collections import deque +from operator import itemgetter + +import networkx as nx +from networkx.algorithms.flow.utils import build_residual_network + +__all__ = ["boykov_kolmogorov"] + + +@nx._dispatch( + graphs={"G": 0, "residual?": 4}, + edge_attrs={"capacity": float("inf")}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def boykov_kolmogorov( + G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None +): + r"""Find a maximum single-commodity flow using Boykov-Kolmogorov algorithm. + + This function returns the residual network resulting after computing + the maximum flow. See below for details about the conventions + NetworkX uses for defining residual networks. + + This algorithm has worse case complexity $O(n^2 m |C|)$ for $n$ nodes, $m$ + edges, and $|C|$ the cost of the minimum cut [1]_. This implementation + uses the marking heuristic defined in [2]_ which improves its running + time in many practical problems. + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + residual : NetworkX graph + Residual network on which the algorithm is to be executed. If None, a + new residual network is created. Default value: None. + + value_only : bool + If True compute only the value of the maximum flow. This parameter + will be ignored by this algorithm because it is not applicable. + + cutoff : integer, float + If specified, the algorithm will terminate when the flow value reaches + or exceeds the cutoff. In this case, it may be unable to immediately + determine a minimum cut. Default value: None. + + Returns + ------- + R : NetworkX DiGraph + Residual network after computing the maximum flow. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not + specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such + that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Examples + -------- + >>> from networkx.algorithms.flow import boykov_kolmogorov + + The functions that implement flow algorithms and output a residual + network, such as this one, are not imported to the base NetworkX + namespace, so you have to explicitly import them from the flow package. + + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + >>> R = boykov_kolmogorov(G, "x", "y") + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value + 3.0 + >>> flow_value == R.graph["flow_value"] + True + + A nice feature of the Boykov-Kolmogorov algorithm is that a partition + of the nodes that defines a minimum cut can be easily computed based + on the search trees used during the algorithm. These trees are stored + in the graph attribute `trees` of the residual network. + + >>> source_tree, target_tree = R.graph["trees"] + >>> partition = (set(source_tree), set(G) - set(source_tree)) + + Or equivalently: + + >>> partition = (set(G) - set(target_tree), set(target_tree)) + + References + ---------- + .. [1] Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison + of min-cut/max-flow algorithms for energy minimization in vision. + Pattern Analysis and Machine Intelligence, IEEE Transactions on, + 26(9), 1124-1137. + https://doi.org/10.1109/TPAMI.2004.60 + + .. [2] Vladimir Kolmogorov. Graph-based Algorithms for Multi-camera + Reconstruction Problem. PhD thesis, Cornell University, CS Department, + 2003. pp. 109-114. + https://web.archive.org/web/20170809091249/https://pub.ist.ac.at/~vnk/papers/thesis.pdf + + """ + R = boykov_kolmogorov_impl(G, s, t, capacity, residual, cutoff) + R.graph["algorithm"] = "boykov_kolmogorov" + return R + + +def boykov_kolmogorov_impl(G, s, t, capacity, residual, cutoff): + if s not in G: + raise nx.NetworkXError(f"node {str(s)} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {str(t)} not in graph") + if s == t: + raise nx.NetworkXError("source and sink are the same node") + + if residual is None: + R = build_residual_network(G, capacity) + else: + R = residual + + # Initialize/reset the residual network. + # This is way too slow + # nx.set_edge_attributes(R, 0, 'flow') + for u in R: + for e in R[u].values(): + e["flow"] = 0 + + # Use an arbitrary high value as infinite. It is computed + # when building the residual network. + INF = R.graph["inf"] + + if cutoff is None: + cutoff = INF + + R_succ = R.succ + R_pred = R.pred + + def grow(): + """Bidirectional breadth-first search for the growth stage. + + Returns a connecting edge, that is and edge that connects + a node from the source search tree with a node from the + target search tree. + The first node in the connecting edge is always from the + source tree and the last node from the target tree. + """ + while active: + u = active[0] + if u in source_tree: + this_tree = source_tree + other_tree = target_tree + neighbors = R_succ + else: + this_tree = target_tree + other_tree = source_tree + neighbors = R_pred + for v, attr in neighbors[u].items(): + if attr["capacity"] - attr["flow"] > 0: + if v not in this_tree: + if v in other_tree: + return (u, v) if this_tree is source_tree else (v, u) + this_tree[v] = u + dist[v] = dist[u] + 1 + timestamp[v] = timestamp[u] + active.append(v) + elif v in this_tree and _is_closer(u, v): + this_tree[v] = u + dist[v] = dist[u] + 1 + timestamp[v] = timestamp[u] + _ = active.popleft() + return None, None + + def augment(u, v): + """Augmentation stage. + + Reconstruct path and determine its residual capacity. + We start from a connecting edge, which links a node + from the source tree to a node from the target tree. + The connecting edge is the output of the grow function + and the input of this function. + """ + attr = R_succ[u][v] + flow = min(INF, attr["capacity"] - attr["flow"]) + path = [u] + # Trace a path from u to s in source_tree. + w = u + while w != s: + n = w + w = source_tree[n] + attr = R_pred[n][w] + flow = min(flow, attr["capacity"] - attr["flow"]) + path.append(w) + path.reverse() + # Trace a path from v to t in target_tree. + path.append(v) + w = v + while w != t: + n = w + w = target_tree[n] + attr = R_succ[n][w] + flow = min(flow, attr["capacity"] - attr["flow"]) + path.append(w) + # Augment flow along the path and check for saturated edges. + it = iter(path) + u = next(it) + these_orphans = [] + for v in it: + R_succ[u][v]["flow"] += flow + R_succ[v][u]["flow"] -= flow + if R_succ[u][v]["flow"] == R_succ[u][v]["capacity"]: + if v in source_tree: + source_tree[v] = None + these_orphans.append(v) + if u in target_tree: + target_tree[u] = None + these_orphans.append(u) + u = v + orphans.extend(sorted(these_orphans, key=dist.get)) + return flow + + def adopt(): + """Adoption stage. + + Reconstruct search trees by adopting or discarding orphans. + During augmentation stage some edges got saturated and thus + the source and target search trees broke down to forests, with + orphans as roots of some of its trees. We have to reconstruct + the search trees rooted to source and target before we can grow + them again. + """ + while orphans: + u = orphans.popleft() + if u in source_tree: + tree = source_tree + neighbors = R_pred + else: + tree = target_tree + neighbors = R_succ + nbrs = ((n, attr, dist[n]) for n, attr in neighbors[u].items() if n in tree) + for v, attr, d in sorted(nbrs, key=itemgetter(2)): + if attr["capacity"] - attr["flow"] > 0: + if _has_valid_root(v, tree): + tree[u] = v + dist[u] = dist[v] + 1 + timestamp[u] = time + break + else: + nbrs = ( + (n, attr, dist[n]) for n, attr in neighbors[u].items() if n in tree + ) + for v, attr, d in sorted(nbrs, key=itemgetter(2)): + if attr["capacity"] - attr["flow"] > 0: + if v not in active: + active.append(v) + if tree[v] == u: + tree[v] = None + orphans.appendleft(v) + if u in active: + active.remove(u) + del tree[u] + + def _has_valid_root(n, tree): + path = [] + v = n + while v is not None: + path.append(v) + if v in (s, t): + base_dist = 0 + break + elif timestamp[v] == time: + base_dist = dist[v] + break + v = tree[v] + else: + return False + length = len(path) + for i, u in enumerate(path, 1): + dist[u] = base_dist + length - i + timestamp[u] = time + return True + + def _is_closer(u, v): + return timestamp[v] <= timestamp[u] and dist[v] > dist[u] + 1 + + source_tree = {s: None} + target_tree = {t: None} + active = deque([s, t]) + orphans = deque() + flow_value = 0 + # data structures for the marking heuristic + time = 1 + timestamp = {s: time, t: time} + dist = {s: 0, t: 0} + while flow_value < cutoff: + # Growth stage + u, v = grow() + if u is None: + break + time += 1 + # Augmentation stage + flow_value += augment(u, v) + # Adoption stage + adopt() + + if flow_value * 2 > INF: + raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.") + + # Add source and target tree in a graph attribute. + # A partition that defines a minimum cut can be directly + # computed from the search trees as explained in the docstrings. + R.graph["trees"] = (source_tree, target_tree) + # Add the standard flow_value graph attribute. + R.graph["flow_value"] = flow_value + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/capacityscaling.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/capacityscaling.py new file mode 100644 index 0000000000000000000000000000000000000000..2c0002d86c11a83ca8d4b0209b817e7e9c1d4c88 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/capacityscaling.py @@ -0,0 +1,405 @@ +""" +Capacity scaling minimum cost flow algorithm. +""" + +__all__ = ["capacity_scaling"] + +from itertools import chain +from math import log + +import networkx as nx + +from ...utils import BinaryHeap, arbitrary_element, not_implemented_for + + +def _detect_unboundedness(R): + """Detect infinite-capacity negative cycles.""" + G = nx.DiGraph() + G.add_nodes_from(R) + + # Value simulating infinity. + inf = R.graph["inf"] + # True infinity. + f_inf = float("inf") + for u in R: + for v, e in R[u].items(): + # Compute the minimum weight of infinite-capacity (u, v) edges. + w = f_inf + for k, e in e.items(): + if e["capacity"] == inf: + w = min(w, e["weight"]) + if w != f_inf: + G.add_edge(u, v, weight=w) + + if nx.negative_edge_cycle(G): + raise nx.NetworkXUnbounded( + "Negative cost cycle of infinite capacity found. " + "Min cost flow may be unbounded below." + ) + + +@not_implemented_for("undirected") +def _build_residual_network(G, demand, capacity, weight): + """Build a residual network and initialize a zero flow.""" + if sum(G.nodes[u].get(demand, 0) for u in G) != 0: + raise nx.NetworkXUnfeasible("Sum of the demands should be 0.") + + R = nx.MultiDiGraph() + R.add_nodes_from( + (u, {"excess": -G.nodes[u].get(demand, 0), "potential": 0}) for u in G + ) + + inf = float("inf") + # Detect selfloops with infinite capacities and negative weights. + for u, v, e in nx.selfloop_edges(G, data=True): + if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf: + raise nx.NetworkXUnbounded( + "Negative cost cycle of infinite capacity found. " + "Min cost flow may be unbounded below." + ) + + # Extract edges with positive capacities. Self loops excluded. + if G.is_multigraph(): + edge_list = [ + (u, v, k, e) + for u, v, k, e in G.edges(data=True, keys=True) + if u != v and e.get(capacity, inf) > 0 + ] + else: + edge_list = [ + (u, v, 0, e) + for u, v, e in G.edges(data=True) + if u != v and e.get(capacity, inf) > 0 + ] + # Simulate infinity with the larger of the sum of absolute node imbalances + # the sum of finite edge capacities or any positive value if both sums are + # zero. This allows the infinite-capacity edges to be distinguished for + # unboundedness detection and directly participate in residual capacity + # calculation. + inf = ( + max( + sum(abs(R.nodes[u]["excess"]) for u in R), + 2 + * sum( + e[capacity] + for u, v, k, e in edge_list + if capacity in e and e[capacity] != inf + ), + ) + or 1 + ) + for u, v, k, e in edge_list: + r = min(e.get(capacity, inf), inf) + w = e.get(weight, 0) + # Add both (u, v) and (v, u) into the residual network marked with the + # original key. (key[1] == True) indicates the (u, v) is in the + # original network. + R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0) + R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0) + + # Record the value simulating infinity. + R.graph["inf"] = inf + + _detect_unboundedness(R) + + return R + + +def _build_flow_dict(G, R, capacity, weight): + """Build a flow dictionary from a residual network.""" + inf = float("inf") + flow_dict = {} + if G.is_multigraph(): + for u in G: + flow_dict[u] = {} + for v, es in G[u].items(): + flow_dict[u][v] = { + # Always saturate negative selfloops. + k: ( + 0 + if ( + u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0 + ) + else e[capacity] + ) + for k, e in es.items() + } + for v, es in R[u].items(): + if v in flow_dict[u]: + flow_dict[u][v].update( + (k[0], e["flow"]) for k, e in es.items() if e["flow"] > 0 + ) + else: + for u in G: + flow_dict[u] = { + # Always saturate negative selfloops. + v: ( + 0 + if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0) + else e[capacity] + ) + for v, e in G[u].items() + } + flow_dict[u].update( + (v, e["flow"]) + for v, es in R[u].items() + for e in es.values() + if e["flow"] > 0 + ) + return flow_dict + + +@nx._dispatch(node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}) +def capacity_scaling( + G, demand="demand", capacity="capacity", weight="weight", heap=BinaryHeap +): + r"""Find a minimum cost flow satisfying all demands in digraph G. + + This is a capacity scaling successive shortest augmenting path algorithm. + + G is a digraph with edge costs and capacities and in which nodes + have demand, i.e., they want to send or receive some amount of + flow. A negative demand means that the node wants to send flow, a + positive demand means that the node want to receive flow. A flow on + the digraph G satisfies all demand if the net flow into each node + is equal to the demand of that node. + + Parameters + ---------- + G : NetworkX graph + DiGraph or MultiDiGraph on which a minimum cost flow satisfying all + demands is to be found. + + demand : string + Nodes of the graph G are expected to have an attribute demand + that indicates how much flow a node wants to send (negative + demand) or receive (positive demand). Note that the sum of the + demands should be 0 otherwise the problem in not feasible. If + this attribute is not present, a node is considered to have 0 + demand. Default value: 'demand'. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + weight : string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + heap : class + Type of heap to be used in the algorithm. It should be a subclass of + :class:`MinHeap` or implement a compatible interface. + + If a stock heap implementation is to be used, :class:`BinaryHeap` is + recommended over :class:`PairingHeap` for Python implementations without + optimized attribute accesses (e.g., CPython) despite a slower + asymptotic running time. For Python implementations with optimized + attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better + performance. Default value: :class:`BinaryHeap`. + + Returns + ------- + flowCost : integer + Cost of a minimum cost flow satisfying all demands. + + flowDict : dictionary + If G is a digraph, a dict-of-dicts keyed by nodes such that + flowDict[u][v] is the flow on edge (u, v). + If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes + so that flowDict[u][v][key] is the flow on edge (u, v, key). + + Raises + ------ + NetworkXError + This exception is raised if the input graph is not directed, + not connected. + + NetworkXUnfeasible + This exception is raised in the following situations: + + * The sum of the demands is not zero. Then, there is no + flow satisfying all demands. + * There is no flow satisfying all demand. + + NetworkXUnbounded + This exception is raised if the digraph G has a cycle of + negative cost and infinite capacity. Then, the cost of a flow + satisfying all demands is unbounded below. + + Notes + ----- + This algorithm does not work if edge weights are floating-point numbers. + + See also + -------- + :meth:`network_simplex` + + Examples + -------- + A simple example of a min cost flow problem. + + >>> G = nx.DiGraph() + >>> G.add_node("a", demand=-5) + >>> G.add_node("d", demand=5) + >>> G.add_edge("a", "b", weight=3, capacity=4) + >>> G.add_edge("a", "c", weight=6, capacity=10) + >>> G.add_edge("b", "d", weight=1, capacity=9) + >>> G.add_edge("c", "d", weight=2, capacity=5) + >>> flowCost, flowDict = nx.capacity_scaling(G) + >>> flowCost + 24 + >>> flowDict + {'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}} + + It is possible to change the name of the attributes used for the + algorithm. + + >>> G = nx.DiGraph() + >>> G.add_node("p", spam=-4) + >>> G.add_node("q", spam=2) + >>> G.add_node("a", spam=-2) + >>> G.add_node("d", spam=-1) + >>> G.add_node("t", spam=2) + >>> G.add_node("w", spam=3) + >>> G.add_edge("p", "q", cost=7, vacancies=5) + >>> G.add_edge("p", "a", cost=1, vacancies=4) + >>> G.add_edge("q", "d", cost=2, vacancies=3) + >>> G.add_edge("t", "q", cost=1, vacancies=2) + >>> G.add_edge("a", "t", cost=2, vacancies=4) + >>> G.add_edge("d", "w", cost=3, vacancies=4) + >>> G.add_edge("t", "w", cost=4, vacancies=1) + >>> flowCost, flowDict = nx.capacity_scaling( + ... G, demand="spam", capacity="vacancies", weight="cost" + ... ) + >>> flowCost + 37 + >>> flowDict + {'p': {'q': 2, 'a': 2}, 'q': {'d': 1}, 'a': {'t': 4}, 'd': {'w': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} + """ + R = _build_residual_network(G, demand, capacity, weight) + + inf = float("inf") + # Account cost of negative selfloops. + flow_cost = sum( + 0 + if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0 + else e[capacity] * e[weight] + for u, v, e in nx.selfloop_edges(G, data=True) + ) + + # Determine the maximum edge capacity. + wmax = max(chain([-inf], (e["capacity"] for u, v, e in R.edges(data=True)))) + if wmax == -inf: + # Residual network has no edges. + return flow_cost, _build_flow_dict(G, R, capacity, weight) + + R_nodes = R.nodes + R_succ = R.succ + + delta = 2 ** int(log(wmax, 2)) + while delta >= 1: + # Saturate Δ-residual edges with negative reduced costs to achieve + # Δ-optimality. + for u in R: + p_u = R_nodes[u]["potential"] + for v, es in R_succ[u].items(): + for k, e in es.items(): + flow = e["capacity"] - e["flow"] + if e["weight"] - p_u + R_nodes[v]["potential"] < 0: + flow = e["capacity"] - e["flow"] + if flow >= delta: + e["flow"] += flow + R_succ[v][u][(k[0], not k[1])]["flow"] -= flow + R_nodes[u]["excess"] -= flow + R_nodes[v]["excess"] += flow + # Determine the Δ-active nodes. + S = set() + T = set() + S_add = S.add + S_remove = S.remove + T_add = T.add + T_remove = T.remove + for u in R: + excess = R_nodes[u]["excess"] + if excess >= delta: + S_add(u) + elif excess <= -delta: + T_add(u) + # Repeatedly augment flow from S to T along shortest paths until + # Δ-feasibility is achieved. + while S and T: + s = arbitrary_element(S) + t = None + # Search for a shortest path in terms of reduce costs from s to + # any t in T in the Δ-residual network. + d = {} + pred = {s: None} + h = heap() + h_insert = h.insert + h_get = h.get + h_insert(s, 0) + while h: + u, d_u = h.pop() + d[u] = d_u + if u in T: + # Path found. + t = u + break + p_u = R_nodes[u]["potential"] + for v, es in R_succ[u].items(): + if v in d: + continue + wmin = inf + # Find the minimum-weighted (u, v) Δ-residual edge. + for k, e in es.items(): + if e["capacity"] - e["flow"] >= delta: + w = e["weight"] + if w < wmin: + wmin = w + kmin = k + emin = e + if wmin == inf: + continue + # Update the distance label of v. + d_v = d_u + wmin - p_u + R_nodes[v]["potential"] + if h_insert(v, d_v): + pred[v] = (u, kmin, emin) + if t is not None: + # Augment Δ units of flow from s to t. + while u != s: + v = u + u, k, e = pred[v] + e["flow"] += delta + R_succ[v][u][(k[0], not k[1])]["flow"] -= delta + # Account node excess and deficit. + R_nodes[s]["excess"] -= delta + R_nodes[t]["excess"] += delta + if R_nodes[s]["excess"] < delta: + S_remove(s) + if R_nodes[t]["excess"] > -delta: + T_remove(t) + # Update node potentials. + d_t = d[t] + for u, d_u in d.items(): + R_nodes[u]["potential"] -= d_u - d_t + else: + # Path not found. + S_remove(s) + delta //= 2 + + if any(R.nodes[u]["excess"] != 0 for u in R): + raise nx.NetworkXUnfeasible("No flow satisfying all demands.") + + # Calculate the flow cost. + for u in R: + for v, es in R_succ[u].items(): + for e in es.values(): + flow = e["flow"] + if flow > 0: + flow_cost += flow * e["weight"] + + return flow_cost, _build_flow_dict(G, R, capacity, weight) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/dinitz_alg.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/dinitz_alg.py new file mode 100644 index 0000000000000000000000000000000000000000..b33e0ea28234d609f540eeaf7ecad3224d85875f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/dinitz_alg.py @@ -0,0 +1,217 @@ +""" +Dinitz' algorithm for maximum flow problems. +""" +from collections import deque + +import networkx as nx +from networkx.algorithms.flow.utils import build_residual_network +from networkx.utils import pairwise + +__all__ = ["dinitz"] + + +@nx._dispatch( + graphs={"G": 0, "residual?": 4}, + edge_attrs={"capacity": float("inf")}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def dinitz(G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None): + """Find a maximum single-commodity flow using Dinitz' algorithm. + + This function returns the residual network resulting after computing + the maximum flow. See below for details about the conventions + NetworkX uses for defining residual networks. + + This algorithm has a running time of $O(n^2 m)$ for $n$ nodes and $m$ + edges [1]_. + + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + residual : NetworkX graph + Residual network on which the algorithm is to be executed. If None, a + new residual network is created. Default value: None. + + value_only : bool + If True compute only the value of the maximum flow. This parameter + will be ignored by this algorithm because it is not applicable. + + cutoff : integer, float + If specified, the algorithm will terminate when the flow value reaches + or exceeds the cutoff. In this case, it may be unable to immediately + determine a minimum cut. Default value: None. + + Returns + ------- + R : NetworkX DiGraph + Residual network after computing the maximum flow. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not + specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such + that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Examples + -------- + >>> from networkx.algorithms.flow import dinitz + + The functions that implement flow algorithms and output a residual + network, such as this one, are not imported to the base NetworkX + namespace, so you have to explicitly import them from the flow package. + + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + >>> R = dinitz(G, "x", "y") + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value + 3.0 + >>> flow_value == R.graph["flow_value"] + True + + References + ---------- + .. [1] Dinitz' Algorithm: The Original Version and Even's Version. + 2006. Yefim Dinitz. In Theoretical Computer Science. Lecture + Notes in Computer Science. Volume 3895. pp 218-240. + https://doi.org/10.1007/11685654_10 + + """ + R = dinitz_impl(G, s, t, capacity, residual, cutoff) + R.graph["algorithm"] = "dinitz" + return R + + +def dinitz_impl(G, s, t, capacity, residual, cutoff): + if s not in G: + raise nx.NetworkXError(f"node {str(s)} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {str(t)} not in graph") + if s == t: + raise nx.NetworkXError("source and sink are the same node") + + if residual is None: + R = build_residual_network(G, capacity) + else: + R = residual + + # Initialize/reset the residual network. + for u in R: + for e in R[u].values(): + e["flow"] = 0 + + # Use an arbitrary high value as infinite. It is computed + # when building the residual network. + INF = R.graph["inf"] + + if cutoff is None: + cutoff = INF + + R_succ = R.succ + R_pred = R.pred + + def breath_first_search(): + parents = {} + queue = deque([s]) + while queue: + if t in parents: + break + u = queue.popleft() + for v in R_succ[u]: + attr = R_succ[u][v] + if v not in parents and attr["capacity"] - attr["flow"] > 0: + parents[v] = u + queue.append(v) + return parents + + def depth_first_search(parents): + """Build a path using DFS starting from the sink""" + path = [] + u = t + flow = INF + while u != s: + path.append(u) + v = parents[u] + flow = min(flow, R_pred[u][v]["capacity"] - R_pred[u][v]["flow"]) + u = v + path.append(s) + # Augment the flow along the path found + if flow > 0: + for u, v in pairwise(path): + R_pred[u][v]["flow"] += flow + R_pred[v][u]["flow"] -= flow + return flow + + flow_value = 0 + while flow_value < cutoff: + parents = breath_first_search() + if t not in parents: + break + this_flow = depth_first_search(parents) + if this_flow * 2 > INF: + raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.") + flow_value += this_flow + + R.graph["flow_value"] = flow_value + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/edmondskarp.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/edmondskarp.py new file mode 100644 index 0000000000000000000000000000000000000000..7c8440a451965fd7432679c458a17447a18e39ab --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/edmondskarp.py @@ -0,0 +1,250 @@ +""" +Edmonds-Karp algorithm for maximum flow problems. +""" + +import networkx as nx +from networkx.algorithms.flow.utils import build_residual_network + +__all__ = ["edmonds_karp"] + + +@nx._dispatch( + graphs="R", + preserve_edge_attrs={"R": {"capacity": float("inf"), "flow": 0}}, + preserve_graph_attrs=True, +) +def edmonds_karp_core(R, s, t, cutoff): + """Implementation of the Edmonds-Karp algorithm.""" + R_nodes = R.nodes + R_pred = R.pred + R_succ = R.succ + + inf = R.graph["inf"] + + def augment(path): + """Augment flow along a path from s to t.""" + # Determine the path residual capacity. + flow = inf + it = iter(path) + u = next(it) + for v in it: + attr = R_succ[u][v] + flow = min(flow, attr["capacity"] - attr["flow"]) + u = v + if flow * 2 > inf: + raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.") + # Augment flow along the path. + it = iter(path) + u = next(it) + for v in it: + R_succ[u][v]["flow"] += flow + R_succ[v][u]["flow"] -= flow + u = v + return flow + + def bidirectional_bfs(): + """Bidirectional breadth-first search for an augmenting path.""" + pred = {s: None} + q_s = [s] + succ = {t: None} + q_t = [t] + while True: + q = [] + if len(q_s) <= len(q_t): + for u in q_s: + for v, attr in R_succ[u].items(): + if v not in pred and attr["flow"] < attr["capacity"]: + pred[v] = u + if v in succ: + return v, pred, succ + q.append(v) + if not q: + return None, None, None + q_s = q + else: + for u in q_t: + for v, attr in R_pred[u].items(): + if v not in succ and attr["flow"] < attr["capacity"]: + succ[v] = u + if v in pred: + return v, pred, succ + q.append(v) + if not q: + return None, None, None + q_t = q + + # Look for shortest augmenting paths using breadth-first search. + flow_value = 0 + while flow_value < cutoff: + v, pred, succ = bidirectional_bfs() + if pred is None: + break + path = [v] + # Trace a path from s to v. + u = v + while u != s: + u = pred[u] + path.append(u) + path.reverse() + # Trace a path from v to t. + u = v + while u != t: + u = succ[u] + path.append(u) + flow_value += augment(path) + + return flow_value + + +def edmonds_karp_impl(G, s, t, capacity, residual, cutoff): + """Implementation of the Edmonds-Karp algorithm.""" + if s not in G: + raise nx.NetworkXError(f"node {str(s)} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {str(t)} not in graph") + if s == t: + raise nx.NetworkXError("source and sink are the same node") + + if residual is None: + R = build_residual_network(G, capacity) + else: + R = residual + + # Initialize/reset the residual network. + for u in R: + for e in R[u].values(): + e["flow"] = 0 + + if cutoff is None: + cutoff = float("inf") + R.graph["flow_value"] = edmonds_karp_core(R, s, t, cutoff) + + return R + + +@nx._dispatch( + graphs={"G": 0, "residual?": 4}, + edge_attrs={"capacity": float("inf")}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def edmonds_karp( + G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None +): + """Find a maximum single-commodity flow using the Edmonds-Karp algorithm. + + This function returns the residual network resulting after computing + the maximum flow. See below for details about the conventions + NetworkX uses for defining residual networks. + + This algorithm has a running time of $O(n m^2)$ for $n$ nodes and $m$ + edges. + + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + residual : NetworkX graph + Residual network on which the algorithm is to be executed. If None, a + new residual network is created. Default value: None. + + value_only : bool + If True compute only the value of the maximum flow. This parameter + will be ignored by this algorithm because it is not applicable. + + cutoff : integer, float + If specified, the algorithm will terminate when the flow value reaches + or exceeds the cutoff. In this case, it may be unable to immediately + determine a minimum cut. Default value: None. + + Returns + ------- + R : NetworkX DiGraph + Residual network after computing the maximum flow. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not + specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such + that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Examples + -------- + >>> from networkx.algorithms.flow import edmonds_karp + + The functions that implement flow algorithms and output a residual + network, such as this one, are not imported to the base NetworkX + namespace, so you have to explicitly import them from the flow package. + + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + >>> R = edmonds_karp(G, "x", "y") + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value + 3.0 + >>> flow_value == R.graph["flow_value"] + True + + """ + R = edmonds_karp_impl(G, s, t, capacity, residual, cutoff) + R.graph["algorithm"] = "edmonds_karp" + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/gomory_hu.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/gomory_hu.py new file mode 100644 index 0000000000000000000000000000000000000000..0be27d5649415b289e3ff4c5fa7f0cc012920bf4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/gomory_hu.py @@ -0,0 +1,177 @@ +""" +Gomory-Hu tree of undirected Graphs. +""" +import networkx as nx +from networkx.utils import not_implemented_for + +from .edmondskarp import edmonds_karp +from .utils import build_residual_network + +default_flow_func = edmonds_karp + +__all__ = ["gomory_hu_tree"] + + +@not_implemented_for("directed") +@nx._dispatch(edge_attrs={"capacity": float("inf")}) +def gomory_hu_tree(G, capacity="capacity", flow_func=None): + r"""Returns the Gomory-Hu tree of an undirected graph G. + + A Gomory-Hu tree of an undirected graph with capacities is a + weighted tree that represents the minimum s-t cuts for all s-t + pairs in the graph. + + It only requires `n-1` minimum cut computations instead of the + obvious `n(n-1)/2`. The tree represents all s-t cuts as the + minimum cut value among any pair of nodes is the minimum edge + weight in the shortest path between the two nodes in the + Gomory-Hu tree. + + The Gomory-Hu tree also has the property that removing the + edge with the minimum weight in the shortest path between + any two nodes leaves two connected components that form + a partition of the nodes in G that defines the minimum s-t + cut. + + See Examples section below for details. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + flow_func : function + Function to perform the underlying flow computations. Default value + :func:`edmonds_karp`. This function performs better in sparse graphs + with right tailed degree distributions. + :func:`shortest_augmenting_path` will perform better in denser + graphs. + + Returns + ------- + Tree : NetworkX graph + A NetworkX graph representing the Gomory-Hu tree of the input graph. + + Raises + ------ + NetworkXNotImplemented + Raised if the input graph is directed. + + NetworkXError + Raised if the input graph is an empty Graph. + + Examples + -------- + >>> G = nx.karate_club_graph() + >>> nx.set_edge_attributes(G, 1, "capacity") + >>> T = nx.gomory_hu_tree(G) + >>> # The value of the minimum cut between any pair + ... # of nodes in G is the minimum edge weight in the + ... # shortest path between the two nodes in the + ... # Gomory-Hu tree. + ... def minimum_edge_weight_in_shortest_path(T, u, v): + ... path = nx.shortest_path(T, u, v, weight="weight") + ... return min((T[u][v]["weight"], (u, v)) for (u, v) in zip(path, path[1:])) + >>> u, v = 0, 33 + >>> cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) + >>> cut_value + 10 + >>> nx.minimum_cut_value(G, u, v) + 10 + >>> # The Gomory-Hu tree also has the property that removing the + ... # edge with the minimum weight in the shortest path between + ... # any two nodes leaves two connected components that form + ... # a partition of the nodes in G that defines the minimum s-t + ... # cut. + ... cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) + >>> T.remove_edge(*edge) + >>> U, V = list(nx.connected_components(T)) + >>> # Thus U and V form a partition that defines a minimum cut + ... # between u and v in G. You can compute the edge cut set, + ... # that is, the set of edges that if removed from G will + ... # disconnect u from v in G, with this information: + ... cutset = set() + >>> for x, nbrs in ((n, G[n]) for n in U): + ... cutset.update((x, y) for y in nbrs if y in V) + >>> # Because we have set the capacities of all edges to 1 + ... # the cutset contains ten edges + ... len(cutset) + 10 + >>> # You can use any maximum flow algorithm for the underlying + ... # flow computations using the argument flow_func + ... from networkx.algorithms import flow + >>> T = nx.gomory_hu_tree(G, flow_func=flow.boykov_kolmogorov) + >>> cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) + >>> cut_value + 10 + >>> nx.minimum_cut_value(G, u, v, flow_func=flow.boykov_kolmogorov) + 10 + + Notes + ----- + This implementation is based on Gusfield approach [1]_ to compute + Gomory-Hu trees, which does not require node contractions and has + the same computational complexity than the original method. + + See also + -------- + :func:`minimum_cut` + :func:`maximum_flow` + + References + ---------- + .. [1] Gusfield D: Very simple methods for all pairs network flow analysis. + SIAM J Comput 19(1):143-155, 1990. + + """ + if flow_func is None: + flow_func = default_flow_func + + if len(G) == 0: # empty graph + msg = "Empty Graph does not have a Gomory-Hu tree representation" + raise nx.NetworkXError(msg) + + # Start the tree as a star graph with an arbitrary node at the center + tree = {} + labels = {} + iter_nodes = iter(G) + root = next(iter_nodes) + for n in iter_nodes: + tree[n] = root + + # Reuse residual network + R = build_residual_network(G, capacity) + + # For all the leaves in the star graph tree (that is n-1 nodes). + for source in tree: + # Find neighbor in the tree + target = tree[source] + # compute minimum cut + cut_value, partition = nx.minimum_cut( + G, source, target, capacity=capacity, flow_func=flow_func, residual=R + ) + labels[(source, target)] = cut_value + # Update the tree + # Source will always be in partition[0] and target in partition[1] + for node in partition[0]: + if node != source and node in tree and tree[node] == target: + tree[node] = source + labels[node, source] = labels.get((node, target), cut_value) + # + if target != root and tree[target] in partition[0]: + labels[source, tree[target]] = labels[target, tree[target]] + labels[target, source] = cut_value + tree[source] = tree[target] + tree[target] = source + + # Build the tree + T = nx.Graph() + T.add_nodes_from(G) + T.add_weighted_edges_from(((u, v, labels[u, v]) for u, v in tree.items())) + return T diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/maxflow.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/maxflow.py new file mode 100644 index 0000000000000000000000000000000000000000..35f359ee3b04ca2d427de2c20666fe53d750f561 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/maxflow.py @@ -0,0 +1,607 @@ +""" +Maximum flow (and minimum cut) algorithms on capacitated graphs. +""" +import networkx as nx + +from .boykovkolmogorov import boykov_kolmogorov +from .dinitz_alg import dinitz +from .edmondskarp import edmonds_karp +from .preflowpush import preflow_push +from .shortestaugmentingpath import shortest_augmenting_path +from .utils import build_flow_dict + +# Define the default flow function for computing maximum flow. +default_flow_func = preflow_push + +__all__ = ["maximum_flow", "maximum_flow_value", "minimum_cut", "minimum_cut_value"] + + +@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")}) +def maximum_flow(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs): + """Find a maximum single-commodity flow. + + Parameters + ---------- + flowG : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + _s : node + Source node for the flow. + + _t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + flow_func : function + A function for computing the maximum flow among a pair of nodes + in a capacitated graph. The function has to accept at least three + parameters: a Graph or Digraph, a source node, and a target node. + And return a residual network that follows NetworkX conventions + (see Notes). If flow_func is None, the default maximum + flow function (:meth:`preflow_push`) is used. See below for + alternative algorithms. The choice of the default function may change + from version to version and should not be relied on. Default value: + None. + + kwargs : Any other keyword parameter is passed to the function that + computes the maximum flow. + + Returns + ------- + flow_value : integer, float + Value of the maximum flow, i.e., net outflow from the source. + + flow_dict : dict + A dictionary containing the value of the flow that went through + each edge. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow_value` + :meth:`minimum_cut` + :meth:`minimum_cut_value` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The function used in the flow_func parameter has to return a residual + network that follows NetworkX conventions: + + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using + only edges :samp:`(u, v)` such that + :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Specific algorithms may store extra data in :samp:`R`. + + The function should supports an optional boolean parameter value_only. When + True, it can optionally terminate the algorithm as soon as the maximum flow + value and the minimum cut can be determined. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + + maximum_flow returns both the value of the maximum flow and a + dictionary with all flows. + + >>> flow_value, flow_dict = nx.maximum_flow(G, "x", "y") + >>> flow_value + 3.0 + >>> print(flow_dict["x"]["b"]) + 1.0 + + You can also use alternative algorithms for computing the + maximum flow by using the flow_func parameter. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> flow_value == nx.maximum_flow(G, "x", "y", flow_func=shortest_augmenting_path)[ + ... 0 + ... ] + True + + """ + if flow_func is None: + if kwargs: + raise nx.NetworkXError( + "You have to explicitly set a flow_func if" + " you need to pass parameters via kwargs." + ) + flow_func = default_flow_func + + if not callable(flow_func): + raise nx.NetworkXError("flow_func has to be callable.") + + R = flow_func(flowG, _s, _t, capacity=capacity, value_only=False, **kwargs) + flow_dict = build_flow_dict(flowG, R) + + return (R.graph["flow_value"], flow_dict) + + +@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")}) +def maximum_flow_value(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs): + """Find the value of maximum single-commodity flow. + + Parameters + ---------- + flowG : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + _s : node + Source node for the flow. + + _t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + flow_func : function + A function for computing the maximum flow among a pair of nodes + in a capacitated graph. The function has to accept at least three + parameters: a Graph or Digraph, a source node, and a target node. + And return a residual network that follows NetworkX conventions + (see Notes). If flow_func is None, the default maximum + flow function (:meth:`preflow_push`) is used. See below for + alternative algorithms. The choice of the default function may change + from version to version and should not be relied on. Default value: + None. + + kwargs : Any other keyword parameter is passed to the function that + computes the maximum flow. + + Returns + ------- + flow_value : integer, float + Value of the maximum flow, i.e., net outflow from the source. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`minimum_cut_value` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The function used in the flow_func parameter has to return a residual + network that follows NetworkX conventions: + + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using + only edges :samp:`(u, v)` such that + :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Specific algorithms may store extra data in :samp:`R`. + + The function should supports an optional boolean parameter value_only. When + True, it can optionally terminate the algorithm as soon as the maximum flow + value and the minimum cut can be determined. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + + maximum_flow_value computes only the value of the + maximum flow: + + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value + 3.0 + + You can also use alternative algorithms for computing the + maximum flow by using the flow_func parameter. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> flow_value == nx.maximum_flow_value( + ... G, "x", "y", flow_func=shortest_augmenting_path + ... ) + True + + """ + if flow_func is None: + if kwargs: + raise nx.NetworkXError( + "You have to explicitly set a flow_func if" + " you need to pass parameters via kwargs." + ) + flow_func = default_flow_func + + if not callable(flow_func): + raise nx.NetworkXError("flow_func has to be callable.") + + R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs) + + return R.graph["flow_value"] + + +@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")}) +def minimum_cut(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs): + """Compute the value and the node partition of a minimum (s, t)-cut. + + Use the max-flow min-cut theorem, i.e., the capacity of a minimum + capacity cut is equal to the flow value of a maximum flow. + + Parameters + ---------- + flowG : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + _s : node + Source node for the flow. + + _t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + flow_func : function + A function for computing the maximum flow among a pair of nodes + in a capacitated graph. The function has to accept at least three + parameters: a Graph or Digraph, a source node, and a target node. + And return a residual network that follows NetworkX conventions + (see Notes). If flow_func is None, the default maximum + flow function (:meth:`preflow_push`) is used. See below for + alternative algorithms. The choice of the default function may change + from version to version and should not be relied on. Default value: + None. + + kwargs : Any other keyword parameter is passed to the function that + computes the maximum flow. + + Returns + ------- + cut_value : integer, float + Value of the minimum cut. + + partition : pair of node sets + A partitioning of the nodes that defines a minimum cut. + + Raises + ------ + NetworkXUnbounded + If the graph has a path of infinite capacity, all cuts have + infinite capacity and the function raises a NetworkXError. + + See also + -------- + :meth:`maximum_flow` + :meth:`maximum_flow_value` + :meth:`minimum_cut_value` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The function used in the flow_func parameter has to return a residual + network that follows NetworkX conventions: + + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using + only edges :samp:`(u, v)` such that + :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Specific algorithms may store extra data in :samp:`R`. + + The function should supports an optional boolean parameter value_only. When + True, it can optionally terminate the algorithm as soon as the maximum flow + value and the minimum cut can be determined. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + + minimum_cut computes both the value of the + minimum cut and the node partition: + + >>> cut_value, partition = nx.minimum_cut(G, "x", "y") + >>> reachable, non_reachable = partition + + 'partition' here is a tuple with the two sets of nodes that define + the minimum cut. You can compute the cut set of edges that induce + the minimum cut as follows: + + >>> cutset = set() + >>> for u, nbrs in ((n, G[n]) for n in reachable): + ... cutset.update((u, v) for v in nbrs if v in non_reachable) + >>> print(sorted(cutset)) + [('c', 'y'), ('x', 'b')] + >>> cut_value == sum(G.edges[u, v]["capacity"] for (u, v) in cutset) + True + + You can also use alternative algorithms for computing the + minimum cut by using the flow_func parameter. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> cut_value == nx.minimum_cut(G, "x", "y", flow_func=shortest_augmenting_path)[0] + True + + """ + if flow_func is None: + if kwargs: + raise nx.NetworkXError( + "You have to explicitly set a flow_func if" + " you need to pass parameters via kwargs." + ) + flow_func = default_flow_func + + if not callable(flow_func): + raise nx.NetworkXError("flow_func has to be callable.") + + if kwargs.get("cutoff") is not None and flow_func is preflow_push: + raise nx.NetworkXError("cutoff should not be specified.") + + R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs) + # Remove saturated edges from the residual network + cutset = [(u, v, d) for u, v, d in R.edges(data=True) if d["flow"] == d["capacity"]] + R.remove_edges_from(cutset) + + # Then, reachable and non reachable nodes from source in the + # residual network form the node partition that defines + # the minimum cut. + non_reachable = set(dict(nx.shortest_path_length(R, target=_t))) + partition = (set(flowG) - non_reachable, non_reachable) + # Finally add again cutset edges to the residual network to make + # sure that it is reusable. + if cutset is not None: + R.add_edges_from(cutset) + return (R.graph["flow_value"], partition) + + +@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")}) +def minimum_cut_value(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs): + """Compute the value of a minimum (s, t)-cut. + + Use the max-flow min-cut theorem, i.e., the capacity of a minimum + capacity cut is equal to the flow value of a maximum flow. + + Parameters + ---------- + flowG : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + _s : node + Source node for the flow. + + _t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + flow_func : function + A function for computing the maximum flow among a pair of nodes + in a capacitated graph. The function has to accept at least three + parameters: a Graph or Digraph, a source node, and a target node. + And return a residual network that follows NetworkX conventions + (see Notes). If flow_func is None, the default maximum + flow function (:meth:`preflow_push`) is used. See below for + alternative algorithms. The choice of the default function may change + from version to version and should not be relied on. Default value: + None. + + kwargs : Any other keyword parameter is passed to the function that + computes the maximum flow. + + Returns + ------- + cut_value : integer, float + Value of the minimum cut. + + Raises + ------ + NetworkXUnbounded + If the graph has a path of infinite capacity, all cuts have + infinite capacity and the function raises a NetworkXError. + + See also + -------- + :meth:`maximum_flow` + :meth:`maximum_flow_value` + :meth:`minimum_cut` + :meth:`edmonds_karp` + :meth:`preflow_push` + :meth:`shortest_augmenting_path` + + Notes + ----- + The function used in the flow_func parameter has to return a residual + network that follows NetworkX conventions: + + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using + only edges :samp:`(u, v)` such that + :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Specific algorithms may store extra data in :samp:`R`. + + The function should supports an optional boolean parameter value_only. When + True, it can optionally terminate the algorithm as soon as the maximum flow + value and the minimum cut can be determined. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + + minimum_cut_value computes only the value of the + minimum cut: + + >>> cut_value = nx.minimum_cut_value(G, "x", "y") + >>> cut_value + 3.0 + + You can also use alternative algorithms for computing the + minimum cut by using the flow_func parameter. + + >>> from networkx.algorithms.flow import shortest_augmenting_path + >>> cut_value == nx.minimum_cut_value( + ... G, "x", "y", flow_func=shortest_augmenting_path + ... ) + True + + """ + if flow_func is None: + if kwargs: + raise nx.NetworkXError( + "You have to explicitly set a flow_func if" + " you need to pass parameters via kwargs." + ) + flow_func = default_flow_func + + if not callable(flow_func): + raise nx.NetworkXError("flow_func has to be callable.") + + if kwargs.get("cutoff") is not None and flow_func is preflow_push: + raise nx.NetworkXError("cutoff should not be specified.") + + R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs) + + return R.graph["flow_value"] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/mincost.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/mincost.py new file mode 100644 index 0000000000000000000000000000000000000000..cc8626c7c3c3cdbc6e992c6acf3051594d325c6a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/mincost.py @@ -0,0 +1,335 @@ +""" +Minimum cost flow algorithms on directed connected graphs. +""" + +__all__ = ["min_cost_flow_cost", "min_cost_flow", "cost_of_flow", "max_flow_min_cost"] + +import networkx as nx + + +@nx._dispatch(node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}) +def min_cost_flow_cost(G, demand="demand", capacity="capacity", weight="weight"): + r"""Find the cost of a minimum cost flow satisfying all demands in digraph G. + + G is a digraph with edge costs and capacities and in which nodes + have demand, i.e., they want to send or receive some amount of + flow. A negative demand means that the node wants to send flow, a + positive demand means that the node want to receive flow. A flow on + the digraph G satisfies all demand if the net flow into each node + is equal to the demand of that node. + + Parameters + ---------- + G : NetworkX graph + DiGraph on which a minimum cost flow satisfying all demands is + to be found. + + demand : string + Nodes of the graph G are expected to have an attribute demand + that indicates how much flow a node wants to send (negative + demand) or receive (positive demand). Note that the sum of the + demands should be 0 otherwise the problem in not feasible. If + this attribute is not present, a node is considered to have 0 + demand. Default value: 'demand'. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + weight : string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + Returns + ------- + flowCost : integer, float + Cost of a minimum cost flow satisfying all demands. + + Raises + ------ + NetworkXError + This exception is raised if the input graph is not directed or + not connected. + + NetworkXUnfeasible + This exception is raised in the following situations: + + * The sum of the demands is not zero. Then, there is no + flow satisfying all demands. + * There is no flow satisfying all demand. + + NetworkXUnbounded + This exception is raised if the digraph G has a cycle of + negative cost and infinite capacity. Then, the cost of a flow + satisfying all demands is unbounded below. + + See also + -------- + cost_of_flow, max_flow_min_cost, min_cost_flow, network_simplex + + Notes + ----- + This algorithm is not guaranteed to work if edge weights or demands + are floating point numbers (overflows and roundoff errors can + cause problems). As a workaround you can use integer numbers by + multiplying the relevant edge attributes by a convenient + constant factor (eg 100). + + Examples + -------- + A simple example of a min cost flow problem. + + >>> G = nx.DiGraph() + >>> G.add_node("a", demand=-5) + >>> G.add_node("d", demand=5) + >>> G.add_edge("a", "b", weight=3, capacity=4) + >>> G.add_edge("a", "c", weight=6, capacity=10) + >>> G.add_edge("b", "d", weight=1, capacity=9) + >>> G.add_edge("c", "d", weight=2, capacity=5) + >>> flowCost = nx.min_cost_flow_cost(G) + >>> flowCost + 24 + """ + return nx.network_simplex(G, demand=demand, capacity=capacity, weight=weight)[0] + + +@nx._dispatch(node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}) +def min_cost_flow(G, demand="demand", capacity="capacity", weight="weight"): + r"""Returns a minimum cost flow satisfying all demands in digraph G. + + G is a digraph with edge costs and capacities and in which nodes + have demand, i.e., they want to send or receive some amount of + flow. A negative demand means that the node wants to send flow, a + positive demand means that the node want to receive flow. A flow on + the digraph G satisfies all demand if the net flow into each node + is equal to the demand of that node. + + Parameters + ---------- + G : NetworkX graph + DiGraph on which a minimum cost flow satisfying all demands is + to be found. + + demand : string + Nodes of the graph G are expected to have an attribute demand + that indicates how much flow a node wants to send (negative + demand) or receive (positive demand). Note that the sum of the + demands should be 0 otherwise the problem in not feasible. If + this attribute is not present, a node is considered to have 0 + demand. Default value: 'demand'. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + weight : string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + Returns + ------- + flowDict : dictionary + Dictionary of dictionaries keyed by nodes such that + flowDict[u][v] is the flow edge (u, v). + + Raises + ------ + NetworkXError + This exception is raised if the input graph is not directed or + not connected. + + NetworkXUnfeasible + This exception is raised in the following situations: + + * The sum of the demands is not zero. Then, there is no + flow satisfying all demands. + * There is no flow satisfying all demand. + + NetworkXUnbounded + This exception is raised if the digraph G has a cycle of + negative cost and infinite capacity. Then, the cost of a flow + satisfying all demands is unbounded below. + + See also + -------- + cost_of_flow, max_flow_min_cost, min_cost_flow_cost, network_simplex + + Notes + ----- + This algorithm is not guaranteed to work if edge weights or demands + are floating point numbers (overflows and roundoff errors can + cause problems). As a workaround you can use integer numbers by + multiplying the relevant edge attributes by a convenient + constant factor (eg 100). + + Examples + -------- + A simple example of a min cost flow problem. + + >>> G = nx.DiGraph() + >>> G.add_node("a", demand=-5) + >>> G.add_node("d", demand=5) + >>> G.add_edge("a", "b", weight=3, capacity=4) + >>> G.add_edge("a", "c", weight=6, capacity=10) + >>> G.add_edge("b", "d", weight=1, capacity=9) + >>> G.add_edge("c", "d", weight=2, capacity=5) + >>> flowDict = nx.min_cost_flow(G) + """ + return nx.network_simplex(G, demand=demand, capacity=capacity, weight=weight)[1] + + +@nx._dispatch(edge_attrs={"weight": 0}) +def cost_of_flow(G, flowDict, weight="weight"): + """Compute the cost of the flow given by flowDict on graph G. + + Note that this function does not check for the validity of the + flow flowDict. This function will fail if the graph G and the + flow don't have the same edge set. + + Parameters + ---------- + G : NetworkX graph + DiGraph on which a minimum cost flow satisfying all demands is + to be found. + + weight : string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + flowDict : dictionary + Dictionary of dictionaries keyed by nodes such that + flowDict[u][v] is the flow edge (u, v). + + Returns + ------- + cost : Integer, float + The total cost of the flow. This is given by the sum over all + edges of the product of the edge's flow and the edge's weight. + + See also + -------- + max_flow_min_cost, min_cost_flow, min_cost_flow_cost, network_simplex + + Notes + ----- + This algorithm is not guaranteed to work if edge weights or demands + are floating point numbers (overflows and roundoff errors can + cause problems). As a workaround you can use integer numbers by + multiplying the relevant edge attributes by a convenient + constant factor (eg 100). + """ + return sum((flowDict[u][v] * d.get(weight, 0) for u, v, d in G.edges(data=True))) + + +@nx._dispatch(edge_attrs={"capacity": float("inf"), "weight": 0}) +def max_flow_min_cost(G, s, t, capacity="capacity", weight="weight"): + """Returns a maximum (s, t)-flow of minimum cost. + + G is a digraph with edge costs and capacities. There is a source + node s and a sink node t. This function finds a maximum flow from + s to t whose total cost is minimized. + + Parameters + ---------- + G : NetworkX graph + DiGraph on which a minimum cost flow satisfying all demands is + to be found. + + s: node label + Source of the flow. + + t: node label + Destination of the flow. + + capacity: string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + weight: string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + Returns + ------- + flowDict: dictionary + Dictionary of dictionaries keyed by nodes such that + flowDict[u][v] is the flow edge (u, v). + + Raises + ------ + NetworkXError + This exception is raised if the input graph is not directed or + not connected. + + NetworkXUnbounded + This exception is raised if there is an infinite capacity path + from s to t in G. In this case there is no maximum flow. This + exception is also raised if the digraph G has a cycle of + negative cost and infinite capacity. Then, the cost of a flow + is unbounded below. + + See also + -------- + cost_of_flow, min_cost_flow, min_cost_flow_cost, network_simplex + + Notes + ----- + This algorithm is not guaranteed to work if edge weights or demands + are floating point numbers (overflows and roundoff errors can + cause problems). As a workaround you can use integer numbers by + multiplying the relevant edge attributes by a convenient + constant factor (eg 100). + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edges_from( + ... [ + ... (1, 2, {"capacity": 12, "weight": 4}), + ... (1, 3, {"capacity": 20, "weight": 6}), + ... (2, 3, {"capacity": 6, "weight": -3}), + ... (2, 6, {"capacity": 14, "weight": 1}), + ... (3, 4, {"weight": 9}), + ... (3, 5, {"capacity": 10, "weight": 5}), + ... (4, 2, {"capacity": 19, "weight": 13}), + ... (4, 5, {"capacity": 4, "weight": 0}), + ... (5, 7, {"capacity": 28, "weight": 2}), + ... (6, 5, {"capacity": 11, "weight": 1}), + ... (6, 7, {"weight": 8}), + ... (7, 4, {"capacity": 6, "weight": 6}), + ... ] + ... ) + >>> mincostFlow = nx.max_flow_min_cost(G, 1, 7) + >>> mincost = nx.cost_of_flow(G, mincostFlow) + >>> mincost + 373 + >>> from networkx.algorithms.flow import maximum_flow + >>> maxFlow = maximum_flow(G, 1, 7)[1] + >>> nx.cost_of_flow(G, maxFlow) >= mincost + True + >>> mincostFlowValue = sum((mincostFlow[u][7] for u in G.predecessors(7))) - sum( + ... (mincostFlow[7][v] for v in G.successors(7)) + ... ) + >>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7) + True + + """ + maxFlow = nx.maximum_flow_value(G, s, t, capacity=capacity) + H = nx.DiGraph(G) + H.add_node(s, demand=-maxFlow) + H.add_node(t, demand=maxFlow) + return min_cost_flow(H, capacity=capacity, weight=weight) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/networksimplex.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/networksimplex.py new file mode 100644 index 0000000000000000000000000000000000000000..9fa3589a0c90c65ae73681c9cf48713dde675ca1 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/networksimplex.py @@ -0,0 +1,664 @@ +""" +Minimum cost flow algorithms on directed connected graphs. +""" + +__all__ = ["network_simplex"] + +from itertools import chain, islice, repeat +from math import ceil, sqrt + +import networkx as nx +from networkx.utils import not_implemented_for + + +class _DataEssentialsAndFunctions: + def __init__( + self, G, multigraph, demand="demand", capacity="capacity", weight="weight" + ): + # Number all nodes and edges and hereafter reference them using ONLY their numbers + self.node_list = list(G) # nodes + self.node_indices = {u: i for i, u in enumerate(self.node_list)} # node indices + self.node_demands = [ + G.nodes[u].get(demand, 0) for u in self.node_list + ] # node demands + + self.edge_sources = [] # edge sources + self.edge_targets = [] # edge targets + if multigraph: + self.edge_keys = [] # edge keys + self.edge_indices = {} # edge indices + self.edge_capacities = [] # edge capacities + self.edge_weights = [] # edge weights + + if not multigraph: + edges = G.edges(data=True) + else: + edges = G.edges(data=True, keys=True) + + inf = float("inf") + edges = (e for e in edges if e[0] != e[1] and e[-1].get(capacity, inf) != 0) + for i, e in enumerate(edges): + self.edge_sources.append(self.node_indices[e[0]]) + self.edge_targets.append(self.node_indices[e[1]]) + if multigraph: + self.edge_keys.append(e[2]) + self.edge_indices[e[:-1]] = i + self.edge_capacities.append(e[-1].get(capacity, inf)) + self.edge_weights.append(e[-1].get(weight, 0)) + + # spanning tree specific data to be initialized + + self.edge_count = None # number of edges + self.edge_flow = None # edge flows + self.node_potentials = None # node potentials + self.parent = None # parent nodes + self.parent_edge = None # edges to parents + self.subtree_size = None # subtree sizes + self.next_node_dft = None # next nodes in depth-first thread + self.prev_node_dft = None # previous nodes in depth-first thread + self.last_descendent_dft = None # last descendants in depth-first thread + self._spanning_tree_initialized = ( + False # False until initialize_spanning_tree() is called + ) + + def initialize_spanning_tree(self, n, faux_inf): + self.edge_count = len(self.edge_indices) # number of edges + self.edge_flow = list( + chain(repeat(0, self.edge_count), (abs(d) for d in self.node_demands)) + ) # edge flows + self.node_potentials = [ + faux_inf if d <= 0 else -faux_inf for d in self.node_demands + ] # node potentials + self.parent = list(chain(repeat(-1, n), [None])) # parent nodes + self.parent_edge = list( + range(self.edge_count, self.edge_count + n) + ) # edges to parents + self.subtree_size = list(chain(repeat(1, n), [n + 1])) # subtree sizes + self.next_node_dft = list( + chain(range(1, n), [-1, 0]) + ) # next nodes in depth-first thread + self.prev_node_dft = list(range(-1, n)) # previous nodes in depth-first thread + self.last_descendent_dft = list( + chain(range(n), [n - 1]) + ) # last descendants in depth-first thread + self._spanning_tree_initialized = True # True only if all the assignments pass + + def find_apex(self, p, q): + """ + Find the lowest common ancestor of nodes p and q in the spanning tree. + """ + size_p = self.subtree_size[p] + size_q = self.subtree_size[q] + while True: + while size_p < size_q: + p = self.parent[p] + size_p = self.subtree_size[p] + while size_p > size_q: + q = self.parent[q] + size_q = self.subtree_size[q] + if size_p == size_q: + if p != q: + p = self.parent[p] + size_p = self.subtree_size[p] + q = self.parent[q] + size_q = self.subtree_size[q] + else: + return p + + def trace_path(self, p, w): + """ + Returns the nodes and edges on the path from node p to its ancestor w. + """ + Wn = [p] + We = [] + while p != w: + We.append(self.parent_edge[p]) + p = self.parent[p] + Wn.append(p) + return Wn, We + + def find_cycle(self, i, p, q): + """ + Returns the nodes and edges on the cycle containing edge i == (p, q) + when the latter is added to the spanning tree. + + The cycle is oriented in the direction from p to q. + """ + w = self.find_apex(p, q) + Wn, We = self.trace_path(p, w) + Wn.reverse() + We.reverse() + if We != [i]: + We.append(i) + WnR, WeR = self.trace_path(q, w) + del WnR[-1] + Wn += WnR + We += WeR + return Wn, We + + def augment_flow(self, Wn, We, f): + """ + Augment f units of flow along a cycle represented by Wn and We. + """ + for i, p in zip(We, Wn): + if self.edge_sources[i] == p: + self.edge_flow[i] += f + else: + self.edge_flow[i] -= f + + def trace_subtree(self, p): + """ + Yield the nodes in the subtree rooted at a node p. + """ + yield p + l = self.last_descendent_dft[p] + while p != l: + p = self.next_node_dft[p] + yield p + + def remove_edge(self, s, t): + """ + Remove an edge (s, t) where parent[t] == s from the spanning tree. + """ + size_t = self.subtree_size[t] + prev_t = self.prev_node_dft[t] + last_t = self.last_descendent_dft[t] + next_last_t = self.next_node_dft[last_t] + # Remove (s, t). + self.parent[t] = None + self.parent_edge[t] = None + # Remove the subtree rooted at t from the depth-first thread. + self.next_node_dft[prev_t] = next_last_t + self.prev_node_dft[next_last_t] = prev_t + self.next_node_dft[last_t] = t + self.prev_node_dft[t] = last_t + # Update the subtree sizes and last descendants of the (old) ancestors + # of t. + while s is not None: + self.subtree_size[s] -= size_t + if self.last_descendent_dft[s] == last_t: + self.last_descendent_dft[s] = prev_t + s = self.parent[s] + + def make_root(self, q): + """ + Make a node q the root of its containing subtree. + """ + ancestors = [] + while q is not None: + ancestors.append(q) + q = self.parent[q] + ancestors.reverse() + for p, q in zip(ancestors, islice(ancestors, 1, None)): + size_p = self.subtree_size[p] + last_p = self.last_descendent_dft[p] + prev_q = self.prev_node_dft[q] + last_q = self.last_descendent_dft[q] + next_last_q = self.next_node_dft[last_q] + # Make p a child of q. + self.parent[p] = q + self.parent[q] = None + self.parent_edge[p] = self.parent_edge[q] + self.parent_edge[q] = None + self.subtree_size[p] = size_p - self.subtree_size[q] + self.subtree_size[q] = size_p + # Remove the subtree rooted at q from the depth-first thread. + self.next_node_dft[prev_q] = next_last_q + self.prev_node_dft[next_last_q] = prev_q + self.next_node_dft[last_q] = q + self.prev_node_dft[q] = last_q + if last_p == last_q: + self.last_descendent_dft[p] = prev_q + last_p = prev_q + # Add the remaining parts of the subtree rooted at p as a subtree + # of q in the depth-first thread. + self.prev_node_dft[p] = last_q + self.next_node_dft[last_q] = p + self.next_node_dft[last_p] = q + self.prev_node_dft[q] = last_p + self.last_descendent_dft[q] = last_p + + def add_edge(self, i, p, q): + """ + Add an edge (p, q) to the spanning tree where q is the root of a subtree. + """ + last_p = self.last_descendent_dft[p] + next_last_p = self.next_node_dft[last_p] + size_q = self.subtree_size[q] + last_q = self.last_descendent_dft[q] + # Make q a child of p. + self.parent[q] = p + self.parent_edge[q] = i + # Insert the subtree rooted at q into the depth-first thread. + self.next_node_dft[last_p] = q + self.prev_node_dft[q] = last_p + self.prev_node_dft[next_last_p] = last_q + self.next_node_dft[last_q] = next_last_p + # Update the subtree sizes and last descendants of the (new) ancestors + # of q. + while p is not None: + self.subtree_size[p] += size_q + if self.last_descendent_dft[p] == last_p: + self.last_descendent_dft[p] = last_q + p = self.parent[p] + + def update_potentials(self, i, p, q): + """ + Update the potentials of the nodes in the subtree rooted at a node + q connected to its parent p by an edge i. + """ + if q == self.edge_targets[i]: + d = self.node_potentials[p] - self.edge_weights[i] - self.node_potentials[q] + else: + d = self.node_potentials[p] + self.edge_weights[i] - self.node_potentials[q] + for q in self.trace_subtree(q): + self.node_potentials[q] += d + + def reduced_cost(self, i): + """Returns the reduced cost of an edge i.""" + c = ( + self.edge_weights[i] + - self.node_potentials[self.edge_sources[i]] + + self.node_potentials[self.edge_targets[i]] + ) + return c if self.edge_flow[i] == 0 else -c + + def find_entering_edges(self): + """Yield entering edges until none can be found.""" + if self.edge_count == 0: + return + + # Entering edges are found by combining Dantzig's rule and Bland's + # rule. The edges are cyclically grouped into blocks of size B. Within + # each block, Dantzig's rule is applied to find an entering edge. The + # blocks to search is determined following Bland's rule. + B = int(ceil(sqrt(self.edge_count))) # pivot block size + M = (self.edge_count + B - 1) // B # number of blocks needed to cover all edges + m = 0 # number of consecutive blocks without eligible + # entering edges + f = 0 # first edge in block + while m < M: + # Determine the next block of edges. + l = f + B + if l <= self.edge_count: + edges = range(f, l) + else: + l -= self.edge_count + edges = chain(range(f, self.edge_count), range(l)) + f = l + # Find the first edge with the lowest reduced cost. + i = min(edges, key=self.reduced_cost) + c = self.reduced_cost(i) + if c >= 0: + # No entering edge found in the current block. + m += 1 + else: + # Entering edge found. + if self.edge_flow[i] == 0: + p = self.edge_sources[i] + q = self.edge_targets[i] + else: + p = self.edge_targets[i] + q = self.edge_sources[i] + yield i, p, q + m = 0 + # All edges have nonnegative reduced costs. The current flow is + # optimal. + + def residual_capacity(self, i, p): + """Returns the residual capacity of an edge i in the direction away + from its endpoint p. + """ + return ( + self.edge_capacities[i] - self.edge_flow[i] + if self.edge_sources[i] == p + else self.edge_flow[i] + ) + + def find_leaving_edge(self, Wn, We): + """Returns the leaving edge in a cycle represented by Wn and We.""" + j, s = min( + zip(reversed(We), reversed(Wn)), + key=lambda i_p: self.residual_capacity(*i_p), + ) + t = self.edge_targets[j] if self.edge_sources[j] == s else self.edge_sources[j] + return j, s, t + + +@not_implemented_for("undirected") +@nx._dispatch(node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}) +def network_simplex(G, demand="demand", capacity="capacity", weight="weight"): + r"""Find a minimum cost flow satisfying all demands in digraph G. + + This is a primal network simplex algorithm that uses the leaving + arc rule to prevent cycling. + + G is a digraph with edge costs and capacities and in which nodes + have demand, i.e., they want to send or receive some amount of + flow. A negative demand means that the node wants to send flow, a + positive demand means that the node want to receive flow. A flow on + the digraph G satisfies all demand if the net flow into each node + is equal to the demand of that node. + + Parameters + ---------- + G : NetworkX graph + DiGraph on which a minimum cost flow satisfying all demands is + to be found. + + demand : string + Nodes of the graph G are expected to have an attribute demand + that indicates how much flow a node wants to send (negative + demand) or receive (positive demand). Note that the sum of the + demands should be 0 otherwise the problem in not feasible. If + this attribute is not present, a node is considered to have 0 + demand. Default value: 'demand'. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + weight : string + Edges of the graph G are expected to have an attribute weight + that indicates the cost incurred by sending one unit of flow on + that edge. If not present, the weight is considered to be 0. + Default value: 'weight'. + + Returns + ------- + flowCost : integer, float + Cost of a minimum cost flow satisfying all demands. + + flowDict : dictionary + Dictionary of dictionaries keyed by nodes such that + flowDict[u][v] is the flow edge (u, v). + + Raises + ------ + NetworkXError + This exception is raised if the input graph is not directed or + not connected. + + NetworkXUnfeasible + This exception is raised in the following situations: + + * The sum of the demands is not zero. Then, there is no + flow satisfying all demands. + * There is no flow satisfying all demand. + + NetworkXUnbounded + This exception is raised if the digraph G has a cycle of + negative cost and infinite capacity. Then, the cost of a flow + satisfying all demands is unbounded below. + + Notes + ----- + This algorithm is not guaranteed to work if edge weights or demands + are floating point numbers (overflows and roundoff errors can + cause problems). As a workaround you can use integer numbers by + multiplying the relevant edge attributes by a convenient + constant factor (eg 100). + + See also + -------- + cost_of_flow, max_flow_min_cost, min_cost_flow, min_cost_flow_cost + + Examples + -------- + A simple example of a min cost flow problem. + + >>> G = nx.DiGraph() + >>> G.add_node("a", demand=-5) + >>> G.add_node("d", demand=5) + >>> G.add_edge("a", "b", weight=3, capacity=4) + >>> G.add_edge("a", "c", weight=6, capacity=10) + >>> G.add_edge("b", "d", weight=1, capacity=9) + >>> G.add_edge("c", "d", weight=2, capacity=5) + >>> flowCost, flowDict = nx.network_simplex(G) + >>> flowCost + 24 + >>> flowDict + {'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}} + + The mincost flow algorithm can also be used to solve shortest path + problems. To find the shortest path between two nodes u and v, + give all edges an infinite capacity, give node u a demand of -1 and + node v a demand a 1. Then run the network simplex. The value of a + min cost flow will be the distance between u and v and edges + carrying positive flow will indicate the path. + + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... [ + ... ("s", "u", 10), + ... ("s", "x", 5), + ... ("u", "v", 1), + ... ("u", "x", 2), + ... ("v", "y", 1), + ... ("x", "u", 3), + ... ("x", "v", 5), + ... ("x", "y", 2), + ... ("y", "s", 7), + ... ("y", "v", 6), + ... ] + ... ) + >>> G.add_node("s", demand=-1) + >>> G.add_node("v", demand=1) + >>> flowCost, flowDict = nx.network_simplex(G) + >>> flowCost == nx.shortest_path_length(G, "s", "v", weight="weight") + True + >>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0]) + [('s', 'x'), ('u', 'v'), ('x', 'u')] + >>> nx.shortest_path(G, "s", "v", weight="weight") + ['s', 'x', 'u', 'v'] + + It is possible to change the name of the attributes used for the + algorithm. + + >>> G = nx.DiGraph() + >>> G.add_node("p", spam=-4) + >>> G.add_node("q", spam=2) + >>> G.add_node("a", spam=-2) + >>> G.add_node("d", spam=-1) + >>> G.add_node("t", spam=2) + >>> G.add_node("w", spam=3) + >>> G.add_edge("p", "q", cost=7, vacancies=5) + >>> G.add_edge("p", "a", cost=1, vacancies=4) + >>> G.add_edge("q", "d", cost=2, vacancies=3) + >>> G.add_edge("t", "q", cost=1, vacancies=2) + >>> G.add_edge("a", "t", cost=2, vacancies=4) + >>> G.add_edge("d", "w", cost=3, vacancies=4) + >>> G.add_edge("t", "w", cost=4, vacancies=1) + >>> flowCost, flowDict = nx.network_simplex( + ... G, demand="spam", capacity="vacancies", weight="cost" + ... ) + >>> flowCost + 37 + >>> flowDict + {'p': {'q': 2, 'a': 2}, 'q': {'d': 1}, 'a': {'t': 4}, 'd': {'w': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} + + References + ---------- + .. [1] Z. Kiraly, P. Kovacs. + Efficient implementation of minimum-cost flow algorithms. + Acta Universitatis Sapientiae, Informatica 4(1):67--118. 2012. + .. [2] R. Barr, F. Glover, D. Klingman. + Enhancement of spanning tree labeling procedures for network + optimization. + INFOR 17(1):16--34. 1979. + """ + ########################################################################### + # Problem essentials extraction and sanity check + ########################################################################### + + if len(G) == 0: + raise nx.NetworkXError("graph has no nodes") + + multigraph = G.is_multigraph() + + # extracting data essential to problem + DEAF = _DataEssentialsAndFunctions( + G, multigraph, demand=demand, capacity=capacity, weight=weight + ) + + ########################################################################### + # Quick Error Detection + ########################################################################### + + inf = float("inf") + for u, d in zip(DEAF.node_list, DEAF.node_demands): + if abs(d) == inf: + raise nx.NetworkXError(f"node {u!r} has infinite demand") + for e, w in zip(DEAF.edge_indices, DEAF.edge_weights): + if abs(w) == inf: + raise nx.NetworkXError(f"edge {e!r} has infinite weight") + if not multigraph: + edges = nx.selfloop_edges(G, data=True) + else: + edges = nx.selfloop_edges(G, data=True, keys=True) + for e in edges: + if abs(e[-1].get(weight, 0)) == inf: + raise nx.NetworkXError(f"edge {e[:-1]!r} has infinite weight") + + ########################################################################### + # Quick Infeasibility Detection + ########################################################################### + + if sum(DEAF.node_demands) != 0: + raise nx.NetworkXUnfeasible("total node demand is not zero") + for e, c in zip(DEAF.edge_indices, DEAF.edge_capacities): + if c < 0: + raise nx.NetworkXUnfeasible(f"edge {e!r} has negative capacity") + if not multigraph: + edges = nx.selfloop_edges(G, data=True) + else: + edges = nx.selfloop_edges(G, data=True, keys=True) + for e in edges: + if e[-1].get(capacity, inf) < 0: + raise nx.NetworkXUnfeasible(f"edge {e[:-1]!r} has negative capacity") + + ########################################################################### + # Initialization + ########################################################################### + + # Add a dummy node -1 and connect all existing nodes to it with infinite- + # capacity dummy edges. Node -1 will serve as the root of the + # spanning tree of the network simplex method. The new edges will used to + # trivially satisfy the node demands and create an initial strongly + # feasible spanning tree. + for i, d in enumerate(DEAF.node_demands): + # Must be greater-than here. Zero-demand nodes must have + # edges pointing towards the root to ensure strong feasibility. + if d > 0: + DEAF.edge_sources.append(-1) + DEAF.edge_targets.append(i) + else: + DEAF.edge_sources.append(i) + DEAF.edge_targets.append(-1) + faux_inf = ( + 3 + * max( + chain( + [ + sum(c for c in DEAF.edge_capacities if c < inf), + sum(abs(w) for w in DEAF.edge_weights), + ], + (abs(d) for d in DEAF.node_demands), + ) + ) + or 1 + ) + + n = len(DEAF.node_list) # number of nodes + DEAF.edge_weights.extend(repeat(faux_inf, n)) + DEAF.edge_capacities.extend(repeat(faux_inf, n)) + + # Construct the initial spanning tree. + DEAF.initialize_spanning_tree(n, faux_inf) + + ########################################################################### + # Pivot loop + ########################################################################### + + for i, p, q in DEAF.find_entering_edges(): + Wn, We = DEAF.find_cycle(i, p, q) + j, s, t = DEAF.find_leaving_edge(Wn, We) + DEAF.augment_flow(Wn, We, DEAF.residual_capacity(j, s)) + # Do nothing more if the entering edge is the same as the leaving edge. + if i != j: + if DEAF.parent[t] != s: + # Ensure that s is the parent of t. + s, t = t, s + if We.index(i) > We.index(j): + # Ensure that q is in the subtree rooted at t. + p, q = q, p + DEAF.remove_edge(s, t) + DEAF.make_root(q) + DEAF.add_edge(i, p, q) + DEAF.update_potentials(i, p, q) + + ########################################################################### + # Infeasibility and unboundedness detection + ########################################################################### + + if any(DEAF.edge_flow[i] != 0 for i in range(-n, 0)): + raise nx.NetworkXUnfeasible("no flow satisfies all node demands") + + if any(DEAF.edge_flow[i] * 2 >= faux_inf for i in range(DEAF.edge_count)) or any( + e[-1].get(capacity, inf) == inf and e[-1].get(weight, 0) < 0 + for e in nx.selfloop_edges(G, data=True) + ): + raise nx.NetworkXUnbounded("negative cycle with infinite capacity found") + + ########################################################################### + # Flow cost calculation and flow dict construction + ########################################################################### + + del DEAF.edge_flow[DEAF.edge_count :] + flow_cost = sum(w * x for w, x in zip(DEAF.edge_weights, DEAF.edge_flow)) + flow_dict = {n: {} for n in DEAF.node_list} + + def add_entry(e): + """Add a flow dict entry.""" + d = flow_dict[e[0]] + for k in e[1:-2]: + try: + d = d[k] + except KeyError: + t = {} + d[k] = t + d = t + d[e[-2]] = e[-1] + + DEAF.edge_sources = ( + DEAF.node_list[s] for s in DEAF.edge_sources + ) # Use original nodes. + DEAF.edge_targets = ( + DEAF.node_list[t] for t in DEAF.edge_targets + ) # Use original nodes. + if not multigraph: + for e in zip(DEAF.edge_sources, DEAF.edge_targets, DEAF.edge_flow): + add_entry(e) + edges = G.edges(data=True) + else: + for e in zip( + DEAF.edge_sources, DEAF.edge_targets, DEAF.edge_keys, DEAF.edge_flow + ): + add_entry(e) + edges = G.edges(data=True, keys=True) + for e in edges: + if e[0] != e[1]: + if e[-1].get(capacity, inf) == 0: + add_entry(e[:-1] + (0,)) + else: + w = e[-1].get(weight, 0) + if w >= 0: + add_entry(e[:-1] + (0,)) + else: + c = e[-1][capacity] + flow_cost += w * c + add_entry(e[:-1] + (c,)) + + return flow_cost, flow_dict diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/preflowpush.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/preflowpush.py new file mode 100644 index 0000000000000000000000000000000000000000..05b982ba1ff48e0d6f4ca1bb4312a26b84fb94f8 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/preflowpush.py @@ -0,0 +1,429 @@ +""" +Highest-label preflow-push algorithm for maximum flow problems. +""" + +from collections import deque +from itertools import islice + +import networkx as nx + +from ...utils import arbitrary_element +from .utils import ( + CurrentEdge, + GlobalRelabelThreshold, + Level, + build_residual_network, + detect_unboundedness, +) + +__all__ = ["preflow_push"] + + +def preflow_push_impl(G, s, t, capacity, residual, global_relabel_freq, value_only): + """Implementation of the highest-label preflow-push algorithm.""" + if s not in G: + raise nx.NetworkXError(f"node {str(s)} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {str(t)} not in graph") + if s == t: + raise nx.NetworkXError("source and sink are the same node") + + if global_relabel_freq is None: + global_relabel_freq = 0 + if global_relabel_freq < 0: + raise nx.NetworkXError("global_relabel_freq must be nonnegative.") + + if residual is None: + R = build_residual_network(G, capacity) + else: + R = residual + + detect_unboundedness(R, s, t) + + R_nodes = R.nodes + R_pred = R.pred + R_succ = R.succ + + # Initialize/reset the residual network. + for u in R: + R_nodes[u]["excess"] = 0 + for e in R_succ[u].values(): + e["flow"] = 0 + + def reverse_bfs(src): + """Perform a reverse breadth-first search from src in the residual + network. + """ + heights = {src: 0} + q = deque([(src, 0)]) + while q: + u, height = q.popleft() + height += 1 + for v, attr in R_pred[u].items(): + if v not in heights and attr["flow"] < attr["capacity"]: + heights[v] = height + q.append((v, height)) + return heights + + # Initialize heights of the nodes. + heights = reverse_bfs(t) + + if s not in heights: + # t is not reachable from s in the residual network. The maximum flow + # must be zero. + R.graph["flow_value"] = 0 + return R + + n = len(R) + # max_height represents the height of the highest level below level n with + # at least one active node. + max_height = max(heights[u] for u in heights if u != s) + heights[s] = n + + grt = GlobalRelabelThreshold(n, R.size(), global_relabel_freq) + + # Initialize heights and 'current edge' data structures of the nodes. + for u in R: + R_nodes[u]["height"] = heights[u] if u in heights else n + 1 + R_nodes[u]["curr_edge"] = CurrentEdge(R_succ[u]) + + def push(u, v, flow): + """Push flow units of flow from u to v.""" + R_succ[u][v]["flow"] += flow + R_succ[v][u]["flow"] -= flow + R_nodes[u]["excess"] -= flow + R_nodes[v]["excess"] += flow + + # The maximum flow must be nonzero now. Initialize the preflow by + # saturating all edges emanating from s. + for u, attr in R_succ[s].items(): + flow = attr["capacity"] + if flow > 0: + push(s, u, flow) + + # Partition nodes into levels. + levels = [Level() for i in range(2 * n)] + for u in R: + if u != s and u != t: + level = levels[R_nodes[u]["height"]] + if R_nodes[u]["excess"] > 0: + level.active.add(u) + else: + level.inactive.add(u) + + def activate(v): + """Move a node from the inactive set to the active set of its level.""" + if v != s and v != t: + level = levels[R_nodes[v]["height"]] + if v in level.inactive: + level.inactive.remove(v) + level.active.add(v) + + def relabel(u): + """Relabel a node to create an admissible edge.""" + grt.add_work(len(R_succ[u])) + return ( + min( + R_nodes[v]["height"] + for v, attr in R_succ[u].items() + if attr["flow"] < attr["capacity"] + ) + + 1 + ) + + def discharge(u, is_phase1): + """Discharge a node until it becomes inactive or, during phase 1 (see + below), its height reaches at least n. The node is known to have the + largest height among active nodes. + """ + height = R_nodes[u]["height"] + curr_edge = R_nodes[u]["curr_edge"] + # next_height represents the next height to examine after discharging + # the current node. During phase 1, it is capped to below n. + next_height = height + levels[height].active.remove(u) + while True: + v, attr = curr_edge.get() + if height == R_nodes[v]["height"] + 1 and attr["flow"] < attr["capacity"]: + flow = min(R_nodes[u]["excess"], attr["capacity"] - attr["flow"]) + push(u, v, flow) + activate(v) + if R_nodes[u]["excess"] == 0: + # The node has become inactive. + levels[height].inactive.add(u) + break + try: + curr_edge.move_to_next() + except StopIteration: + # We have run off the end of the adjacency list, and there can + # be no more admissible edges. Relabel the node to create one. + height = relabel(u) + if is_phase1 and height >= n - 1: + # Although the node is still active, with a height at least + # n - 1, it is now known to be on the s side of the minimum + # s-t cut. Stop processing it until phase 2. + levels[height].active.add(u) + break + # The first relabel operation after global relabeling may not + # increase the height of the node since the 'current edge' data + # structure is not rewound. Use height instead of (height - 1) + # in case other active nodes at the same level are missed. + next_height = height + R_nodes[u]["height"] = height + return next_height + + def gap_heuristic(height): + """Apply the gap heuristic.""" + # Move all nodes at levels (height + 1) to max_height to level n + 1. + for level in islice(levels, height + 1, max_height + 1): + for u in level.active: + R_nodes[u]["height"] = n + 1 + for u in level.inactive: + R_nodes[u]["height"] = n + 1 + levels[n + 1].active.update(level.active) + level.active.clear() + levels[n + 1].inactive.update(level.inactive) + level.inactive.clear() + + def global_relabel(from_sink): + """Apply the global relabeling heuristic.""" + src = t if from_sink else s + heights = reverse_bfs(src) + if not from_sink: + # s must be reachable from t. Remove t explicitly. + del heights[t] + max_height = max(heights.values()) + if from_sink: + # Also mark nodes from which t is unreachable for relabeling. This + # serves the same purpose as the gap heuristic. + for u in R: + if u not in heights and R_nodes[u]["height"] < n: + heights[u] = n + 1 + else: + # Shift the computed heights because the height of s is n. + for u in heights: + heights[u] += n + max_height += n + del heights[src] + for u, new_height in heights.items(): + old_height = R_nodes[u]["height"] + if new_height != old_height: + if u in levels[old_height].active: + levels[old_height].active.remove(u) + levels[new_height].active.add(u) + else: + levels[old_height].inactive.remove(u) + levels[new_height].inactive.add(u) + R_nodes[u]["height"] = new_height + return max_height + + # Phase 1: Find the maximum preflow by pushing as much flow as possible to + # t. + + height = max_height + while height > 0: + # Discharge active nodes in the current level. + while True: + level = levels[height] + if not level.active: + # All active nodes in the current level have been discharged. + # Move to the next lower level. + height -= 1 + break + # Record the old height and level for the gap heuristic. + old_height = height + old_level = level + u = arbitrary_element(level.active) + height = discharge(u, True) + if grt.is_reached(): + # Global relabeling heuristic: Recompute the exact heights of + # all nodes. + height = global_relabel(True) + max_height = height + grt.clear_work() + elif not old_level.active and not old_level.inactive: + # Gap heuristic: If the level at old_height is empty (a 'gap'), + # a minimum cut has been identified. All nodes with heights + # above old_height can have their heights set to n + 1 and not + # be further processed before a maximum preflow is found. + gap_heuristic(old_height) + height = old_height - 1 + max_height = height + else: + # Update the height of the highest level with at least one + # active node. + max_height = max(max_height, height) + + # A maximum preflow has been found. The excess at t is the maximum flow + # value. + if value_only: + R.graph["flow_value"] = R_nodes[t]["excess"] + return R + + # Phase 2: Convert the maximum preflow into a maximum flow by returning the + # excess to s. + + # Relabel all nodes so that they have accurate heights. + height = global_relabel(False) + grt.clear_work() + + # Continue to discharge the active nodes. + while height > n: + # Discharge active nodes in the current level. + while True: + level = levels[height] + if not level.active: + # All active nodes in the current level have been discharged. + # Move to the next lower level. + height -= 1 + break + u = arbitrary_element(level.active) + height = discharge(u, False) + if grt.is_reached(): + # Global relabeling heuristic. + height = global_relabel(False) + grt.clear_work() + + R.graph["flow_value"] = R_nodes[t]["excess"] + return R + + +@nx._dispatch( + graphs={"G": 0, "residual?": 4}, + edge_attrs={"capacity": float("inf")}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def preflow_push( + G, s, t, capacity="capacity", residual=None, global_relabel_freq=1, value_only=False +): + r"""Find a maximum single-commodity flow using the highest-label + preflow-push algorithm. + + This function returns the residual network resulting after computing + the maximum flow. See below for details about the conventions + NetworkX uses for defining residual networks. + + This algorithm has a running time of $O(n^2 \sqrt{m})$ for $n$ nodes and + $m$ edges. + + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + residual : NetworkX graph + Residual network on which the algorithm is to be executed. If None, a + new residual network is created. Default value: None. + + global_relabel_freq : integer, float + Relative frequency of applying the global relabeling heuristic to speed + up the algorithm. If it is None, the heuristic is disabled. Default + value: 1. + + value_only : bool + If False, compute a maximum flow; otherwise, compute a maximum preflow + which is enough for computing the maximum flow value. Default value: + False. + + Returns + ------- + R : NetworkX DiGraph + Residual network after computing the maximum flow. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`edmonds_karp` + :meth:`shortest_augmenting_path` + + Notes + ----- + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. For each node :samp:`u` in :samp:`R`, + :samp:`R.nodes[u]['excess']` represents the difference between flow into + :samp:`u` and flow out of :samp:`u`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using + only edges :samp:`(u, v)` such that + :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Examples + -------- + >>> from networkx.algorithms.flow import preflow_push + + The functions that implement flow algorithms and output a residual + network, such as this one, are not imported to the base NetworkX + namespace, so you have to explicitly import them from the flow package. + + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + >>> R = preflow_push(G, "x", "y") + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value == R.graph["flow_value"] + True + >>> # preflow_push also stores the maximum flow value + >>> # in the excess attribute of the sink node t + >>> flow_value == R.nodes["y"]["excess"] + True + >>> # For some problems, you might only want to compute a + >>> # maximum preflow. + >>> R = preflow_push(G, "x", "y", value_only=True) + >>> flow_value == R.graph["flow_value"] + True + >>> flow_value == R.nodes["y"]["excess"] + True + + """ + R = preflow_push_impl(G, s, t, capacity, residual, global_relabel_freq, value_only) + R.graph["algorithm"] = "preflow_push" + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/shortestaugmentingpath.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/shortestaugmentingpath.py new file mode 100644 index 0000000000000000000000000000000000000000..d06a88b7bc84a49898272c5925088e20f8d71aef --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/shortestaugmentingpath.py @@ -0,0 +1,304 @@ +""" +Shortest augmenting path algorithm for maximum flow problems. +""" + +from collections import deque + +import networkx as nx + +from .edmondskarp import edmonds_karp_core +from .utils import CurrentEdge, build_residual_network + +__all__ = ["shortest_augmenting_path"] + + +def shortest_augmenting_path_impl(G, s, t, capacity, residual, two_phase, cutoff): + """Implementation of the shortest augmenting path algorithm.""" + if s not in G: + raise nx.NetworkXError(f"node {str(s)} not in graph") + if t not in G: + raise nx.NetworkXError(f"node {str(t)} not in graph") + if s == t: + raise nx.NetworkXError("source and sink are the same node") + + if residual is None: + R = build_residual_network(G, capacity) + else: + R = residual + + R_nodes = R.nodes + R_pred = R.pred + R_succ = R.succ + + # Initialize/reset the residual network. + for u in R: + for e in R_succ[u].values(): + e["flow"] = 0 + + # Initialize heights of the nodes. + heights = {t: 0} + q = deque([(t, 0)]) + while q: + u, height = q.popleft() + height += 1 + for v, attr in R_pred[u].items(): + if v not in heights and attr["flow"] < attr["capacity"]: + heights[v] = height + q.append((v, height)) + + if s not in heights: + # t is not reachable from s in the residual network. The maximum flow + # must be zero. + R.graph["flow_value"] = 0 + return R + + n = len(G) + m = R.size() / 2 + + # Initialize heights and 'current edge' data structures of the nodes. + for u in R: + R_nodes[u]["height"] = heights[u] if u in heights else n + R_nodes[u]["curr_edge"] = CurrentEdge(R_succ[u]) + + # Initialize counts of nodes in each level. + counts = [0] * (2 * n - 1) + for u in R: + counts[R_nodes[u]["height"]] += 1 + + inf = R.graph["inf"] + + def augment(path): + """Augment flow along a path from s to t.""" + # Determine the path residual capacity. + flow = inf + it = iter(path) + u = next(it) + for v in it: + attr = R_succ[u][v] + flow = min(flow, attr["capacity"] - attr["flow"]) + u = v + if flow * 2 > inf: + raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.") + # Augment flow along the path. + it = iter(path) + u = next(it) + for v in it: + R_succ[u][v]["flow"] += flow + R_succ[v][u]["flow"] -= flow + u = v + return flow + + def relabel(u): + """Relabel a node to create an admissible edge.""" + height = n - 1 + for v, attr in R_succ[u].items(): + if attr["flow"] < attr["capacity"]: + height = min(height, R_nodes[v]["height"]) + return height + 1 + + if cutoff is None: + cutoff = float("inf") + + # Phase 1: Look for shortest augmenting paths using depth-first search. + + flow_value = 0 + path = [s] + u = s + d = n if not two_phase else int(min(m**0.5, 2 * n ** (2.0 / 3))) + done = R_nodes[s]["height"] >= d + while not done: + height = R_nodes[u]["height"] + curr_edge = R_nodes[u]["curr_edge"] + # Depth-first search for the next node on the path to t. + while True: + v, attr = curr_edge.get() + if height == R_nodes[v]["height"] + 1 and attr["flow"] < attr["capacity"]: + # Advance to the next node following an admissible edge. + path.append(v) + u = v + break + try: + curr_edge.move_to_next() + except StopIteration: + counts[height] -= 1 + if counts[height] == 0: + # Gap heuristic: If relabeling causes a level to become + # empty, a minimum cut has been identified. The algorithm + # can now be terminated. + R.graph["flow_value"] = flow_value + return R + height = relabel(u) + if u == s and height >= d: + if not two_phase: + # t is disconnected from s in the residual network. No + # more augmenting paths exist. + R.graph["flow_value"] = flow_value + return R + else: + # t is at least d steps away from s. End of phase 1. + done = True + break + counts[height] += 1 + R_nodes[u]["height"] = height + if u != s: + # After relabeling, the last edge on the path is no longer + # admissible. Retreat one step to look for an alternative. + path.pop() + u = path[-1] + break + if u == t: + # t is reached. Augment flow along the path and reset it for a new + # depth-first search. + flow_value += augment(path) + if flow_value >= cutoff: + R.graph["flow_value"] = flow_value + return R + path = [s] + u = s + + # Phase 2: Look for shortest augmenting paths using breadth-first search. + flow_value += edmonds_karp_core(R, s, t, cutoff - flow_value) + + R.graph["flow_value"] = flow_value + return R + + +@nx._dispatch( + graphs={"G": 0, "residual?": 4}, + edge_attrs={"capacity": float("inf")}, + preserve_edge_attrs={"residual": {"capacity": float("inf")}}, + preserve_graph_attrs={"residual"}, +) +def shortest_augmenting_path( + G, + s, + t, + capacity="capacity", + residual=None, + value_only=False, + two_phase=False, + cutoff=None, +): + r"""Find a maximum single-commodity flow using the shortest augmenting path + algorithm. + + This function returns the residual network resulting after computing + the maximum flow. See below for details about the conventions + NetworkX uses for defining residual networks. + + This algorithm has a running time of $O(n^2 m)$ for $n$ nodes and $m$ + edges. + + + Parameters + ---------- + G : NetworkX graph + Edges of the graph are expected to have an attribute called + 'capacity'. If this attribute is not present, the edge is + considered to have infinite capacity. + + s : node + Source node for the flow. + + t : node + Sink node for the flow. + + capacity : string + Edges of the graph G are expected to have an attribute capacity + that indicates how much flow the edge can support. If this + attribute is not present, the edge is considered to have + infinite capacity. Default value: 'capacity'. + + residual : NetworkX graph + Residual network on which the algorithm is to be executed. If None, a + new residual network is created. Default value: None. + + value_only : bool + If True compute only the value of the maximum flow. This parameter + will be ignored by this algorithm because it is not applicable. + + two_phase : bool + If True, a two-phase variant is used. The two-phase variant improves + the running time on unit-capacity networks from $O(nm)$ to + $O(\min(n^{2/3}, m^{1/2}) m)$. Default value: False. + + cutoff : integer, float + If specified, the algorithm will terminate when the flow value reaches + or exceeds the cutoff. In this case, it may be unable to immediately + determine a minimum cut. Default value: None. + + Returns + ------- + R : NetworkX DiGraph + Residual network after computing the maximum flow. + + Raises + ------ + NetworkXError + The algorithm does not support MultiGraph and MultiDiGraph. If + the input graph is an instance of one of these two classes, a + NetworkXError is raised. + + NetworkXUnbounded + If the graph has a path of infinite capacity, the value of a + feasible flow on the graph is unbounded above and the function + raises a NetworkXUnbounded. + + See also + -------- + :meth:`maximum_flow` + :meth:`minimum_cut` + :meth:`edmonds_karp` + :meth:`preflow_push` + + Notes + ----- + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not + specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such + that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + Examples + -------- + >>> from networkx.algorithms.flow import shortest_augmenting_path + + The functions that implement flow algorithms and output a residual + network, such as this one, are not imported to the base NetworkX + namespace, so you have to explicitly import them from the flow package. + + >>> G = nx.DiGraph() + >>> G.add_edge("x", "a", capacity=3.0) + >>> G.add_edge("x", "b", capacity=1.0) + >>> G.add_edge("a", "c", capacity=3.0) + >>> G.add_edge("b", "c", capacity=5.0) + >>> G.add_edge("b", "d", capacity=4.0) + >>> G.add_edge("d", "e", capacity=2.0) + >>> G.add_edge("c", "y", capacity=2.0) + >>> G.add_edge("e", "y", capacity=3.0) + >>> R = shortest_augmenting_path(G, "x", "y") + >>> flow_value = nx.maximum_flow_value(G, "x", "y") + >>> flow_value + 3.0 + >>> flow_value == R.graph["flow_value"] + True + + """ + R = shortest_augmenting_path_impl(G, s, t, capacity, residual, two_phase, cutoff) + R.graph["algorithm"] = "shortest_augmenting_path" + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5ee638a5bf717bca153fbfdede8ec99292ab2a5 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbe52950f34e29291a05ddb992f7d59273bd8acb Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2339dc48a992f6e168ffa95c4f5598221eecd8a6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow_large_graph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow_large_graph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7da22cd07845cbe87e7c470c8fe4dd3d43d569ec Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow_large_graph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_mincost.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_mincost.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d93f9e45ab142d78e09f927df2dbb28478ef9bba Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_mincost.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_networksimplex.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_networksimplex.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b9d25a7b505a348c04a66bd373b4e5c72c655d0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/__pycache__/test_networksimplex.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_gomory_hu.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_gomory_hu.py new file mode 100644 index 0000000000000000000000000000000000000000..1649ec82c719226e9caa68268d8953f7cae6ef74 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_gomory_hu.py @@ -0,0 +1,128 @@ +from itertools import combinations + +import pytest + +import networkx as nx +from networkx.algorithms.flow import ( + boykov_kolmogorov, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +) + +flow_funcs = [ + boykov_kolmogorov, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +] + + +class TestGomoryHuTree: + def minimum_edge_weight(self, T, u, v): + path = nx.shortest_path(T, u, v, weight="weight") + return min((T[u][v]["weight"], (u, v)) for (u, v) in zip(path, path[1:])) + + def compute_cutset(self, G, T_orig, edge): + T = T_orig.copy() + T.remove_edge(*edge) + U, V = list(nx.connected_components(T)) + cutset = set() + for x, nbrs in ((n, G[n]) for n in U): + cutset.update((x, y) for y in nbrs if y in V) + return cutset + + def test_default_flow_function_karate_club_graph(self): + G = nx.karate_club_graph() + nx.set_edge_attributes(G, 1, "capacity") + T = nx.gomory_hu_tree(G) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v) == cut_value + + def test_karate_club_graph(self): + G = nx.karate_club_graph() + nx.set_edge_attributes(G, 1, "capacity") + for flow_func in flow_funcs: + T = nx.gomory_hu_tree(G, flow_func=flow_func) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v) == cut_value + + def test_davis_southern_women_graph(self): + G = nx.davis_southern_women_graph() + nx.set_edge_attributes(G, 1, "capacity") + for flow_func in flow_funcs: + T = nx.gomory_hu_tree(G, flow_func=flow_func) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v) == cut_value + + def test_florentine_families_graph(self): + G = nx.florentine_families_graph() + nx.set_edge_attributes(G, 1, "capacity") + for flow_func in flow_funcs: + T = nx.gomory_hu_tree(G, flow_func=flow_func) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v) == cut_value + + @pytest.mark.slow + def test_les_miserables_graph_cutset(self): + G = nx.les_miserables_graph() + nx.set_edge_attributes(G, 1, "capacity") + for flow_func in flow_funcs: + T = nx.gomory_hu_tree(G, flow_func=flow_func) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v) == cut_value + + def test_karate_club_graph_cutset(self): + G = nx.karate_club_graph() + nx.set_edge_attributes(G, 1, "capacity") + T = nx.gomory_hu_tree(G) + assert nx.is_tree(T) + u, v = 0, 33 + cut_value, edge = self.minimum_edge_weight(T, u, v) + cutset = self.compute_cutset(G, T, edge) + assert cut_value == len(cutset) + + def test_wikipedia_example(self): + # Example from https://en.wikipedia.org/wiki/Gomory%E2%80%93Hu_tree + G = nx.Graph() + G.add_weighted_edges_from( + ( + (0, 1, 1), + (0, 2, 7), + (1, 2, 1), + (1, 3, 3), + (1, 4, 2), + (2, 4, 4), + (3, 4, 1), + (3, 5, 6), + (4, 5, 2), + ) + ) + for flow_func in flow_funcs: + T = nx.gomory_hu_tree(G, capacity="weight", flow_func=flow_func) + assert nx.is_tree(T) + for u, v in combinations(G, 2): + cut_value, edge = self.minimum_edge_weight(T, u, v) + assert nx.minimum_cut_value(G, u, v, capacity="weight") == cut_value + + def test_directed_raises(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + T = nx.gomory_hu_tree(G) + + def test_empty_raises(self): + with pytest.raises(nx.NetworkXError): + G = nx.empty_graph() + T = nx.gomory_hu_tree(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow.py new file mode 100644 index 0000000000000000000000000000000000000000..c31d8422843cdc8407032220ab9a76de52661a6e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow.py @@ -0,0 +1,560 @@ +"""Maximum flow algorithms test suite. +""" +import pytest + +import networkx as nx +from networkx.algorithms.flow import ( + boykov_kolmogorov, + build_flow_dict, + build_residual_network, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +) + +flow_funcs = { + boykov_kolmogorov, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +} + +max_min_funcs = {nx.maximum_flow, nx.minimum_cut} +flow_value_funcs = {nx.maximum_flow_value, nx.minimum_cut_value} +interface_funcs = max_min_funcs & flow_value_funcs +all_funcs = flow_funcs & interface_funcs + + +def compute_cutset(G, partition): + reachable, non_reachable = partition + cutset = set() + for u, nbrs in ((n, G[n]) for n in reachable): + cutset.update((u, v) for v in nbrs if v in non_reachable) + return cutset + + +def validate_flows(G, s, t, flowDict, solnValue, capacity, flow_func): + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert set(G) == set(flowDict), errmsg + for u in G: + assert set(G[u]) == set(flowDict[u]), errmsg + excess = {u: 0 for u in flowDict} + for u in flowDict: + for v, flow in flowDict[u].items(): + if capacity in G[u][v]: + assert flow <= G[u][v][capacity] + assert flow >= 0, errmsg + excess[u] -= flow + excess[v] += flow + for u, exc in excess.items(): + if u == s: + assert exc == -solnValue, errmsg + elif u == t: + assert exc == solnValue, errmsg + else: + assert exc == 0, errmsg + + +def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func): + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert all(n in G for n in partition[0]), errmsg + assert all(n in G for n in partition[1]), errmsg + cutset = compute_cutset(G, partition) + assert all(G.has_edge(u, v) for (u, v) in cutset), errmsg + assert solnValue == sum(G[u][v][capacity] for (u, v) in cutset), errmsg + H = G.copy() + H.remove_edges_from(cutset) + if not G.is_directed(): + assert not nx.is_connected(H), errmsg + else: + assert not nx.is_strongly_connected(H), errmsg + + +def compare_flows_and_cuts(G, s, t, solnFlows, solnValue, capacity="capacity"): + for flow_func in flow_funcs: + errmsg = f"Assertion failed in function: {flow_func.__name__}" + R = flow_func(G, s, t, capacity) + # Test both legacy and new implementations. + flow_value = R.graph["flow_value"] + flow_dict = build_flow_dict(G, R) + assert flow_value == solnValue, errmsg + validate_flows(G, s, t, flow_dict, solnValue, capacity, flow_func) + # Minimum cut + cut_value, partition = nx.minimum_cut( + G, s, t, capacity=capacity, flow_func=flow_func + ) + validate_cuts(G, s, t, solnValue, partition, capacity, flow_func) + + +class TestMaxflowMinCutCommon: + def test_graph1(self): + # Trivial undirected graph + G = nx.Graph() + G.add_edge(1, 2, capacity=1.0) + + solnFlows = {1: {2: 1.0}, 2: {1: 1.0}} + + compare_flows_and_cuts(G, 1, 2, solnFlows, 1.0) + + def test_graph2(self): + # A more complex undirected graph + # adapted from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One + G = nx.Graph() + G.add_edge("x", "a", capacity=3.0) + G.add_edge("x", "b", capacity=1.0) + G.add_edge("a", "c", capacity=3.0) + G.add_edge("b", "c", capacity=5.0) + G.add_edge("b", "d", capacity=4.0) + G.add_edge("d", "e", capacity=2.0) + G.add_edge("c", "y", capacity=2.0) + G.add_edge("e", "y", capacity=3.0) + + H = { + "x": {"a": 3, "b": 1}, + "a": {"c": 3, "x": 3}, + "b": {"c": 1, "d": 2, "x": 1}, + "c": {"a": 3, "b": 1, "y": 2}, + "d": {"b": 2, "e": 2}, + "e": {"d": 2, "y": 2}, + "y": {"c": 2, "e": 2}, + } + + compare_flows_and_cuts(G, "x", "y", H, 4.0) + + def test_digraph1(self): + # The classic directed graph example + G = nx.DiGraph() + G.add_edge("a", "b", capacity=1000.0) + G.add_edge("a", "c", capacity=1000.0) + G.add_edge("b", "c", capacity=1.0) + G.add_edge("b", "d", capacity=1000.0) + G.add_edge("c", "d", capacity=1000.0) + + H = { + "a": {"b": 1000.0, "c": 1000.0}, + "b": {"c": 0, "d": 1000.0}, + "c": {"d": 1000.0}, + "d": {}, + } + + compare_flows_and_cuts(G, "a", "d", H, 2000.0) + + def test_digraph2(self): + # An example in which some edges end up with zero flow. + G = nx.DiGraph() + G.add_edge("s", "b", capacity=2) + G.add_edge("s", "c", capacity=1) + G.add_edge("c", "d", capacity=1) + G.add_edge("d", "a", capacity=1) + G.add_edge("b", "a", capacity=2) + G.add_edge("a", "t", capacity=2) + + H = { + "s": {"b": 2, "c": 0}, + "c": {"d": 0}, + "d": {"a": 0}, + "b": {"a": 2}, + "a": {"t": 2}, + "t": {}, + } + + compare_flows_and_cuts(G, "s", "t", H, 2) + + def test_digraph3(self): + # A directed graph example from Cormen et al. + G = nx.DiGraph() + G.add_edge("s", "v1", capacity=16.0) + G.add_edge("s", "v2", capacity=13.0) + G.add_edge("v1", "v2", capacity=10.0) + G.add_edge("v2", "v1", capacity=4.0) + G.add_edge("v1", "v3", capacity=12.0) + G.add_edge("v3", "v2", capacity=9.0) + G.add_edge("v2", "v4", capacity=14.0) + G.add_edge("v4", "v3", capacity=7.0) + G.add_edge("v3", "t", capacity=20.0) + G.add_edge("v4", "t", capacity=4.0) + + H = { + "s": {"v1": 12.0, "v2": 11.0}, + "v2": {"v1": 0, "v4": 11.0}, + "v1": {"v2": 0, "v3": 12.0}, + "v3": {"v2": 0, "t": 19.0}, + "v4": {"v3": 7.0, "t": 4.0}, + "t": {}, + } + + compare_flows_and_cuts(G, "s", "t", H, 23.0) + + def test_digraph4(self): + # A more complex directed graph + # from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One + G = nx.DiGraph() + G.add_edge("x", "a", capacity=3.0) + G.add_edge("x", "b", capacity=1.0) + G.add_edge("a", "c", capacity=3.0) + G.add_edge("b", "c", capacity=5.0) + G.add_edge("b", "d", capacity=4.0) + G.add_edge("d", "e", capacity=2.0) + G.add_edge("c", "y", capacity=2.0) + G.add_edge("e", "y", capacity=3.0) + + H = { + "x": {"a": 2.0, "b": 1.0}, + "a": {"c": 2.0}, + "b": {"c": 0, "d": 1.0}, + "c": {"y": 2.0}, + "d": {"e": 1.0}, + "e": {"y": 1.0}, + "y": {}, + } + + compare_flows_and_cuts(G, "x", "y", H, 3.0) + + def test_wikipedia_dinitz_example(self): + # Nice example from https://en.wikipedia.org/wiki/Dinic's_algorithm + G = nx.DiGraph() + G.add_edge("s", 1, capacity=10) + G.add_edge("s", 2, capacity=10) + G.add_edge(1, 3, capacity=4) + G.add_edge(1, 4, capacity=8) + G.add_edge(1, 2, capacity=2) + G.add_edge(2, 4, capacity=9) + G.add_edge(3, "t", capacity=10) + G.add_edge(4, 3, capacity=6) + G.add_edge(4, "t", capacity=10) + + solnFlows = { + 1: {2: 0, 3: 4, 4: 6}, + 2: {4: 9}, + 3: {"t": 9}, + 4: {3: 5, "t": 10}, + "s": {1: 10, 2: 9}, + "t": {}, + } + + compare_flows_and_cuts(G, "s", "t", solnFlows, 19) + + def test_optional_capacity(self): + # Test optional capacity parameter. + G = nx.DiGraph() + G.add_edge("x", "a", spam=3.0) + G.add_edge("x", "b", spam=1.0) + G.add_edge("a", "c", spam=3.0) + G.add_edge("b", "c", spam=5.0) + G.add_edge("b", "d", spam=4.0) + G.add_edge("d", "e", spam=2.0) + G.add_edge("c", "y", spam=2.0) + G.add_edge("e", "y", spam=3.0) + + solnFlows = { + "x": {"a": 2.0, "b": 1.0}, + "a": {"c": 2.0}, + "b": {"c": 0, "d": 1.0}, + "c": {"y": 2.0}, + "d": {"e": 1.0}, + "e": {"y": 1.0}, + "y": {}, + } + solnValue = 3.0 + s = "x" + t = "y" + + compare_flows_and_cuts(G, s, t, solnFlows, solnValue, capacity="spam") + + def test_digraph_infcap_edges(self): + # DiGraph with infinite capacity edges + G = nx.DiGraph() + G.add_edge("s", "a") + G.add_edge("s", "b", capacity=30) + G.add_edge("a", "c", capacity=25) + G.add_edge("b", "c", capacity=12) + G.add_edge("a", "t", capacity=60) + G.add_edge("c", "t") + + H = { + "s": {"a": 85, "b": 12}, + "a": {"c": 25, "t": 60}, + "b": {"c": 12}, + "c": {"t": 37}, + "t": {}, + } + + compare_flows_and_cuts(G, "s", "t", H, 97) + + # DiGraph with infinite capacity digon + G = nx.DiGraph() + G.add_edge("s", "a", capacity=85) + G.add_edge("s", "b", capacity=30) + G.add_edge("a", "c") + G.add_edge("c", "a") + G.add_edge("b", "c", capacity=12) + G.add_edge("a", "t", capacity=60) + G.add_edge("c", "t", capacity=37) + + H = { + "s": {"a": 85, "b": 12}, + "a": {"c": 25, "t": 60}, + "c": {"a": 0, "t": 37}, + "b": {"c": 12}, + "t": {}, + } + + compare_flows_and_cuts(G, "s", "t", H, 97) + + def test_digraph_infcap_path(self): + # Graph with infinite capacity (s, t)-path + G = nx.DiGraph() + G.add_edge("s", "a") + G.add_edge("s", "b", capacity=30) + G.add_edge("a", "c") + G.add_edge("b", "c", capacity=12) + G.add_edge("a", "t", capacity=60) + G.add_edge("c", "t") + + for flow_func in all_funcs: + pytest.raises(nx.NetworkXUnbounded, flow_func, G, "s", "t") + + def test_graph_infcap_edges(self): + # Undirected graph with infinite capacity edges + G = nx.Graph() + G.add_edge("s", "a") + G.add_edge("s", "b", capacity=30) + G.add_edge("a", "c", capacity=25) + G.add_edge("b", "c", capacity=12) + G.add_edge("a", "t", capacity=60) + G.add_edge("c", "t") + + H = { + "s": {"a": 85, "b": 12}, + "a": {"c": 25, "s": 85, "t": 60}, + "b": {"c": 12, "s": 12}, + "c": {"a": 25, "b": 12, "t": 37}, + "t": {"a": 60, "c": 37}, + } + + compare_flows_and_cuts(G, "s", "t", H, 97) + + def test_digraph5(self): + # From ticket #429 by mfrasca. + G = nx.DiGraph() + G.add_edge("s", "a", capacity=2) + G.add_edge("s", "b", capacity=2) + G.add_edge("a", "b", capacity=5) + G.add_edge("a", "t", capacity=1) + G.add_edge("b", "a", capacity=1) + G.add_edge("b", "t", capacity=3) + flowSoln = { + "a": {"b": 1, "t": 1}, + "b": {"a": 0, "t": 3}, + "s": {"a": 2, "b": 2}, + "t": {}, + } + compare_flows_and_cuts(G, "s", "t", flowSoln, 4) + + def test_disconnected(self): + G = nx.Graph() + G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity") + G.remove_node(1) + assert nx.maximum_flow_value(G, 0, 3) == 0 + flowSoln = {0: {}, 2: {3: 0}, 3: {2: 0}} + compare_flows_and_cuts(G, 0, 3, flowSoln, 0) + + def test_source_target_not_in_graph(self): + G = nx.Graph() + G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity") + G.remove_node(0) + for flow_func in all_funcs: + pytest.raises(nx.NetworkXError, flow_func, G, 0, 3) + G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity") + G.remove_node(3) + for flow_func in all_funcs: + pytest.raises(nx.NetworkXError, flow_func, G, 0, 3) + + def test_source_target_coincide(self): + G = nx.Graph() + G.add_node(0) + for flow_func in all_funcs: + pytest.raises(nx.NetworkXError, flow_func, G, 0, 0) + + def test_multigraphs_raise(self): + G = nx.MultiGraph() + M = nx.MultiDiGraph() + G.add_edges_from([(0, 1), (1, 0)], capacity=True) + for flow_func in all_funcs: + pytest.raises(nx.NetworkXError, flow_func, G, 0, 0) + + +class TestMaxFlowMinCutInterface: + def setup_method(self): + G = nx.DiGraph() + G.add_edge("x", "a", capacity=3.0) + G.add_edge("x", "b", capacity=1.0) + G.add_edge("a", "c", capacity=3.0) + G.add_edge("b", "c", capacity=5.0) + G.add_edge("b", "d", capacity=4.0) + G.add_edge("d", "e", capacity=2.0) + G.add_edge("c", "y", capacity=2.0) + G.add_edge("e", "y", capacity=3.0) + self.G = G + H = nx.DiGraph() + H.add_edge(0, 1, capacity=1.0) + H.add_edge(1, 2, capacity=1.0) + self.H = H + + def test_flow_func_not_callable(self): + elements = ["this_should_be_callable", 10, {1, 2, 3}] + G = nx.Graph() + G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity") + for flow_func in interface_funcs: + for element in elements: + pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element) + pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element) + + def test_flow_func_parameters(self): + G = self.G + fv = 3.0 + for interface_func in interface_funcs: + for flow_func in flow_funcs: + errmsg = ( + f"Assertion failed in function: {flow_func.__name__} " + f"in interface {interface_func.__name__}" + ) + result = interface_func(G, "x", "y", flow_func=flow_func) + if interface_func in max_min_funcs: + result = result[0] + assert fv == result, errmsg + + def test_minimum_cut_no_cutoff(self): + G = self.G + pytest.raises( + nx.NetworkXError, + nx.minimum_cut, + G, + "x", + "y", + flow_func=preflow_push, + cutoff=1.0, + ) + pytest.raises( + nx.NetworkXError, + nx.minimum_cut_value, + G, + "x", + "y", + flow_func=preflow_push, + cutoff=1.0, + ) + + def test_kwargs(self): + G = self.H + fv = 1.0 + to_test = ( + (shortest_augmenting_path, {"two_phase": True}), + (preflow_push, {"global_relabel_freq": 5}), + ) + for interface_func in interface_funcs: + for flow_func, kwargs in to_test: + errmsg = ( + f"Assertion failed in function: {flow_func.__name__} " + f"in interface {interface_func.__name__}" + ) + result = interface_func(G, 0, 2, flow_func=flow_func, **kwargs) + if interface_func in max_min_funcs: + result = result[0] + assert fv == result, errmsg + + def test_kwargs_default_flow_func(self): + G = self.H + for interface_func in interface_funcs: + pytest.raises( + nx.NetworkXError, interface_func, G, 0, 1, global_relabel_freq=2 + ) + + def test_reusing_residual(self): + G = self.G + fv = 3.0 + s, t = "x", "y" + R = build_residual_network(G, "capacity") + for interface_func in interface_funcs: + for flow_func in flow_funcs: + errmsg = ( + f"Assertion failed in function: {flow_func.__name__} " + f"in interface {interface_func.__name__}" + ) + for i in range(3): + result = interface_func( + G, "x", "y", flow_func=flow_func, residual=R + ) + if interface_func in max_min_funcs: + result = result[0] + assert fv == result, errmsg + + +# Tests specific to one algorithm +def test_preflow_push_global_relabel_freq(): + G = nx.DiGraph() + G.add_edge(1, 2, capacity=1) + R = preflow_push(G, 1, 2, global_relabel_freq=None) + assert R.graph["flow_value"] == 1 + pytest.raises(nx.NetworkXError, preflow_push, G, 1, 2, global_relabel_freq=-1) + + +def test_preflow_push_makes_enough_space(): + # From ticket #1542 + G = nx.DiGraph() + nx.add_path(G, [0, 1, 3], capacity=1) + nx.add_path(G, [1, 2, 3], capacity=1) + R = preflow_push(G, 0, 3, value_only=False) + assert R.graph["flow_value"] == 1 + + +def test_shortest_augmenting_path_two_phase(): + k = 5 + p = 1000 + G = nx.DiGraph() + for i in range(k): + G.add_edge("s", (i, 0), capacity=1) + nx.add_path(G, ((i, j) for j in range(p)), capacity=1) + G.add_edge((i, p - 1), "t", capacity=1) + R = shortest_augmenting_path(G, "s", "t", two_phase=True) + assert R.graph["flow_value"] == k + R = shortest_augmenting_path(G, "s", "t", two_phase=False) + assert R.graph["flow_value"] == k + + +class TestCutoff: + def test_cutoff(self): + k = 5 + p = 1000 + G = nx.DiGraph() + for i in range(k): + G.add_edge("s", (i, 0), capacity=2) + nx.add_path(G, ((i, j) for j in range(p)), capacity=2) + G.add_edge((i, p - 1), "t", capacity=2) + R = shortest_augmenting_path(G, "s", "t", two_phase=True, cutoff=k) + assert k <= R.graph["flow_value"] <= (2 * k) + R = shortest_augmenting_path(G, "s", "t", two_phase=False, cutoff=k) + assert k <= R.graph["flow_value"] <= (2 * k) + R = edmonds_karp(G, "s", "t", cutoff=k) + assert k <= R.graph["flow_value"] <= (2 * k) + R = dinitz(G, "s", "t", cutoff=k) + assert k <= R.graph["flow_value"] <= (2 * k) + R = boykov_kolmogorov(G, "s", "t", cutoff=k) + assert k <= R.graph["flow_value"] <= (2 * k) + + def test_complete_graph_cutoff(self): + G = nx.complete_graph(5) + nx.set_edge_attributes(G, {(u, v): 1 for u, v in G.edges()}, "capacity") + for flow_func in [ + shortest_augmenting_path, + edmonds_karp, + dinitz, + boykov_kolmogorov, + ]: + for cutoff in [3, 2, 1]: + result = nx.maximum_flow_value( + G, 0, 4, flow_func=flow_func, cutoff=cutoff + ) + assert cutoff == result, f"cutoff error in {flow_func.__name__}" diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow_large_graph.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow_large_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..7b4859c8a8b325c6d2e3ab06430de4afbc007803 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_maxflow_large_graph.py @@ -0,0 +1,157 @@ +"""Maximum flow algorithms test suite on large graphs. +""" + +import bz2 +import importlib.resources +import os +import pickle + +import pytest + +import networkx as nx +from networkx.algorithms.flow import ( + boykov_kolmogorov, + build_flow_dict, + build_residual_network, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +) + +flow_funcs = [ + boykov_kolmogorov, + dinitz, + edmonds_karp, + preflow_push, + shortest_augmenting_path, +] + + +def gen_pyramid(N): + # This graph admits a flow of value 1 for which every arc is at + # capacity (except the arcs incident to the sink which have + # infinite capacity). + G = nx.DiGraph() + + for i in range(N - 1): + cap = 1.0 / (i + 2) + for j in range(i + 1): + G.add_edge((i, j), (i + 1, j), capacity=cap) + cap = 1.0 / (i + 1) - cap + G.add_edge((i, j), (i + 1, j + 1), capacity=cap) + cap = 1.0 / (i + 2) - cap + + for j in range(N): + G.add_edge((N - 1, j), "t") + + return G + + +def read_graph(name): + fname = ( + importlib.resources.files("networkx.algorithms.flow.tests") + / f"{name}.gpickle.bz2" + ) + + with bz2.BZ2File(fname, "rb") as f: + G = pickle.load(f) + return G + + +def validate_flows(G, s, t, soln_value, R, flow_func): + flow_value = R.graph["flow_value"] + flow_dict = build_flow_dict(G, R) + errmsg = f"Assertion failed in function: {flow_func.__name__}" + assert soln_value == flow_value, errmsg + assert set(G) == set(flow_dict), errmsg + for u in G: + assert set(G[u]) == set(flow_dict[u]), errmsg + excess = {u: 0 for u in flow_dict} + for u in flow_dict: + for v, flow in flow_dict[u].items(): + assert flow <= G[u][v].get("capacity", float("inf")), errmsg + assert flow >= 0, errmsg + excess[u] -= flow + excess[v] += flow + for u, exc in excess.items(): + if u == s: + assert exc == -soln_value, errmsg + elif u == t: + assert exc == soln_value, errmsg + else: + assert exc == 0, errmsg + + +class TestMaxflowLargeGraph: + def test_complete_graph(self): + N = 50 + G = nx.complete_graph(N) + nx.set_edge_attributes(G, 5, "capacity") + R = build_residual_network(G, "capacity") + kwargs = {"residual": R} + + for flow_func in flow_funcs: + kwargs["flow_func"] = flow_func + errmsg = f"Assertion failed in function: {flow_func.__name__}" + flow_value = nx.maximum_flow_value(G, 1, 2, **kwargs) + assert flow_value == 5 * (N - 1), errmsg + + def test_pyramid(self): + N = 10 + # N = 100 # this gives a graph with 5051 nodes + G = gen_pyramid(N) + R = build_residual_network(G, "capacity") + kwargs = {"residual": R} + + for flow_func in flow_funcs: + kwargs["flow_func"] = flow_func + errmsg = f"Assertion failed in function: {flow_func.__name__}" + flow_value = nx.maximum_flow_value(G, (0, 0), "t", **kwargs) + assert flow_value == pytest.approx(1.0, abs=1e-7) + + def test_gl1(self): + G = read_graph("gl1") + s = 1 + t = len(G) + R = build_residual_network(G, "capacity") + kwargs = {"residual": R} + + # do one flow_func to save time + flow_func = flow_funcs[0] + validate_flows(G, s, t, 156545, flow_func(G, s, t, **kwargs), flow_func) + + # for flow_func in flow_funcs: + # validate_flows(G, s, t, 156545, flow_func(G, s, t, **kwargs), + # flow_func) + + @pytest.mark.slow + def test_gw1(self): + G = read_graph("gw1") + s = 1 + t = len(G) + R = build_residual_network(G, "capacity") + kwargs = {"residual": R} + + for flow_func in flow_funcs: + validate_flows(G, s, t, 1202018, flow_func(G, s, t, **kwargs), flow_func) + + def test_wlm3(self): + G = read_graph("wlm3") + s = 1 + t = len(G) + R = build_residual_network(G, "capacity") + kwargs = {"residual": R} + + # do one flow_func to save time + flow_func = flow_funcs[0] + validate_flows(G, s, t, 11875108, flow_func(G, s, t, **kwargs), flow_func) + + # for flow_func in flow_funcs: + # validate_flows(G, s, t, 11875108, flow_func(G, s, t, **kwargs), + # flow_func) + + def test_preflow_push_global_relabel(self): + G = read_graph("gw1") + R = preflow_push(G, 1, len(G), global_relabel_freq=50) + assert R.graph["flow_value"] == 1202018 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_mincost.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_mincost.py new file mode 100644 index 0000000000000000000000000000000000000000..5b1794b152f8d5523f660d3d7bd15f841e5470f9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_mincost.py @@ -0,0 +1,476 @@ +import bz2 +import importlib.resources +import os +import pickle + +import pytest + +import networkx as nx + + +class TestMinCostFlow: + def test_simple_digraph(self): + G = nx.DiGraph() + G.add_node("a", demand=-5) + G.add_node("d", demand=5) + G.add_edge("a", "b", weight=3, capacity=4) + G.add_edge("a", "c", weight=6, capacity=10) + G.add_edge("b", "d", weight=1, capacity=9) + G.add_edge("c", "d", weight=2, capacity=5) + flowCost, H = nx.network_simplex(G) + soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}} + assert flowCost == 24 + assert nx.min_cost_flow_cost(G) == 24 + assert H == soln + assert nx.min_cost_flow(G) == soln + assert nx.cost_of_flow(G, H) == 24 + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 24 + assert nx.cost_of_flow(G, H) == 24 + assert H == soln + + def test_negcycle_infcap(self): + G = nx.DiGraph() + G.add_node("s", demand=-5) + G.add_node("t", demand=5) + G.add_edge("s", "a", weight=1, capacity=3) + G.add_edge("a", "b", weight=3) + G.add_edge("c", "a", weight=-6) + G.add_edge("b", "d", weight=1) + G.add_edge("d", "c", weight=-2) + G.add_edge("d", "t", weight=1, capacity=3) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) + + def test_sum_demands_not_zero(self): + G = nx.DiGraph() + G.add_node("s", demand=-5) + G.add_node("t", demand=4) + G.add_edge("s", "a", weight=1, capacity=3) + G.add_edge("a", "b", weight=3) + G.add_edge("a", "c", weight=-6) + G.add_edge("b", "d", weight=1) + G.add_edge("c", "d", weight=-2) + G.add_edge("d", "t", weight=1, capacity=3) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + + def test_no_flow_satisfying_demands(self): + G = nx.DiGraph() + G.add_node("s", demand=-5) + G.add_node("t", demand=5) + G.add_edge("s", "a", weight=1, capacity=3) + G.add_edge("a", "b", weight=3) + G.add_edge("a", "c", weight=-6) + G.add_edge("b", "d", weight=1) + G.add_edge("c", "d", weight=-2) + G.add_edge("d", "t", weight=1, capacity=3) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + + def test_transshipment(self): + G = nx.DiGraph() + G.add_node("a", demand=1) + G.add_node("b", demand=-2) + G.add_node("c", demand=-2) + G.add_node("d", demand=3) + G.add_node("e", demand=-4) + G.add_node("f", demand=-4) + G.add_node("g", demand=3) + G.add_node("h", demand=2) + G.add_node("r", demand=3) + G.add_edge("a", "c", weight=3) + G.add_edge("r", "a", weight=2) + G.add_edge("b", "a", weight=9) + G.add_edge("r", "c", weight=0) + G.add_edge("b", "r", weight=-6) + G.add_edge("c", "d", weight=5) + G.add_edge("e", "r", weight=4) + G.add_edge("e", "f", weight=3) + G.add_edge("h", "b", weight=4) + G.add_edge("f", "d", weight=7) + G.add_edge("f", "h", weight=12) + G.add_edge("g", "d", weight=12) + G.add_edge("f", "g", weight=-1) + G.add_edge("h", "g", weight=-10) + flowCost, H = nx.network_simplex(G) + soln = { + "a": {"c": 0}, + "b": {"a": 0, "r": 2}, + "c": {"d": 3}, + "d": {}, + "e": {"r": 3, "f": 1}, + "f": {"d": 0, "g": 3, "h": 2}, + "g": {"d": 0}, + "h": {"b": 0, "g": 0}, + "r": {"a": 1, "c": 1}, + } + assert flowCost == 41 + assert nx.min_cost_flow_cost(G) == 41 + assert H == soln + assert nx.min_cost_flow(G) == soln + assert nx.cost_of_flow(G, H) == 41 + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 41 + assert nx.cost_of_flow(G, H) == 41 + assert H == soln + + def test_max_flow_min_cost(self): + G = nx.DiGraph() + G.add_edge("s", "a", bandwidth=6) + G.add_edge("s", "c", bandwidth=10, cost=10) + G.add_edge("a", "b", cost=6) + G.add_edge("b", "d", bandwidth=8, cost=7) + G.add_edge("c", "d", cost=10) + G.add_edge("d", "t", bandwidth=5, cost=5) + soln = { + "s": {"a": 5, "c": 0}, + "a": {"b": 5}, + "b": {"d": 5}, + "c": {"d": 0}, + "d": {"t": 5}, + "t": {}, + } + flow = nx.max_flow_min_cost(G, "s", "t", capacity="bandwidth", weight="cost") + assert flow == soln + assert nx.cost_of_flow(G, flow, weight="cost") == 90 + + G.add_edge("t", "s", cost=-100) + flowCost, flow = nx.capacity_scaling(G, capacity="bandwidth", weight="cost") + G.remove_edge("t", "s") + assert flowCost == -410 + assert flow["t"]["s"] == 5 + del flow["t"]["s"] + assert flow == soln + assert nx.cost_of_flow(G, flow, weight="cost") == 90 + + def test_digraph1(self): + # From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied + # Mathematical Programming. Addison-Wesley, 1977. + G = nx.DiGraph() + G.add_node(1, demand=-20) + G.add_node(4, demand=5) + G.add_node(5, demand=15) + G.add_edges_from( + [ + (1, 2, {"capacity": 15, "weight": 4}), + (1, 3, {"capacity": 8, "weight": 4}), + (2, 3, {"weight": 2}), + (2, 4, {"capacity": 4, "weight": 2}), + (2, 5, {"capacity": 10, "weight": 6}), + (3, 4, {"capacity": 15, "weight": 1}), + (3, 5, {"capacity": 5, "weight": 3}), + (4, 5, {"weight": 2}), + (5, 3, {"capacity": 4, "weight": 1}), + ] + ) + flowCost, H = nx.network_simplex(G) + soln = { + 1: {2: 12, 3: 8}, + 2: {3: 8, 4: 4, 5: 0}, + 3: {4: 11, 5: 5}, + 4: {5: 10}, + 5: {3: 0}, + } + assert flowCost == 150 + assert nx.min_cost_flow_cost(G) == 150 + assert H == soln + assert nx.min_cost_flow(G) == soln + assert nx.cost_of_flow(G, H) == 150 + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 150 + assert H == soln + assert nx.cost_of_flow(G, H) == 150 + + def test_digraph2(self): + # Example from ticket #430 from mfrasca. Original source: + # http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/mincost.4up.pdf, slide 11. + G = nx.DiGraph() + G.add_edge("s", 1, capacity=12) + G.add_edge("s", 2, capacity=6) + G.add_edge("s", 3, capacity=14) + G.add_edge(1, 2, capacity=11, weight=4) + G.add_edge(2, 3, capacity=9, weight=6) + G.add_edge(1, 4, capacity=5, weight=5) + G.add_edge(1, 5, capacity=2, weight=12) + G.add_edge(2, 5, capacity=4, weight=4) + G.add_edge(2, 6, capacity=2, weight=6) + G.add_edge(3, 6, capacity=31, weight=3) + G.add_edge(4, 5, capacity=18, weight=4) + G.add_edge(5, 6, capacity=9, weight=5) + G.add_edge(4, "t", capacity=3) + G.add_edge(5, "t", capacity=7) + G.add_edge(6, "t", capacity=22) + flow = nx.max_flow_min_cost(G, "s", "t") + soln = { + 1: {2: 6, 4: 5, 5: 1}, + 2: {3: 6, 5: 4, 6: 2}, + 3: {6: 20}, + 4: {5: 2, "t": 3}, + 5: {6: 0, "t": 7}, + 6: {"t": 22}, + "s": {1: 12, 2: 6, 3: 14}, + "t": {}, + } + assert flow == soln + + G.add_edge("t", "s", weight=-100) + flowCost, flow = nx.capacity_scaling(G) + G.remove_edge("t", "s") + assert flow["t"]["s"] == 32 + assert flowCost == -3007 + del flow["t"]["s"] + assert flow == soln + assert nx.cost_of_flow(G, flow) == 193 + + def test_digraph3(self): + """Combinatorial Optimization: Algorithms and Complexity, + Papadimitriou Steiglitz at page 140 has an example, 7.1, but that + admits multiple solutions, so I alter it a bit. From ticket #430 + by mfrasca.""" + + G = nx.DiGraph() + G.add_edge("s", "a") + G["s"]["a"].update({0: 2, 1: 4}) + G.add_edge("s", "b") + G["s"]["b"].update({0: 2, 1: 1}) + G.add_edge("a", "b") + G["a"]["b"].update({0: 5, 1: 2}) + G.add_edge("a", "t") + G["a"]["t"].update({0: 1, 1: 5}) + G.add_edge("b", "a") + G["b"]["a"].update({0: 1, 1: 3}) + G.add_edge("b", "t") + G["b"]["t"].update({0: 3, 1: 2}) + + "PS.ex.7.1: testing main function" + sol = nx.max_flow_min_cost(G, "s", "t", capacity=0, weight=1) + flow = sum(v for v in sol["s"].values()) + assert 4 == flow + assert 23 == nx.cost_of_flow(G, sol, weight=1) + assert sol["s"] == {"a": 2, "b": 2} + assert sol["a"] == {"b": 1, "t": 1} + assert sol["b"] == {"a": 0, "t": 3} + assert sol["t"] == {} + + G.add_edge("t", "s") + G["t"]["s"].update({1: -100}) + flowCost, sol = nx.capacity_scaling(G, capacity=0, weight=1) + G.remove_edge("t", "s") + flow = sum(v for v in sol["s"].values()) + assert 4 == flow + assert sol["t"]["s"] == 4 + assert flowCost == -377 + del sol["t"]["s"] + assert sol["s"] == {"a": 2, "b": 2} + assert sol["a"] == {"b": 1, "t": 1} + assert sol["b"] == {"a": 0, "t": 3} + assert sol["t"] == {} + assert nx.cost_of_flow(G, sol, weight=1) == 23 + + def test_zero_capacity_edges(self): + """Address issue raised in ticket #617 by arv.""" + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2, {"capacity": 1, "weight": 1}), + (1, 5, {"capacity": 1, "weight": 1}), + (2, 3, {"capacity": 0, "weight": 1}), + (2, 5, {"capacity": 1, "weight": 1}), + (5, 3, {"capacity": 2, "weight": 1}), + (5, 4, {"capacity": 0, "weight": 1}), + (3, 4, {"capacity": 2, "weight": 1}), + ] + ) + G.nodes[1]["demand"] = -1 + G.nodes[2]["demand"] = -1 + G.nodes[4]["demand"] = 2 + + flowCost, H = nx.network_simplex(G) + soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}} + assert flowCost == 6 + assert nx.min_cost_flow_cost(G) == 6 + assert H == soln + assert nx.min_cost_flow(G) == soln + assert nx.cost_of_flow(G, H) == 6 + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 6 + assert H == soln + assert nx.cost_of_flow(G, H) == 6 + + def test_digon(self): + """Check if digons are handled properly. Taken from ticket + #618 by arv.""" + nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})] + edges = [ + (1, 2, {"capacity": 3, "weight": 600000}), + (2, 1, {"capacity": 2, "weight": 0}), + (2, 3, {"capacity": 5, "weight": 714285}), + (3, 2, {"capacity": 2, "weight": 0}), + ] + G = nx.DiGraph(edges) + G.add_nodes_from(nodes) + flowCost, H = nx.network_simplex(G) + soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}} + assert flowCost == 2857140 + assert nx.min_cost_flow_cost(G) == 2857140 + assert H == soln + assert nx.min_cost_flow(G) == soln + assert nx.cost_of_flow(G, H) == 2857140 + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 2857140 + assert H == soln + assert nx.cost_of_flow(G, H) == 2857140 + + def test_deadend(self): + """Check if one-node cycles are handled properly. Taken from ticket + #2906 from @sshraven.""" + G = nx.DiGraph() + + G.add_nodes_from(range(5), demand=0) + G.nodes[4]["demand"] = -13 + G.nodes[3]["demand"] = 13 + + G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1) + pytest.raises(nx.NetworkXUnfeasible, nx.min_cost_flow, G) + + def test_infinite_capacity_neg_digon(self): + """An infinite capacity negative cost digon results in an unbounded + instance.""" + nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})] + edges = [ + (1, 2, {"weight": -600}), + (2, 1, {"weight": 0}), + (2, 3, {"capacity": 5, "weight": 714285}), + (3, 2, {"capacity": 2, "weight": 0}), + ] + G = nx.DiGraph(edges) + G.add_nodes_from(nodes) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) + + def test_finite_capacity_neg_digon(self): + """The digon should receive the maximum amount of flow it can handle. + Taken from ticket #749 by @chuongdo.""" + G = nx.DiGraph() + G.add_edge("a", "b", capacity=1, weight=-1) + G.add_edge("b", "a", capacity=1, weight=-1) + min_cost = -2 + assert nx.min_cost_flow_cost(G) == min_cost + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == -2 + assert H == {"a": {"b": 1}, "b": {"a": 1}} + assert nx.cost_of_flow(G, H) == -2 + + def test_multidigraph(self): + """Multidigraphs are acceptable.""" + G = nx.MultiDiGraph() + G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity") + flowCost, H = nx.network_simplex(G) + assert flowCost == 0 + assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}} + + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 0 + assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}} + + def test_negative_selfloops(self): + """Negative selfloops should cause an exception if uncapacitated and + always be saturated otherwise. + """ + G = nx.DiGraph() + G.add_edge(1, 1, weight=-1) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) + G[1][1]["capacity"] = 2 + flowCost, H = nx.network_simplex(G) + assert flowCost == -2 + assert H == {1: {1: 2}} + flowCost, H = nx.capacity_scaling(G) + assert flowCost == -2 + assert H == {1: {1: 2}} + + G = nx.MultiDiGraph() + G.add_edge(1, 1, "x", weight=-1) + G.add_edge(1, 1, "y", weight=1) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G) + G[1][1]["x"]["capacity"] = 2 + flowCost, H = nx.network_simplex(G) + assert flowCost == -2 + assert H == {1: {1: {"x": 2, "y": 0}}} + flowCost, H = nx.capacity_scaling(G) + assert flowCost == -2 + assert H == {1: {1: {"x": 2, "y": 0}}} + + def test_bone_shaped(self): + # From #1283 + G = nx.DiGraph() + G.add_node(0, demand=-4) + G.add_node(1, demand=2) + G.add_node(2, demand=2) + G.add_node(3, demand=4) + G.add_node(4, demand=-2) + G.add_node(5, demand=-2) + G.add_edge(0, 1, capacity=4) + G.add_edge(0, 2, capacity=4) + G.add_edge(4, 3, capacity=4) + G.add_edge(5, 3, capacity=4) + G.add_edge(0, 3, capacity=0) + flowCost, H = nx.network_simplex(G) + assert flowCost == 0 + assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}} + flowCost, H = nx.capacity_scaling(G) + assert flowCost == 0 + assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}} + + def test_exceptions(self): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G) + pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G) + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G) + pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G) + G = nx.DiGraph() + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + # pytest.raises(nx.NetworkXError, nx.capacity_scaling, G) + G.add_node(0, demand=float("inf")) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + G.nodes[0]["demand"] = 0 + G.add_node(1, demand=0) + G.add_edge(0, 1, weight=-float("inf")) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + G[0][1]["weight"] = 0 + G.add_edge(0, 0, weight=float("inf")) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + # pytest.raises(nx.NetworkXError, nx.capacity_scaling, G) + G[0][0]["weight"] = 0 + G[0][1]["capacity"] = -1 + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + # pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + G[0][1]["capacity"] = 0 + G[0][0]["capacity"] = -1 + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + # pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G) + + def test_large(self): + fname = ( + importlib.resources.files("networkx.algorithms.flow.tests") + / "netgen-2.gpickle.bz2" + ) + with bz2.BZ2File(fname, "rb") as f: + G = pickle.load(f) + flowCost, flowDict = nx.network_simplex(G) + assert 6749969302 == flowCost + assert 6749969302 == nx.cost_of_flow(G, flowDict) + flowCost, flowDict = nx.capacity_scaling(G) + assert 6749969302 == flowCost + assert 6749969302 == nx.cost_of_flow(G, flowDict) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_networksimplex.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_networksimplex.py new file mode 100644 index 0000000000000000000000000000000000000000..5b3b5f6dd069e38b8be536cf4037a46da2366cc2 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/tests/test_networksimplex.py @@ -0,0 +1,387 @@ +import bz2 +import importlib.resources +import os +import pickle + +import pytest + +import networkx as nx + + +@pytest.fixture +def simple_flow_graph(): + G = nx.DiGraph() + G.add_node("a", demand=0) + G.add_node("b", demand=-5) + G.add_node("c", demand=50000000) + G.add_node("d", demand=-49999995) + G.add_edge("a", "b", weight=3, capacity=4) + G.add_edge("a", "c", weight=6, capacity=10) + G.add_edge("b", "d", weight=1, capacity=9) + G.add_edge("c", "d", weight=2, capacity=5) + return G + + +@pytest.fixture +def simple_no_flow_graph(): + G = nx.DiGraph() + G.add_node("s", demand=-5) + G.add_node("t", demand=5) + G.add_edge("s", "a", weight=1, capacity=3) + G.add_edge("a", "b", weight=3) + G.add_edge("a", "c", weight=-6) + G.add_edge("b", "d", weight=1) + G.add_edge("c", "d", weight=-2) + G.add_edge("d", "t", weight=1, capacity=3) + return G + + +def get_flowcost_from_flowdict(G, flowDict): + """Returns flow cost calculated from flow dictionary""" + flowCost = 0 + for u in flowDict: + for v in flowDict[u]: + flowCost += flowDict[u][v] * G[u][v]["weight"] + return flowCost + + +def test_infinite_demand_raise(simple_flow_graph): + G = simple_flow_graph + inf = float("inf") + nx.set_node_attributes(G, {"a": {"demand": inf}}) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + + +def test_neg_infinite_demand_raise(simple_flow_graph): + G = simple_flow_graph + inf = float("inf") + nx.set_node_attributes(G, {"a": {"demand": -inf}}) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + + +def test_infinite_weight_raise(simple_flow_graph): + G = simple_flow_graph + inf = float("inf") + nx.set_edge_attributes( + G, {("a", "b"): {"weight": inf}, ("b", "d"): {"weight": inf}} + ) + pytest.raises(nx.NetworkXError, nx.network_simplex, G) + + +def test_nonzero_net_demand_raise(simple_flow_graph): + G = simple_flow_graph + nx.set_node_attributes(G, {"b": {"demand": -4}}) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_negative_capacity_raise(simple_flow_graph): + G = simple_flow_graph + nx.set_edge_attributes(G, {("a", "b"): {"weight": 1}, ("b", "d"): {"capacity": -9}}) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_no_flow_satisfying_demands(simple_no_flow_graph): + G = simple_no_flow_graph + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_sum_demands_not_zero(simple_no_flow_graph): + G = simple_no_flow_graph + nx.set_node_attributes(G, {"t": {"demand": 4}}) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_google_or_tools_example(): + """ + https://developers.google.com/optimization/flow/mincostflow + """ + G = nx.DiGraph() + start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4] + end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2] + capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5] + unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3] + supplies = [20, 0, 0, -5, -15] + answer = 150 + + for i in range(len(supplies)): + G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand + + for i in range(len(start_nodes)): + G.add_edge( + start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i] + ) + + flowCost, flowDict = nx.network_simplex(G) + assert flowCost == answer + assert flowCost == get_flowcost_from_flowdict(G, flowDict) + + +def test_google_or_tools_example2(): + """ + https://developers.google.com/optimization/flow/mincostflow + """ + G = nx.DiGraph() + start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4, 3] + end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2, 5] + capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5, 10] + unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3, 4] + supplies = [23, 0, 0, -5, -15, -3] + answer = 183 + + for i in range(len(supplies)): + G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand + + for i in range(len(start_nodes)): + G.add_edge( + start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i] + ) + + flowCost, flowDict = nx.network_simplex(G) + assert flowCost == answer + assert flowCost == get_flowcost_from_flowdict(G, flowDict) + + +def test_large(): + fname = ( + importlib.resources.files("networkx.algorithms.flow.tests") + / "netgen-2.gpickle.bz2" + ) + + with bz2.BZ2File(fname, "rb") as f: + G = pickle.load(f) + flowCost, flowDict = nx.network_simplex(G) + assert 6749969302 == flowCost + assert 6749969302 == nx.cost_of_flow(G, flowDict) + + +def test_simple_digraph(): + G = nx.DiGraph() + G.add_node("a", demand=-5) + G.add_node("d", demand=5) + G.add_edge("a", "b", weight=3, capacity=4) + G.add_edge("a", "c", weight=6, capacity=10) + G.add_edge("b", "d", weight=1, capacity=9) + G.add_edge("c", "d", weight=2, capacity=5) + flowCost, H = nx.network_simplex(G) + soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}} + assert flowCost == 24 + assert nx.min_cost_flow_cost(G) == 24 + assert H == soln + + +def test_negcycle_infcap(): + G = nx.DiGraph() + G.add_node("s", demand=-5) + G.add_node("t", demand=5) + G.add_edge("s", "a", weight=1, capacity=3) + G.add_edge("a", "b", weight=3) + G.add_edge("c", "a", weight=-6) + G.add_edge("b", "d", weight=1) + G.add_edge("d", "c", weight=-2) + G.add_edge("d", "t", weight=1, capacity=3) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_transshipment(): + G = nx.DiGraph() + G.add_node("a", demand=1) + G.add_node("b", demand=-2) + G.add_node("c", demand=-2) + G.add_node("d", demand=3) + G.add_node("e", demand=-4) + G.add_node("f", demand=-4) + G.add_node("g", demand=3) + G.add_node("h", demand=2) + G.add_node("r", demand=3) + G.add_edge("a", "c", weight=3) + G.add_edge("r", "a", weight=2) + G.add_edge("b", "a", weight=9) + G.add_edge("r", "c", weight=0) + G.add_edge("b", "r", weight=-6) + G.add_edge("c", "d", weight=5) + G.add_edge("e", "r", weight=4) + G.add_edge("e", "f", weight=3) + G.add_edge("h", "b", weight=4) + G.add_edge("f", "d", weight=7) + G.add_edge("f", "h", weight=12) + G.add_edge("g", "d", weight=12) + G.add_edge("f", "g", weight=-1) + G.add_edge("h", "g", weight=-10) + flowCost, H = nx.network_simplex(G) + soln = { + "a": {"c": 0}, + "b": {"a": 0, "r": 2}, + "c": {"d": 3}, + "d": {}, + "e": {"r": 3, "f": 1}, + "f": {"d": 0, "g": 3, "h": 2}, + "g": {"d": 0}, + "h": {"b": 0, "g": 0}, + "r": {"a": 1, "c": 1}, + } + assert flowCost == 41 + assert H == soln + + +def test_digraph1(): + # From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied + # Mathematical Programming. Addison-Wesley, 1977. + G = nx.DiGraph() + G.add_node(1, demand=-20) + G.add_node(4, demand=5) + G.add_node(5, demand=15) + G.add_edges_from( + [ + (1, 2, {"capacity": 15, "weight": 4}), + (1, 3, {"capacity": 8, "weight": 4}), + (2, 3, {"weight": 2}), + (2, 4, {"capacity": 4, "weight": 2}), + (2, 5, {"capacity": 10, "weight": 6}), + (3, 4, {"capacity": 15, "weight": 1}), + (3, 5, {"capacity": 5, "weight": 3}), + (4, 5, {"weight": 2}), + (5, 3, {"capacity": 4, "weight": 1}), + ] + ) + flowCost, H = nx.network_simplex(G) + soln = { + 1: {2: 12, 3: 8}, + 2: {3: 8, 4: 4, 5: 0}, + 3: {4: 11, 5: 5}, + 4: {5: 10}, + 5: {3: 0}, + } + assert flowCost == 150 + assert nx.min_cost_flow_cost(G) == 150 + assert H == soln + + +def test_zero_capacity_edges(): + """Address issue raised in ticket #617 by arv.""" + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2, {"capacity": 1, "weight": 1}), + (1, 5, {"capacity": 1, "weight": 1}), + (2, 3, {"capacity": 0, "weight": 1}), + (2, 5, {"capacity": 1, "weight": 1}), + (5, 3, {"capacity": 2, "weight": 1}), + (5, 4, {"capacity": 0, "weight": 1}), + (3, 4, {"capacity": 2, "weight": 1}), + ] + ) + G.nodes[1]["demand"] = -1 + G.nodes[2]["demand"] = -1 + G.nodes[4]["demand"] = 2 + + flowCost, H = nx.network_simplex(G) + soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}} + assert flowCost == 6 + assert nx.min_cost_flow_cost(G) == 6 + assert H == soln + + +def test_digon(): + """Check if digons are handled properly. Taken from ticket + #618 by arv.""" + nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})] + edges = [ + (1, 2, {"capacity": 3, "weight": 600000}), + (2, 1, {"capacity": 2, "weight": 0}), + (2, 3, {"capacity": 5, "weight": 714285}), + (3, 2, {"capacity": 2, "weight": 0}), + ] + G = nx.DiGraph(edges) + G.add_nodes_from(nodes) + flowCost, H = nx.network_simplex(G) + soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}} + assert flowCost == 2857140 + + +def test_deadend(): + """Check if one-node cycles are handled properly. Taken from ticket + #2906 from @sshraven.""" + G = nx.DiGraph() + + G.add_nodes_from(range(5), demand=0) + G.nodes[4]["demand"] = -13 + G.nodes[3]["demand"] = 13 + + G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1) + pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G) + + +def test_infinite_capacity_neg_digon(): + """An infinite capacity negative cost digon results in an unbounded + instance.""" + nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})] + edges = [ + (1, 2, {"weight": -600}), + (2, 1, {"weight": 0}), + (2, 3, {"capacity": 5, "weight": 714285}), + (3, 2, {"capacity": 2, "weight": 0}), + ] + G = nx.DiGraph(edges) + G.add_nodes_from(nodes) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + + +def test_multidigraph(): + """Multidigraphs are acceptable.""" + G = nx.MultiDiGraph() + G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity") + flowCost, H = nx.network_simplex(G) + assert flowCost == 0 + assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}} + + +def test_negative_selfloops(): + """Negative selfloops should cause an exception if uncapacitated and + always be saturated otherwise. + """ + G = nx.DiGraph() + G.add_edge(1, 1, weight=-1) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + + G[1][1]["capacity"] = 2 + flowCost, H = nx.network_simplex(G) + assert flowCost == -2 + assert H == {1: {1: 2}} + + G = nx.MultiDiGraph() + G.add_edge(1, 1, "x", weight=-1) + G.add_edge(1, 1, "y", weight=1) + pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G) + + G[1][1]["x"]["capacity"] = 2 + flowCost, H = nx.network_simplex(G) + assert flowCost == -2 + assert H == {1: {1: {"x": 2, "y": 0}}} + + +def test_bone_shaped(): + # From #1283 + G = nx.DiGraph() + G.add_node(0, demand=-4) + G.add_node(1, demand=2) + G.add_node(2, demand=2) + G.add_node(3, demand=4) + G.add_node(4, demand=-2) + G.add_node(5, demand=-2) + G.add_edge(0, 1, capacity=4) + G.add_edge(0, 2, capacity=4) + G.add_edge(4, 3, capacity=4) + G.add_edge(5, 3, capacity=4) + G.add_edge(0, 3, capacity=0) + flowCost, H = nx.network_simplex(G) + assert flowCost == 0 + assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}} + + +def test_graphs_type_exceptions(): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G) + G = nx.MultiGraph() + pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G) + G = nx.DiGraph() + pytest.raises(nx.NetworkXError, nx.network_simplex, G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/flow/utils.py b/phivenv/Lib/site-packages/networkx/algorithms/flow/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..349be4b302a089c0827d100d9e94a61801d46b54 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/flow/utils.py @@ -0,0 +1,188 @@ +""" +Utility classes and functions for network flow algorithms. +""" + +from collections import deque + +import networkx as nx + +__all__ = [ + "CurrentEdge", + "Level", + "GlobalRelabelThreshold", + "build_residual_network", + "detect_unboundedness", + "build_flow_dict", +] + + +class CurrentEdge: + """Mechanism for iterating over out-edges incident to a node in a circular + manner. StopIteration exception is raised when wraparound occurs. + """ + + __slots__ = ("_edges", "_it", "_curr") + + def __init__(self, edges): + self._edges = edges + if self._edges: + self._rewind() + + def get(self): + return self._curr + + def move_to_next(self): + try: + self._curr = next(self._it) + except StopIteration: + self._rewind() + raise + + def _rewind(self): + self._it = iter(self._edges.items()) + self._curr = next(self._it) + + +class Level: + """Active and inactive nodes in a level.""" + + __slots__ = ("active", "inactive") + + def __init__(self): + self.active = set() + self.inactive = set() + + +class GlobalRelabelThreshold: + """Measurement of work before the global relabeling heuristic should be + applied. + """ + + def __init__(self, n, m, freq): + self._threshold = (n + m) / freq if freq else float("inf") + self._work = 0 + + def add_work(self, work): + self._work += work + + def is_reached(self): + return self._work >= self._threshold + + def clear_work(self): + self._work = 0 + + +@nx._dispatch(edge_attrs={"capacity": float("inf")}) +def build_residual_network(G, capacity): + """Build a residual network and initialize a zero flow. + + The residual network :samp:`R` from an input graph :samp:`G` has the + same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair + of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a + self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists + in :samp:`G`. + + For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']` + is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists + in :samp:`G` or zero otherwise. If the capacity is infinite, + :samp:`R[u][v]['capacity']` will have a high arbitrary finite value + that does not affect the solution of the problem. This value is stored in + :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`, + :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and + satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`. + + The flow value, defined as the total flow into :samp:`t`, the sink, is + stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not + specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such + that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum + :samp:`s`-:samp:`t` cut. + + """ + if G.is_multigraph(): + raise nx.NetworkXError("MultiGraph and MultiDiGraph not supported (yet).") + + R = nx.DiGraph() + R.add_nodes_from(G) + + inf = float("inf") + # Extract edges with positive capacities. Self loops excluded. + edge_list = [ + (u, v, attr) + for u, v, attr in G.edges(data=True) + if u != v and attr.get(capacity, inf) > 0 + ] + # Simulate infinity with three times the sum of the finite edge capacities + # or any positive value if the sum is zero. This allows the + # infinite-capacity edges to be distinguished for unboundedness detection + # and directly participate in residual capacity calculation. If the maximum + # flow is finite, these edges cannot appear in the minimum cut and thus + # guarantee correctness. Since the residual capacity of an + # infinite-capacity edge is always at least 2/3 of inf, while that of an + # finite-capacity edge is at most 1/3 of inf, if an operation moves more + # than 1/3 of inf units of flow to t, there must be an infinite-capacity + # s-t path in G. + inf = ( + 3 + * sum( + attr[capacity] + for u, v, attr in edge_list + if capacity in attr and attr[capacity] != inf + ) + or 1 + ) + if G.is_directed(): + for u, v, attr in edge_list: + r = min(attr.get(capacity, inf), inf) + if not R.has_edge(u, v): + # Both (u, v) and (v, u) must be present in the residual + # network. + R.add_edge(u, v, capacity=r) + R.add_edge(v, u, capacity=0) + else: + # The edge (u, v) was added when (v, u) was visited. + R[u][v]["capacity"] = r + else: + for u, v, attr in edge_list: + # Add a pair of edges with equal residual capacities. + r = min(attr.get(capacity, inf), inf) + R.add_edge(u, v, capacity=r) + R.add_edge(v, u, capacity=r) + + # Record the value simulating infinity. + R.graph["inf"] = inf + + return R + + +@nx._dispatch( + graphs="R", + preserve_edge_attrs={"R": {"capacity": float("inf")}}, + preserve_graph_attrs=True, +) +def detect_unboundedness(R, s, t): + """Detect an infinite-capacity s-t path in R.""" + q = deque([s]) + seen = {s} + inf = R.graph["inf"] + while q: + u = q.popleft() + for v, attr in R[u].items(): + if attr["capacity"] == inf and v not in seen: + if v == t: + raise nx.NetworkXUnbounded( + "Infinite capacity path, flow unbounded above." + ) + seen.add(v) + q.append(v) + + +@nx._dispatch(graphs={"G": 0, "R": 1}, preserve_edge_attrs={"R": {"flow": None}}) +def build_flow_dict(G, R): + """Build a flow dictionary from a residual network.""" + flow_dict = {} + for u in G: + flow_dict[u] = {v: 0 for v in G[u]} + flow_dict[u].update( + (v, attr["flow"]) for v, attr in R[u].items() if attr["flow"] > 0 + ) + return flow_dict diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..58c22688660073a6abb59f7639871f711d1bd6ac --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__init__.py @@ -0,0 +1,7 @@ +from networkx.algorithms.isomorphism.isomorph import * +from networkx.algorithms.isomorphism.vf2userfunc import * +from networkx.algorithms.isomorphism.matchhelpers import * +from networkx.algorithms.isomorphism.temporalisomorphvf2 import * +from networkx.algorithms.isomorphism.ismags import * +from networkx.algorithms.isomorphism.tree_isomorphism import * +from networkx.algorithms.isomorphism.vf2pp import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d026477e670bbcc5b46259401a8c59075a46b96e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/ismags.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/ismags.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d929d26fd49096414777cec622cd48e02770a7ca Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/ismags.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..981e8b5414803babeebc911264da8563101a5d72 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorphvf2.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorphvf2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b47aa00f1b5064a83dddd8fe55c0a5094285086 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/isomorphvf2.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/matchhelpers.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/matchhelpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5761cd46a43085d8147472d21467be8f9160a684 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/matchhelpers.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/temporalisomorphvf2.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/temporalisomorphvf2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..62afa0b87b10f6bd6bbc5ec15b987d8e59ddd7dc Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/temporalisomorphvf2.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/tree_isomorphism.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/tree_isomorphism.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9dc7b50d0012d5d576096890e5c87cc6fb66ff35 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/tree_isomorphism.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2pp.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2pp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea6c284ea4ab9c150b58966a376126426ae1ce5c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2pp.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2userfunc.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2userfunc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a162840404dd8f8798c7971317cb363d60b5088e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/__pycache__/vf2userfunc.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/ismags.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/ismags.py new file mode 100644 index 0000000000000000000000000000000000000000..25ce94c87ec9b76ed81a5650f67ecfb5cda130ba --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/ismags.py @@ -0,0 +1,1169 @@ +""" +ISMAGS Algorithm +================ + +Provides a Python implementation of the ISMAGS algorithm. [1]_ + +It is capable of finding (subgraph) isomorphisms between two graphs, taking the +symmetry of the subgraph into account. In most cases the VF2 algorithm is +faster (at least on small graphs) than this implementation, but in some cases +there is an exponential number of isomorphisms that are symmetrically +equivalent. In that case, the ISMAGS algorithm will provide only one solution +per symmetry group. + +>>> petersen = nx.petersen_graph() +>>> ismags = nx.isomorphism.ISMAGS(petersen, petersen) +>>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=False)) +>>> len(isomorphisms) +120 +>>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=True)) +>>> answer = [{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}] +>>> answer == isomorphisms +True + +In addition, this implementation also provides an interface to find the +largest common induced subgraph [2]_ between any two graphs, again taking +symmetry into account. Given `graph` and `subgraph` the algorithm will remove +nodes from the `subgraph` until `subgraph` is isomorphic to a subgraph of +`graph`. Since only the symmetry of `subgraph` is taken into account it is +worth thinking about how you provide your graphs: + +>>> graph1 = nx.path_graph(4) +>>> graph2 = nx.star_graph(3) +>>> ismags = nx.isomorphism.ISMAGS(graph1, graph2) +>>> ismags.is_isomorphic() +False +>>> largest_common_subgraph = list(ismags.largest_common_subgraph()) +>>> answer = [{1: 0, 0: 1, 2: 2}, {2: 0, 1: 1, 3: 2}] +>>> answer == largest_common_subgraph +True +>>> ismags2 = nx.isomorphism.ISMAGS(graph2, graph1) +>>> largest_common_subgraph = list(ismags2.largest_common_subgraph()) +>>> answer = [ +... {1: 0, 0: 1, 2: 2}, +... {1: 0, 0: 1, 3: 2}, +... {2: 0, 0: 1, 1: 2}, +... {2: 0, 0: 1, 3: 2}, +... {3: 0, 0: 1, 1: 2}, +... {3: 0, 0: 1, 2: 2}, +... ] +>>> answer == largest_common_subgraph +True + +However, when not taking symmetry into account, it doesn't matter: + +>>> largest_common_subgraph = list(ismags.largest_common_subgraph(symmetry=False)) +>>> answer = [ +... {1: 0, 0: 1, 2: 2}, +... {1: 0, 2: 1, 0: 2}, +... {2: 0, 1: 1, 3: 2}, +... {2: 0, 3: 1, 1: 2}, +... {1: 0, 0: 1, 2: 3}, +... {1: 0, 2: 1, 0: 3}, +... {2: 0, 1: 1, 3: 3}, +... {2: 0, 3: 1, 1: 3}, +... {1: 0, 0: 2, 2: 3}, +... {1: 0, 2: 2, 0: 3}, +... {2: 0, 1: 2, 3: 3}, +... {2: 0, 3: 2, 1: 3}, +... ] +>>> answer == largest_common_subgraph +True +>>> largest_common_subgraph = list(ismags2.largest_common_subgraph(symmetry=False)) +>>> answer = [ +... {1: 0, 0: 1, 2: 2}, +... {1: 0, 0: 1, 3: 2}, +... {2: 0, 0: 1, 1: 2}, +... {2: 0, 0: 1, 3: 2}, +... {3: 0, 0: 1, 1: 2}, +... {3: 0, 0: 1, 2: 2}, +... {1: 1, 0: 2, 2: 3}, +... {1: 1, 0: 2, 3: 3}, +... {2: 1, 0: 2, 1: 3}, +... {2: 1, 0: 2, 3: 3}, +... {3: 1, 0: 2, 1: 3}, +... {3: 1, 0: 2, 2: 3}, +... ] +>>> answer == largest_common_subgraph +True + +Notes +----- +- The current implementation works for undirected graphs only. The algorithm + in general should work for directed graphs as well though. +- Node keys for both provided graphs need to be fully orderable as well as + hashable. +- Node and edge equality is assumed to be transitive: if A is equal to B, and + B is equal to C, then A is equal to C. + +References +---------- +.. [1] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, + M. Pickavet, "The Index-Based Subgraph Matching Algorithm with General + Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph + Enumeration", PLoS One 9(5): e97896, 2014. + https://doi.org/10.1371/journal.pone.0097896 +.. [2] https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph +""" + +__all__ = ["ISMAGS"] + +import itertools +from collections import Counter, defaultdict +from functools import reduce, wraps + + +def are_all_equal(iterable): + """ + Returns ``True`` if and only if all elements in `iterable` are equal; and + ``False`` otherwise. + + Parameters + ---------- + iterable: collections.abc.Iterable + The container whose elements will be checked. + + Returns + ------- + bool + ``True`` iff all elements in `iterable` compare equal, ``False`` + otherwise. + """ + try: + shape = iterable.shape + except AttributeError: + pass + else: + if len(shape) > 1: + message = "The function does not works on multidimensional arrays." + raise NotImplementedError(message) from None + + iterator = iter(iterable) + first = next(iterator, None) + return all(item == first for item in iterator) + + +def make_partitions(items, test): + """ + Partitions items into sets based on the outcome of ``test(item1, item2)``. + Pairs of items for which `test` returns `True` end up in the same set. + + Parameters + ---------- + items : collections.abc.Iterable[collections.abc.Hashable] + Items to partition + test : collections.abc.Callable[collections.abc.Hashable, collections.abc.Hashable] + A function that will be called with 2 arguments, taken from items. + Should return `True` if those 2 items need to end up in the same + partition, and `False` otherwise. + + Returns + ------- + list[set] + A list of sets, with each set containing part of the items in `items`, + such that ``all(test(*pair) for pair in itertools.combinations(set, 2)) + == True`` + + Notes + ----- + The function `test` is assumed to be transitive: if ``test(a, b)`` and + ``test(b, c)`` return ``True``, then ``test(a, c)`` must also be ``True``. + """ + partitions = [] + for item in items: + for partition in partitions: + p_item = next(iter(partition)) + if test(item, p_item): + partition.add(item) + break + else: # No break + partitions.append({item}) + return partitions + + +def partition_to_color(partitions): + """ + Creates a dictionary that maps each item in each partition to the index of + the partition to which it belongs. + + Parameters + ---------- + partitions: collections.abc.Sequence[collections.abc.Iterable] + As returned by :func:`make_partitions`. + + Returns + ------- + dict + """ + colors = {} + for color, keys in enumerate(partitions): + for key in keys: + colors[key] = color + return colors + + +def intersect(collection_of_sets): + """ + Given an collection of sets, returns the intersection of those sets. + + Parameters + ---------- + collection_of_sets: collections.abc.Collection[set] + A collection of sets. + + Returns + ------- + set + An intersection of all sets in `collection_of_sets`. Will have the same + type as the item initially taken from `collection_of_sets`. + """ + collection_of_sets = list(collection_of_sets) + first = collection_of_sets.pop() + out = reduce(set.intersection, collection_of_sets, set(first)) + return type(first)(out) + + +class ISMAGS: + """ + Implements the ISMAGS subgraph matching algorithm. [1]_ ISMAGS stands for + "Index-based Subgraph Matching Algorithm with General Symmetries". As the + name implies, it is symmetry aware and will only generate non-symmetric + isomorphisms. + + Notes + ----- + The implementation imposes additional conditions compared to the VF2 + algorithm on the graphs provided and the comparison functions + (:attr:`node_equality` and :attr:`edge_equality`): + + - Node keys in both graphs must be orderable as well as hashable. + - Equality must be transitive: if A is equal to B, and B is equal to C, + then A must be equal to C. + + Attributes + ---------- + graph: networkx.Graph + subgraph: networkx.Graph + node_equality: collections.abc.Callable + The function called to see if two nodes should be considered equal. + It's signature looks like this: + ``f(graph1: networkx.Graph, node1, graph2: networkx.Graph, node2) -> bool``. + `node1` is a node in `graph1`, and `node2` a node in `graph2`. + Constructed from the argument `node_match`. + edge_equality: collections.abc.Callable + The function called to see if two edges should be considered equal. + It's signature looks like this: + ``f(graph1: networkx.Graph, edge1, graph2: networkx.Graph, edge2) -> bool``. + `edge1` is an edge in `graph1`, and `edge2` an edge in `graph2`. + Constructed from the argument `edge_match`. + + References + ---------- + .. [1] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, + M. Pickavet, "The Index-Based Subgraph Matching Algorithm with General + Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph + Enumeration", PLoS One 9(5): e97896, 2014. + https://doi.org/10.1371/journal.pone.0097896 + """ + + def __init__(self, graph, subgraph, node_match=None, edge_match=None, cache=None): + """ + Parameters + ---------- + graph: networkx.Graph + subgraph: networkx.Graph + node_match: collections.abc.Callable or None + Function used to determine whether two nodes are equivalent. Its + signature should look like ``f(n1: dict, n2: dict) -> bool``, with + `n1` and `n2` node property dicts. See also + :func:`~networkx.algorithms.isomorphism.categorical_node_match` and + friends. + If `None`, all nodes are considered equal. + edge_match: collections.abc.Callable or None + Function used to determine whether two edges are equivalent. Its + signature should look like ``f(e1: dict, e2: dict) -> bool``, with + `e1` and `e2` edge property dicts. See also + :func:`~networkx.algorithms.isomorphism.categorical_edge_match` and + friends. + If `None`, all edges are considered equal. + cache: collections.abc.Mapping + A cache used for caching graph symmetries. + """ + # TODO: graph and subgraph setter methods that invalidate the caches. + # TODO: allow for precomputed partitions and colors + self.graph = graph + self.subgraph = subgraph + self._symmetry_cache = cache + # Naming conventions are taken from the original paper. For your + # sanity: + # sg: subgraph + # g: graph + # e: edge(s) + # n: node(s) + # So: sgn means "subgraph nodes". + self._sgn_partitions_ = None + self._sge_partitions_ = None + + self._sgn_colors_ = None + self._sge_colors_ = None + + self._gn_partitions_ = None + self._ge_partitions_ = None + + self._gn_colors_ = None + self._ge_colors_ = None + + self._node_compat_ = None + self._edge_compat_ = None + + if node_match is None: + self.node_equality = self._node_match_maker(lambda n1, n2: True) + self._sgn_partitions_ = [set(self.subgraph.nodes)] + self._gn_partitions_ = [set(self.graph.nodes)] + self._node_compat_ = {0: 0} + else: + self.node_equality = self._node_match_maker(node_match) + if edge_match is None: + self.edge_equality = self._edge_match_maker(lambda e1, e2: True) + self._sge_partitions_ = [set(self.subgraph.edges)] + self._ge_partitions_ = [set(self.graph.edges)] + self._edge_compat_ = {0: 0} + else: + self.edge_equality = self._edge_match_maker(edge_match) + + @property + def _sgn_partitions(self): + if self._sgn_partitions_ is None: + + def nodematch(node1, node2): + return self.node_equality(self.subgraph, node1, self.subgraph, node2) + + self._sgn_partitions_ = make_partitions(self.subgraph.nodes, nodematch) + return self._sgn_partitions_ + + @property + def _sge_partitions(self): + if self._sge_partitions_ is None: + + def edgematch(edge1, edge2): + return self.edge_equality(self.subgraph, edge1, self.subgraph, edge2) + + self._sge_partitions_ = make_partitions(self.subgraph.edges, edgematch) + return self._sge_partitions_ + + @property + def _gn_partitions(self): + if self._gn_partitions_ is None: + + def nodematch(node1, node2): + return self.node_equality(self.graph, node1, self.graph, node2) + + self._gn_partitions_ = make_partitions(self.graph.nodes, nodematch) + return self._gn_partitions_ + + @property + def _ge_partitions(self): + if self._ge_partitions_ is None: + + def edgematch(edge1, edge2): + return self.edge_equality(self.graph, edge1, self.graph, edge2) + + self._ge_partitions_ = make_partitions(self.graph.edges, edgematch) + return self._ge_partitions_ + + @property + def _sgn_colors(self): + if self._sgn_colors_ is None: + self._sgn_colors_ = partition_to_color(self._sgn_partitions) + return self._sgn_colors_ + + @property + def _sge_colors(self): + if self._sge_colors_ is None: + self._sge_colors_ = partition_to_color(self._sge_partitions) + return self._sge_colors_ + + @property + def _gn_colors(self): + if self._gn_colors_ is None: + self._gn_colors_ = partition_to_color(self._gn_partitions) + return self._gn_colors_ + + @property + def _ge_colors(self): + if self._ge_colors_ is None: + self._ge_colors_ = partition_to_color(self._ge_partitions) + return self._ge_colors_ + + @property + def _node_compatibility(self): + if self._node_compat_ is not None: + return self._node_compat_ + self._node_compat_ = {} + for sgn_part_color, gn_part_color in itertools.product( + range(len(self._sgn_partitions)), range(len(self._gn_partitions)) + ): + sgn = next(iter(self._sgn_partitions[sgn_part_color])) + gn = next(iter(self._gn_partitions[gn_part_color])) + if self.node_equality(self.subgraph, sgn, self.graph, gn): + self._node_compat_[sgn_part_color] = gn_part_color + return self._node_compat_ + + @property + def _edge_compatibility(self): + if self._edge_compat_ is not None: + return self._edge_compat_ + self._edge_compat_ = {} + for sge_part_color, ge_part_color in itertools.product( + range(len(self._sge_partitions)), range(len(self._ge_partitions)) + ): + sge = next(iter(self._sge_partitions[sge_part_color])) + ge = next(iter(self._ge_partitions[ge_part_color])) + if self.edge_equality(self.subgraph, sge, self.graph, ge): + self._edge_compat_[sge_part_color] = ge_part_color + return self._edge_compat_ + + @staticmethod + def _node_match_maker(cmp): + @wraps(cmp) + def comparer(graph1, node1, graph2, node2): + return cmp(graph1.nodes[node1], graph2.nodes[node2]) + + return comparer + + @staticmethod + def _edge_match_maker(cmp): + @wraps(cmp) + def comparer(graph1, edge1, graph2, edge2): + return cmp(graph1.edges[edge1], graph2.edges[edge2]) + + return comparer + + def find_isomorphisms(self, symmetry=True): + """Find all subgraph isomorphisms between subgraph and graph + + Finds isomorphisms where :attr:`subgraph` <= :attr:`graph`. + + Parameters + ---------- + symmetry: bool + Whether symmetry should be taken into account. If False, found + isomorphisms may be symmetrically equivalent. + + Yields + ------ + dict + The found isomorphism mappings of {graph_node: subgraph_node}. + """ + # The networkx VF2 algorithm is slightly funny in when it yields an + # empty dict and when not. + if not self.subgraph: + yield {} + return + elif not self.graph: + return + elif len(self.graph) < len(self.subgraph): + return + + if symmetry: + _, cosets = self.analyze_symmetry( + self.subgraph, self._sgn_partitions, self._sge_colors + ) + constraints = self._make_constraints(cosets) + else: + constraints = [] + + candidates = self._find_nodecolor_candidates() + la_candidates = self._get_lookahead_candidates() + for sgn in self.subgraph: + extra_candidates = la_candidates[sgn] + if extra_candidates: + candidates[sgn] = candidates[sgn] | {frozenset(extra_candidates)} + + if any(candidates.values()): + start_sgn = min(candidates, key=lambda n: min(candidates[n], key=len)) + candidates[start_sgn] = (intersect(candidates[start_sgn]),) + yield from self._map_nodes(start_sgn, candidates, constraints) + else: + return + + @staticmethod + def _find_neighbor_color_count(graph, node, node_color, edge_color): + """ + For `node` in `graph`, count the number of edges of a specific color + it has to nodes of a specific color. + """ + counts = Counter() + neighbors = graph[node] + for neighbor in neighbors: + n_color = node_color[neighbor] + if (node, neighbor) in edge_color: + e_color = edge_color[node, neighbor] + else: + e_color = edge_color[neighbor, node] + counts[e_color, n_color] += 1 + return counts + + def _get_lookahead_candidates(self): + """ + Returns a mapping of {subgraph node: collection of graph nodes} for + which the graph nodes are feasible candidates for the subgraph node, as + determined by looking ahead one edge. + """ + g_counts = {} + for gn in self.graph: + g_counts[gn] = self._find_neighbor_color_count( + self.graph, gn, self._gn_colors, self._ge_colors + ) + candidates = defaultdict(set) + for sgn in self.subgraph: + sg_count = self._find_neighbor_color_count( + self.subgraph, sgn, self._sgn_colors, self._sge_colors + ) + new_sg_count = Counter() + for (sge_color, sgn_color), count in sg_count.items(): + try: + ge_color = self._edge_compatibility[sge_color] + gn_color = self._node_compatibility[sgn_color] + except KeyError: + pass + else: + new_sg_count[ge_color, gn_color] = count + + for gn, g_count in g_counts.items(): + if all(new_sg_count[x] <= g_count[x] for x in new_sg_count): + # Valid candidate + candidates[sgn].add(gn) + return candidates + + def largest_common_subgraph(self, symmetry=True): + """ + Find the largest common induced subgraphs between :attr:`subgraph` and + :attr:`graph`. + + Parameters + ---------- + symmetry: bool + Whether symmetry should be taken into account. If False, found + largest common subgraphs may be symmetrically equivalent. + + Yields + ------ + dict + The found isomorphism mappings of {graph_node: subgraph_node}. + """ + # The networkx VF2 algorithm is slightly funny in when it yields an + # empty dict and when not. + if not self.subgraph: + yield {} + return + elif not self.graph: + return + + if symmetry: + _, cosets = self.analyze_symmetry( + self.subgraph, self._sgn_partitions, self._sge_colors + ) + constraints = self._make_constraints(cosets) + else: + constraints = [] + + candidates = self._find_nodecolor_candidates() + + if any(candidates.values()): + yield from self._largest_common_subgraph(candidates, constraints) + else: + return + + def analyze_symmetry(self, graph, node_partitions, edge_colors): + """ + Find a minimal set of permutations and corresponding co-sets that + describe the symmetry of `graph`, given the node and edge equalities + given by `node_partitions` and `edge_colors`, respectively. + + Parameters + ---------- + graph : networkx.Graph + The graph whose symmetry should be analyzed. + node_partitions : list of sets + A list of sets containing node keys. Node keys in the same set + are considered equivalent. Every node key in `graph` should be in + exactly one of the sets. If all nodes are equivalent, this should + be ``[set(graph.nodes)]``. + edge_colors : dict mapping edges to their colors + A dict mapping every edge in `graph` to its corresponding color. + Edges with the same color are considered equivalent. If all edges + are equivalent, this should be ``{e: 0 for e in graph.edges}``. + + + Returns + ------- + set[frozenset] + The found permutations. This is a set of frozensets of pairs of node + keys which can be exchanged without changing :attr:`subgraph`. + dict[collections.abc.Hashable, set[collections.abc.Hashable]] + The found co-sets. The co-sets is a dictionary of + ``{node key: set of node keys}``. + Every key-value pair describes which ``values`` can be interchanged + without changing nodes less than ``key``. + """ + if self._symmetry_cache is not None: + key = hash( + ( + tuple(graph.nodes), + tuple(graph.edges), + tuple(map(tuple, node_partitions)), + tuple(edge_colors.items()), + ) + ) + if key in self._symmetry_cache: + return self._symmetry_cache[key] + node_partitions = list( + self._refine_node_partitions(graph, node_partitions, edge_colors) + ) + assert len(node_partitions) == 1 + node_partitions = node_partitions[0] + permutations, cosets = self._process_ordered_pair_partitions( + graph, node_partitions, node_partitions, edge_colors + ) + if self._symmetry_cache is not None: + self._symmetry_cache[key] = permutations, cosets + return permutations, cosets + + def is_isomorphic(self, symmetry=False): + """ + Returns True if :attr:`graph` is isomorphic to :attr:`subgraph` and + False otherwise. + + Returns + ------- + bool + """ + return len(self.subgraph) == len(self.graph) and self.subgraph_is_isomorphic( + symmetry + ) + + def subgraph_is_isomorphic(self, symmetry=False): + """ + Returns True if a subgraph of :attr:`graph` is isomorphic to + :attr:`subgraph` and False otherwise. + + Returns + ------- + bool + """ + # symmetry=False, since we only need to know whether there is any + # example; figuring out all symmetry elements probably costs more time + # than it gains. + isom = next(self.subgraph_isomorphisms_iter(symmetry=symmetry), None) + return isom is not None + + def isomorphisms_iter(self, symmetry=True): + """ + Does the same as :meth:`find_isomorphisms` if :attr:`graph` and + :attr:`subgraph` have the same number of nodes. + """ + if len(self.graph) == len(self.subgraph): + yield from self.subgraph_isomorphisms_iter(symmetry=symmetry) + + def subgraph_isomorphisms_iter(self, symmetry=True): + """Alternative name for :meth:`find_isomorphisms`.""" + return self.find_isomorphisms(symmetry) + + def _find_nodecolor_candidates(self): + """ + Per node in subgraph find all nodes in graph that have the same color. + """ + candidates = defaultdict(set) + for sgn in self.subgraph.nodes: + sgn_color = self._sgn_colors[sgn] + if sgn_color in self._node_compatibility: + gn_color = self._node_compatibility[sgn_color] + candidates[sgn].add(frozenset(self._gn_partitions[gn_color])) + else: + candidates[sgn].add(frozenset()) + candidates = dict(candidates) + for sgn, options in candidates.items(): + candidates[sgn] = frozenset(options) + return candidates + + @staticmethod + def _make_constraints(cosets): + """ + Turn cosets into constraints. + """ + constraints = [] + for node_i, node_ts in cosets.items(): + for node_t in node_ts: + if node_i != node_t: + # Node i must be smaller than node t. + constraints.append((node_i, node_t)) + return constraints + + @staticmethod + def _find_node_edge_color(graph, node_colors, edge_colors): + """ + For every node in graph, come up with a color that combines 1) the + color of the node, and 2) the number of edges of a color to each type + of node. + """ + counts = defaultdict(lambda: defaultdict(int)) + for node1, node2 in graph.edges: + if (node1, node2) in edge_colors: + # FIXME directed graphs + ecolor = edge_colors[node1, node2] + else: + ecolor = edge_colors[node2, node1] + # Count per node how many edges it has of what color to nodes of + # what color + counts[node1][ecolor, node_colors[node2]] += 1 + counts[node2][ecolor, node_colors[node1]] += 1 + + node_edge_colors = {} + for node in graph.nodes: + node_edge_colors[node] = node_colors[node], set(counts[node].items()) + + return node_edge_colors + + @staticmethod + def _get_permutations_by_length(items): + """ + Get all permutations of items, but only permute items with the same + length. + + >>> found = list(ISMAGS._get_permutations_by_length([[1], [2], [3, 4], [4, 5]])) + >>> answer = [ + ... (([1], [2]), ([3, 4], [4, 5])), + ... (([1], [2]), ([4, 5], [3, 4])), + ... (([2], [1]), ([3, 4], [4, 5])), + ... (([2], [1]), ([4, 5], [3, 4])), + ... ] + >>> found == answer + True + """ + by_len = defaultdict(list) + for item in items: + by_len[len(item)].append(item) + + yield from itertools.product( + *(itertools.permutations(by_len[l]) for l in sorted(by_len)) + ) + + @classmethod + def _refine_node_partitions(cls, graph, node_partitions, edge_colors, branch=False): + """ + Given a partition of nodes in graph, make the partitions smaller such + that all nodes in a partition have 1) the same color, and 2) the same + number of edges to specific other partitions. + """ + + def equal_color(node1, node2): + return node_edge_colors[node1] == node_edge_colors[node2] + + node_partitions = list(node_partitions) + node_colors = partition_to_color(node_partitions) + node_edge_colors = cls._find_node_edge_color(graph, node_colors, edge_colors) + if all( + are_all_equal(node_edge_colors[node] for node in partition) + for partition in node_partitions + ): + yield node_partitions + return + + new_partitions = [] + output = [new_partitions] + for partition in node_partitions: + if not are_all_equal(node_edge_colors[node] for node in partition): + refined = make_partitions(partition, equal_color) + if ( + branch + and len(refined) != 1 + and len({len(r) for r in refined}) != len([len(r) for r in refined]) + ): + # This is where it breaks. There are multiple new cells + # in refined with the same length, and their order + # matters. + # So option 1) Hit it with a big hammer and simply make all + # orderings. + permutations = cls._get_permutations_by_length(refined) + new_output = [] + for n_p in output: + for permutation in permutations: + new_output.append(n_p + list(permutation[0])) + output = new_output + else: + for n_p in output: + n_p.extend(sorted(refined, key=len)) + else: + for n_p in output: + n_p.append(partition) + for n_p in output: + yield from cls._refine_node_partitions(graph, n_p, edge_colors, branch) + + def _edges_of_same_color(self, sgn1, sgn2): + """ + Returns all edges in :attr:`graph` that have the same colour as the + edge between sgn1 and sgn2 in :attr:`subgraph`. + """ + if (sgn1, sgn2) in self._sge_colors: + # FIXME directed graphs + sge_color = self._sge_colors[sgn1, sgn2] + else: + sge_color = self._sge_colors[sgn2, sgn1] + if sge_color in self._edge_compatibility: + ge_color = self._edge_compatibility[sge_color] + g_edges = self._ge_partitions[ge_color] + else: + g_edges = [] + return g_edges + + def _map_nodes(self, sgn, candidates, constraints, mapping=None, to_be_mapped=None): + """ + Find all subgraph isomorphisms honoring constraints. + """ + if mapping is None: + mapping = {} + else: + mapping = mapping.copy() + if to_be_mapped is None: + to_be_mapped = set(self.subgraph.nodes) + + # Note, we modify candidates here. Doesn't seem to affect results, but + # remember this. + # candidates = candidates.copy() + sgn_candidates = intersect(candidates[sgn]) + candidates[sgn] = frozenset([sgn_candidates]) + for gn in sgn_candidates: + # We're going to try to map sgn to gn. + if gn in mapping.values() or sgn not in to_be_mapped: + # gn is already mapped to something + continue # pragma: no cover + + # REDUCTION and COMBINATION + mapping[sgn] = gn + # BASECASE + if to_be_mapped == set(mapping.keys()): + yield {v: k for k, v in mapping.items()} + continue + left_to_map = to_be_mapped - set(mapping.keys()) + + new_candidates = candidates.copy() + sgn_neighbours = set(self.subgraph[sgn]) + not_gn_neighbours = set(self.graph.nodes) - set(self.graph[gn]) + for sgn2 in left_to_map: + if sgn2 not in sgn_neighbours: + gn2_options = not_gn_neighbours + else: + # Get all edges to gn of the right color: + g_edges = self._edges_of_same_color(sgn, sgn2) + # FIXME directed graphs + # And all nodes involved in those which are connected to gn + gn2_options = {n for e in g_edges for n in e if gn in e} + # Node color compatibility should be taken care of by the + # initial candidate lists made by find_subgraphs + + # Add gn2_options to the right collection. Since new_candidates + # is a dict of frozensets of frozensets of node indices it's + # a bit clunky. We can't do .add, and + also doesn't work. We + # could do |, but I deem union to be clearer. + new_candidates[sgn2] = new_candidates[sgn2].union( + [frozenset(gn2_options)] + ) + + if (sgn, sgn2) in constraints: + gn2_options = {gn2 for gn2 in self.graph if gn2 > gn} + elif (sgn2, sgn) in constraints: + gn2_options = {gn2 for gn2 in self.graph if gn2 < gn} + else: + continue # pragma: no cover + new_candidates[sgn2] = new_candidates[sgn2].union( + [frozenset(gn2_options)] + ) + + # The next node is the one that is unmapped and has fewest + # candidates + # Pylint disables because it's a one-shot function. + next_sgn = min( + left_to_map, key=lambda n: min(new_candidates[n], key=len) + ) # pylint: disable=cell-var-from-loop + yield from self._map_nodes( + next_sgn, + new_candidates, + constraints, + mapping=mapping, + to_be_mapped=to_be_mapped, + ) + # Unmap sgn-gn. Strictly not necessary since it'd get overwritten + # when making a new mapping for sgn. + # del mapping[sgn] + + def _largest_common_subgraph(self, candidates, constraints, to_be_mapped=None): + """ + Find all largest common subgraphs honoring constraints. + """ + if to_be_mapped is None: + to_be_mapped = {frozenset(self.subgraph.nodes)} + + # The LCS problem is basically a repeated subgraph isomorphism problem + # with smaller and smaller subgraphs. We store the nodes that are + # "part of" the subgraph in to_be_mapped, and we make it a little + # smaller every iteration. + + # pylint disable because it's guarded against by default value + current_size = len( + next(iter(to_be_mapped), []) + ) # pylint: disable=stop-iteration-return + + found_iso = False + if current_size <= len(self.graph): + # There's no point in trying to find isomorphisms of + # graph >= subgraph if subgraph has more nodes than graph. + + # Try the isomorphism first with the nodes with lowest ID. So sort + # them. Those are more likely to be part of the final + # correspondence. This makes finding the first answer(s) faster. In + # theory. + for nodes in sorted(to_be_mapped, key=sorted): + # Find the isomorphism between subgraph[to_be_mapped] <= graph + next_sgn = min(nodes, key=lambda n: min(candidates[n], key=len)) + isomorphs = self._map_nodes( + next_sgn, candidates, constraints, to_be_mapped=nodes + ) + + # This is effectively `yield from isomorphs`, except that we look + # whether an item was yielded. + try: + item = next(isomorphs) + except StopIteration: + pass + else: + yield item + yield from isomorphs + found_iso = True + + # BASECASE + if found_iso or current_size == 1: + # Shrinking has no point because either 1) we end up with a smaller + # common subgraph (and we want the largest), or 2) there'll be no + # more subgraph. + return + + left_to_be_mapped = set() + for nodes in to_be_mapped: + for sgn in nodes: + # We're going to remove sgn from to_be_mapped, but subject to + # symmetry constraints. We know that for every constraint we + # have those subgraph nodes are equal. So whenever we would + # remove the lower part of a constraint, remove the higher + # instead. This is all dealth with by _remove_node. And because + # left_to_be_mapped is a set, we don't do double work. + + # And finally, make the subgraph one node smaller. + # REDUCTION + new_nodes = self._remove_node(sgn, nodes, constraints) + left_to_be_mapped.add(new_nodes) + # COMBINATION + yield from self._largest_common_subgraph( + candidates, constraints, to_be_mapped=left_to_be_mapped + ) + + @staticmethod + def _remove_node(node, nodes, constraints): + """ + Returns a new set where node has been removed from nodes, subject to + symmetry constraints. We know, that for every constraint we have + those subgraph nodes are equal. So whenever we would remove the + lower part of a constraint, remove the higher instead. + """ + while True: + for low, high in constraints: + if low == node and high in nodes: + node = high + break + else: # no break, couldn't find node in constraints + break + return frozenset(nodes - {node}) + + @staticmethod + def _find_permutations(top_partitions, bottom_partitions): + """ + Return the pairs of top/bottom partitions where the partitions are + different. Ensures that all partitions in both top and bottom + partitions have size 1. + """ + # Find permutations + permutations = set() + for top, bot in zip(top_partitions, bottom_partitions): + # top and bot have only one element + if len(top) != 1 or len(bot) != 1: + raise IndexError( + "Not all nodes are coupled. This is" + f" impossible: {top_partitions}, {bottom_partitions}" + ) + if top != bot: + permutations.add(frozenset((next(iter(top)), next(iter(bot))))) + return permutations + + @staticmethod + def _update_orbits(orbits, permutations): + """ + Update orbits based on permutations. Orbits is modified in place. + For every pair of items in permutations their respective orbits are + merged. + """ + for permutation in permutations: + node, node2 = permutation + # Find the orbits that contain node and node2, and replace the + # orbit containing node with the union + first = second = None + for idx, orbit in enumerate(orbits): + if first is not None and second is not None: + break + if node in orbit: + first = idx + if node2 in orbit: + second = idx + if first != second: + orbits[first].update(orbits[second]) + del orbits[second] + + def _couple_nodes( + self, + top_partitions, + bottom_partitions, + pair_idx, + t_node, + b_node, + graph, + edge_colors, + ): + """ + Generate new partitions from top and bottom_partitions where t_node is + coupled to b_node. pair_idx is the index of the partitions where t_ and + b_node can be found. + """ + t_partition = top_partitions[pair_idx] + b_partition = bottom_partitions[pair_idx] + assert t_node in t_partition and b_node in b_partition + # Couple node to node2. This means they get their own partition + new_top_partitions = [top.copy() for top in top_partitions] + new_bottom_partitions = [bot.copy() for bot in bottom_partitions] + new_t_groups = {t_node}, t_partition - {t_node} + new_b_groups = {b_node}, b_partition - {b_node} + # Replace the old partitions with the coupled ones + del new_top_partitions[pair_idx] + del new_bottom_partitions[pair_idx] + new_top_partitions[pair_idx:pair_idx] = new_t_groups + new_bottom_partitions[pair_idx:pair_idx] = new_b_groups + + new_top_partitions = self._refine_node_partitions( + graph, new_top_partitions, edge_colors + ) + new_bottom_partitions = self._refine_node_partitions( + graph, new_bottom_partitions, edge_colors, branch=True + ) + new_top_partitions = list(new_top_partitions) + assert len(new_top_partitions) == 1 + new_top_partitions = new_top_partitions[0] + for bot in new_bottom_partitions: + yield list(new_top_partitions), bot + + def _process_ordered_pair_partitions( + self, + graph, + top_partitions, + bottom_partitions, + edge_colors, + orbits=None, + cosets=None, + ): + """ + Processes ordered pair partitions as per the reference paper. Finds and + returns all permutations and cosets that leave the graph unchanged. + """ + if orbits is None: + orbits = [{node} for node in graph.nodes] + else: + # Note that we don't copy orbits when we are given one. This means + # we leak information between the recursive branches. This is + # intentional! + orbits = orbits + if cosets is None: + cosets = {} + else: + cosets = cosets.copy() + + assert all( + len(t_p) == len(b_p) for t_p, b_p in zip(top_partitions, bottom_partitions) + ) + + # BASECASE + if all(len(top) == 1 for top in top_partitions): + # All nodes are mapped + permutations = self._find_permutations(top_partitions, bottom_partitions) + self._update_orbits(orbits, permutations) + if permutations: + return [permutations], cosets + else: + return [], cosets + + permutations = [] + unmapped_nodes = { + (node, idx) + for idx, t_partition in enumerate(top_partitions) + for node in t_partition + if len(t_partition) > 1 + } + node, pair_idx = min(unmapped_nodes) + b_partition = bottom_partitions[pair_idx] + + for node2 in sorted(b_partition): + if len(b_partition) == 1: + # Can never result in symmetry + continue + if node != node2 and any( + node in orbit and node2 in orbit for orbit in orbits + ): + # Orbit prune branch + continue + # REDUCTION + # Couple node to node2 + partitions = self._couple_nodes( + top_partitions, + bottom_partitions, + pair_idx, + node, + node2, + graph, + edge_colors, + ) + for opp in partitions: + new_top_partitions, new_bottom_partitions = opp + + new_perms, new_cosets = self._process_ordered_pair_partitions( + graph, + new_top_partitions, + new_bottom_partitions, + edge_colors, + orbits, + cosets, + ) + # COMBINATION + permutations += new_perms + cosets.update(new_cosets) + + mapped = { + k + for top, bottom in zip(top_partitions, bottom_partitions) + for k in top + if len(top) == 1 and top == bottom + } + ks = {k for k in graph.nodes if k < node} + # Have all nodes with ID < node been mapped? + find_coset = ks <= mapped and node not in cosets + if find_coset: + # Find the orbit that contains node + for orbit in orbits: + if node in orbit: + cosets[node] = orbit.copy() + return permutations, cosets diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorph.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorph.py new file mode 100644 index 0000000000000000000000000000000000000000..6f562400a3b5d8195ac0ab679e08de8b60da1c13 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorph.py @@ -0,0 +1,248 @@ +""" +Graph isomorphism functions. +""" +import networkx as nx +from networkx.exception import NetworkXError + +__all__ = [ + "could_be_isomorphic", + "fast_could_be_isomorphic", + "faster_could_be_isomorphic", + "is_isomorphic", +] + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}) +def could_be_isomorphic(G1, G2): + """Returns False if graphs are definitely not isomorphic. + True does NOT guarantee isomorphism. + + Parameters + ---------- + G1, G2 : graphs + The two graphs G1 and G2 must be the same type. + + Notes + ----- + Checks for matching degree, triangle, and number of cliques sequences. + The triangle sequence contains the number of triangles each node is part of. + The clique sequence contains for each node the number of maximal cliques + involving that node. + + """ + + # Check global properties + if G1.order() != G2.order(): + return False + + # Check local properties + d1 = G1.degree() + t1 = nx.triangles(G1) + clqs_1 = list(nx.find_cliques(G1)) + c1 = {n: sum(1 for c in clqs_1 if n in c) for n in G1} # number of cliques + props1 = [[d, t1[v], c1[v]] for v, d in d1] + props1.sort() + + d2 = G2.degree() + t2 = nx.triangles(G2) + clqs_2 = list(nx.find_cliques(G2)) + c2 = {n: sum(1 for c in clqs_2 if n in c) for n in G2} # number of cliques + props2 = [[d, t2[v], c2[v]] for v, d in d2] + props2.sort() + + if props1 != props2: + return False + + # OK... + return True + + +graph_could_be_isomorphic = could_be_isomorphic + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}) +def fast_could_be_isomorphic(G1, G2): + """Returns False if graphs are definitely not isomorphic. + + True does NOT guarantee isomorphism. + + Parameters + ---------- + G1, G2 : graphs + The two graphs G1 and G2 must be the same type. + + Notes + ----- + Checks for matching degree and triangle sequences. The triangle + sequence contains the number of triangles each node is part of. + """ + # Check global properties + if G1.order() != G2.order(): + return False + + # Check local properties + d1 = G1.degree() + t1 = nx.triangles(G1) + props1 = [[d, t1[v]] for v, d in d1] + props1.sort() + + d2 = G2.degree() + t2 = nx.triangles(G2) + props2 = [[d, t2[v]] for v, d in d2] + props2.sort() + + if props1 != props2: + return False + + # OK... + return True + + +fast_graph_could_be_isomorphic = fast_could_be_isomorphic + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}) +def faster_could_be_isomorphic(G1, G2): + """Returns False if graphs are definitely not isomorphic. + + True does NOT guarantee isomorphism. + + Parameters + ---------- + G1, G2 : graphs + The two graphs G1 and G2 must be the same type. + + Notes + ----- + Checks for matching degree sequences. + """ + # Check global properties + if G1.order() != G2.order(): + return False + + # Check local properties + d1 = sorted(d for n, d in G1.degree()) + d2 = sorted(d for n, d in G2.degree()) + + if d1 != d2: + return False + + # OK... + return True + + +faster_graph_could_be_isomorphic = faster_could_be_isomorphic + + +@nx._dispatch( + graphs={"G1": 0, "G2": 1}, + preserve_edge_attrs="edge_match", + preserve_node_attrs="node_match", +) +def is_isomorphic(G1, G2, node_match=None, edge_match=None): + """Returns True if the graphs G1 and G2 are isomorphic and False otherwise. + + Parameters + ---------- + G1, G2: graphs + The two graphs G1 and G2 must be the same type. + + node_match : callable + A function that returns True if node n1 in G1 and n2 in G2 should + be considered equal during the isomorphism test. + If node_match is not specified then node attributes are not considered. + + The function will be called like + + node_match(G1.nodes[n1], G2.nodes[n2]). + + That is, the function will receive the node attribute dictionaries + for n1 and n2 as inputs. + + edge_match : callable + A function that returns True if the edge attribute dictionary + for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should + be considered equal during the isomorphism test. If edge_match is + not specified then edge attributes are not considered. + + The function will be called like + + edge_match(G1[u1][v1], G2[u2][v2]). + + That is, the function will receive the edge attribute dictionaries + of the edges under consideration. + + Notes + ----- + Uses the vf2 algorithm [1]_. + + Examples + -------- + >>> import networkx.algorithms.isomorphism as iso + + For digraphs G1 and G2, using 'weight' edge attribute (default: 1) + + >>> G1 = nx.DiGraph() + >>> G2 = nx.DiGraph() + >>> nx.add_path(G1, [1, 2, 3, 4], weight=1) + >>> nx.add_path(G2, [10, 20, 30, 40], weight=2) + >>> em = iso.numerical_edge_match("weight", 1) + >>> nx.is_isomorphic(G1, G2) # no weights considered + True + >>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights + False + + For multidigraphs G1 and G2, using 'fill' node attribute (default: '') + + >>> G1 = nx.MultiDiGraph() + >>> G2 = nx.MultiDiGraph() + >>> G1.add_nodes_from([1, 2, 3], fill="red") + >>> G2.add_nodes_from([10, 20, 30, 40], fill="red") + >>> nx.add_path(G1, [1, 2, 3, 4], weight=3, linewidth=2.5) + >>> nx.add_path(G2, [10, 20, 30, 40], weight=3) + >>> nm = iso.categorical_node_match("fill", "red") + >>> nx.is_isomorphic(G1, G2, node_match=nm) + True + + For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7) + + >>> G1.add_edge(1, 2, weight=7) + 1 + >>> G2.add_edge(10, 20) + 1 + >>> em = iso.numerical_multiedge_match("weight", 7, rtol=1e-6) + >>> nx.is_isomorphic(G1, G2, edge_match=em) + True + + For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes + with default values 7 and 2.5. Also using 'fill' node attribute with + default value 'red'. + + >>> em = iso.numerical_multiedge_match(["weight", "linewidth"], [7, 2.5]) + >>> nm = iso.categorical_node_match("fill", "red") + >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm) + True + + See Also + -------- + numerical_node_match, numerical_edge_match, numerical_multiedge_match + categorical_node_match, categorical_edge_match, categorical_multiedge_match + + References + ---------- + .. [1] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, + "An Improved Algorithm for Matching Large Graphs", + 3rd IAPR-TC15 Workshop on Graph-based Representations in + Pattern Recognition, Cuen, pp. 149-159, 2001. + https://www.researchgate.net/publication/200034365_An_Improved_Algorithm_for_Matching_Large_Graphs + """ + if G1.is_directed() and G2.is_directed(): + GM = nx.algorithms.isomorphism.DiGraphMatcher + elif (not G1.is_directed()) and (not G2.is_directed()): + GM = nx.algorithms.isomorphism.GraphMatcher + else: + raise NetworkXError("Graphs G1 and G2 are not of the same type.") + + gm = GM(G1, G2, node_match=node_match, edge_match=edge_match) + + return gm.is_isomorphic() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorphvf2.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorphvf2.py new file mode 100644 index 0000000000000000000000000000000000000000..3e4bcc4dc9bc0f1891f15cd7a11171f4e64e0d3e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/isomorphvf2.py @@ -0,0 +1,1060 @@ +""" +************* +VF2 Algorithm +************* + +An implementation of VF2 algorithm for graph isomorphism testing. + +The simplest interface to use this module is to call networkx.is_isomorphic(). + +Introduction +------------ + +The GraphMatcher and DiGraphMatcher are responsible for matching +graphs or directed graphs in a predetermined manner. This +usually means a check for an isomorphism, though other checks +are also possible. For example, a subgraph of one graph +can be checked for isomorphism to a second graph. + +Matching is done via syntactic feasibility. It is also possible +to check for semantic feasibility. Feasibility, then, is defined +as the logical AND of the two functions. + +To include a semantic check, the (Di)GraphMatcher class should be +subclassed, and the semantic_feasibility() function should be +redefined. By default, the semantic feasibility function always +returns True. The effect of this is that semantics are not +considered in the matching of G1 and G2. + +Examples +-------- + +Suppose G1 and G2 are isomorphic graphs. Verification is as follows: + +>>> from networkx.algorithms import isomorphism +>>> G1 = nx.path_graph(4) +>>> G2 = nx.path_graph(4) +>>> GM = isomorphism.GraphMatcher(G1, G2) +>>> GM.is_isomorphic() +True + +GM.mapping stores the isomorphism mapping from G1 to G2. + +>>> GM.mapping +{0: 0, 1: 1, 2: 2, 3: 3} + + +Suppose G1 and G2 are isomorphic directed graphs. +Verification is as follows: + +>>> G1 = nx.path_graph(4, create_using=nx.DiGraph()) +>>> G2 = nx.path_graph(4, create_using=nx.DiGraph()) +>>> DiGM = isomorphism.DiGraphMatcher(G1, G2) +>>> DiGM.is_isomorphic() +True + +DiGM.mapping stores the isomorphism mapping from G1 to G2. + +>>> DiGM.mapping +{0: 0, 1: 1, 2: 2, 3: 3} + + + +Subgraph Isomorphism +-------------------- +Graph theory literature can be ambiguous about the meaning of the +above statement, and we seek to clarify it now. + +In the VF2 literature, a mapping M is said to be a graph-subgraph +isomorphism iff M is an isomorphism between G2 and a subgraph of G1. +Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say +that a subgraph of G1 is isomorphic to G2. + +Other literature uses the phrase 'subgraph isomorphic' as in 'G1 does +not have a subgraph isomorphic to G2'. Another use is as an in adverb +for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic +is to say that a subgraph of G1 is isomorphic to G2. + +Finally, the term 'subgraph' can have multiple meanings. In this +context, 'subgraph' always means a 'node-induced subgraph'. Edge-induced +subgraph isomorphisms are not directly supported, but one should be +able to perform the check by making use of nx.line_graph(). For +subgraphs which are not induced, the term 'monomorphism' is preferred +over 'isomorphism'. + +Let G=(N,E) be a graph with a set of nodes N and set of edges E. + +If G'=(N',E') is a subgraph, then: + N' is a subset of N + E' is a subset of E + +If G'=(N',E') is a node-induced subgraph, then: + N' is a subset of N + E' is the subset of edges in E relating nodes in N' + +If G'=(N',E') is an edge-induced subgraph, then: + N' is the subset of nodes in N related by edges in E' + E' is a subset of E + +If G'=(N',E') is a monomorphism, then: + N' is a subset of N + E' is a subset of the set of edges in E relating nodes in N' + +Note that if G' is a node-induced subgraph of G, then it is always a +subgraph monomorphism of G, but the opposite is not always true, as a +monomorphism can have fewer edges. + +References +---------- +[1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, + "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs", + IEEE Transactions on Pattern Analysis and Machine Intelligence, + vol. 26, no. 10, pp. 1367-1372, Oct., 2004. + http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf + +[2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved + Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop + on Graph-based Representations in Pattern Recognition, Cuen, + pp. 149-159, 2001. + https://www.researchgate.net/publication/200034365_An_Improved_Algorithm_for_Matching_Large_Graphs + +See Also +-------- +syntactic_feasibility(), semantic_feasibility() + +Notes +----- + +The implementation handles both directed and undirected graphs as well +as multigraphs. + +In general, the subgraph isomorphism problem is NP-complete whereas the +graph isomorphism problem is most likely not NP-complete (although no +polynomial-time algorithm is known to exist). + +""" + +# This work was originally coded by Christopher Ellison +# as part of the Computational Mechanics Python (CMPy) project. +# James P. Crutchfield, principal investigator. +# Complexity Sciences Center and Physics Department, UC Davis. + +import sys + +__all__ = ["GraphMatcher", "DiGraphMatcher"] + + +class GraphMatcher: + """Implementation of VF2 algorithm for matching undirected graphs. + + Suitable for Graph and MultiGraph instances. + """ + + def __init__(self, G1, G2): + """Initialize GraphMatcher. + + Parameters + ---------- + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism. + + Examples + -------- + To create a GraphMatcher which checks for syntactic feasibility: + + >>> from networkx.algorithms import isomorphism + >>> G1 = nx.path_graph(4) + >>> G2 = nx.path_graph(4) + >>> GM = isomorphism.GraphMatcher(G1, G2) + """ + self.G1 = G1 + self.G2 = G2 + self.G1_nodes = set(G1.nodes()) + self.G2_nodes = set(G2.nodes()) + self.G2_node_order = {n: i for i, n in enumerate(G2)} + + # Set recursion limit. + self.old_recursion_limit = sys.getrecursionlimit() + expected_max_recursion_level = len(self.G2) + if self.old_recursion_limit < 1.5 * expected_max_recursion_level: + # Give some breathing room. + sys.setrecursionlimit(int(1.5 * expected_max_recursion_level)) + + # Declare that we will be searching for a graph-graph isomorphism. + self.test = "graph" + + # Initialize state + self.initialize() + + def reset_recursion_limit(self): + """Restores the recursion limit.""" + # TODO: + # Currently, we use recursion and set the recursion level higher. + # It would be nice to restore the level, but because the + # (Di)GraphMatcher classes make use of cyclic references, garbage + # collection will never happen when we define __del__() to + # restore the recursion level. The result is a memory leak. + # So for now, we do not automatically restore the recursion level, + # and instead provide a method to do this manually. Eventually, + # we should turn this into a non-recursive implementation. + sys.setrecursionlimit(self.old_recursion_limit) + + def candidate_pairs_iter(self): + """Iterator over candidate pairs of nodes in G1 and G2.""" + + # All computations are done using the current state! + + G1_nodes = self.G1_nodes + G2_nodes = self.G2_nodes + min_key = self.G2_node_order.__getitem__ + + # First we compute the inout-terminal sets. + T1_inout = [node for node in self.inout_1 if node not in self.core_1] + T2_inout = [node for node in self.inout_2 if node not in self.core_2] + + # If T1_inout and T2_inout are both nonempty. + # P(s) = T1_inout x {min T2_inout} + if T1_inout and T2_inout: + node_2 = min(T2_inout, key=min_key) + for node_1 in T1_inout: + yield node_1, node_2 + + else: + # If T1_inout and T2_inout were both empty.... + # P(s) = (N_1 - M_1) x {min (N_2 - M_2)} + # if not (T1_inout or T2_inout): # as suggested by [2], incorrect + if 1: # as inferred from [1], correct + # First we determine the candidate node for G2 + other_node = min(G2_nodes - set(self.core_2), key=min_key) + for node in self.G1: + if node not in self.core_1: + yield node, other_node + + # For all other cases, we don't have any candidate pairs. + + def initialize(self): + """Reinitializes the state of the algorithm. + + This method should be redefined if using something other than GMState. + If only subclassing GraphMatcher, a redefinition is not necessary. + + """ + + # core_1[n] contains the index of the node paired with n, which is m, + # provided n is in the mapping. + # core_2[m] contains the index of the node paired with m, which is n, + # provided m is in the mapping. + self.core_1 = {} + self.core_2 = {} + + # See the paper for definitions of M_x and T_x^{y} + + # inout_1[n] is non-zero if n is in M_1 or in T_1^{inout} + # inout_2[m] is non-zero if m is in M_2 or in T_2^{inout} + # + # The value stored is the depth of the SSR tree when the node became + # part of the corresponding set. + self.inout_1 = {} + self.inout_2 = {} + # Practically, these sets simply store the nodes in the subgraph. + + self.state = GMState(self) + + # Provide a convenient way to access the isomorphism mapping. + self.mapping = self.core_1.copy() + + def is_isomorphic(self): + """Returns True if G1 and G2 are isomorphic graphs.""" + + # Let's do two very quick checks! + # QUESTION: Should we call faster_graph_could_be_isomorphic(G1,G2)? + # For now, I just copy the code. + + # Check global properties + if self.G1.order() != self.G2.order(): + return False + + # Check local properties + d1 = sorted(d for n, d in self.G1.degree()) + d2 = sorted(d for n, d in self.G2.degree()) + if d1 != d2: + return False + + try: + x = next(self.isomorphisms_iter()) + return True + except StopIteration: + return False + + def isomorphisms_iter(self): + """Generator over isomorphisms between G1 and G2.""" + # Declare that we are looking for a graph-graph isomorphism. + self.test = "graph" + self.initialize() + yield from self.match() + + def match(self): + """Extends the isomorphism mapping. + + This function is called recursively to determine if a complete + isomorphism can be found between G1 and G2. It cleans up the class + variables after each recursive call. If an isomorphism is found, + we yield the mapping. + + """ + if len(self.core_1) == len(self.G2): + # Save the final mapping, otherwise garbage collection deletes it. + self.mapping = self.core_1.copy() + # The mapping is complete. + yield self.mapping + else: + for G1_node, G2_node in self.candidate_pairs_iter(): + if self.syntactic_feasibility(G1_node, G2_node): + if self.semantic_feasibility(G1_node, G2_node): + # Recursive call, adding the feasible state. + newstate = self.state.__class__(self, G1_node, G2_node) + yield from self.match() + + # restore data structures + newstate.restore() + + def semantic_feasibility(self, G1_node, G2_node): + """Returns True if adding (G1_node, G2_node) is semantically feasible. + + The semantic feasibility function should return True if it is + acceptable to add the candidate pair (G1_node, G2_node) to the current + partial isomorphism mapping. The logic should focus on semantic + information contained in the edge data or a formalized node class. + + By acceptable, we mean that the subsequent mapping can still become a + complete isomorphism mapping. Thus, if adding the candidate pair + definitely makes it so that the subsequent mapping cannot become a + complete isomorphism mapping, then this function must return False. + + The default semantic feasibility function always returns True. The + effect is that semantics are not considered in the matching of G1 + and G2. + + The semantic checks might differ based on the what type of test is + being performed. A keyword description of the test is stored in + self.test. Here is a quick description of the currently implemented + tests:: + + test='graph' + Indicates that the graph matcher is looking for a graph-graph + isomorphism. + + test='subgraph' + Indicates that the graph matcher is looking for a subgraph-graph + isomorphism such that a subgraph of G1 is isomorphic to G2. + + test='mono' + Indicates that the graph matcher is looking for a subgraph-graph + monomorphism such that a subgraph of G1 is monomorphic to G2. + + Any subclass which redefines semantic_feasibility() must maintain + the above form to keep the match() method functional. Implementations + should consider multigraphs. + """ + return True + + def subgraph_is_isomorphic(self): + """Returns True if a subgraph of G1 is isomorphic to G2.""" + try: + x = next(self.subgraph_isomorphisms_iter()) + return True + except StopIteration: + return False + + def subgraph_is_monomorphic(self): + """Returns True if a subgraph of G1 is monomorphic to G2.""" + try: + x = next(self.subgraph_monomorphisms_iter()) + return True + except StopIteration: + return False + + # subgraph_is_isomorphic.__doc__ += "\n" + subgraph.replace('\n','\n'+indent) + + def subgraph_isomorphisms_iter(self): + """Generator over isomorphisms between a subgraph of G1 and G2.""" + # Declare that we are looking for graph-subgraph isomorphism. + self.test = "subgraph" + self.initialize() + yield from self.match() + + def subgraph_monomorphisms_iter(self): + """Generator over monomorphisms between a subgraph of G1 and G2.""" + # Declare that we are looking for graph-subgraph monomorphism. + self.test = "mono" + self.initialize() + yield from self.match() + + # subgraph_isomorphisms_iter.__doc__ += "\n" + subgraph.replace('\n','\n'+indent) + + def syntactic_feasibility(self, G1_node, G2_node): + """Returns True if adding (G1_node, G2_node) is syntactically feasible. + + This function returns True if it is adding the candidate pair + to the current partial isomorphism/monomorphism mapping is allowable. + The addition is allowable if the inclusion of the candidate pair does + not make it impossible for an isomorphism/monomorphism to be found. + """ + + # The VF2 algorithm was designed to work with graphs having, at most, + # one edge connecting any two nodes. This is not the case when + # dealing with an MultiGraphs. + # + # Basically, when we test the look-ahead rules R_neighbor, we will + # make sure that the number of edges are checked. We also add + # a R_self check to verify that the number of selfloops is acceptable. + # + # Users might be comparing Graph instances with MultiGraph instances. + # So the generic GraphMatcher class must work with MultiGraphs. + # Care must be taken since the value in the innermost dictionary is a + # singlet for Graph instances. For MultiGraphs, the value in the + # innermost dictionary is a list. + + ### + # Test at each step to get a return value as soon as possible. + ### + + # Look ahead 0 + + # R_self + + # The number of selfloops for G1_node must equal the number of + # self-loops for G2_node. Without this check, we would fail on + # R_neighbor at the next recursion level. But it is good to prune the + # search tree now. + + if self.test == "mono": + if self.G1.number_of_edges(G1_node, G1_node) < self.G2.number_of_edges( + G2_node, G2_node + ): + return False + else: + if self.G1.number_of_edges(G1_node, G1_node) != self.G2.number_of_edges( + G2_node, G2_node + ): + return False + + # R_neighbor + + # For each neighbor n' of n in the partial mapping, the corresponding + # node m' is a neighbor of m, and vice versa. Also, the number of + # edges must be equal. + if self.test != "mono": + for neighbor in self.G1[G1_node]: + if neighbor in self.core_1: + if self.core_1[neighbor] not in self.G2[G2_node]: + return False + elif self.G1.number_of_edges( + neighbor, G1_node + ) != self.G2.number_of_edges(self.core_1[neighbor], G2_node): + return False + + for neighbor in self.G2[G2_node]: + if neighbor in self.core_2: + if self.core_2[neighbor] not in self.G1[G1_node]: + return False + elif self.test == "mono": + if self.G1.number_of_edges( + self.core_2[neighbor], G1_node + ) < self.G2.number_of_edges(neighbor, G2_node): + return False + else: + if self.G1.number_of_edges( + self.core_2[neighbor], G1_node + ) != self.G2.number_of_edges(neighbor, G2_node): + return False + + if self.test != "mono": + # Look ahead 1 + + # R_terminout + # The number of neighbors of n in T_1^{inout} is equal to the + # number of neighbors of m that are in T_2^{inout}, and vice versa. + num1 = 0 + for neighbor in self.G1[G1_node]: + if (neighbor in self.inout_1) and (neighbor not in self.core_1): + num1 += 1 + num2 = 0 + for neighbor in self.G2[G2_node]: + if (neighbor in self.inout_2) and (neighbor not in self.core_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # Look ahead 2 + + # R_new + + # The number of neighbors of n that are neither in the core_1 nor + # T_1^{inout} is equal to the number of neighbors of m + # that are neither in core_2 nor T_2^{inout}. + num1 = 0 + for neighbor in self.G1[G1_node]: + if neighbor not in self.inout_1: + num1 += 1 + num2 = 0 + for neighbor in self.G2[G2_node]: + if neighbor not in self.inout_2: + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # Otherwise, this node pair is syntactically feasible! + return True + + +class DiGraphMatcher(GraphMatcher): + """Implementation of VF2 algorithm for matching directed graphs. + + Suitable for DiGraph and MultiDiGraph instances. + """ + + def __init__(self, G1, G2): + """Initialize DiGraphMatcher. + + G1 and G2 should be nx.Graph or nx.MultiGraph instances. + + Examples + -------- + To create a GraphMatcher which checks for syntactic feasibility: + + >>> from networkx.algorithms import isomorphism + >>> G1 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph())) + >>> G2 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph())) + >>> DiGM = isomorphism.DiGraphMatcher(G1, G2) + """ + super().__init__(G1, G2) + + def candidate_pairs_iter(self): + """Iterator over candidate pairs of nodes in G1 and G2.""" + + # All computations are done using the current state! + + G1_nodes = self.G1_nodes + G2_nodes = self.G2_nodes + min_key = self.G2_node_order.__getitem__ + + # First we compute the out-terminal sets. + T1_out = [node for node in self.out_1 if node not in self.core_1] + T2_out = [node for node in self.out_2 if node not in self.core_2] + + # If T1_out and T2_out are both nonempty. + # P(s) = T1_out x {min T2_out} + if T1_out and T2_out: + node_2 = min(T2_out, key=min_key) + for node_1 in T1_out: + yield node_1, node_2 + + # If T1_out and T2_out were both empty.... + # We compute the in-terminal sets. + + # elif not (T1_out or T2_out): # as suggested by [2], incorrect + else: # as suggested by [1], correct + T1_in = [node for node in self.in_1 if node not in self.core_1] + T2_in = [node for node in self.in_2 if node not in self.core_2] + + # If T1_in and T2_in are both nonempty. + # P(s) = T1_out x {min T2_out} + if T1_in and T2_in: + node_2 = min(T2_in, key=min_key) + for node_1 in T1_in: + yield node_1, node_2 + + # If all terminal sets are empty... + # P(s) = (N_1 - M_1) x {min (N_2 - M_2)} + + # elif not (T1_in or T2_in): # as suggested by [2], incorrect + else: # as inferred from [1], correct + node_2 = min(G2_nodes - set(self.core_2), key=min_key) + for node_1 in G1_nodes: + if node_1 not in self.core_1: + yield node_1, node_2 + + # For all other cases, we don't have any candidate pairs. + + def initialize(self): + """Reinitializes the state of the algorithm. + + This method should be redefined if using something other than DiGMState. + If only subclassing GraphMatcher, a redefinition is not necessary. + """ + + # core_1[n] contains the index of the node paired with n, which is m, + # provided n is in the mapping. + # core_2[m] contains the index of the node paired with m, which is n, + # provided m is in the mapping. + self.core_1 = {} + self.core_2 = {} + + # See the paper for definitions of M_x and T_x^{y} + + # in_1[n] is non-zero if n is in M_1 or in T_1^{in} + # out_1[n] is non-zero if n is in M_1 or in T_1^{out} + # + # in_2[m] is non-zero if m is in M_2 or in T_2^{in} + # out_2[m] is non-zero if m is in M_2 or in T_2^{out} + # + # The value stored is the depth of the search tree when the node became + # part of the corresponding set. + self.in_1 = {} + self.in_2 = {} + self.out_1 = {} + self.out_2 = {} + + self.state = DiGMState(self) + + # Provide a convenient way to access the isomorphism mapping. + self.mapping = self.core_1.copy() + + def syntactic_feasibility(self, G1_node, G2_node): + """Returns True if adding (G1_node, G2_node) is syntactically feasible. + + This function returns True if it is adding the candidate pair + to the current partial isomorphism/monomorphism mapping is allowable. + The addition is allowable if the inclusion of the candidate pair does + not make it impossible for an isomorphism/monomorphism to be found. + """ + + # The VF2 algorithm was designed to work with graphs having, at most, + # one edge connecting any two nodes. This is not the case when + # dealing with an MultiGraphs. + # + # Basically, when we test the look-ahead rules R_pred and R_succ, we + # will make sure that the number of edges are checked. We also add + # a R_self check to verify that the number of selfloops is acceptable. + + # Users might be comparing DiGraph instances with MultiDiGraph + # instances. So the generic DiGraphMatcher class must work with + # MultiDiGraphs. Care must be taken since the value in the innermost + # dictionary is a singlet for DiGraph instances. For MultiDiGraphs, + # the value in the innermost dictionary is a list. + + ### + # Test at each step to get a return value as soon as possible. + ### + + # Look ahead 0 + + # R_self + + # The number of selfloops for G1_node must equal the number of + # self-loops for G2_node. Without this check, we would fail on R_pred + # at the next recursion level. This should prune the tree even further. + if self.test == "mono": + if self.G1.number_of_edges(G1_node, G1_node) < self.G2.number_of_edges( + G2_node, G2_node + ): + return False + else: + if self.G1.number_of_edges(G1_node, G1_node) != self.G2.number_of_edges( + G2_node, G2_node + ): + return False + + # R_pred + + # For each predecessor n' of n in the partial mapping, the + # corresponding node m' is a predecessor of m, and vice versa. Also, + # the number of edges must be equal + if self.test != "mono": + for predecessor in self.G1.pred[G1_node]: + if predecessor in self.core_1: + if self.core_1[predecessor] not in self.G2.pred[G2_node]: + return False + elif self.G1.number_of_edges( + predecessor, G1_node + ) != self.G2.number_of_edges(self.core_1[predecessor], G2_node): + return False + + for predecessor in self.G2.pred[G2_node]: + if predecessor in self.core_2: + if self.core_2[predecessor] not in self.G1.pred[G1_node]: + return False + elif self.test == "mono": + if self.G1.number_of_edges( + self.core_2[predecessor], G1_node + ) < self.G2.number_of_edges(predecessor, G2_node): + return False + else: + if self.G1.number_of_edges( + self.core_2[predecessor], G1_node + ) != self.G2.number_of_edges(predecessor, G2_node): + return False + + # R_succ + + # For each successor n' of n in the partial mapping, the corresponding + # node m' is a successor of m, and vice versa. Also, the number of + # edges must be equal. + if self.test != "mono": + for successor in self.G1[G1_node]: + if successor in self.core_1: + if self.core_1[successor] not in self.G2[G2_node]: + return False + elif self.G1.number_of_edges( + G1_node, successor + ) != self.G2.number_of_edges(G2_node, self.core_1[successor]): + return False + + for successor in self.G2[G2_node]: + if successor in self.core_2: + if self.core_2[successor] not in self.G1[G1_node]: + return False + elif self.test == "mono": + if self.G1.number_of_edges( + G1_node, self.core_2[successor] + ) < self.G2.number_of_edges(G2_node, successor): + return False + else: + if self.G1.number_of_edges( + G1_node, self.core_2[successor] + ) != self.G2.number_of_edges(G2_node, successor): + return False + + if self.test != "mono": + # Look ahead 1 + + # R_termin + # The number of predecessors of n that are in T_1^{in} is equal to the + # number of predecessors of m that are in T_2^{in}. + num1 = 0 + for predecessor in self.G1.pred[G1_node]: + if (predecessor in self.in_1) and (predecessor not in self.core_1): + num1 += 1 + num2 = 0 + for predecessor in self.G2.pred[G2_node]: + if (predecessor in self.in_2) and (predecessor not in self.core_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # The number of successors of n that are in T_1^{in} is equal to the + # number of successors of m that are in T_2^{in}. + num1 = 0 + for successor in self.G1[G1_node]: + if (successor in self.in_1) and (successor not in self.core_1): + num1 += 1 + num2 = 0 + for successor in self.G2[G2_node]: + if (successor in self.in_2) and (successor not in self.core_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # R_termout + + # The number of predecessors of n that are in T_1^{out} is equal to the + # number of predecessors of m that are in T_2^{out}. + num1 = 0 + for predecessor in self.G1.pred[G1_node]: + if (predecessor in self.out_1) and (predecessor not in self.core_1): + num1 += 1 + num2 = 0 + for predecessor in self.G2.pred[G2_node]: + if (predecessor in self.out_2) and (predecessor not in self.core_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # The number of successors of n that are in T_1^{out} is equal to the + # number of successors of m that are in T_2^{out}. + num1 = 0 + for successor in self.G1[G1_node]: + if (successor in self.out_1) and (successor not in self.core_1): + num1 += 1 + num2 = 0 + for successor in self.G2[G2_node]: + if (successor in self.out_2) and (successor not in self.core_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # Look ahead 2 + + # R_new + + # The number of predecessors of n that are neither in the core_1 nor + # T_1^{in} nor T_1^{out} is equal to the number of predecessors of m + # that are neither in core_2 nor T_2^{in} nor T_2^{out}. + num1 = 0 + for predecessor in self.G1.pred[G1_node]: + if (predecessor not in self.in_1) and (predecessor not in self.out_1): + num1 += 1 + num2 = 0 + for predecessor in self.G2.pred[G2_node]: + if (predecessor not in self.in_2) and (predecessor not in self.out_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # The number of successors of n that are neither in the core_1 nor + # T_1^{in} nor T_1^{out} is equal to the number of successors of m + # that are neither in core_2 nor T_2^{in} nor T_2^{out}. + num1 = 0 + for successor in self.G1[G1_node]: + if (successor not in self.in_1) and (successor not in self.out_1): + num1 += 1 + num2 = 0 + for successor in self.G2[G2_node]: + if (successor not in self.in_2) and (successor not in self.out_2): + num2 += 1 + if self.test == "graph": + if num1 != num2: + return False + else: # self.test == 'subgraph' + if not (num1 >= num2): + return False + + # Otherwise, this node pair is syntactically feasible! + return True + + +class GMState: + """Internal representation of state for the GraphMatcher class. + + This class is used internally by the GraphMatcher class. It is used + only to store state specific data. There will be at most G2.order() of + these objects in memory at a time, due to the depth-first search + strategy employed by the VF2 algorithm. + """ + + def __init__(self, GM, G1_node=None, G2_node=None): + """Initializes GMState object. + + Pass in the GraphMatcher to which this GMState belongs and the + new node pair that will be added to the GraphMatcher's current + isomorphism mapping. + """ + self.GM = GM + + # Initialize the last stored node pair. + self.G1_node = None + self.G2_node = None + self.depth = len(GM.core_1) + + if G1_node is None or G2_node is None: + # Then we reset the class variables + GM.core_1 = {} + GM.core_2 = {} + GM.inout_1 = {} + GM.inout_2 = {} + + # Watch out! G1_node == 0 should evaluate to True. + if G1_node is not None and G2_node is not None: + # Add the node pair to the isomorphism mapping. + GM.core_1[G1_node] = G2_node + GM.core_2[G2_node] = G1_node + + # Store the node that was added last. + self.G1_node = G1_node + self.G2_node = G2_node + + # Now we must update the other two vectors. + # We will add only if it is not in there already! + self.depth = len(GM.core_1) + + # First we add the new nodes... + if G1_node not in GM.inout_1: + GM.inout_1[G1_node] = self.depth + if G2_node not in GM.inout_2: + GM.inout_2[G2_node] = self.depth + + # Now we add every other node... + + # Updates for T_1^{inout} + new_nodes = set() + for node in GM.core_1: + new_nodes.update( + [neighbor for neighbor in GM.G1[node] if neighbor not in GM.core_1] + ) + for node in new_nodes: + if node not in GM.inout_1: + GM.inout_1[node] = self.depth + + # Updates for T_2^{inout} + new_nodes = set() + for node in GM.core_2: + new_nodes.update( + [neighbor for neighbor in GM.G2[node] if neighbor not in GM.core_2] + ) + for node in new_nodes: + if node not in GM.inout_2: + GM.inout_2[node] = self.depth + + def restore(self): + """Deletes the GMState object and restores the class variables.""" + # First we remove the node that was added from the core vectors. + # Watch out! G1_node == 0 should evaluate to True. + if self.G1_node is not None and self.G2_node is not None: + del self.GM.core_1[self.G1_node] + del self.GM.core_2[self.G2_node] + + # Now we revert the other two vectors. + # Thus, we delete all entries which have this depth level. + for vector in (self.GM.inout_1, self.GM.inout_2): + for node in list(vector.keys()): + if vector[node] == self.depth: + del vector[node] + + +class DiGMState: + """Internal representation of state for the DiGraphMatcher class. + + This class is used internally by the DiGraphMatcher class. It is used + only to store state specific data. There will be at most G2.order() of + these objects in memory at a time, due to the depth-first search + strategy employed by the VF2 algorithm. + + """ + + def __init__(self, GM, G1_node=None, G2_node=None): + """Initializes DiGMState object. + + Pass in the DiGraphMatcher to which this DiGMState belongs and the + new node pair that will be added to the GraphMatcher's current + isomorphism mapping. + """ + self.GM = GM + + # Initialize the last stored node pair. + self.G1_node = None + self.G2_node = None + self.depth = len(GM.core_1) + + if G1_node is None or G2_node is None: + # Then we reset the class variables + GM.core_1 = {} + GM.core_2 = {} + GM.in_1 = {} + GM.in_2 = {} + GM.out_1 = {} + GM.out_2 = {} + + # Watch out! G1_node == 0 should evaluate to True. + if G1_node is not None and G2_node is not None: + # Add the node pair to the isomorphism mapping. + GM.core_1[G1_node] = G2_node + GM.core_2[G2_node] = G1_node + + # Store the node that was added last. + self.G1_node = G1_node + self.G2_node = G2_node + + # Now we must update the other four vectors. + # We will add only if it is not in there already! + self.depth = len(GM.core_1) + + # First we add the new nodes... + for vector in (GM.in_1, GM.out_1): + if G1_node not in vector: + vector[G1_node] = self.depth + for vector in (GM.in_2, GM.out_2): + if G2_node not in vector: + vector[G2_node] = self.depth + + # Now we add every other node... + + # Updates for T_1^{in} + new_nodes = set() + for node in GM.core_1: + new_nodes.update( + [ + predecessor + for predecessor in GM.G1.predecessors(node) + if predecessor not in GM.core_1 + ] + ) + for node in new_nodes: + if node not in GM.in_1: + GM.in_1[node] = self.depth + + # Updates for T_2^{in} + new_nodes = set() + for node in GM.core_2: + new_nodes.update( + [ + predecessor + for predecessor in GM.G2.predecessors(node) + if predecessor not in GM.core_2 + ] + ) + for node in new_nodes: + if node not in GM.in_2: + GM.in_2[node] = self.depth + + # Updates for T_1^{out} + new_nodes = set() + for node in GM.core_1: + new_nodes.update( + [ + successor + for successor in GM.G1.successors(node) + if successor not in GM.core_1 + ] + ) + for node in new_nodes: + if node not in GM.out_1: + GM.out_1[node] = self.depth + + # Updates for T_2^{out} + new_nodes = set() + for node in GM.core_2: + new_nodes.update( + [ + successor + for successor in GM.G2.successors(node) + if successor not in GM.core_2 + ] + ) + for node in new_nodes: + if node not in GM.out_2: + GM.out_2[node] = self.depth + + def restore(self): + """Deletes the DiGMState object and restores the class variables.""" + + # First we remove the node that was added from the core vectors. + # Watch out! G1_node == 0 should evaluate to True. + if self.G1_node is not None and self.G2_node is not None: + del self.GM.core_1[self.G1_node] + del self.GM.core_2[self.G2_node] + + # Now we revert the other four vectors. + # Thus, we delete all entries which have this depth level. + for vector in (self.GM.in_1, self.GM.in_2, self.GM.out_1, self.GM.out_2): + for node in list(vector.keys()): + if vector[node] == self.depth: + del vector[node] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/matchhelpers.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/matchhelpers.py new file mode 100644 index 0000000000000000000000000000000000000000..5239ed77e6cca40fadd538c187838b7fbec65266 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/matchhelpers.py @@ -0,0 +1,352 @@ +"""Functions which help end users define customize node_match and +edge_match functions to use during isomorphism checks. +""" +import math +import types +from itertools import permutations + +__all__ = [ + "categorical_node_match", + "categorical_edge_match", + "categorical_multiedge_match", + "numerical_node_match", + "numerical_edge_match", + "numerical_multiedge_match", + "generic_node_match", + "generic_edge_match", + "generic_multiedge_match", +] + + +def copyfunc(f, name=None): + """Returns a deepcopy of a function.""" + return types.FunctionType( + f.__code__, f.__globals__, name or f.__name__, f.__defaults__, f.__closure__ + ) + + +def allclose(x, y, rtol=1.0000000000000001e-05, atol=1e-08): + """Returns True if x and y are sufficiently close, elementwise. + + Parameters + ---------- + rtol : float + The relative error tolerance. + atol : float + The absolute error tolerance. + + """ + # assume finite weights, see numpy.allclose() for reference + return all(math.isclose(xi, yi, rel_tol=rtol, abs_tol=atol) for xi, yi in zip(x, y)) + + +categorical_doc = """ +Returns a comparison function for a categorical node attribute. + +The value(s) of the attr(s) must be hashable and comparable via the == +operator since they are placed into a set([]) object. If the sets from +G1 and G2 are the same, then the constructed function returns True. + +Parameters +---------- +attr : string | list + The categorical node attribute to compare, or a list of categorical + node attributes to compare. +default : value | list + The default value for the categorical node attribute, or a list of + default values for the categorical node attributes. + +Returns +------- +match : function + The customized, categorical `node_match` function. + +Examples +-------- +>>> import networkx.algorithms.isomorphism as iso +>>> nm = iso.categorical_node_match("size", 1) +>>> nm = iso.categorical_node_match(["color", "size"], ["red", 2]) + +""" + + +def categorical_node_match(attr, default): + if isinstance(attr, str): + + def match(data1, data2): + return data1.get(attr, default) == data2.get(attr, default) + + else: + attrs = list(zip(attr, default)) # Python 3 + + def match(data1, data2): + return all(data1.get(attr, d) == data2.get(attr, d) for attr, d in attrs) + + return match + + +categorical_edge_match = copyfunc(categorical_node_match, "categorical_edge_match") + + +def categorical_multiedge_match(attr, default): + if isinstance(attr, str): + + def match(datasets1, datasets2): + values1 = {data.get(attr, default) for data in datasets1.values()} + values2 = {data.get(attr, default) for data in datasets2.values()} + return values1 == values2 + + else: + attrs = list(zip(attr, default)) # Python 3 + + def match(datasets1, datasets2): + values1 = set() + for data1 in datasets1.values(): + x = tuple(data1.get(attr, d) for attr, d in attrs) + values1.add(x) + values2 = set() + for data2 in datasets2.values(): + x = tuple(data2.get(attr, d) for attr, d in attrs) + values2.add(x) + return values1 == values2 + + return match + + +# Docstrings for categorical functions. +categorical_node_match.__doc__ = categorical_doc +categorical_edge_match.__doc__ = categorical_doc.replace("node", "edge") +tmpdoc = categorical_doc.replace("node", "edge") +tmpdoc = tmpdoc.replace("categorical_edge_match", "categorical_multiedge_match") +categorical_multiedge_match.__doc__ = tmpdoc + + +numerical_doc = """ +Returns a comparison function for a numerical node attribute. + +The value(s) of the attr(s) must be numerical and sortable. If the +sorted list of values from G1 and G2 are the same within some +tolerance, then the constructed function returns True. + +Parameters +---------- +attr : string | list + The numerical node attribute to compare, or a list of numerical + node attributes to compare. +default : value | list + The default value for the numerical node attribute, or a list of + default values for the numerical node attributes. +rtol : float + The relative error tolerance. +atol : float + The absolute error tolerance. + +Returns +------- +match : function + The customized, numerical `node_match` function. + +Examples +-------- +>>> import networkx.algorithms.isomorphism as iso +>>> nm = iso.numerical_node_match("weight", 1.0) +>>> nm = iso.numerical_node_match(["weight", "linewidth"], [0.25, 0.5]) + +""" + + +def numerical_node_match(attr, default, rtol=1.0000000000000001e-05, atol=1e-08): + if isinstance(attr, str): + + def match(data1, data2): + return math.isclose( + data1.get(attr, default), + data2.get(attr, default), + rel_tol=rtol, + abs_tol=atol, + ) + + else: + attrs = list(zip(attr, default)) # Python 3 + + def match(data1, data2): + values1 = [data1.get(attr, d) for attr, d in attrs] + values2 = [data2.get(attr, d) for attr, d in attrs] + return allclose(values1, values2, rtol=rtol, atol=atol) + + return match + + +numerical_edge_match = copyfunc(numerical_node_match, "numerical_edge_match") + + +def numerical_multiedge_match(attr, default, rtol=1.0000000000000001e-05, atol=1e-08): + if isinstance(attr, str): + + def match(datasets1, datasets2): + values1 = sorted(data.get(attr, default) for data in datasets1.values()) + values2 = sorted(data.get(attr, default) for data in datasets2.values()) + return allclose(values1, values2, rtol=rtol, atol=atol) + + else: + attrs = list(zip(attr, default)) # Python 3 + + def match(datasets1, datasets2): + values1 = [] + for data1 in datasets1.values(): + x = tuple(data1.get(attr, d) for attr, d in attrs) + values1.append(x) + values2 = [] + for data2 in datasets2.values(): + x = tuple(data2.get(attr, d) for attr, d in attrs) + values2.append(x) + values1.sort() + values2.sort() + for xi, yi in zip(values1, values2): + if not allclose(xi, yi, rtol=rtol, atol=atol): + return False + else: + return True + + return match + + +# Docstrings for numerical functions. +numerical_node_match.__doc__ = numerical_doc +numerical_edge_match.__doc__ = numerical_doc.replace("node", "edge") +tmpdoc = numerical_doc.replace("node", "edge") +tmpdoc = tmpdoc.replace("numerical_edge_match", "numerical_multiedge_match") +numerical_multiedge_match.__doc__ = tmpdoc + + +generic_doc = """ +Returns a comparison function for a generic attribute. + +The value(s) of the attr(s) are compared using the specified +operators. If all the attributes are equal, then the constructed +function returns True. + +Parameters +---------- +attr : string | list + The node attribute to compare, or a list of node attributes + to compare. +default : value | list + The default value for the node attribute, or a list of + default values for the node attributes. +op : callable | list + The operator to use when comparing attribute values, or a list + of operators to use when comparing values for each attribute. + +Returns +------- +match : function + The customized, generic `node_match` function. + +Examples +-------- +>>> from operator import eq +>>> from math import isclose +>>> from networkx.algorithms.isomorphism import generic_node_match +>>> nm = generic_node_match("weight", 1.0, isclose) +>>> nm = generic_node_match("color", "red", eq) +>>> nm = generic_node_match(["weight", "color"], [1.0, "red"], [isclose, eq]) + +""" + + +def generic_node_match(attr, default, op): + if isinstance(attr, str): + + def match(data1, data2): + return op(data1.get(attr, default), data2.get(attr, default)) + + else: + attrs = list(zip(attr, default, op)) # Python 3 + + def match(data1, data2): + for attr, d, operator in attrs: + if not operator(data1.get(attr, d), data2.get(attr, d)): + return False + else: + return True + + return match + + +generic_edge_match = copyfunc(generic_node_match, "generic_edge_match") + + +def generic_multiedge_match(attr, default, op): + """Returns a comparison function for a generic attribute. + + The value(s) of the attr(s) are compared using the specified + operators. If all the attributes are equal, then the constructed + function returns True. Potentially, the constructed edge_match + function can be slow since it must verify that no isomorphism + exists between the multiedges before it returns False. + + Parameters + ---------- + attr : string | list + The edge attribute to compare, or a list of node attributes + to compare. + default : value | list + The default value for the edge attribute, or a list of + default values for the edgeattributes. + op : callable | list + The operator to use when comparing attribute values, or a list + of operators to use when comparing values for each attribute. + + Returns + ------- + match : function + The customized, generic `edge_match` function. + + Examples + -------- + >>> from operator import eq + >>> from math import isclose + >>> from networkx.algorithms.isomorphism import generic_node_match + >>> nm = generic_node_match("weight", 1.0, isclose) + >>> nm = generic_node_match("color", "red", eq) + >>> nm = generic_node_match(["weight", "color"], [1.0, "red"], [isclose, eq]) + ... + + """ + + # This is slow, but generic. + # We must test every possible isomorphism between the edges. + if isinstance(attr, str): + attr = [attr] + default = [default] + op = [op] + attrs = list(zip(attr, default)) # Python 3 + + def match(datasets1, datasets2): + values1 = [] + for data1 in datasets1.values(): + x = tuple(data1.get(attr, d) for attr, d in attrs) + values1.append(x) + values2 = [] + for data2 in datasets2.values(): + x = tuple(data2.get(attr, d) for attr, d in attrs) + values2.append(x) + for vals2 in permutations(values2): + for xi, yi in zip(values1, vals2): + if not all(map(lambda x, y, z: z(x, y), xi, yi, op)): + # This is not an isomorphism, go to next permutation. + break + else: + # Then we found an isomorphism. + return True + else: + # Then there are no isomorphisms between the multiedges. + return False + + return match + + +# Docstrings for numerical functions. +generic_node_match.__doc__ = generic_doc +generic_edge_match.__doc__ = generic_doc.replace("node", "edge") diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/temporalisomorphvf2.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/temporalisomorphvf2.py new file mode 100644 index 0000000000000000000000000000000000000000..62cacc77887efa99026c117687bb9ad82cebd4dd --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/temporalisomorphvf2.py @@ -0,0 +1,308 @@ +""" +***************************** +Time-respecting VF2 Algorithm +***************************** + +An extension of the VF2 algorithm for time-respecting graph isomorphism +testing in temporal graphs. + +A temporal graph is one in which edges contain a datetime attribute, +denoting when interaction occurred between the incident nodes. A +time-respecting subgraph of a temporal graph is a subgraph such that +all interactions incident to a node occurred within a time threshold, +delta, of each other. A directed time-respecting subgraph has the +added constraint that incoming interactions to a node must precede +outgoing interactions from the same node - this enforces a sense of +directed flow. + +Introduction +------------ + +The TimeRespectingGraphMatcher and TimeRespectingDiGraphMatcher +extend the GraphMatcher and DiGraphMatcher classes, respectively, +to include temporal constraints on matches. This is achieved through +a semantic check, via the semantic_feasibility() function. + +As well as including G1 (the graph in which to seek embeddings) and +G2 (the subgraph structure of interest), the name of the temporal +attribute on the edges and the time threshold, delta, must be supplied +as arguments to the matching constructors. + +A delta of zero is the strictest temporal constraint on the match - +only embeddings in which all interactions occur at the same time will +be returned. A delta of one day will allow embeddings in which +adjacent interactions occur up to a day apart. + +Examples +-------- + +Examples will be provided when the datetime type has been incorporated. + + +Temporal Subgraph Isomorphism +----------------------------- + +A brief discussion of the somewhat diverse current literature will be +included here. + +References +---------- + +[1] Redmond, U. and Cunningham, P. Temporal subgraph isomorphism. In: +The 2013 IEEE/ACM International Conference on Advances in Social +Networks Analysis and Mining (ASONAM). Niagara Falls, Canada; 2013: +pages 1451 - 1452. [65] + +For a discussion of the literature on temporal networks: + +[3] P. Holme and J. Saramaki. Temporal networks. Physics Reports, +519(3):97–125, 2012. + +Notes +----- + +Handles directed and undirected graphs and graphs with parallel edges. + +""" + +import networkx as nx + +from .isomorphvf2 import DiGraphMatcher, GraphMatcher + +__all__ = ["TimeRespectingGraphMatcher", "TimeRespectingDiGraphMatcher"] + + +class TimeRespectingGraphMatcher(GraphMatcher): + def __init__(self, G1, G2, temporal_attribute_name, delta): + """Initialize TimeRespectingGraphMatcher. + + G1 and G2 should be nx.Graph or nx.MultiGraph instances. + + Examples + -------- + To create a TimeRespectingGraphMatcher which checks for + syntactic and semantic feasibility: + + >>> from networkx.algorithms import isomorphism + >>> from datetime import timedelta + >>> G1 = nx.Graph(nx.path_graph(4, create_using=nx.Graph())) + + >>> G2 = nx.Graph(nx.path_graph(4, create_using=nx.Graph())) + + >>> GM = isomorphism.TimeRespectingGraphMatcher( + ... G1, G2, "date", timedelta(days=1) + ... ) + """ + self.temporal_attribute_name = temporal_attribute_name + self.delta = delta + super().__init__(G1, G2) + + def one_hop(self, Gx, Gx_node, neighbors): + """ + Edges one hop out from a node in the mapping should be + time-respecting with respect to each other. + """ + dates = [] + for n in neighbors: + if isinstance(Gx, nx.Graph): # Graph G[u][v] returns the data dictionary. + dates.append(Gx[Gx_node][n][self.temporal_attribute_name]) + else: # MultiGraph G[u][v] returns a dictionary of key -> data dictionary. + for edge in Gx[Gx_node][ + n + ].values(): # Iterates all edges between node pair. + dates.append(edge[self.temporal_attribute_name]) + if any(x is None for x in dates): + raise ValueError("Datetime not supplied for at least one edge.") + return not dates or max(dates) - min(dates) <= self.delta + + def two_hop(self, Gx, core_x, Gx_node, neighbors): + """ + Paths of length 2 from Gx_node should be time-respecting. + """ + return all( + self.one_hop(Gx, v, [n for n in Gx[v] if n in core_x] + [Gx_node]) + for v in neighbors + ) + + def semantic_feasibility(self, G1_node, G2_node): + """Returns True if adding (G1_node, G2_node) is semantically + feasible. + + Any subclass which redefines semantic_feasibility() must + maintain the self.tests if needed, to keep the match() method + functional. Implementations should consider multigraphs. + """ + neighbors = [n for n in self.G1[G1_node] if n in self.core_1] + if not self.one_hop(self.G1, G1_node, neighbors): # Fail fast on first node. + return False + if not self.two_hop(self.G1, self.core_1, G1_node, neighbors): + return False + # Otherwise, this node is semantically feasible! + return True + + +class TimeRespectingDiGraphMatcher(DiGraphMatcher): + def __init__(self, G1, G2, temporal_attribute_name, delta): + """Initialize TimeRespectingDiGraphMatcher. + + G1 and G2 should be nx.DiGraph or nx.MultiDiGraph instances. + + Examples + -------- + To create a TimeRespectingDiGraphMatcher which checks for + syntactic and semantic feasibility: + + >>> from networkx.algorithms import isomorphism + >>> from datetime import timedelta + >>> G1 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph())) + + >>> G2 = nx.DiGraph(nx.path_graph(4, create_using=nx.DiGraph())) + + >>> GM = isomorphism.TimeRespectingDiGraphMatcher( + ... G1, G2, "date", timedelta(days=1) + ... ) + """ + self.temporal_attribute_name = temporal_attribute_name + self.delta = delta + super().__init__(G1, G2) + + def get_pred_dates(self, Gx, Gx_node, core_x, pred): + """ + Get the dates of edges from predecessors. + """ + pred_dates = [] + if isinstance(Gx, nx.DiGraph): # Graph G[u][v] returns the data dictionary. + for n in pred: + pred_dates.append(Gx[n][Gx_node][self.temporal_attribute_name]) + else: # MultiGraph G[u][v] returns a dictionary of key -> data dictionary. + for n in pred: + for edge in Gx[n][ + Gx_node + ].values(): # Iterates all edge data between node pair. + pred_dates.append(edge[self.temporal_attribute_name]) + return pred_dates + + def get_succ_dates(self, Gx, Gx_node, core_x, succ): + """ + Get the dates of edges to successors. + """ + succ_dates = [] + if isinstance(Gx, nx.DiGraph): # Graph G[u][v] returns the data dictionary. + for n in succ: + succ_dates.append(Gx[Gx_node][n][self.temporal_attribute_name]) + else: # MultiGraph G[u][v] returns a dictionary of key -> data dictionary. + for n in succ: + for edge in Gx[Gx_node][ + n + ].values(): # Iterates all edge data between node pair. + succ_dates.append(edge[self.temporal_attribute_name]) + return succ_dates + + def one_hop(self, Gx, Gx_node, core_x, pred, succ): + """ + The ego node. + """ + pred_dates = self.get_pred_dates(Gx, Gx_node, core_x, pred) + succ_dates = self.get_succ_dates(Gx, Gx_node, core_x, succ) + return self.test_one(pred_dates, succ_dates) and self.test_two( + pred_dates, succ_dates + ) + + def two_hop_pred(self, Gx, Gx_node, core_x, pred): + """ + The predecessors of the ego node. + """ + return all( + self.one_hop( + Gx, + p, + core_x, + self.preds(Gx, core_x, p), + self.succs(Gx, core_x, p, Gx_node), + ) + for p in pred + ) + + def two_hop_succ(self, Gx, Gx_node, core_x, succ): + """ + The successors of the ego node. + """ + return all( + self.one_hop( + Gx, + s, + core_x, + self.preds(Gx, core_x, s, Gx_node), + self.succs(Gx, core_x, s), + ) + for s in succ + ) + + def preds(self, Gx, core_x, v, Gx_node=None): + pred = [n for n in Gx.predecessors(v) if n in core_x] + if Gx_node: + pred.append(Gx_node) + return pred + + def succs(self, Gx, core_x, v, Gx_node=None): + succ = [n for n in Gx.successors(v) if n in core_x] + if Gx_node: + succ.append(Gx_node) + return succ + + def test_one(self, pred_dates, succ_dates): + """ + Edges one hop out from Gx_node in the mapping should be + time-respecting with respect to each other, regardless of + direction. + """ + time_respecting = True + dates = pred_dates + succ_dates + + if any(x is None for x in dates): + raise ValueError("Date or datetime not supplied for at least one edge.") + + dates.sort() # Small to large. + if 0 < len(dates) and not (dates[-1] - dates[0] <= self.delta): + time_respecting = False + return time_respecting + + def test_two(self, pred_dates, succ_dates): + """ + Edges from a dual Gx_node in the mapping should be ordered in + a time-respecting manner. + """ + time_respecting = True + pred_dates.sort() + succ_dates.sort() + # First out before last in; negative of the necessary condition for time-respect. + if ( + 0 < len(succ_dates) + and 0 < len(pred_dates) + and succ_dates[0] < pred_dates[-1] + ): + time_respecting = False + return time_respecting + + def semantic_feasibility(self, G1_node, G2_node): + """Returns True if adding (G1_node, G2_node) is semantically + feasible. + + Any subclass which redefines semantic_feasibility() must + maintain the self.tests if needed, to keep the match() method + functional. Implementations should consider multigraphs. + """ + pred, succ = ( + [n for n in self.G1.predecessors(G1_node) if n in self.core_1], + [n for n in self.G1.successors(G1_node) if n in self.core_1], + ) + if not self.one_hop( + self.G1, G1_node, self.core_1, pred, succ + ): # Fail fast on first node. + return False + if not self.two_hop_pred(self.G1, G1_node, self.core_1, pred): + return False + if not self.two_hop_succ(self.G1, G1_node, self.core_1, succ): + return False + # Otherwise, this node is semantically feasible! + return True diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9298cca2c6ce30458ad62db9ec2657edac65eb26 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_ismags.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_ismags.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73f3e5daa15065adeee323a7fbff580010c4be21 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_ismags.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphism.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphism.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4980b2b2e5c19c2ef20c3c655b505c9191f0849 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphism.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphvf2.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphvf2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4aa7527f2d067c4ee224150cc236915851fc0f90 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_isomorphvf2.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_match_helpers.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_match_helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b9427e7e177566e6efd0ff32547d41f00ca672b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_match_helpers.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_temporalisomorphvf2.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_temporalisomorphvf2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7dd2e1457c6d299ba98dc1eac82e16b18af25fe1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_temporalisomorphvf2.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_tree_isomorphism.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_tree_isomorphism.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a1d31bfebd76a14ffaa3dfc3d91b1bf0f4e08c87 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_tree_isomorphism.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50003fa419e4a45fcdc7732c0260ea890719d619 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp_helpers.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp_helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98ad280912a47b190bf29c24942df3f26ef51dc3 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2pp_helpers.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2userfunc.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2userfunc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4a197008a068eea794dacdff0cb1fa10935f6ef Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/__pycache__/test_vf2userfunc.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.A99 b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.A99 new file mode 100644 index 0000000000000000000000000000000000000000..dac54f0038c70e2d359ffa68de3c7641b46db21a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.A99 differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.B99 b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.B99 new file mode 100644 index 0000000000000000000000000000000000000000..6c6af680031b4f30fc6da946d0344b5c27e5f05e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/iso_r01_s80.B99 differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.A99 b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.A99 new file mode 100644 index 0000000000000000000000000000000000000000..60c3a3ce1bdb54a61ead043f0adaf24b1fe24e93 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.A99 differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.B99 b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.B99 new file mode 100644 index 0000000000000000000000000000000000000000..0236872094d4c73b0bb132165ce3ec4d1054f5f5 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/si2_b06_m200.B99 differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_ismags.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_ismags.py new file mode 100644 index 0000000000000000000000000000000000000000..00641519978edd6676396dafcb1d1f33b5490b82 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_ismags.py @@ -0,0 +1,327 @@ +""" + Tests for ISMAGS isomorphism algorithm. +""" + +import pytest + +import networkx as nx +from networkx.algorithms import isomorphism as iso + + +def _matches_to_sets(matches): + """ + Helper function to facilitate comparing collections of dictionaries in + which order does not matter. + """ + return {frozenset(m.items()) for m in matches} + + +class TestSelfIsomorphism: + data = [ + ( + [ + (0, {"name": "a"}), + (1, {"name": "a"}), + (2, {"name": "b"}), + (3, {"name": "b"}), + (4, {"name": "a"}), + (5, {"name": "a"}), + ], + [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], + ), + (range(1, 5), [(1, 2), (2, 4), (4, 3), (3, 1)]), + ( + [], + [ + (0, 1), + (1, 2), + (2, 3), + (3, 4), + (4, 5), + (5, 0), + (0, 6), + (6, 7), + (2, 8), + (8, 9), + (4, 10), + (10, 11), + ], + ), + ([], [(0, 1), (1, 2), (1, 4), (2, 3), (3, 5), (3, 6)]), + ] + + def test_self_isomorphism(self): + """ + For some small, symmetric graphs, make sure that 1) they are isomorphic + to themselves, and 2) that only the identity mapping is found. + """ + for node_data, edge_data in self.data: + graph = nx.Graph() + graph.add_nodes_from(node_data) + graph.add_edges_from(edge_data) + + ismags = iso.ISMAGS( + graph, graph, node_match=iso.categorical_node_match("name", None) + ) + assert ismags.is_isomorphic() + assert ismags.subgraph_is_isomorphic() + assert list(ismags.subgraph_isomorphisms_iter(symmetry=True)) == [ + {n: n for n in graph.nodes} + ] + + def test_edgecase_self_isomorphism(self): + """ + This edgecase is one of the cases in which it is hard to find all + symmetry elements. + """ + graph = nx.Graph() + nx.add_path(graph, range(5)) + graph.add_edges_from([(2, 5), (5, 6)]) + + ismags = iso.ISMAGS(graph, graph) + ismags_answer = list(ismags.find_isomorphisms(True)) + assert ismags_answer == [{n: n for n in graph.nodes}] + + graph = nx.relabel_nodes(graph, {0: 0, 1: 1, 2: 2, 3: 3, 4: 6, 5: 4, 6: 5}) + ismags = iso.ISMAGS(graph, graph) + ismags_answer = list(ismags.find_isomorphisms(True)) + assert ismags_answer == [{n: n for n in graph.nodes}] + + def test_directed_self_isomorphism(self): + """ + For some small, directed, symmetric graphs, make sure that 1) they are + isomorphic to themselves, and 2) that only the identity mapping is + found. + """ + for node_data, edge_data in self.data: + graph = nx.Graph() + graph.add_nodes_from(node_data) + graph.add_edges_from(edge_data) + + ismags = iso.ISMAGS( + graph, graph, node_match=iso.categorical_node_match("name", None) + ) + assert ismags.is_isomorphic() + assert ismags.subgraph_is_isomorphic() + assert list(ismags.subgraph_isomorphisms_iter(symmetry=True)) == [ + {n: n for n in graph.nodes} + ] + + +class TestSubgraphIsomorphism: + def test_isomorphism(self): + g1 = nx.Graph() + nx.add_cycle(g1, range(4)) + + g2 = nx.Graph() + nx.add_cycle(g2, range(4)) + g2.add_edges_from(list(zip(g2, range(4, 8)))) + ismags = iso.ISMAGS(g2, g1) + assert list(ismags.subgraph_isomorphisms_iter(symmetry=True)) == [ + {n: n for n in g1.nodes} + ] + + def test_isomorphism2(self): + g1 = nx.Graph() + nx.add_path(g1, range(3)) + + g2 = g1.copy() + g2.add_edge(1, 3) + + ismags = iso.ISMAGS(g2, g1) + matches = ismags.subgraph_isomorphisms_iter(symmetry=True) + expected_symmetric = [ + {0: 0, 1: 1, 2: 2}, + {0: 0, 1: 1, 3: 2}, + {2: 0, 1: 1, 3: 2}, + ] + assert _matches_to_sets(matches) == _matches_to_sets(expected_symmetric) + + matches = ismags.subgraph_isomorphisms_iter(symmetry=False) + expected_asymmetric = [ + {0: 2, 1: 1, 2: 0}, + {0: 2, 1: 1, 3: 0}, + {2: 2, 1: 1, 3: 0}, + ] + assert _matches_to_sets(matches) == _matches_to_sets( + expected_symmetric + expected_asymmetric + ) + + def test_labeled_nodes(self): + g1 = nx.Graph() + nx.add_cycle(g1, range(3)) + g1.nodes[1]["attr"] = True + + g2 = g1.copy() + g2.add_edge(1, 3) + ismags = iso.ISMAGS(g2, g1, node_match=lambda x, y: x == y) + matches = ismags.subgraph_isomorphisms_iter(symmetry=True) + expected_symmetric = [{0: 0, 1: 1, 2: 2}] + assert _matches_to_sets(matches) == _matches_to_sets(expected_symmetric) + + matches = ismags.subgraph_isomorphisms_iter(symmetry=False) + expected_asymmetric = [{0: 2, 1: 1, 2: 0}] + assert _matches_to_sets(matches) == _matches_to_sets( + expected_symmetric + expected_asymmetric + ) + + def test_labeled_edges(self): + g1 = nx.Graph() + nx.add_cycle(g1, range(3)) + g1.edges[1, 2]["attr"] = True + + g2 = g1.copy() + g2.add_edge(1, 3) + ismags = iso.ISMAGS(g2, g1, edge_match=lambda x, y: x == y) + matches = ismags.subgraph_isomorphisms_iter(symmetry=True) + expected_symmetric = [{0: 0, 1: 1, 2: 2}] + assert _matches_to_sets(matches) == _matches_to_sets(expected_symmetric) + + matches = ismags.subgraph_isomorphisms_iter(symmetry=False) + expected_asymmetric = [{1: 2, 0: 0, 2: 1}] + assert _matches_to_sets(matches) == _matches_to_sets( + expected_symmetric + expected_asymmetric + ) + + +class TestWikipediaExample: + # Nodes 'a', 'b', 'c' and 'd' form a column. + # Nodes 'g', 'h', 'i' and 'j' form a column. + g1edges = [ + ["a", "g"], + ["a", "h"], + ["a", "i"], + ["b", "g"], + ["b", "h"], + ["b", "j"], + ["c", "g"], + ["c", "i"], + ["c", "j"], + ["d", "h"], + ["d", "i"], + ["d", "j"], + ] + + # Nodes 1,2,3,4 form the clockwise corners of a large square. + # Nodes 5,6,7,8 form the clockwise corners of a small square + g2edges = [ + [1, 2], + [2, 3], + [3, 4], + [4, 1], + [5, 6], + [6, 7], + [7, 8], + [8, 5], + [1, 5], + [2, 6], + [3, 7], + [4, 8], + ] + + def test_graph(self): + g1 = nx.Graph() + g2 = nx.Graph() + g1.add_edges_from(self.g1edges) + g2.add_edges_from(self.g2edges) + gm = iso.ISMAGS(g1, g2) + assert gm.is_isomorphic() + + +class TestLargestCommonSubgraph: + def test_mcis(self): + # Example graphs from DOI: 10.1002/spe.588 + graph1 = nx.Graph() + graph1.add_edges_from([(1, 2), (2, 3), (2, 4), (3, 4), (4, 5)]) + graph1.nodes[1]["color"] = 0 + + graph2 = nx.Graph() + graph2.add_edges_from( + [(1, 2), (2, 3), (2, 4), (3, 4), (3, 5), (5, 6), (5, 7), (6, 7)] + ) + graph2.nodes[1]["color"] = 1 + graph2.nodes[6]["color"] = 2 + graph2.nodes[7]["color"] = 2 + + ismags = iso.ISMAGS( + graph1, graph2, node_match=iso.categorical_node_match("color", None) + ) + assert list(ismags.subgraph_isomorphisms_iter(True)) == [] + assert list(ismags.subgraph_isomorphisms_iter(False)) == [] + found_mcis = _matches_to_sets(ismags.largest_common_subgraph()) + expected = _matches_to_sets( + [{2: 2, 3: 4, 4: 3, 5: 5}, {2: 4, 3: 2, 4: 3, 5: 5}] + ) + assert expected == found_mcis + + ismags = iso.ISMAGS( + graph2, graph1, node_match=iso.categorical_node_match("color", None) + ) + assert list(ismags.subgraph_isomorphisms_iter(True)) == [] + assert list(ismags.subgraph_isomorphisms_iter(False)) == [] + found_mcis = _matches_to_sets(ismags.largest_common_subgraph()) + # Same answer, but reversed. + expected = _matches_to_sets( + [{2: 2, 3: 4, 4: 3, 5: 5}, {4: 2, 2: 3, 3: 4, 5: 5}] + ) + assert expected == found_mcis + + def test_symmetry_mcis(self): + graph1 = nx.Graph() + nx.add_path(graph1, range(4)) + + graph2 = nx.Graph() + nx.add_path(graph2, range(3)) + graph2.add_edge(1, 3) + + # Only the symmetry of graph2 is taken into account here. + ismags1 = iso.ISMAGS( + graph1, graph2, node_match=iso.categorical_node_match("color", None) + ) + assert list(ismags1.subgraph_isomorphisms_iter(True)) == [] + found_mcis = _matches_to_sets(ismags1.largest_common_subgraph()) + expected = _matches_to_sets([{0: 0, 1: 1, 2: 2}, {1: 0, 3: 2, 2: 1}]) + assert expected == found_mcis + + # Only the symmetry of graph1 is taken into account here. + ismags2 = iso.ISMAGS( + graph2, graph1, node_match=iso.categorical_node_match("color", None) + ) + assert list(ismags2.subgraph_isomorphisms_iter(True)) == [] + found_mcis = _matches_to_sets(ismags2.largest_common_subgraph()) + expected = _matches_to_sets( + [ + {3: 2, 0: 0, 1: 1}, + {2: 0, 0: 2, 1: 1}, + {3: 0, 0: 2, 1: 1}, + {3: 0, 1: 1, 2: 2}, + {0: 0, 1: 1, 2: 2}, + {2: 0, 3: 2, 1: 1}, + ] + ) + + assert expected == found_mcis + + found_mcis1 = _matches_to_sets(ismags1.largest_common_subgraph(False)) + found_mcis2 = ismags2.largest_common_subgraph(False) + found_mcis2 = [{v: k for k, v in d.items()} for d in found_mcis2] + found_mcis2 = _matches_to_sets(found_mcis2) + + expected = _matches_to_sets( + [ + {3: 2, 1: 3, 2: 1}, + {2: 0, 0: 2, 1: 1}, + {1: 2, 3: 3, 2: 1}, + {3: 0, 1: 3, 2: 1}, + {0: 2, 2: 3, 1: 1}, + {3: 0, 1: 2, 2: 1}, + {2: 0, 0: 3, 1: 1}, + {0: 0, 2: 3, 1: 1}, + {1: 0, 3: 3, 2: 1}, + {1: 0, 3: 2, 2: 1}, + {0: 3, 1: 1, 2: 2}, + {0: 0, 1: 1, 2: 2}, + ] + ) + assert expected == found_mcis1 + assert expected == found_mcis2 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphism.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphism.py new file mode 100644 index 0000000000000000000000000000000000000000..c669040390d504be04126efaa69d41134f72c8c9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphism.py @@ -0,0 +1,40 @@ +import networkx as nx +from networkx.algorithms import isomorphism as iso + + +class TestIsomorph: + @classmethod + def setup_class(cls): + cls.G1 = nx.Graph() + cls.G2 = nx.Graph() + cls.G3 = nx.Graph() + cls.G4 = nx.Graph() + cls.G5 = nx.Graph() + cls.G6 = nx.Graph() + cls.G1.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 3]]) + cls.G2.add_edges_from([[10, 20], [20, 30], [10, 30], [10, 50]]) + cls.G3.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 5]]) + cls.G4.add_edges_from([[1, 2], [1, 3], [1, 5], [2, 4]]) + cls.G5.add_edges_from([[1, 2], [1, 3]]) + cls.G6.add_edges_from([[10, 20], [20, 30], [10, 30], [10, 50], [20, 50]]) + + def test_could_be_isomorphic(self): + assert iso.could_be_isomorphic(self.G1, self.G2) + assert iso.could_be_isomorphic(self.G1, self.G3) + assert not iso.could_be_isomorphic(self.G1, self.G4) + assert iso.could_be_isomorphic(self.G3, self.G2) + assert not iso.could_be_isomorphic(self.G1, self.G6) + + def test_fast_could_be_isomorphic(self): + assert iso.fast_could_be_isomorphic(self.G3, self.G2) + assert not iso.fast_could_be_isomorphic(self.G3, self.G5) + assert not iso.fast_could_be_isomorphic(self.G1, self.G6) + + def test_faster_could_be_isomorphic(self): + assert iso.faster_could_be_isomorphic(self.G3, self.G2) + assert not iso.faster_could_be_isomorphic(self.G3, self.G5) + assert not iso.faster_could_be_isomorphic(self.G1, self.G6) + + def test_is_isomorphic(self): + assert iso.is_isomorphic(self.G1, self.G2) + assert not iso.is_isomorphic(self.G1, self.G4) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphvf2.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphvf2.py new file mode 100644 index 0000000000000000000000000000000000000000..f658bcae4e3d0fd1945f67fd7e809933d97d4ee9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_isomorphvf2.py @@ -0,0 +1,410 @@ +""" + Tests for VF2 isomorphism algorithm. +""" + +import importlib.resources +import os +import random +import struct + +import networkx as nx +from networkx.algorithms import isomorphism as iso + + +class TestWikipediaExample: + # Source: https://en.wikipedia.org/wiki/Graph_isomorphism + + # Nodes 'a', 'b', 'c' and 'd' form a column. + # Nodes 'g', 'h', 'i' and 'j' form a column. + g1edges = [ + ["a", "g"], + ["a", "h"], + ["a", "i"], + ["b", "g"], + ["b", "h"], + ["b", "j"], + ["c", "g"], + ["c", "i"], + ["c", "j"], + ["d", "h"], + ["d", "i"], + ["d", "j"], + ] + + # Nodes 1,2,3,4 form the clockwise corners of a large square. + # Nodes 5,6,7,8 form the clockwise corners of a small square + g2edges = [ + [1, 2], + [2, 3], + [3, 4], + [4, 1], + [5, 6], + [6, 7], + [7, 8], + [8, 5], + [1, 5], + [2, 6], + [3, 7], + [4, 8], + ] + + def test_graph(self): + g1 = nx.Graph() + g2 = nx.Graph() + g1.add_edges_from(self.g1edges) + g2.add_edges_from(self.g2edges) + gm = iso.GraphMatcher(g1, g2) + assert gm.is_isomorphic() + # Just testing some cases + assert gm.subgraph_is_monomorphic() + + mapping = sorted(gm.mapping.items()) + + # this mapping is only one of the possibilities + # so this test needs to be reconsidered + # isomap = [('a', 1), ('b', 6), ('c', 3), ('d', 8), + # ('g', 2), ('h', 5), ('i', 4), ('j', 7)] + # assert_equal(mapping, isomap) + + def test_subgraph(self): + g1 = nx.Graph() + g2 = nx.Graph() + g1.add_edges_from(self.g1edges) + g2.add_edges_from(self.g2edges) + g3 = g2.subgraph([1, 2, 3, 4]) + gm = iso.GraphMatcher(g1, g3) + assert gm.subgraph_is_isomorphic() + + def test_subgraph_mono(self): + g1 = nx.Graph() + g2 = nx.Graph() + g1.add_edges_from(self.g1edges) + g2.add_edges_from([[1, 2], [2, 3], [3, 4]]) + gm = iso.GraphMatcher(g1, g2) + assert gm.subgraph_is_monomorphic() + + +class TestVF2GraphDB: + # https://web.archive.org/web/20090303210205/http://amalfi.dis.unina.it/graph/db/ + + @staticmethod + def create_graph(filename): + """Creates a Graph instance from the filename.""" + + # The file is assumed to be in the format from the VF2 graph database. + # Each file is composed of 16-bit numbers (unsigned short int). + # So we will want to read 2 bytes at a time. + + # We can read the number as follows: + # number = struct.unpack(' 0 + assert check_isomorphism(t1, t2, isomorphism) + + +# run positive_single_tree over all the +# non-isomorphic trees for k from 4 to maxk +# k = 4 is the first level that has more than 1 non-isomorphic tree +# k = 13 takes about 2.86 seconds to run on my laptop +# larger values run slow down significantly +# as the number of trees grows rapidly +def test_positive(maxk=14): + print("positive test") + + for k in range(2, maxk + 1): + start_time = time.time() + trial = 0 + for t in nx.nonisomorphic_trees(k): + positive_single_tree(t) + trial += 1 + print(k, trial, time.time() - start_time) + + +# test the trivial case of a single node in each tree +# note that nonisomorphic_trees doesn't work for k = 1 +def test_trivial(): + print("trivial test") + + # back to an undirected graph + t1 = nx.Graph() + t1.add_node("a") + root1 = "a" + + t2 = nx.Graph() + t2.add_node("n") + root2 = "n" + + isomorphism = rooted_tree_isomorphism(t1, root1, t2, root2) + + assert isomorphism == [("a", "n")] + + assert check_isomorphism(t1, t2, isomorphism) + + +# test another trivial case where the two graphs have +# different numbers of nodes +def test_trivial_2(): + print("trivial test 2") + + edges_1 = [("a", "b"), ("a", "c")] + + edges_2 = [("v", "y")] + + t1 = nx.Graph() + t1.add_edges_from(edges_1) + + t2 = nx.Graph() + t2.add_edges_from(edges_2) + + isomorphism = tree_isomorphism(t1, t2) + + # they cannot be isomorphic, + # since they have different numbers of nodes + assert isomorphism == [] + + +# the function nonisomorphic_trees generates all the non-isomorphic +# trees of a given size. Take each pair of these and verify that +# they are not isomorphic +# k = 4 is the first level that has more than 1 non-isomorphic tree +# k = 11 takes about 4.76 seconds to run on my laptop +# larger values run slow down significantly +# as the number of trees grows rapidly +def test_negative(maxk=11): + print("negative test") + + for k in range(4, maxk + 1): + test_trees = list(nx.nonisomorphic_trees(k)) + start_time = time.time() + trial = 0 + for i in range(len(test_trees) - 1): + for j in range(i + 1, len(test_trees)): + trial += 1 + assert tree_isomorphism(test_trees[i], test_trees[j]) == [] + print(k, trial, time.time() - start_time) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp.py new file mode 100644 index 0000000000000000000000000000000000000000..5f3fb901cc8afdc2a73cfb7001538db49371eaf4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp.py @@ -0,0 +1,1608 @@ +import itertools as it + +import pytest + +import networkx as nx +from networkx import vf2pp_is_isomorphic, vf2pp_isomorphism + +labels_same = ["blue"] + +labels_many = [ + "white", + "red", + "blue", + "green", + "orange", + "black", + "purple", + "yellow", + "brown", + "cyan", + "solarized", + "pink", + "none", +] + + +class TestPreCheck: + def test_first_graph_empty(self): + G1 = nx.Graph() + G2 = nx.Graph([(0, 1), (1, 2)]) + assert not vf2pp_is_isomorphic(G1, G2) + + def test_second_graph_empty(self): + G1 = nx.Graph([(0, 1), (1, 2)]) + G2 = nx.Graph() + assert not vf2pp_is_isomorphic(G1, G2) + + def test_different_order1(self): + G1 = nx.path_graph(5) + G2 = nx.path_graph(6) + assert not vf2pp_is_isomorphic(G1, G2) + + def test_different_order2(self): + G1 = nx.barbell_graph(100, 20) + G2 = nx.barbell_graph(101, 20) + assert not vf2pp_is_isomorphic(G1, G2) + + def test_different_order3(self): + G1 = nx.complete_graph(7) + G2 = nx.complete_graph(8) + assert not vf2pp_is_isomorphic(G1, G2) + + def test_different_degree_sequences1(self): + G1 = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (0, 4)]) + G2 = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (0, 4), (2, 5)]) + assert not vf2pp_is_isomorphic(G1, G2) + + G2.remove_node(3) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(["a"]))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle("a"))), "label") + + assert vf2pp_is_isomorphic(G1, G2) + + def test_different_degree_sequences2(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (0, 2), + (2, 3), + (3, 4), + (4, 5), + (5, 6), + (6, 3), + (4, 7), + (7, 8), + (8, 3), + ] + ) + G2 = G1.copy() + G2.add_edge(8, 0) + assert not vf2pp_is_isomorphic(G1, G2) + + G1.add_edge(6, 1) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(["a"]))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle("a"))), "label") + + assert vf2pp_is_isomorphic(G1, G2) + + def test_different_degree_sequences3(self): + G1 = nx.Graph([(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4), (2, 5), (2, 6)]) + G2 = nx.Graph( + [(0, 1), (0, 6), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4), (2, 5), (2, 6)] + ) + assert not vf2pp_is_isomorphic(G1, G2) + + G1.add_edge(3, 5) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(["a"]))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle("a"))), "label") + + assert vf2pp_is_isomorphic(G1, G2) + + def test_label_distribution(self): + G1 = nx.Graph([(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4), (2, 5), (2, 6)]) + G2 = nx.Graph([(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4), (2, 5), (2, 6)]) + + colors1 = ["blue", "blue", "blue", "yellow", "black", "purple", "purple"] + colors2 = ["blue", "blue", "yellow", "yellow", "black", "purple", "purple"] + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(colors1[::-1]))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(colors2[::-1]))), "label") + + assert not vf2pp_is_isomorphic(G1, G2, node_label="label") + G2.nodes[3]["label"] = "blue" + assert vf2pp_is_isomorphic(G1, G2, node_label="label") + + +class TestAllGraphTypesEdgeCases: + @pytest.mark.parametrize("graph_type", (nx.Graph, nx.MultiGraph, nx.DiGraph)) + def test_both_graphs_empty(self, graph_type): + G = graph_type() + H = graph_type() + assert vf2pp_isomorphism(G, H) is None + + G.add_node(0) + + assert vf2pp_isomorphism(G, H) is None + assert vf2pp_isomorphism(H, G) is None + + H.add_node(0) + assert vf2pp_isomorphism(G, H) == {0: 0} + + @pytest.mark.parametrize("graph_type", (nx.Graph, nx.MultiGraph, nx.DiGraph)) + def test_first_graph_empty(self, graph_type): + G = graph_type() + H = graph_type([(0, 1)]) + assert vf2pp_isomorphism(G, H) is None + + @pytest.mark.parametrize("graph_type", (nx.Graph, nx.MultiGraph, nx.DiGraph)) + def test_second_graph_empty(self, graph_type): + G = graph_type([(0, 1)]) + H = graph_type() + assert vf2pp_isomorphism(G, H) is None + + +class TestGraphISOVF2pp: + def test_custom_graph1_same_labels(self): + G1 = nx.Graph() + + mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} + edges1 = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 6), (3, 4), (5, 1), (5, 2)] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Add edge making G1 symmetrical + G1.add_edge(3, 7) + G1.nodes[7]["label"] = "blue" + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Make G2 isomorphic to G1 + G2.add_edges_from([(mapped[3], "X"), (mapped[6], mapped[5])]) + G1.add_edge(4, 7) + G2.nodes["X"]["label"] = "blue" + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Re-structure maintaining isomorphism + G1.remove_edges_from([(1, 4), (1, 3)]) + G2.remove_edges_from([(mapped[1], mapped[5]), (mapped[1], mapped[2])]) + assert vf2pp_isomorphism(G1, G2, node_label="label") + + def test_custom_graph1_different_labels(self): + G1 = nx.Graph() + + mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} + edges1 = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 6), (3, 4), (5, 1), (5, 2)] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + def test_custom_graph2_same_labels(self): + G1 = nx.Graph() + + mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} + edges1 = [(1, 2), (1, 5), (5, 6), (2, 3), (2, 4), (3, 4), (4, 5), (2, 7)] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Obtain two isomorphic subgraphs from the graph + G2.remove_edge(mapped[1], mapped[2]) + G2.add_edge(mapped[1], mapped[4]) + H1 = nx.Graph(G1.subgraph([2, 3, 4, 7])) + H2 = nx.Graph(G2.subgraph([mapped[1], mapped[4], mapped[5], mapped[6]])) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + # Add edges maintaining isomorphism + H1.add_edges_from([(3, 7), (4, 7)]) + H2.add_edges_from([(mapped[1], mapped[6]), (mapped[4], mapped[6])]) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + def test_custom_graph2_different_labels(self): + G1 = nx.Graph() + + mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} + edges1 = [(1, 2), (1, 5), (5, 6), (2, 3), (2, 4), (3, 4), (4, 5), (2, 7)] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + + # Adding new nodes + G1.add_node(0) + G2.add_node("Z") + G1.nodes[0]["label"] = G1.nodes[1]["label"] + G2.nodes["Z"]["label"] = G1.nodes[1]["label"] + mapped.update({0: "Z"}) + + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + # Change the color of one of the nodes + G2.nodes["Z"]["label"] = G1.nodes[2]["label"] + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Add an extra edge + G1.nodes[0]["label"] = "blue" + G2.nodes["Z"]["label"] = "blue" + G1.add_edge(0, 1) + + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Add extra edge to both + G2.add_edge("Z", "A") + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + def test_custom_graph3_same_labels(self): + G1 = nx.Graph() + + mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} + edges1 = [ + (1, 2), + (1, 3), + (2, 3), + (3, 4), + (4, 5), + (4, 7), + (4, 9), + (5, 8), + (8, 9), + (5, 6), + (6, 7), + (5, 2), + ] + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Connect nodes maintaining symmetry + G1.add_edges_from([(6, 9), (7, 8)]) + G2.add_edges_from([(mapped[6], mapped[8]), (mapped[7], mapped[9])]) + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Make isomorphic + G1.add_edges_from([(6, 8), (7, 9)]) + G2.add_edges_from([(mapped[6], mapped[9]), (mapped[7], mapped[8])]) + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Connect more nodes + G1.add_edges_from([(2, 7), (3, 6)]) + G2.add_edges_from([(mapped[2], mapped[7]), (mapped[3], mapped[6])]) + G1.add_node(10) + G2.add_node("Z") + G1.nodes[10]["label"] = "blue" + G2.nodes["Z"]["label"] = "blue" + + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Connect the newly added node, to opposite sides of the graph + G1.add_edges_from([(10, 1), (10, 5), (10, 8)]) + G2.add_edges_from([("Z", mapped[1]), ("Z", mapped[4]), ("Z", mapped[9])]) + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Get two subgraphs that are not isomorphic but are easy to make + H1 = nx.Graph(G1.subgraph([2, 3, 4, 5, 6, 7, 10])) + H2 = nx.Graph( + G2.subgraph( + [mapped[4], mapped[5], mapped[6], mapped[7], mapped[8], mapped[9], "Z"] + ) + ) + assert vf2pp_isomorphism(H1, H2, node_label="label") is None + + # Restructure both to make them isomorphic + H1.add_edges_from([(10, 2), (10, 6), (3, 6), (2, 7), (2, 6), (3, 7)]) + H2.add_edges_from( + [("Z", mapped[7]), (mapped[6], mapped[9]), (mapped[7], mapped[8])] + ) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + # Add edges with opposite direction in each Graph + H1.add_edge(3, 5) + H2.add_edge(mapped[5], mapped[7]) + assert vf2pp_isomorphism(H1, H2, node_label="label") is None + + def test_custom_graph3_different_labels(self): + G1 = nx.Graph() + + mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} + edges1 = [ + (1, 2), + (1, 3), + (2, 3), + (3, 4), + (4, 5), + (4, 7), + (4, 9), + (5, 8), + (8, 9), + (5, 6), + (6, 7), + (5, 2), + ] + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + # Add extra edge to G1 + G1.add_edge(1, 7) + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Compensate in G2 + G2.add_edge(9, 1) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + # Add extra node + G1.add_node("A") + G2.add_node("K") + G1.nodes["A"]["label"] = "green" + G2.nodes["K"]["label"] = "green" + mapped.update({"A": "K"}) + + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + # Connect A to one side of G1 and K to the opposite + G1.add_edge("A", 6) + G2.add_edge("K", 5) + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Make the graphs symmetrical + G1.add_edge(1, 5) + G1.add_edge(2, 9) + G2.add_edge(9, 3) + G2.add_edge(8, 4) + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Assign same colors so the two opposite sides are identical + for node in G1.nodes(): + color = "red" + G1.nodes[node]["label"] = color + G2.nodes[mapped[node]]["label"] = color + + assert vf2pp_isomorphism(G1, G2, node_label="label") + + def test_custom_graph4_different_labels(self): + G1 = nx.Graph() + edges1 = [ + (1, 2), + (2, 3), + (3, 8), + (3, 4), + (4, 5), + (4, 6), + (3, 6), + (8, 7), + (8, 9), + (5, 9), + (10, 11), + (11, 12), + (12, 13), + (11, 13), + ] + + mapped = { + 1: "n", + 2: "m", + 3: "l", + 4: "j", + 5: "k", + 6: "i", + 7: "g", + 8: "h", + 9: "f", + 10: "b", + 11: "a", + 12: "d", + 13: "e", + } + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + def test_custom_graph4_same_labels(self): + G1 = nx.Graph() + edges1 = [ + (1, 2), + (2, 3), + (3, 8), + (3, 4), + (4, 5), + (4, 6), + (3, 6), + (8, 7), + (8, 9), + (5, 9), + (10, 11), + (11, 12), + (12, 13), + (11, 13), + ] + + mapped = { + 1: "n", + 2: "m", + 3: "l", + 4: "j", + 5: "k", + 6: "i", + 7: "g", + 8: "h", + 9: "f", + 10: "b", + 11: "a", + 12: "d", + 13: "e", + } + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Add nodes of different label + G1.add_node(0) + G2.add_node("z") + G1.nodes[0]["label"] = "green" + G2.nodes["z"]["label"] = "blue" + + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Make the labels identical + G2.nodes["z"]["label"] = "green" + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Change the structure of the graphs, keeping them isomorphic + G1.add_edge(2, 5) + G2.remove_edge("i", "l") + G2.add_edge("g", "l") + G2.add_edge("m", "f") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Change the structure of the disconnected sub-graph, keeping it isomorphic + G1.remove_node(13) + G2.remove_node("d") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Connect the newly added node to the disconnected graph, which now is just a path of size 3 + G1.add_edge(0, 10) + G2.add_edge("e", "z") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Connect the two disconnected sub-graphs, forming a single graph + G1.add_edge(11, 3) + G1.add_edge(0, 8) + G2.add_edge("a", "l") + G2.add_edge("z", "j") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + def test_custom_graph5_same_labels(self): + G1 = nx.Graph() + edges1 = [ + (1, 5), + (1, 2), + (1, 4), + (2, 3), + (2, 6), + (3, 4), + (3, 7), + (4, 8), + (5, 8), + (5, 6), + (6, 7), + (7, 8), + ] + mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Add different edges in each graph, maintaining symmetry + G1.add_edges_from([(3, 6), (2, 7), (2, 5), (1, 3), (4, 7), (6, 8)]) + G2.add_edges_from( + [ + (mapped[6], mapped[3]), + (mapped[2], mapped[7]), + (mapped[1], mapped[6]), + (mapped[5], mapped[7]), + (mapped[3], mapped[8]), + (mapped[2], mapped[4]), + ] + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") + + # Obtain two different but isomorphic subgraphs from G1 and G2 + H1 = nx.Graph(G1.subgraph([1, 5, 8, 6, 7, 3])) + H2 = nx.Graph( + G2.subgraph( + [mapped[1], mapped[4], mapped[8], mapped[7], mapped[3], mapped[5]] + ) + ) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + # Delete corresponding node from the two graphs + H1.remove_node(8) + H2.remove_node(mapped[7]) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + # Re-orient, maintaining isomorphism + H1.add_edge(1, 6) + H1.remove_edge(3, 6) + assert vf2pp_isomorphism(H1, H2, node_label="label") + + def test_custom_graph5_different_labels(self): + G1 = nx.Graph() + edges1 = [ + (1, 5), + (1, 2), + (1, 4), + (2, 3), + (2, 6), + (3, 4), + (3, 7), + (4, 8), + (5, 8), + (5, 6), + (6, 7), + (7, 8), + ] + mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + colors = ["red", "blue", "grey", "none", "brown", "solarized", "yellow", "pink"] + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + # Assign different colors to matching nodes + c = 0 + for node in G1.nodes(): + color1 = colors[c] + color2 = colors[(c + 3) % len(colors)] + G1.nodes[node]["label"] = color1 + G2.nodes[mapped[node]]["label"] = color2 + c += 1 + + assert vf2pp_isomorphism(G1, G2, node_label="label") is None + + # Get symmetrical sub-graphs of G1,G2 and compare them + H1 = G1.subgraph([1, 5]) + H2 = G2.subgraph(["i", "c"]) + c = 0 + for node1, node2 in zip(H1.nodes(), H2.nodes()): + H1.nodes[node1]["label"] = "red" + H2.nodes[node2]["label"] = "red" + c += 1 + + assert vf2pp_isomorphism(H1, H2, node_label="label") + + def test_disconnected_graph_all_same_labels(self): + G1 = nx.Graph() + G1.add_nodes_from(list(range(10))) + + mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + assert vf2pp_isomorphism(G1, G2, node_label="label") + + def test_disconnected_graph_all_different_labels(self): + G1 = nx.Graph() + G1.add_nodes_from(list(range(10))) + + mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped + + def test_disconnected_graph_some_same_labels(self): + G1 = nx.Graph() + G1.add_nodes_from(list(range(10))) + + mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} + G2 = nx.relabel_nodes(G1, mapped) + + colors = [ + "white", + "white", + "white", + "purple", + "purple", + "red", + "red", + "pink", + "pink", + "pink", + ] + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(colors))), "label") + nx.set_node_attributes( + G2, dict(zip([mapped[n] for n in G1], it.cycle(colors))), "label" + ) + + assert vf2pp_isomorphism(G1, G2, node_label="label") + + +class TestMultiGraphISOVF2pp: + def test_custom_multigraph1_same_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} + edges1 = [ + (1, 2), + (1, 3), + (1, 4), + (1, 4), + (1, 4), + (2, 3), + (2, 6), + (2, 6), + (3, 4), + (3, 4), + (5, 1), + (5, 1), + (5, 2), + (5, 2), + ] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Transfer the 2-clique to the right side of G1 + G1.remove_edges_from([(2, 6), (2, 6)]) + G1.add_edges_from([(3, 6), (3, 6)]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Delete an edges, making them symmetrical, so the position of the 2-clique doesn't matter + G2.remove_edge(mapped[1], mapped[4]) + G1.remove_edge(1, 4) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Add self-loops + G1.add_edges_from([(5, 5), (5, 5), (1, 1)]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Compensate in G2 + G2.add_edges_from( + [(mapped[1], mapped[1]), (mapped[4], mapped[4]), (mapped[4], mapped[4])] + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + def test_custom_multigraph1_different_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} + edges1 = [ + (1, 2), + (1, 3), + (1, 4), + (1, 4), + (1, 4), + (2, 3), + (2, 6), + (2, 6), + (3, 4), + (3, 4), + (5, 1), + (5, 1), + (5, 2), + (5, 2), + ] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Re-structure G1, maintaining the degree sequence + G1.remove_edge(1, 4) + G1.add_edge(1, 5) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Restructure G2, making it isomorphic to G1 + G2.remove_edge("A", "D") + G2.add_edge("A", "Z") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Add edge from node to itself + G1.add_edges_from([(6, 6), (6, 6), (6, 6)]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Same for G2 + G2.add_edges_from([("E", "E"), ("E", "E"), ("E", "E")]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + def test_custom_multigraph2_same_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} + edges1 = [ + (1, 2), + (1, 2), + (1, 5), + (1, 5), + (1, 5), + (5, 6), + (2, 3), + (2, 3), + (2, 4), + (3, 4), + (3, 4), + (4, 5), + (4, 5), + (4, 5), + (2, 7), + (2, 7), + (2, 7), + ] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Obtain two non-isomorphic subgraphs from the graph + G2.remove_edges_from([(mapped[1], mapped[2]), (mapped[1], mapped[2])]) + G2.add_edge(mapped[1], mapped[4]) + H1 = nx.MultiGraph(G1.subgraph([2, 3, 4, 7])) + H2 = nx.MultiGraph(G2.subgraph([mapped[1], mapped[4], mapped[5], mapped[6]])) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Make them isomorphic + H1.remove_edge(3, 4) + H1.add_edges_from([(2, 3), (2, 4), (2, 4)]) + H2.add_edges_from([(mapped[5], mapped[6]), (mapped[5], mapped[6])]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Remove triangle edge + H1.remove_edges_from([(2, 3), (2, 3), (2, 3)]) + H2.remove_edges_from([(mapped[5], mapped[4])] * 3) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Change the edge orientation such that H1 is rotated H2 + H1.remove_edges_from([(2, 7), (2, 7)]) + H1.add_edges_from([(3, 4), (3, 4)]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Add extra edges maintaining degree sequence, but in a non-symmetrical manner + H2.add_edge(mapped[5], mapped[1]) + H1.add_edge(3, 4) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + def test_custom_multigraph2_different_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} + edges1 = [ + (1, 2), + (1, 2), + (1, 5), + (1, 5), + (1, 5), + (5, 6), + (2, 3), + (2, 3), + (2, 4), + (3, 4), + (3, 4), + (4, 5), + (4, 5), + (4, 5), + (2, 7), + (2, 7), + (2, 7), + ] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Re-structure G1 + G1.remove_edge(2, 7) + G1.add_edge(5, 6) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Same for G2 + G2.remove_edge("B", "C") + G2.add_edge("G", "F") + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Delete node from G1 and G2, keeping them isomorphic + G1.remove_node(3) + G2.remove_node("D") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Change G1 edges + G1.remove_edge(1, 2) + G1.remove_edge(2, 7) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Make G2 identical to G1, but with different edge orientation and different labels + G2.add_edges_from([("A", "C"), ("C", "E"), ("C", "E")]) + G2.remove_edges_from( + [("A", "G"), ("A", "G"), ("F", "G"), ("E", "G"), ("E", "G")] + ) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Make all labels the same, so G1 and G2 are also isomorphic + for n1, n2 in zip(G1.nodes(), G2.nodes()): + G1.nodes[n1]["label"] = "blue" + G2.nodes[n2]["label"] = "blue" + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + def test_custom_multigraph3_same_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} + edges1 = [ + (1, 2), + (1, 3), + (1, 3), + (2, 3), + (2, 3), + (3, 4), + (4, 5), + (4, 7), + (4, 9), + (4, 9), + (4, 9), + (5, 8), + (5, 8), + (8, 9), + (8, 9), + (5, 6), + (6, 7), + (6, 7), + (6, 7), + (5, 2), + ] + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Connect nodes maintaining symmetry + G1.add_edges_from([(6, 9), (7, 8), (5, 8), (4, 9), (4, 9)]) + G2.add_edges_from( + [ + (mapped[6], mapped[8]), + (mapped[7], mapped[9]), + (mapped[5], mapped[8]), + (mapped[4], mapped[9]), + (mapped[4], mapped[9]), + ] + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Make isomorphic + G1.add_edges_from([(6, 8), (6, 8), (7, 9), (7, 9), (7, 9)]) + G2.add_edges_from( + [ + (mapped[6], mapped[8]), + (mapped[6], mapped[9]), + (mapped[7], mapped[8]), + (mapped[7], mapped[9]), + (mapped[7], mapped[9]), + ] + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Connect more nodes + G1.add_edges_from([(2, 7), (2, 7), (3, 6), (3, 6)]) + G2.add_edges_from( + [ + (mapped[2], mapped[7]), + (mapped[2], mapped[7]), + (mapped[3], mapped[6]), + (mapped[3], mapped[6]), + ] + ) + G1.add_node(10) + G2.add_node("Z") + G1.nodes[10]["label"] = "blue" + G2.nodes["Z"]["label"] = "blue" + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Connect the newly added node, to opposite sides of the graph + G1.add_edges_from([(10, 1), (10, 5), (10, 8), (10, 10), (10, 10)]) + G2.add_edges_from( + [ + ("Z", mapped[1]), + ("Z", mapped[4]), + ("Z", mapped[9]), + ("Z", "Z"), + ("Z", "Z"), + ] + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # We connected the new node to opposite sides, so G1 must be symmetrical to G2. Re-structure them to be so + G1.remove_edges_from([(1, 3), (4, 9), (4, 9), (7, 9)]) + G2.remove_edges_from( + [ + (mapped[1], mapped[3]), + (mapped[4], mapped[9]), + (mapped[4], mapped[9]), + (mapped[7], mapped[9]), + ] + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Get two subgraphs that are not isomorphic but are easy to make + H1 = nx.Graph(G1.subgraph([2, 3, 4, 5, 6, 7, 10])) + H2 = nx.Graph( + G2.subgraph( + [mapped[4], mapped[5], mapped[6], mapped[7], mapped[8], mapped[9], "Z"] + ) + ) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Restructure both to make them isomorphic + H1.add_edges_from([(10, 2), (10, 6), (3, 6), (2, 7), (2, 6), (3, 7)]) + H2.add_edges_from( + [("Z", mapped[7]), (mapped[6], mapped[9]), (mapped[7], mapped[8])] + ) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Remove one self-loop in H2 + H2.remove_edge("Z", "Z") + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Compensate in H1 + H1.remove_edge(10, 10) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + def test_custom_multigraph3_different_labels(self): + G1 = nx.MultiGraph() + + mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} + edges1 = [ + (1, 2), + (1, 3), + (1, 3), + (2, 3), + (2, 3), + (3, 4), + (4, 5), + (4, 7), + (4, 9), + (4, 9), + (4, 9), + (5, 8), + (5, 8), + (8, 9), + (8, 9), + (5, 6), + (6, 7), + (6, 7), + (6, 7), + (5, 2), + ] + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Delete edge maintaining isomorphism + G1.remove_edge(4, 9) + G2.remove_edge(4, 6) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Change edge orientation such that G1 mirrors G2 + G1.add_edges_from([(4, 9), (1, 2), (1, 2)]) + G1.remove_edges_from([(1, 3), (1, 3)]) + G2.add_edges_from([(3, 5), (7, 9)]) + G2.remove_edge(8, 9) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Make all labels the same, so G1 and G2 are also isomorphic + for n1, n2 in zip(G1.nodes(), G2.nodes()): + G1.nodes[n1]["label"] = "blue" + G2.nodes[n2]["label"] = "blue" + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + G1.add_node(10) + G2.add_node("Z") + G1.nodes[10]["label"] = "green" + G2.nodes["Z"]["label"] = "green" + + # Add different number of edges between the new nodes and themselves + G1.add_edges_from([(10, 10), (10, 10)]) + G2.add_edges_from([("Z", "Z")]) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Make the number of self-edges equal + G1.remove_edge(10, 10) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Connect the new node to the graph + G1.add_edges_from([(10, 3), (10, 4)]) + G2.add_edges_from([("Z", 8), ("Z", 3)]) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Remove central node + G1.remove_node(4) + G2.remove_node(3) + G1.add_edges_from([(5, 6), (5, 6), (5, 7)]) + G2.add_edges_from([(1, 6), (1, 6), (6, 2)]) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + def test_custom_multigraph4_same_labels(self): + G1 = nx.MultiGraph() + edges1 = [ + (1, 2), + (1, 2), + (2, 2), + (2, 3), + (3, 8), + (3, 8), + (3, 4), + (4, 5), + (4, 5), + (4, 5), + (4, 6), + (3, 6), + (3, 6), + (6, 6), + (8, 7), + (7, 7), + (8, 9), + (9, 9), + (8, 9), + (8, 9), + (5, 9), + (10, 11), + (11, 12), + (12, 13), + (11, 13), + (10, 10), + (10, 11), + (11, 13), + ] + + mapped = { + 1: "n", + 2: "m", + 3: "l", + 4: "j", + 5: "k", + 6: "i", + 7: "g", + 8: "h", + 9: "f", + 10: "b", + 11: "a", + 12: "d", + 13: "e", + } + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Add extra but corresponding edges to both graphs + G1.add_edges_from([(2, 2), (2, 3), (2, 8), (3, 4)]) + G2.add_edges_from([("m", "m"), ("m", "l"), ("m", "h"), ("l", "j")]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Obtain subgraphs + H1 = nx.MultiGraph(G1.subgraph([2, 3, 4, 6, 10, 11, 12, 13])) + H2 = nx.MultiGraph( + G2.subgraph( + [ + mapped[2], + mapped[3], + mapped[8], + mapped[9], + mapped[10], + mapped[11], + mapped[12], + mapped[13], + ] + ) + ) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Make them isomorphic + H2.remove_edges_from( + [(mapped[3], mapped[2]), (mapped[9], mapped[8]), (mapped[2], mapped[2])] + ) + H2.add_edges_from([(mapped[9], mapped[9]), (mapped[2], mapped[8])]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Re-structure the disconnected sub-graph + H1.remove_node(12) + H2.remove_node(mapped[12]) + H1.add_edge(13, 13) + H2.add_edge(mapped[13], mapped[13]) + + # Connect the two disconnected components, forming a single graph + H1.add_edges_from([(3, 13), (6, 11)]) + H2.add_edges_from([(mapped[8], mapped[10]), (mapped[2], mapped[11])]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Change orientation of self-loops in one graph, maintaining the degree sequence + H1.remove_edges_from([(2, 2), (3, 6)]) + H1.add_edges_from([(6, 6), (2, 3)]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + def test_custom_multigraph4_different_labels(self): + G1 = nx.MultiGraph() + edges1 = [ + (1, 2), + (1, 2), + (2, 2), + (2, 3), + (3, 8), + (3, 8), + (3, 4), + (4, 5), + (4, 5), + (4, 5), + (4, 6), + (3, 6), + (3, 6), + (6, 6), + (8, 7), + (7, 7), + (8, 9), + (9, 9), + (8, 9), + (8, 9), + (5, 9), + (10, 11), + (11, 12), + (12, 13), + (11, 13), + ] + + mapped = { + 1: "n", + 2: "m", + 3: "l", + 4: "j", + 5: "k", + 6: "i", + 7: "g", + 8: "h", + 9: "f", + 10: "b", + 11: "a", + 12: "d", + 13: "e", + } + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m == mapped + + # Add extra but corresponding edges to both graphs + G1.add_edges_from([(2, 2), (2, 3), (2, 8), (3, 4)]) + G2.add_edges_from([("m", "m"), ("m", "l"), ("m", "h"), ("l", "j")]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m == mapped + + # Obtain isomorphic subgraphs + H1 = nx.MultiGraph(G1.subgraph([2, 3, 4, 6])) + H2 = nx.MultiGraph(G2.subgraph(["m", "l", "j", "i"])) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Delete the 3-clique, keeping only the path-graph. Also, H1 mirrors H2 + H1.remove_node(4) + H2.remove_node("j") + H1.remove_edges_from([(2, 2), (2, 3), (6, 6)]) + H2.remove_edges_from([("l", "i"), ("m", "m"), ("m", "m")]) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Assign the same labels so that mirroring means isomorphic + for n1, n2 in zip(H1.nodes(), H2.nodes()): + H1.nodes[n1]["label"] = "red" + H2.nodes[n2]["label"] = "red" + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Leave only one node with self-loop + H1.remove_nodes_from([3, 6]) + H2.remove_nodes_from(["m", "l"]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Remove one self-loop from H1 + H1.remove_edge(2, 2) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert not m + + # Same for H2 + H2.remove_edge("i", "i") + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Compose H1 with the disconnected sub-graph of G1. Same for H2 + S1 = nx.compose(H1, nx.MultiGraph(G1.subgraph([10, 11, 12, 13]))) + S2 = nx.compose(H2, nx.MultiGraph(G2.subgraph(["a", "b", "d", "e"]))) + + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + # Connect the two components + S1.add_edges_from([(13, 13), (13, 13), (2, 13)]) + S2.add_edges_from([("a", "a"), ("a", "a"), ("i", "e")]) + m = vf2pp_isomorphism(H1, H2, node_label="label") + assert m + + def test_custom_multigraph5_same_labels(self): + G1 = nx.MultiGraph() + + edges1 = [ + (1, 5), + (1, 2), + (1, 4), + (2, 3), + (2, 6), + (3, 4), + (3, 7), + (4, 8), + (5, 8), + (5, 6), + (6, 7), + (7, 8), + ] + mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} + + G1.add_edges_from(edges1) + G2 = nx.relabel_nodes(G1, mapped) + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Add multiple edges and self-loops, maintaining isomorphism + G1.add_edges_from( + [(1, 2), (1, 2), (3, 7), (8, 8), (8, 8), (7, 8), (2, 3), (5, 6)] + ) + G2.add_edges_from( + [ + ("a", "h"), + ("a", "h"), + ("d", "j"), + ("c", "c"), + ("c", "c"), + ("j", "c"), + ("d", "h"), + ("g", "b"), + ] + ) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Make G2 to be the rotated G1 + G2.remove_edges_from( + [ + ("a", "h"), + ("a", "h"), + ("d", "j"), + ("c", "c"), + ("c", "c"), + ("j", "c"), + ("d", "h"), + ("g", "b"), + ] + ) + G2.add_edges_from( + [ + ("d", "i"), + ("a", "h"), + ("g", "b"), + ("g", "b"), + ("i", "i"), + ("i", "i"), + ("b", "j"), + ("d", "j"), + ] + ) + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + def test_disconnected_multigraph_all_same_labels(self): + G1 = nx.MultiGraph() + G1.add_nodes_from(list(range(10))) + G1.add_edges_from([(i, i) for i in range(10)]) + + mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") + nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") + + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Add self-loops to non-mapped nodes. Should be the same, as the graph is disconnected. + G1.add_edges_from([(i, i) for i in range(5, 8)] * 3) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Compensate in G2 + G2.add_edges_from([(i, i) for i in range(3)] * 3) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + # Add one more self-loop in G2 + G2.add_edges_from([(0, 0), (1, 1), (1, 1)]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Compensate in G1 + G1.add_edges_from([(5, 5), (7, 7), (7, 7)]) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + def test_disconnected_multigraph_all_different_labels(self): + G1 = nx.MultiGraph() + G1.add_nodes_from(list(range(10))) + G1.add_edges_from([(i, i) for i in range(10)]) + + mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} + G2 = nx.relabel_nodes(G1, mapped) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), + "label", + ) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + assert m == mapped + + # Add self-loops to non-mapped nodes. Now it is not the same, as there are different labels + G1.add_edges_from([(i, i) for i in range(5, 8)] * 3) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Add self-loops to non mapped nodes in G2 as well + G2.add_edges_from([(mapped[i], mapped[i]) for i in range(3)] * 7) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Add self-loops to mapped nodes in G2 + G2.add_edges_from([(mapped[i], mapped[i]) for i in range(5, 8)] * 3) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert not m + + # Add self-loops to G1 so that they are even in both graphs + G1.add_edges_from([(i, i) for i in range(3)] * 7) + m = vf2pp_isomorphism(G1, G2, node_label="label") + assert m + + +class TestDiGraphISOVF2pp: + def test_wikipedia_graph(self): + edges1 = [ + (1, 5), + (1, 2), + (1, 4), + (3, 2), + (6, 2), + (3, 4), + (7, 3), + (4, 8), + (5, 8), + (6, 5), + (6, 7), + (7, 8), + ] + mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} + + G1 = nx.DiGraph(edges1) + G2 = nx.relabel_nodes(G1, mapped) + + assert vf2pp_isomorphism(G1, G2) == mapped + + # Change the direction of an edge + G1.remove_edge(1, 5) + G1.add_edge(5, 1) + assert vf2pp_isomorphism(G1, G2) is None + + def test_non_isomorphic_same_degree_sequence(self): + r""" + G1 G2 + x--------------x x--------------x + | \ | | \ | + | x-------x | | x-------x | + | | | | | | | | + | x-------x | | x-------x | + | / | | \ | + x--------------x x--------------x + """ + edges1 = [ + (1, 5), + (1, 2), + (4, 1), + (3, 2), + (3, 4), + (4, 8), + (5, 8), + (6, 5), + (6, 7), + (7, 8), + ] + edges2 = [ + (1, 5), + (1, 2), + (4, 1), + (3, 2), + (4, 3), + (5, 8), + (6, 5), + (6, 7), + (3, 7), + (8, 7), + ] + + G1 = nx.DiGraph(edges1) + G2 = nx.DiGraph(edges2) + assert vf2pp_isomorphism(G1, G2) is None diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp_helpers.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..1a46c38f5012045f21d3fe5cc5058246ad312167 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2pp_helpers.py @@ -0,0 +1,3103 @@ +import itertools as it + +import pytest + +import networkx as nx +from networkx import vf2pp_is_isomorphic, vf2pp_isomorphism +from networkx.algorithms.isomorphism.vf2pp import ( + _consistent_PT, + _cut_PT, + _feasibility, + _find_candidates, + _find_candidates_Di, + _GraphParameters, + _initialize_parameters, + _matching_order, + _restore_Tinout, + _restore_Tinout_Di, + _StateParameters, + _update_Tinout, +) + +labels_same = ["blue"] + +labels_many = [ + "white", + "red", + "blue", + "green", + "orange", + "black", + "purple", + "yellow", + "brown", + "cyan", + "solarized", + "pink", + "none", +] + + +class TestNodeOrdering: + def test_empty_graph(self): + G1 = nx.Graph() + G2 = nx.Graph() + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + assert len(set(_matching_order(gparams))) == 0 + + def test_single_node(self): + G1 = nx.Graph() + G2 = nx.Graph() + G1.add_node(1) + G2.add_node(1) + + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") + nx.set_node_attributes( + G2, + dict(zip(G2, it.cycle(labels_many))), + "label", + ) + l1, l2 = nx.get_node_attributes(G1, "label"), nx.get_node_attributes( + G2, "label" + ) + + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + m = _matching_order(gparams) + assert m == [1] + + def test_matching_order(self): + labels = [ + "blue", + "blue", + "red", + "red", + "red", + "red", + "green", + "green", + "green", + "yellow", + "purple", + "purple", + "blue", + "blue", + ] + G1 = nx.Graph( + [ + (0, 1), + (0, 2), + (1, 2), + (2, 5), + (2, 4), + (1, 3), + (1, 4), + (3, 6), + (4, 6), + (6, 7), + (7, 8), + (9, 10), + (9, 11), + (11, 12), + (11, 13), + (12, 13), + (10, 13), + ] + ) + G2 = G1.copy() + nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels))), "label") + nx.set_node_attributes( + G2, + dict(zip(G2, it.cycle(labels))), + "label", + ) + l1, l2 = nx.get_node_attributes(G1, "label"), nx.get_node_attributes( + G2, "label" + ) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + expected = [9, 11, 10, 13, 12, 1, 2, 4, 0, 3, 6, 5, 7, 8] + assert _matching_order(gparams) == expected + + def test_matching_order_all_branches(self): + G1 = nx.Graph( + [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4)] + ) + G1.add_node(5) + G2 = G1.copy() + + G1.nodes[0]["label"] = "black" + G1.nodes[1]["label"] = "blue" + G1.nodes[2]["label"] = "blue" + G1.nodes[3]["label"] = "red" + G1.nodes[4]["label"] = "red" + G1.nodes[5]["label"] = "blue" + + G2.nodes[0]["label"] = "black" + G2.nodes[1]["label"] = "blue" + G2.nodes[2]["label"] = "blue" + G2.nodes[3]["label"] = "red" + G2.nodes[4]["label"] = "red" + G2.nodes[5]["label"] = "blue" + + l1, l2 = nx.get_node_attributes(G1, "label"), nx.get_node_attributes( + G2, "label" + ) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + expected = [0, 4, 1, 3, 2, 5] + assert _matching_order(gparams) == expected + + +class TestGraphCandidateSelection: + G1_edges = [ + (1, 2), + (1, 4), + (1, 5), + (2, 3), + (2, 4), + (3, 4), + (4, 5), + (1, 6), + (6, 7), + (6, 8), + (8, 9), + (7, 9), + ] + mapped = { + 0: "x", + 1: "a", + 2: "b", + 3: "c", + 4: "d", + 5: "e", + 6: "f", + 7: "g", + 8: "h", + 9: "i", + } + + def test_no_covered_neighbors_no_labels(self): + G1 = nx.Graph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = dict(G1.degree) + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1 = {7, 8, 2, 4, 5} + T1_tilde = {0, 3, 6} + T2 = {"g", "h", "b", "d", "e"} + T2_tilde = {"x", "c", "f"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 3 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 0 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + m.pop(9) + m_rev.pop(self.mapped[9]) + + T1 = {2, 4, 5, 6} + T1_tilde = {0, 3, 7, 8, 9} + T2 = {"g", "h", "b", "d", "e", "f"} + T2_tilde = {"x", "c", "g", "h", "i"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 7 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == { + self.mapped[u], + self.mapped[8], + self.mapped[3], + self.mapped[9], + } + + def test_no_covered_neighbors_with_labels(self): + G1 = nx.Graph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = dict(G1.degree) + nx.set_node_attributes( + G1, + dict(zip(G1, it.cycle(labels_many))), + "label", + ) + nx.set_node_attributes( + G2, + dict( + zip( + [self.mapped[n] for n in G1], + it.cycle(labels_many), + ) + ), + "label", + ) + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1 = {7, 8, 2, 4, 5, 6} + T1_tilde = {0, 3} + T2 = {"g", "h", "b", "d", "e", "f"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 3 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 0 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + # Change label of disconnected node + G1.nodes[u]["label"] = "blue" + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + # No candidate + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == set() + + m.pop(9) + m_rev.pop(self.mapped[9]) + + T1 = {2, 4, 5, 6} + T1_tilde = {0, 3, 7, 8, 9} + T2 = {"b", "d", "e", "f"} + T2_tilde = {"x", "c", "g", "h", "i"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 7 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + G1.nodes[8]["label"] = G1.nodes[7]["label"] + G2.nodes[self.mapped[8]]["label"] = G1.nodes[7]["label"] + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[8]} + + def test_covered_neighbors_no_labels(self): + G1 = nx.Graph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = dict(G1.degree) + l1 = dict(G1.nodes(data=None, default=-1)) + l2 = dict(G2.nodes(data=None, default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1 = {7, 8, 2, 4, 5, 6} + T1_tilde = {0, 3} + T2 = {"g", "h", "b", "d", "e", "f"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 5 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 6 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[2]} + + def test_covered_neighbors_with_labels(self): + G1 = nx.Graph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = dict(G1.degree) + nx.set_node_attributes( + G1, + dict(zip(G1, it.cycle(labels_many))), + "label", + ) + nx.set_node_attributes( + G2, + dict( + zip( + [self.mapped[n] for n in G1], + it.cycle(labels_many), + ) + ), + "label", + ) + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1 = {7, 8, 2, 4, 5, 6} + T1_tilde = {0, 3} + T2 = {"g", "h", "b", "d", "e", "f"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + u = 5 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 6 + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + # Assign to 2, the same label as 6 + G1.nodes[2]["label"] = G1.nodes[u]["label"] + G2.nodes[self.mapped[2]]["label"] = G1.nodes[u]["label"] + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups(dict(G2.degree())), + ) + + candidates = _find_candidates(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[2]} + + +class TestDiGraphCandidateSelection: + G1_edges = [ + (1, 2), + (1, 4), + (5, 1), + (2, 3), + (4, 2), + (3, 4), + (4, 5), + (1, 6), + (6, 7), + (6, 8), + (8, 9), + (7, 9), + ] + mapped = { + 0: "x", + 1: "a", + 2: "b", + 3: "c", + 4: "d", + 5: "e", + 6: "f", + 7: "g", + 8: "h", + 9: "i", + } + + def test_no_covered_neighbors_no_labels(self): + G1 = nx.DiGraph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree) + } + + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1_out = {2, 4, 6} + T1_in = {5, 7, 8} + T1_tilde = {0, 3} + T2_out = {"b", "d", "f"} + T2_in = {"e", "g", "h"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 3 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 0 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + m.pop(9) + m_rev.pop(self.mapped[9]) + + T1_out = {2, 4, 6} + T1_in = {5} + T1_tilde = {0, 3, 7, 8, 9} + T2_out = {"b", "d", "f"} + T2_in = {"e"} + T2_tilde = {"x", "c", "g", "h", "i"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 7 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[8], self.mapped[3]} + + def test_no_covered_neighbors_with_labels(self): + G1 = nx.DiGraph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree) + } + nx.set_node_attributes( + G1, + dict(zip(G1, it.cycle(labels_many))), + "label", + ) + nx.set_node_attributes( + G2, + dict( + zip( + [self.mapped[n] for n in G1], + it.cycle(labels_many), + ) + ), + "label", + ) + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1_out = {2, 4, 6} + T1_in = {5, 7, 8} + T1_tilde = {0, 3} + T2_out = {"b", "d", "f"} + T2_in = {"e", "g", "h"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 3 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 0 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + # Change label of disconnected node + G1.nodes[u]["label"] = "blue" + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + # No candidate + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == set() + + m.pop(9) + m_rev.pop(self.mapped[9]) + + T1_out = {2, 4, 6} + T1_in = {5} + T1_tilde = {0, 3, 7, 8, 9} + T2_out = {"b", "d", "f"} + T2_in = {"e"} + T2_tilde = {"x", "c", "g", "h", "i"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 7 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + G1.nodes[8]["label"] = G1.nodes[7]["label"] + G2.nodes[self.mapped[8]]["label"] = G1.nodes[7]["label"] + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[8]} + + def test_covered_neighbors_no_labels(self): + G1 = nx.DiGraph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree) + } + + l1 = dict(G1.nodes(data=None, default=-1)) + l2 = dict(G2.nodes(data=None, default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1_out = {2, 4, 6} + T1_in = {5, 7, 8} + T1_tilde = {0, 3} + T2_out = {"b", "d", "f"} + T2_in = {"e", "g", "h"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 5 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 6 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + # Change the direction of an edge to make the degree orientation same as first candidate of u. + G1.remove_edge(4, 2) + G1.add_edge(2, 4) + G2.remove_edge("d", "b") + G2.add_edge("b", "d") + + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[2]} + + def test_covered_neighbors_with_labels(self): + G1 = nx.DiGraph() + G1.add_edges_from(self.G1_edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, self.mapped) + + G1.remove_edge(4, 2) + G1.add_edge(2, 4) + G2.remove_edge("d", "b") + G2.add_edge("b", "d") + + G1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree) + } + + nx.set_node_attributes( + G1, + dict(zip(G1, it.cycle(labels_many))), + "label", + ) + nx.set_node_attributes( + G2, + dict( + zip( + [self.mapped[n] for n in G1], + it.cycle(labels_many), + ) + ), + "label", + ) + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + m = {9: self.mapped[9], 1: self.mapped[1]} + m_rev = {self.mapped[9]: 9, self.mapped[1]: 1} + + T1_out = {2, 4, 6} + T1_in = {5, 7, 8} + T1_tilde = {0, 3} + T2_out = {"b", "d", "f"} + T2_in = {"e", "g", "h"} + T2_tilde = {"x", "c"} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 5 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + u = 6 + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + # Assign to 2, the same label as 6 + G1.nodes[2]["label"] = G1.nodes[u]["label"] + G2.nodes[self.mapped[2]]["label"] = G1.nodes[u]["label"] + l1 = dict(G1.nodes(data="label", default=-1)) + l2 = dict(G2.nodes(data="label", default=-1)) + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u], self.mapped[2]} + + # Change the direction of an edge to make the degree orientation same as first candidate of u. + G1.remove_edge(2, 4) + G1.add_edge(4, 2) + G2.remove_edge("b", "d") + G2.add_edge("d", "b") + + gparams = _GraphParameters( + G1, + G2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + G2.in_degree(), G2.out_degree() + ) + } + ), + ) + + candidates = _find_candidates_Di(u, gparams, sparams, G1_degree) + assert candidates == {self.mapped[u]} + + def test_same_in_out_degrees_no_candidate(self): + g1 = nx.DiGraph([(4, 1), (4, 2), (3, 4), (5, 4), (6, 4)]) + g2 = nx.DiGraph([(1, 4), (2, 4), (3, 4), (4, 5), (4, 6)]) + + l1 = dict(g1.nodes(data=None, default=-1)) + l2 = dict(g2.nodes(data=None, default=-1)) + gparams = _GraphParameters( + g1, + g2, + l1, + l2, + nx.utils.groups(l1), + nx.utils.groups(l2), + nx.utils.groups( + { + node: (in_degree, out_degree) + for (node, in_degree), (_, out_degree) in zip( + g2.in_degree(), g2.out_degree() + ) + } + ), + ) + + g1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(g1.in_degree, g1.out_degree) + } + + m = {1: 1, 2: 2, 3: 3} + m_rev = m.copy() + + T1_out = {4} + T1_in = {4} + T1_tilde = {5, 6} + T2_out = {4} + T2_in = {4} + T2_tilde = {5, 6} + + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + u = 4 + # despite the same in and out degree, there's no candidate for u=4 + candidates = _find_candidates_Di(u, gparams, sparams, g1_degree) + assert candidates == set() + # Notice how the regular candidate selection method returns wrong result. + assert _find_candidates(u, gparams, sparams, g1_degree) == {4} + + +class TestGraphISOFeasibility: + def test_const_covered_neighbors(self): + G1 = nx.Graph([(0, 1), (1, 2), (3, 0), (3, 2)]) + G2 = nx.Graph([("a", "b"), ("b", "c"), ("k", "a"), ("k", "c")]) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_no_covered_neighbors(self): + G1 = nx.Graph([(0, 1), (1, 2), (3, 4), (3, 5)]) + G2 = nx.Graph([("a", "b"), ("b", "c"), ("k", "w"), ("k", "z")]) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_mixed_covered_uncovered_neighbors(self): + G1 = nx.Graph([(0, 1), (1, 2), (3, 0), (3, 2), (3, 4), (3, 5)]) + G2 = nx.Graph( + [("a", "b"), ("b", "c"), ("k", "a"), ("k", "c"), ("k", "w"), ("k", "z")] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_fail_cases(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 3), + (10, 4), + (10, 5), + (10, 6), + (4, 1), + (5, 3), + ] + ) + G2 = nx.Graph( + [ + ("a", "b"), + ("b", "c"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("k", "f"), + ("k", "g"), + ("e", "b"), + ("f", "d"), + ] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 10, "k" + assert _consistent_PT(u, v, gparams, sparams) + + # Delete one uncovered neighbor of u. Notice how it still passes the test. + # Two reasons for this: + # 1. If u, v had different degrees from the beginning, they wouldn't + # be selected as candidates in the first place. + # 2. Even if they are selected, consistency is basically 1-look-ahead, + # meaning that we take into consideration the relation of the + # candidates with their mapped neighbors. The node we deleted is + # not a covered neighbor. + # Such nodes will be checked by the cut_PT function, which is + # basically the 2-look-ahead, checking the relation of the + # candidates with T1, T2 (in which belongs the node we just deleted). + G1.remove_node(6) + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of u in G1 + G1.add_edge(u, 2) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.add_edge(v, "c") + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of v in G2 + G2.add_edge(v, "x") + G1.add_node(7) + sparams.mapping.update({7: "x"}) + sparams.reverse_mapping.update({"x": 7}) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compendate in G1 + G1.add_edge(u, 7) + assert _consistent_PT(u, v, gparams, sparams) + + @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) + def test_cut_inconsistent_labels(self, graph_type): + G1 = graph_type( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 3), + (10, 4), + (10, 5), + (10, 6), + (4, 1), + (5, 3), + ] + ) + G2 = graph_type( + [ + ("a", "b"), + ("b", "c"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("k", "f"), + ("k", "g"), + ("e", "b"), + ("f", "d"), + ] + ) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + l1.update({6: "green"}) # Change the label of one neighbor of u + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + + u, v = 10, "k" + assert _cut_PT(u, v, gparams, sparams) + + def test_cut_consistent_labels(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 3), + (10, 4), + (10, 5), + (10, 6), + (4, 1), + (5, 3), + ] + ) + G2 = nx.Graph( + [ + ("a", "b"), + ("b", "c"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("k", "f"), + ("k", "g"), + ("e", "b"), + ("f", "d"), + ] + ) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5}, + None, + {6}, + None, + {"e", "f"}, + None, + {"g"}, + None, + ) + + u, v = 10, "k" + assert not _cut_PT(u, v, gparams, sparams) + + def test_cut_same_labels(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 3), + (10, 4), + (10, 5), + (10, 6), + (4, 1), + (5, 3), + ] + ) + mapped = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 10: "k"} + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5}, + None, + {6}, + None, + {"e", "f"}, + None, + {"g"}, + None, + ) + + u, v = 10, "k" + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G1[u] and T1, so it's not the same as the one between G2[v] and T2 + G1.remove_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.remove_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G2[v] and T2_tilde, so it's not the same as the one between G1[u] and T1_tilde + G2.remove_edge(v, mapped[6]) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G1 + G1.remove_edge(u, 6) + assert not _cut_PT(u, v, gparams, sparams) + + # Add disconnected nodes, which will form the new Ti_out + G1.add_nodes_from([6, 7, 8]) + G2.add_nodes_from(["g", "y", "z"]) + sparams.T1_tilde.update({6, 7, 8}) + sparams.T2_tilde.update({"g", "y", "z"}) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + + assert not _cut_PT(u, v, gparams, sparams) + + # Add some new nodes to the mapping + sparams.mapping.update({6: "g", 7: "y"}) + sparams.reverse_mapping.update({"g": 6, "y": 7}) + + # Add more nodes to T1, T2. + G1.add_edges_from([(6, 20), (7, 20), (6, 21)]) + G2.add_edges_from([("g", "i"), ("g", "j"), ("y", "j")]) + + sparams.mapping.update({20: "j", 21: "i"}) + sparams.reverse_mapping.update({"j": 20, "i": 21}) + sparams.T1.update({20, 21}) + sparams.T2.update({"i", "j"}) + sparams.T1_tilde.difference_update({6, 7}) + sparams.T2_tilde.difference_update({"g", "y"}) + + assert not _cut_PT(u, v, gparams, sparams) + + # Add nodes from the new T1 and T2, as neighbors of u and v respectively + G1.add_edges_from([(u, 20), (u, 21)]) + G2.add_edges_from([(v, "i"), (v, "j")]) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + + assert not _cut_PT(u, v, gparams, sparams) + + # Change the edges, maintaining the G1[u]-T1 intersection + G1.remove_edge(u, 20) + G1.add_edge(u, 4) + assert not _cut_PT(u, v, gparams, sparams) + + # Connect u to 8 which is still in T1_tilde + G1.add_edge(u, 8) + assert _cut_PT(u, v, gparams, sparams) + + # Same for v and z, so that inters(G1[u], T1out) == inters(G2[v], T2out) + G2.add_edge(v, "z") + assert not _cut_PT(u, v, gparams, sparams) + + def test_cut_different_labels(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 15), + (20, 12), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 3), + (20, 5), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + + l1 = {n: "none" for n in G1.nodes()} + l2 = {} + + l1.update( + { + 9: "blue", + 15: "blue", + 12: "blue", + 11: "green", + 3: "green", + 8: "red", + 0: "red", + 5: "yellow", + } + ) + l2.update({mapped[n]: l for n, l in l1.items()}) + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change the orientation of the labels on neighbors of u compared to neighbors of v. Leave the structure intact + l1.update({9: "red"}) + assert _cut_PT(u, v, gparams, sparams) + + # compensate in G2 + l2.update({mapped[9]: "red"}) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G1[u] and T1 + G1.add_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G2[v] and T2 + G2.add_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G2[v] and T2_tilde + G2.remove_edge(v, mapped[8]) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G1[u] and T1_tilde + G1.remove_edge(u, 8) + assert not _cut_PT(u, v, gparams, sparams) + + # Place 8 and mapped[8] in T1 and T2 respectively, by connecting it to covered nodes + G1.add_edge(8, 3) + G2.add_edge(mapped[8], mapped[3]) + sparams.T1.add(8) + sparams.T2.add(mapped[8]) + sparams.T1_tilde.remove(8) + sparams.T2_tilde.remove(mapped[8]) + + assert not _cut_PT(u, v, gparams, sparams) + + # Remove neighbor of u from T1 + G1.remove_node(5) + l1.pop(5) + sparams.T1.remove(5) + assert _cut_PT(u, v, gparams, sparams) + + # Same in G2 + G2.remove_node(mapped[5]) + l2.pop(mapped[5]) + sparams.T2.remove(mapped[5]) + assert not _cut_PT(u, v, gparams, sparams) + + def test_feasibility_same_labels(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 15), + (20, 12), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 2), + (20, 5), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {mapped[n]: "blue" for n in G1.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change structure in G2 such that, ONLY consistency is harmed + G2.remove_edge(mapped[20], mapped[2]) + G2.add_edge(mapped[20], mapped[3]) + + # Consistency check fails, while the cutting rules are satisfied! + assert not _cut_PT(u, v, gparams, sparams) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 and make it consistent + G1.remove_edge(20, 2) + G1.add_edge(20, 3) + assert not _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + # ONLY fail the cutting check + G2.add_edge(v, mapped[10]) + assert _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + def test_feasibility_different_labels(self): + G1 = nx.Graph( + [ + (0, 1), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 15), + (20, 12), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 2), + (20, 5), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + + l1 = {n: "none" for n in G1.nodes()} + l2 = {} + + l1.update( + { + 9: "blue", + 15: "blue", + 12: "blue", + 11: "green", + 2: "green", + 8: "red", + 0: "red", + 5: "yellow", + } + ) + l2.update({mapped[n]: l for n, l in l1.items()}) + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change structure in G2 such that, ONLY consistency is harmed + G2.remove_edge(mapped[20], mapped[2]) + G2.add_edge(mapped[20], mapped[3]) + l2.update({mapped[3]: "green"}) + + # Consistency check fails, while the cutting rules are satisfied! + assert not _cut_PT(u, v, gparams, sparams) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 and make it consistent + G1.remove_edge(20, 2) + G1.add_edge(20, 3) + l1.update({3: "green"}) + assert not _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + # ONLY fail the cutting check + l1.update({5: "red"}) + assert _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + +class TestMultiGraphISOFeasibility: + def test_const_covered_neighbors(self): + G1 = nx.MultiGraph( + [(0, 1), (0, 1), (1, 2), (3, 0), (3, 0), (3, 0), (3, 2), (3, 2)] + ) + G2 = nx.MultiGraph( + [ + ("a", "b"), + ("a", "b"), + ("b", "c"), + ("k", "a"), + ("k", "a"), + ("k", "a"), + ("k", "c"), + ("k", "c"), + ] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_no_covered_neighbors(self): + G1 = nx.MultiGraph([(0, 1), (0, 1), (1, 2), (3, 4), (3, 4), (3, 5)]) + G2 = nx.MultiGraph([("a", "b"), ("b", "c"), ("k", "w"), ("k", "w"), ("k", "z")]) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_mixed_covered_uncovered_neighbors(self): + G1 = nx.MultiGraph( + [(0, 1), (1, 2), (3, 0), (3, 0), (3, 0), (3, 2), (3, 2), (3, 4), (3, 5)] + ) + G2 = nx.MultiGraph( + [ + ("a", "b"), + ("b", "c"), + ("k", "a"), + ("k", "a"), + ("k", "a"), + ("k", "c"), + ("k", "c"), + ("k", "w"), + ("k", "z"), + ] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_fail_cases(self): + G1 = nx.MultiGraph( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 0), + (10, 0), + (10, 3), + (10, 3), + (10, 4), + (10, 5), + (10, 6), + (10, 6), + (4, 1), + (5, 3), + ] + ) + mapped = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 10: "k"} + G2 = nx.relabel_nodes(G1, mapped) + + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 10, "k" + assert _consistent_PT(u, v, gparams, sparams) + + # Delete one uncovered neighbor of u. Notice how it still passes the test. Two reasons for this: + # 1. If u, v had different degrees from the beginning, they wouldn't be selected as candidates in the first + # place. + # 2. Even if they are selected, consistency is basically 1-look-ahead, meaning that we take into consideration + # the relation of the candidates with their mapped neighbors. The node we deleted is not a covered neighbor. + # Such nodes will be checked by the cut_PT function, which is basically the 2-look-ahead, checking the + # relation of the candidates with T1, T2 (in which belongs the node we just deleted). + G1.remove_node(6) + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of u in G1 + G1.add_edge(u, 2) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.add_edge(v, "c") + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of v in G2 + G2.add_edge(v, "x") + G1.add_node(7) + sparams.mapping.update({7: "x"}) + sparams.reverse_mapping.update({"x": 7}) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compendate in G1 + G1.add_edge(u, 7) + assert _consistent_PT(u, v, gparams, sparams) + + # Delete an edge between u and a covered neighbor + G1.remove_edges_from([(u, 0), (u, 0)]) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.remove_edges_from([(v, mapped[0]), (v, mapped[0])]) + assert _consistent_PT(u, v, gparams, sparams) + + # Remove an edge between v and a covered neighbor + G2.remove_edge(v, mapped[3]) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 + G1.remove_edge(u, 3) + assert _consistent_PT(u, v, gparams, sparams) + + def test_cut_same_labels(self): + G1 = nx.MultiGraph( + [ + (0, 1), + (1, 2), + (10, 0), + (10, 0), + (10, 0), + (10, 3), + (10, 3), + (10, 4), + (10, 4), + (10, 5), + (10, 5), + (10, 5), + (10, 5), + (10, 6), + (10, 6), + (4, 1), + (5, 3), + ] + ) + mapped = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 10: "k"} + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5}, + None, + {6}, + None, + {"e", "f"}, + None, + {"g"}, + None, + ) + + u, v = 10, "k" + assert not _cut_PT(u, v, gparams, sparams) + + # Remove one of the multiple edges between u and a neighbor + G1.remove_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G2 + G1.remove_edge(u, 4) + G2.remove_edges_from([(v, mapped[4]), (v, mapped[4])]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G2[v] and T2_tilde, so it's not the same as the one between G1[u] and T1_tilde + G2.remove_edge(v, mapped[6]) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G1 + G1.remove_edge(u, 6) + assert not _cut_PT(u, v, gparams, sparams) + + # Add more edges between u and neighbor which belongs in T1_tilde + G1.add_edges_from([(u, 5), (u, 5), (u, 5)]) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.add_edges_from([(v, mapped[5]), (v, mapped[5]), (v, mapped[5])]) + assert not _cut_PT(u, v, gparams, sparams) + + # Add disconnected nodes, which will form the new Ti_out + G1.add_nodes_from([6, 7, 8]) + G2.add_nodes_from(["g", "y", "z"]) + G1.add_edges_from([(u, 6), (u, 6), (u, 6), (u, 8)]) + G2.add_edges_from([(v, "g"), (v, "g"), (v, "g"), (v, "z")]) + + sparams.T1_tilde.update({6, 7, 8}) + sparams.T2_tilde.update({"g", "y", "z"}) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + + assert not _cut_PT(u, v, gparams, sparams) + + # Add some new nodes to the mapping + sparams.mapping.update({6: "g", 7: "y"}) + sparams.reverse_mapping.update({"g": 6, "y": 7}) + + # Add more nodes to T1, T2. + G1.add_edges_from([(6, 20), (7, 20), (6, 21)]) + G2.add_edges_from([("g", "i"), ("g", "j"), ("y", "j")]) + + sparams.T1.update({20, 21}) + sparams.T2.update({"i", "j"}) + sparams.T1_tilde.difference_update({6, 7}) + sparams.T2_tilde.difference_update({"g", "y"}) + + assert not _cut_PT(u, v, gparams, sparams) + + # Remove some edges + G2.remove_edge(v, "g") + assert _cut_PT(u, v, gparams, sparams) + + G1.remove_edge(u, 6) + G1.add_edge(u, 8) + G2.add_edge(v, "z") + assert not _cut_PT(u, v, gparams, sparams) + + # Add nodes from the new T1 and T2, as neighbors of u and v respectively + G1.add_edges_from([(u, 20), (u, 20), (u, 20), (u, 21)]) + G2.add_edges_from([(v, "i"), (v, "i"), (v, "i"), (v, "j")]) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + + assert not _cut_PT(u, v, gparams, sparams) + + # Change the edges + G1.remove_edge(u, 20) + G1.add_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + G2.remove_edge(v, "i") + G2.add_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + def test_cut_different_labels(self): + G1 = nx.MultiGraph( + [ + (0, 1), + (0, 1), + (1, 2), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 9), + (20, 9), + (20, 15), + (20, 15), + (20, 12), + (20, 11), + (20, 11), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 8), + (20, 3), + (20, 3), + (20, 5), + (20, 5), + (20, 5), + (20, 0), + (20, 0), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + + l1 = {n: "none" for n in G1.nodes()} + l2 = {} + + l1.update( + { + 9: "blue", + 15: "blue", + 12: "blue", + 11: "green", + 3: "green", + 8: "red", + 0: "red", + 5: "yellow", + } + ) + l2.update({mapped[n]: l for n, l in l1.items()}) + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change the orientation of the labels on neighbors of u compared to neighbors of v. Leave the structure intact + l1.update({9: "red"}) + assert _cut_PT(u, v, gparams, sparams) + + # compensate in G2 + l2.update({mapped[9]: "red"}) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G1[u] and T1 + G1.add_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G2[v] and T2 + G2.add_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + # Delete one from the multiple edges + G2.remove_edge(v, mapped[8]) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G1[u] and T1_tilde + G1.remove_edge(u, 8) + assert not _cut_PT(u, v, gparams, sparams) + + # Place 8 and mapped[8] in T1 and T2 respectively, by connecting it to covered nodes + G1.add_edges_from([(8, 3), (8, 3), (8, u)]) + G2.add_edges_from([(mapped[8], mapped[3]), (mapped[8], mapped[3])]) + sparams.T1.add(8) + sparams.T2.add(mapped[8]) + sparams.T1_tilde.remove(8) + sparams.T2_tilde.remove(mapped[8]) + + assert _cut_PT(u, v, gparams, sparams) + + # Fix uneven edges + G1.remove_edge(8, u) + assert not _cut_PT(u, v, gparams, sparams) + + # Remove neighbor of u from T1 + G1.remove_node(5) + l1.pop(5) + sparams.T1.remove(5) + assert _cut_PT(u, v, gparams, sparams) + + # Same in G2 + G2.remove_node(mapped[5]) + l2.pop(mapped[5]) + sparams.T2.remove(mapped[5]) + assert not _cut_PT(u, v, gparams, sparams) + + def test_feasibility_same_labels(self): + G1 = nx.MultiGraph( + [ + (0, 1), + (0, 1), + (1, 2), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 9), + (20, 9), + (20, 15), + (20, 15), + (20, 12), + (20, 11), + (20, 11), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 8), + (20, 3), + (20, 3), + (20, 5), + (20, 5), + (20, 5), + (20, 0), + (20, 0), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {mapped[n]: "blue" for n in G1.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change structure in G2 such that, ONLY consistency is harmed + G2.remove_edges_from([(mapped[20], mapped[3]), (mapped[20], mapped[3])]) + G2.add_edges_from([(mapped[20], mapped[2]), (mapped[20], mapped[2])]) + + # Consistency check fails, while the cutting rules are satisfied! + assert not _cut_PT(u, v, gparams, sparams) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 and make it consistent + G1.remove_edges_from([(20, 3), (20, 3)]) + G1.add_edges_from([(20, 2), (20, 2)]) + assert not _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + # ONLY fail the cutting check + G2.add_edges_from([(v, mapped[10])] * 5) + assert _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + # Pass all tests + G1.add_edges_from([(u, 10)] * 5) + assert not _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + def test_feasibility_different_labels(self): + G1 = nx.MultiGraph( + [ + (0, 1), + (0, 1), + (1, 2), + (1, 2), + (1, 14), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (4, 10), + (4, 9), + (6, 10), + (20, 9), + (20, 9), + (20, 9), + (20, 15), + (20, 15), + (20, 12), + (20, 11), + (20, 11), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 8), + (20, 2), + (20, 2), + (20, 5), + (20, 5), + (20, 5), + (20, 0), + (20, 0), + (20, 0), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "none" for n in G1.nodes()} + l2 = {} + + l1.update( + { + 9: "blue", + 15: "blue", + 12: "blue", + 11: "green", + 2: "green", + 8: "red", + 0: "red", + 5: "yellow", + } + ) + l2.update({mapped[n]: l for n, l in l1.items()}) + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 14}, + None, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "h", "o"}, + None, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change structure in G2 such that, ONLY consistency is harmed + G2.remove_edges_from([(mapped[20], mapped[2]), (mapped[20], mapped[2])]) + G2.add_edges_from([(mapped[20], mapped[3]), (mapped[20], mapped[3])]) + l2.update({mapped[3]: "green"}) + + # Consistency check fails, while the cutting rules are satisfied! + assert not _cut_PT(u, v, gparams, sparams) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 and make it consistent + G1.remove_edges_from([(20, 2), (20, 2)]) + G1.add_edges_from([(20, 3), (20, 3)]) + l1.update({3: "green"}) + assert not _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + # ONLY fail the cutting check + l1.update({5: "red"}) + assert _cut_PT(u, v, gparams, sparams) + assert _consistent_PT(u, v, gparams, sparams) + + +class TestDiGraphISOFeasibility: + def test_const_covered_neighbors(self): + G1 = nx.DiGraph([(0, 1), (1, 2), (0, 3), (2, 3)]) + G2 = nx.DiGraph([("a", "b"), ("b", "c"), ("a", "k"), ("c", "k")]) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_no_covered_neighbors(self): + G1 = nx.DiGraph([(0, 1), (1, 2), (3, 4), (3, 5)]) + G2 = nx.DiGraph([("a", "b"), ("b", "c"), ("k", "w"), ("k", "z")]) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_mixed_covered_uncovered_neighbors(self): + G1 = nx.DiGraph([(0, 1), (1, 2), (3, 0), (3, 2), (3, 4), (3, 5)]) + G2 = nx.DiGraph( + [("a", "b"), ("b", "c"), ("k", "a"), ("k", "c"), ("k", "w"), ("k", "z")] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 3, "k" + assert _consistent_PT(u, v, gparams, sparams) + + def test_const_fail_cases(self): + G1 = nx.DiGraph( + [ + (0, 1), + (2, 1), + (10, 0), + (10, 3), + (10, 4), + (5, 10), + (10, 6), + (1, 4), + (5, 3), + ] + ) + G2 = nx.DiGraph( + [ + ("a", "b"), + ("c", "b"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("f", "k"), + ("k", "g"), + ("b", "e"), + ("f", "d"), + ] + ) + gparams = _GraphParameters(G1, G2, None, None, None, None, None) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + u, v = 10, "k" + assert _consistent_PT(u, v, gparams, sparams) + + # Delete one uncovered neighbor of u. Notice how it still passes the + # test. Two reasons for this: + # 1. If u, v had different degrees from the beginning, they wouldn't + # be selected as candidates in the first place. + # 2. Even if they are selected, consistency is basically + # 1-look-ahead, meaning that we take into consideration the + # relation of the candidates with their mapped neighbors. + # The node we deleted is not a covered neighbor. + # Such nodes will be checked by the cut_PT function, which is + # basically the 2-look-ahead, checking the relation of the + # candidates with T1, T2 (in which belongs the node we just deleted). + G1.remove_node(6) + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of u in G1 + G1.add_edge(u, 2) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.add_edge(v, "c") + assert _consistent_PT(u, v, gparams, sparams) + + # Add one more covered neighbor of v in G2 + G2.add_edge(v, "x") + G1.add_node(7) + sparams.mapping.update({7: "x"}) + sparams.reverse_mapping.update({"x": 7}) + assert not _consistent_PT(u, v, gparams, sparams) + + # Compensate in G1 + G1.add_edge(u, 7) + assert _consistent_PT(u, v, gparams, sparams) + + def test_cut_inconsistent_labels(self): + G1 = nx.DiGraph( + [ + (0, 1), + (2, 1), + (10, 0), + (10, 3), + (10, 4), + (5, 10), + (10, 6), + (1, 4), + (5, 3), + ] + ) + G2 = nx.DiGraph( + [ + ("a", "b"), + ("c", "b"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("f", "k"), + ("k", "g"), + ("b", "e"), + ("f", "d"), + ] + ) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + l1.update({5: "green"}) # Change the label of one neighbor of u + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + None, + None, + None, + None, + None, + None, + None, + None, + ) + + u, v = 10, "k" + assert _cut_PT(u, v, gparams, sparams) + + def test_cut_consistent_labels(self): + G1 = nx.DiGraph( + [ + (0, 1), + (2, 1), + (10, 0), + (10, 3), + (10, 4), + (5, 10), + (10, 6), + (1, 4), + (5, 3), + ] + ) + G2 = nx.DiGraph( + [ + ("a", "b"), + ("c", "b"), + ("k", "a"), + ("k", "d"), + ("k", "e"), + ("f", "k"), + ("k", "g"), + ("b", "e"), + ("f", "d"), + ] + ) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4}, + {5, 10}, + {6}, + None, + {"e"}, + {"f", "k"}, + {"g"}, + None, + ) + + u, v = 10, "k" + assert not _cut_PT(u, v, gparams, sparams) + + def test_cut_same_labels(self): + G1 = nx.DiGraph( + [ + (0, 1), + (2, 1), + (10, 0), + (10, 3), + (10, 4), + (5, 10), + (10, 6), + (1, 4), + (5, 3), + ] + ) + mapped = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 10: "k"} + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4}, + {5, 10}, + {6}, + None, + {"e"}, + {"f", "k"}, + {"g"}, + None, + ) + + u, v = 10, "k" + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G1[u] and T1_out, so it's not the same as the one between G2[v] and T2_out + G1.remove_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.remove_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G1[u] and T1_in, so it's not the same as the one between G2[v] and T2_in + G1.remove_edge(5, u) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G2 + G2.remove_edge(mapped[5], v) + assert not _cut_PT(u, v, gparams, sparams) + + # Change intersection between G2[v] and T2_tilde, so it's not the same as the one between G1[u] and T1_tilde + G2.remove_edge(v, mapped[6]) + assert _cut_PT(u, v, gparams, sparams) + + # Compensate in G1 + G1.remove_edge(u, 6) + assert not _cut_PT(u, v, gparams, sparams) + + # Add disconnected nodes, which will form the new Ti_tilde + G1.add_nodes_from([6, 7, 8]) + G2.add_nodes_from(["g", "y", "z"]) + sparams.T1_tilde.update({6, 7, 8}) + sparams.T2_tilde.update({"g", "y", "z"}) + + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + + assert not _cut_PT(u, v, gparams, sparams) + + def test_cut_different_labels(self): + G1 = nx.DiGraph( + [ + (0, 1), + (1, 2), + (14, 1), + (0, 4), + (1, 5), + (2, 6), + (3, 7), + (3, 6), + (10, 4), + (4, 9), + (6, 10), + (20, 9), + (20, 15), + (20, 12), + (20, 11), + (12, 13), + (11, 13), + (20, 8), + (20, 3), + (20, 5), + (0, 20), + ] + ) + mapped = { + 0: "a", + 1: "b", + 2: "c", + 3: "d", + 4: "e", + 5: "f", + 6: "g", + 7: "h", + 8: "i", + 9: "j", + 10: "k", + 11: "l", + 12: "m", + 13: "n", + 14: "o", + 15: "p", + 20: "x", + } + G2 = nx.relabel_nodes(G1, mapped) + + l1 = {n: "none" for n in G1.nodes()} + l2 = {} + + l1.update( + { + 9: "blue", + 15: "blue", + 12: "blue", + 11: "green", + 3: "green", + 8: "red", + 0: "red", + 5: "yellow", + } + ) + l2.update({mapped[n]: l for n, l in l1.items()}) + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c", 3: "d"}, + {"a": 0, "b": 1, "c": 2, "d": 3}, + {4, 5, 6, 7, 20}, + {14, 20}, + {9, 10, 15, 12, 11, 13, 8}, + None, + {"e", "f", "g", "x"}, + {"o", "x"}, + {"j", "k", "l", "m", "n", "i", "p"}, + None, + ) + + u, v = 20, "x" + assert not _cut_PT(u, v, gparams, sparams) + + # Change the orientation of the labels on neighbors of u compared to neighbors of v. Leave the structure intact + l1.update({9: "red"}) + assert _cut_PT(u, v, gparams, sparams) + + # compensate in G2 + l2.update({mapped[9]: "red"}) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G1[u] and T1_out + G1.add_edge(u, 4) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G2[v] and T2_out + G2.add_edge(v, mapped[4]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G1[u] and T1_in + G1.add_edge(u, 14) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G2[v] and T2_in + G2.add_edge(v, mapped[14]) + assert not _cut_PT(u, v, gparams, sparams) + + # Change the intersection of G2[v] and T2_tilde + G2.remove_edge(v, mapped[8]) + assert _cut_PT(u, v, gparams, sparams) + + # Same for G1[u] and T1_tilde + G1.remove_edge(u, 8) + assert not _cut_PT(u, v, gparams, sparams) + + # Place 8 and mapped[8] in T1 and T2 respectively, by connecting it to covered nodes + G1.add_edge(8, 3) + G2.add_edge(mapped[8], mapped[3]) + sparams.T1.add(8) + sparams.T2.add(mapped[8]) + sparams.T1_tilde.remove(8) + sparams.T2_tilde.remove(mapped[8]) + + assert not _cut_PT(u, v, gparams, sparams) + + # Remove neighbor of u from T1 + G1.remove_node(5) + l1.pop(5) + sparams.T1.remove(5) + assert _cut_PT(u, v, gparams, sparams) + + # Same in G2 + G2.remove_node(mapped[5]) + l2.pop(mapped[5]) + sparams.T2.remove(mapped[5]) + assert not _cut_PT(u, v, gparams, sparams) + + def test_predecessor_T1_in_fail(self): + G1 = nx.DiGraph( + [(0, 1), (0, 3), (4, 0), (1, 5), (5, 2), (3, 6), (4, 6), (6, 5)] + ) + mapped = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g"} + G2 = nx.relabel_nodes(G1, mapped) + l1 = {n: "blue" for n in G1.nodes()} + l2 = {n: "blue" for n in G2.nodes()} + + gparams = _GraphParameters( + G1, G2, l1, l2, nx.utils.groups(l1), nx.utils.groups(l2), None + ) + sparams = _StateParameters( + {0: "a", 1: "b", 2: "c"}, + {"a": 0, "b": 1, "c": 2}, + {3, 5}, + {4, 5}, + {6}, + None, + {"d", "f"}, + {"f"}, # mapped[4] is missing from T2_in + {"g"}, + None, + ) + + u, v = 6, "g" + assert _cut_PT(u, v, gparams, sparams) + + sparams.T2_in.add("e") + assert not _cut_PT(u, v, gparams, sparams) + + +class TestGraphTinoutUpdating: + edges = [ + (1, 3), + (2, 3), + (3, 4), + (4, 9), + (4, 5), + (3, 9), + (5, 8), + (5, 7), + (8, 7), + (6, 7), + ] + mapped = { + 0: "x", + 1: "a", + 2: "b", + 3: "c", + 4: "d", + 5: "e", + 6: "f", + 7: "g", + 8: "h", + 9: "i", + } + G1 = nx.Graph() + G1.add_edges_from(edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, mapping=mapped) + + def test_updating(self): + G2_degree = dict(self.G2.degree) + gparams, sparams = _initialize_parameters(self.G1, self.G2, G2_degree) + m, m_rev, T1, _, T1_tilde, _, T2, _, T2_tilde, _ = sparams + + # Add node to the mapping + m[4] = self.mapped[4] + m_rev[self.mapped[4]] = 4 + _update_Tinout(4, self.mapped[4], gparams, sparams) + + assert T1 == {3, 5, 9} + assert T2 == {"c", "i", "e"} + assert T1_tilde == {0, 1, 2, 6, 7, 8} + assert T2_tilde == {"x", "a", "b", "f", "g", "h"} + + # Add node to the mapping + m[5] = self.mapped[5] + m_rev.update({self.mapped[5]: 5}) + _update_Tinout(5, self.mapped[5], gparams, sparams) + + assert T1 == {3, 9, 8, 7} + assert T2 == {"c", "i", "h", "g"} + assert T1_tilde == {0, 1, 2, 6} + assert T2_tilde == {"x", "a", "b", "f"} + + # Add node to the mapping + m[6] = self.mapped[6] + m_rev.update({self.mapped[6]: 6}) + _update_Tinout(6, self.mapped[6], gparams, sparams) + + assert T1 == {3, 9, 8, 7} + assert T2 == {"c", "i", "h", "g"} + assert T1_tilde == {0, 1, 2} + assert T2_tilde == {"x", "a", "b"} + + # Add node to the mapping + m[3] = self.mapped[3] + m_rev.update({self.mapped[3]: 3}) + _update_Tinout(3, self.mapped[3], gparams, sparams) + + assert T1 == {1, 2, 9, 8, 7} + assert T2 == {"a", "b", "i", "h", "g"} + assert T1_tilde == {0} + assert T2_tilde == {"x"} + + # Add node to the mapping + m[0] = self.mapped[0] + m_rev.update({self.mapped[0]: 0}) + _update_Tinout(0, self.mapped[0], gparams, sparams) + + assert T1 == {1, 2, 9, 8, 7} + assert T2 == {"a", "b", "i", "h", "g"} + assert T1_tilde == set() + assert T2_tilde == set() + + def test_restoring(self): + m = {0: "x", 3: "c", 4: "d", 5: "e", 6: "f"} + m_rev = {"x": 0, "c": 3, "d": 4, "e": 5, "f": 6} + + T1 = {1, 2, 7, 9, 8} + T2 = {"a", "b", "g", "i", "h"} + T1_tilde = set() + T2_tilde = set() + + gparams = _GraphParameters(self.G1, self.G2, {}, {}, {}, {}, {}) + sparams = _StateParameters( + m, m_rev, T1, None, T1_tilde, None, T2, None, T2_tilde, None + ) + + # Remove a node from the mapping + m.pop(0) + m_rev.pop("x") + _restore_Tinout(0, self.mapped[0], gparams, sparams) + + assert T1 == {1, 2, 7, 9, 8} + assert T2 == {"a", "b", "g", "i", "h"} + assert T1_tilde == {0} + assert T2_tilde == {"x"} + + # Remove a node from the mapping + m.pop(6) + m_rev.pop("f") + _restore_Tinout(6, self.mapped[6], gparams, sparams) + + assert T1 == {1, 2, 7, 9, 8} + assert T2 == {"a", "b", "g", "i", "h"} + assert T1_tilde == {0, 6} + assert T2_tilde == {"x", "f"} + + # Remove a node from the mapping + m.pop(3) + m_rev.pop("c") + _restore_Tinout(3, self.mapped[3], gparams, sparams) + + assert T1 == {7, 9, 8, 3} + assert T2 == {"g", "i", "h", "c"} + assert T1_tilde == {0, 6, 1, 2} + assert T2_tilde == {"x", "f", "a", "b"} + + # Remove a node from the mapping + m.pop(5) + m_rev.pop("e") + _restore_Tinout(5, self.mapped[5], gparams, sparams) + + assert T1 == {9, 3, 5} + assert T2 == {"i", "c", "e"} + assert T1_tilde == {0, 6, 1, 2, 7, 8} + assert T2_tilde == {"x", "f", "a", "b", "g", "h"} + + # Remove a node from the mapping + m.pop(4) + m_rev.pop("d") + _restore_Tinout(4, self.mapped[4], gparams, sparams) + + assert T1 == set() + assert T2 == set() + assert T1_tilde == set(self.G1.nodes()) + assert T2_tilde == set(self.G2.nodes()) + + +class TestDiGraphTinoutUpdating: + edges = [ + (1, 3), + (3, 2), + (3, 4), + (4, 9), + (4, 5), + (3, 9), + (5, 8), + (5, 7), + (8, 7), + (7, 6), + ] + mapped = { + 0: "x", + 1: "a", + 2: "b", + 3: "c", + 4: "d", + 5: "e", + 6: "f", + 7: "g", + 8: "h", + 9: "i", + } + G1 = nx.DiGraph(edges) + G1.add_node(0) + G2 = nx.relabel_nodes(G1, mapping=mapped) + + def test_updating(self): + G2_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip( + self.G2.in_degree, self.G2.out_degree + ) + } + gparams, sparams = _initialize_parameters(self.G1, self.G2, G2_degree) + m, m_rev, T1_out, T1_in, T1_tilde, _, T2_out, T2_in, T2_tilde, _ = sparams + + # Add node to the mapping + m[4] = self.mapped[4] + m_rev[self.mapped[4]] = 4 + _update_Tinout(4, self.mapped[4], gparams, sparams) + + assert T1_out == {5, 9} + assert T1_in == {3} + assert T2_out == {"i", "e"} + assert T2_in == {"c"} + assert T1_tilde == {0, 1, 2, 6, 7, 8} + assert T2_tilde == {"x", "a", "b", "f", "g", "h"} + + # Add node to the mapping + m[5] = self.mapped[5] + m_rev[self.mapped[5]] = 5 + _update_Tinout(5, self.mapped[5], gparams, sparams) + + assert T1_out == {9, 8, 7} + assert T1_in == {3} + assert T2_out == {"i", "g", "h"} + assert T2_in == {"c"} + assert T1_tilde == {0, 1, 2, 6} + assert T2_tilde == {"x", "a", "b", "f"} + + # Add node to the mapping + m[6] = self.mapped[6] + m_rev[self.mapped[6]] = 6 + _update_Tinout(6, self.mapped[6], gparams, sparams) + + assert T1_out == {9, 8, 7} + assert T1_in == {3, 7} + assert T2_out == {"i", "g", "h"} + assert T2_in == {"c", "g"} + assert T1_tilde == {0, 1, 2} + assert T2_tilde == {"x", "a", "b"} + + # Add node to the mapping + m[3] = self.mapped[3] + m_rev[self.mapped[3]] = 3 + _update_Tinout(3, self.mapped[3], gparams, sparams) + + assert T1_out == {9, 8, 7, 2} + assert T1_in == {7, 1} + assert T2_out == {"i", "g", "h", "b"} + assert T2_in == {"g", "a"} + assert T1_tilde == {0} + assert T2_tilde == {"x"} + + # Add node to the mapping + m[0] = self.mapped[0] + m_rev[self.mapped[0]] = 0 + _update_Tinout(0, self.mapped[0], gparams, sparams) + + assert T1_out == {9, 8, 7, 2} + assert T1_in == {7, 1} + assert T2_out == {"i", "g", "h", "b"} + assert T2_in == {"g", "a"} + assert T1_tilde == set() + assert T2_tilde == set() + + def test_restoring(self): + m = {0: "x", 3: "c", 4: "d", 5: "e", 6: "f"} + m_rev = {"x": 0, "c": 3, "d": 4, "e": 5, "f": 6} + + T1_out = {2, 7, 9, 8} + T1_in = {1, 7} + T2_out = {"b", "g", "i", "h"} + T2_in = {"a", "g"} + T1_tilde = set() + T2_tilde = set() + + gparams = _GraphParameters(self.G1, self.G2, {}, {}, {}, {}, {}) + sparams = _StateParameters( + m, m_rev, T1_out, T1_in, T1_tilde, None, T2_out, T2_in, T2_tilde, None + ) + + # Remove a node from the mapping + m.pop(0) + m_rev.pop("x") + _restore_Tinout_Di(0, self.mapped[0], gparams, sparams) + + assert T1_out == {2, 7, 9, 8} + assert T1_in == {1, 7} + assert T2_out == {"b", "g", "i", "h"} + assert T2_in == {"a", "g"} + assert T1_tilde == {0} + assert T2_tilde == {"x"} + + # Remove a node from the mapping + m.pop(6) + m_rev.pop("f") + _restore_Tinout_Di(6, self.mapped[6], gparams, sparams) + + assert T1_out == {2, 9, 8, 7} + assert T1_in == {1} + assert T2_out == {"b", "i", "h", "g"} + assert T2_in == {"a"} + assert T1_tilde == {0, 6} + assert T2_tilde == {"x", "f"} + + # Remove a node from the mapping + m.pop(3) + m_rev.pop("c") + _restore_Tinout_Di(3, self.mapped[3], gparams, sparams) + + assert T1_out == {9, 8, 7} + assert T1_in == {3} + assert T2_out == {"i", "h", "g"} + assert T2_in == {"c"} + assert T1_tilde == {0, 6, 1, 2} + assert T2_tilde == {"x", "f", "a", "b"} + + # Remove a node from the mapping + m.pop(5) + m_rev.pop("e") + _restore_Tinout_Di(5, self.mapped[5], gparams, sparams) + + assert T1_out == {9, 5} + assert T1_in == {3} + assert T2_out == {"i", "e"} + assert T2_in == {"c"} + assert T1_tilde == {0, 6, 1, 2, 8, 7} + assert T2_tilde == {"x", "f", "a", "b", "h", "g"} + + # Remove a node from the mapping + m.pop(4) + m_rev.pop("d") + _restore_Tinout_Di(4, self.mapped[4], gparams, sparams) + + assert T1_out == set() + assert T1_in == set() + assert T2_out == set() + assert T2_in == set() + assert T1_tilde == set(self.G1.nodes()) + assert T2_tilde == set(self.G2.nodes()) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2userfunc.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2userfunc.py new file mode 100644 index 0000000000000000000000000000000000000000..66a434e05ceb7b42bb4e4893d26298001046386f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_vf2userfunc.py @@ -0,0 +1,200 @@ +""" + Tests for VF2 isomorphism algorithm for weighted graphs. +""" + +import math +from operator import eq + +import networkx as nx +import networkx.algorithms.isomorphism as iso + + +def test_simple(): + # 16 simple tests + w = "weight" + edges = [(0, 0, 1), (0, 0, 1.5), (0, 1, 2), (1, 0, 3)] + for g1 in [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]: + g1.add_weighted_edges_from(edges) + g2 = g1.subgraph(g1.nodes()) + if g1.is_multigraph(): + em = iso.numerical_multiedge_match("weight", 1) + else: + em = iso.numerical_edge_match("weight", 1) + assert nx.is_isomorphic(g1, g2, edge_match=em) + + for mod1, mod2 in [(False, True), (True, False), (True, True)]: + # mod1 tests a regular edge + # mod2 tests a selfloop + if g2.is_multigraph(): + if mod1: + data1 = {0: {"weight": 10}} + if mod2: + data2 = {0: {"weight": 1}, 1: {"weight": 2.5}} + else: + if mod1: + data1 = {"weight": 10} + if mod2: + data2 = {"weight": 2.5} + + g2 = g1.subgraph(g1.nodes()).copy() + if mod1: + if not g1.is_directed(): + g2._adj[1][0] = data1 + g2._adj[0][1] = data1 + else: + g2._succ[1][0] = data1 + g2._pred[0][1] = data1 + if mod2: + if not g1.is_directed(): + g2._adj[0][0] = data2 + else: + g2._succ[0][0] = data2 + g2._pred[0][0] = data2 + + assert not nx.is_isomorphic(g1, g2, edge_match=em) + + +def test_weightkey(): + g1 = nx.DiGraph() + g2 = nx.DiGraph() + + g1.add_edge("A", "B", weight=1) + g2.add_edge("C", "D", weight=0) + + assert nx.is_isomorphic(g1, g2) + em = iso.numerical_edge_match("nonexistent attribute", 1) + assert nx.is_isomorphic(g1, g2, edge_match=em) + em = iso.numerical_edge_match("weight", 1) + assert not nx.is_isomorphic(g1, g2, edge_match=em) + + g2 = nx.DiGraph() + g2.add_edge("C", "D") + assert nx.is_isomorphic(g1, g2, edge_match=em) + + +class TestNodeMatch_Graph: + def setup_method(self): + self.g1 = nx.Graph() + self.g2 = nx.Graph() + self.build() + + def build(self): + self.nm = iso.categorical_node_match("color", "") + self.em = iso.numerical_edge_match("weight", 1) + + self.g1.add_node("A", color="red") + self.g2.add_node("C", color="blue") + + self.g1.add_edge("A", "B", weight=1) + self.g2.add_edge("C", "D", weight=1) + + def test_noweight_nocolor(self): + assert nx.is_isomorphic(self.g1, self.g2) + + def test_color1(self): + assert not nx.is_isomorphic(self.g1, self.g2, node_match=self.nm) + + def test_color2(self): + self.g1.nodes["A"]["color"] = "blue" + assert nx.is_isomorphic(self.g1, self.g2, node_match=self.nm) + + def test_weight1(self): + assert nx.is_isomorphic(self.g1, self.g2, edge_match=self.em) + + def test_weight2(self): + self.g1.add_edge("A", "B", weight=2) + assert not nx.is_isomorphic(self.g1, self.g2, edge_match=self.em) + + def test_colorsandweights1(self): + iso = nx.is_isomorphic(self.g1, self.g2, node_match=self.nm, edge_match=self.em) + assert not iso + + def test_colorsandweights2(self): + self.g1.nodes["A"]["color"] = "blue" + iso = nx.is_isomorphic(self.g1, self.g2, node_match=self.nm, edge_match=self.em) + assert iso + + def test_colorsandweights3(self): + # make the weights disagree + self.g1.add_edge("A", "B", weight=2) + assert not nx.is_isomorphic( + self.g1, self.g2, node_match=self.nm, edge_match=self.em + ) + + +class TestEdgeMatch_MultiGraph: + def setup_method(self): + self.g1 = nx.MultiGraph() + self.g2 = nx.MultiGraph() + self.GM = iso.MultiGraphMatcher + self.build() + + def build(self): + g1 = self.g1 + g2 = self.g2 + + # We will assume integer weights only. + g1.add_edge("A", "B", color="green", weight=0, size=0.5) + g1.add_edge("A", "B", color="red", weight=1, size=0.35) + g1.add_edge("A", "B", color="red", weight=2, size=0.65) + + g2.add_edge("C", "D", color="green", weight=1, size=0.5) + g2.add_edge("C", "D", color="red", weight=0, size=0.45) + g2.add_edge("C", "D", color="red", weight=2, size=0.65) + + if g1.is_multigraph(): + self.em = iso.numerical_multiedge_match("weight", 1) + self.emc = iso.categorical_multiedge_match("color", "") + self.emcm = iso.categorical_multiedge_match(["color", "weight"], ["", 1]) + self.emg1 = iso.generic_multiedge_match("color", "red", eq) + self.emg2 = iso.generic_multiedge_match( + ["color", "weight", "size"], + ["red", 1, 0.5], + [eq, eq, math.isclose], + ) + else: + self.em = iso.numerical_edge_match("weight", 1) + self.emc = iso.categorical_edge_match("color", "") + self.emcm = iso.categorical_edge_match(["color", "weight"], ["", 1]) + self.emg1 = iso.generic_multiedge_match("color", "red", eq) + self.emg2 = iso.generic_edge_match( + ["color", "weight", "size"], + ["red", 1, 0.5], + [eq, eq, math.isclose], + ) + + def test_weights_only(self): + assert nx.is_isomorphic(self.g1, self.g2, edge_match=self.em) + + def test_colors_only(self): + gm = self.GM(self.g1, self.g2, edge_match=self.emc) + assert gm.is_isomorphic() + + def test_colorsandweights(self): + gm = self.GM(self.g1, self.g2, edge_match=self.emcm) + assert not gm.is_isomorphic() + + def test_generic1(self): + gm = self.GM(self.g1, self.g2, edge_match=self.emg1) + assert gm.is_isomorphic() + + def test_generic2(self): + gm = self.GM(self.g1, self.g2, edge_match=self.emg2) + assert not gm.is_isomorphic() + + +class TestEdgeMatch_DiGraph(TestNodeMatch_Graph): + def setup_method(self): + TestNodeMatch_Graph.setup_method(self) + self.g1 = nx.DiGraph() + self.g2 = nx.DiGraph() + self.build() + + +class TestEdgeMatch_MultiDiGraph(TestEdgeMatch_MultiGraph): + def setup_method(self): + TestEdgeMatch_MultiGraph.setup_method(self) + self.g1 = nx.MultiDiGraph() + self.g2 = nx.MultiDiGraph() + self.GM = iso.MultiDiGraphMatcher + self.build() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tree_isomorphism.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tree_isomorphism.py new file mode 100644 index 0000000000000000000000000000000000000000..6e935063336d7f1a84cff099fdedcf5f79fad558 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/tree_isomorphism.py @@ -0,0 +1,283 @@ +""" +An algorithm for finding if two undirected trees are isomorphic, +and if so returns an isomorphism between the two sets of nodes. + +This algorithm uses a routine to tell if two rooted trees (trees with a +specified root node) are isomorphic, which may be independently useful. + +This implements an algorithm from: +The Design and Analysis of Computer Algorithms +by Aho, Hopcroft, and Ullman +Addison-Wesley Publishing 1974 +Example 3.2 pp. 84-86. + +A more understandable version of this algorithm is described in: +Homework Assignment 5 +McGill University SOCS 308-250B, Winter 2002 +by Matthew Suderman +http://crypto.cs.mcgill.ca/~crepeau/CS250/2004/HW5+.pdf +""" + +import networkx as nx +from networkx.utils.decorators import not_implemented_for + +__all__ = ["rooted_tree_isomorphism", "tree_isomorphism"] + + +@nx._dispatch(graphs={"t1": 0, "t2": 2}) +def root_trees(t1, root1, t2, root2): + """Create a single digraph dT of free trees t1 and t2 + # with roots root1 and root2 respectively + # rename the nodes with consecutive integers + # so that all nodes get a unique name between both trees + + # our new "fake" root node is 0 + # t1 is numbers from 1 ... n + # t2 is numbered from n+1 to 2n + """ + + dT = nx.DiGraph() + + newroot1 = 1 # left root will be 1 + newroot2 = nx.number_of_nodes(t1) + 1 # right will be n+1 + + # may be overlap in node names here so need separate maps + # given the old name, what is the new + namemap1 = {root1: newroot1} + namemap2 = {root2: newroot2} + + # add an edge from our new root to root1 and root2 + dT.add_edge(0, namemap1[root1]) + dT.add_edge(0, namemap2[root2]) + + for i, (v1, v2) in enumerate(nx.bfs_edges(t1, root1)): + namemap1[v2] = i + namemap1[root1] + 1 + dT.add_edge(namemap1[v1], namemap1[v2]) + + for i, (v1, v2) in enumerate(nx.bfs_edges(t2, root2)): + namemap2[v2] = i + namemap2[root2] + 1 + dT.add_edge(namemap2[v1], namemap2[v2]) + + # now we really want the inverse of namemap1 and namemap2 + # giving the old name given the new + # since the values of namemap1 and namemap2 are unique + # there won't be collisions + namemap = {} + for old, new in namemap1.items(): + namemap[new] = old + for old, new in namemap2.items(): + namemap[new] = old + + return (dT, namemap, newroot1, newroot2) + + +# figure out the level of each node, with 0 at root +@nx._dispatch +def assign_levels(G, root): + level = {} + level[root] = 0 + for v1, v2 in nx.bfs_edges(G, root): + level[v2] = level[v1] + 1 + + return level + + +# now group the nodes at each level +def group_by_levels(levels): + L = {} + for n, lev in levels.items(): + if lev not in L: + L[lev] = [] + L[lev].append(n) + + return L + + +# now lets get the isomorphism by walking the ordered_children +def generate_isomorphism(v, w, M, ordered_children): + # make sure tree1 comes first + assert v < w + M.append((v, w)) + for i, (x, y) in enumerate(zip(ordered_children[v], ordered_children[w])): + generate_isomorphism(x, y, M, ordered_children) + + +@nx._dispatch(graphs={"t1": 0, "t2": 2}) +def rooted_tree_isomorphism(t1, root1, t2, root2): + """ + Given two rooted trees `t1` and `t2`, + with roots `root1` and `root2` respectively + this routine will determine if they are isomorphic. + + These trees may be either directed or undirected, + but if they are directed, all edges should flow from the root. + + It returns the isomorphism, a mapping of the nodes of `t1` onto the nodes + of `t2`, such that two trees are then identical. + + Note that two trees may have more than one isomorphism, and this + routine just returns one valid mapping. + + Parameters + ---------- + `t1` : NetworkX graph + One of the trees being compared + + `root1` : a node of `t1` which is the root of the tree + + `t2` : undirected NetworkX graph + The other tree being compared + + `root2` : a node of `t2` which is the root of the tree + + This is a subroutine used to implement `tree_isomorphism`, but will + be somewhat faster if you already have rooted trees. + + Returns + ------- + isomorphism : list + A list of pairs in which the left element is a node in `t1` + and the right element is a node in `t2`. The pairs are in + arbitrary order. If the nodes in one tree is mapped to the names in + the other, then trees will be identical. Note that an isomorphism + will not necessarily be unique. + + If `t1` and `t2` are not isomorphic, then it returns the empty list. + """ + + assert nx.is_tree(t1) + assert nx.is_tree(t2) + + # get the rooted tree formed by combining them + # with unique names + (dT, namemap, newroot1, newroot2) = root_trees(t1, root1, t2, root2) + + # compute the distance from the root, with 0 for our + levels = assign_levels(dT, 0) + + # height + h = max(levels.values()) + + # collect nodes into a dict by level + L = group_by_levels(levels) + + # each node has a label, initially set to 0 + label = {v: 0 for v in dT} + # and also ordered_labels and ordered_children + # which will store ordered tuples + ordered_labels = {v: () for v in dT} + ordered_children = {v: () for v in dT} + + # nothing to do on last level so start on h-1 + # also nothing to do for our fake level 0, so skip that + for i in range(h - 1, 0, -1): + # update the ordered_labels and ordered_children + # for any children + for v in L[i]: + # nothing to do if no children + if dT.out_degree(v) > 0: + # get all the pairs of labels and nodes of children + # and sort by labels + s = sorted((label[u], u) for u in dT.successors(v)) + + # invert to give a list of two tuples + # the sorted labels, and the corresponding children + ordered_labels[v], ordered_children[v] = list(zip(*s)) + + # now collect and sort the sorted ordered_labels + # for all nodes in L[i], carrying along the node + forlabel = sorted((ordered_labels[v], v) for v in L[i]) + + # now assign labels to these nodes, according to the sorted order + # starting from 0, where identical ordered_labels get the same label + current = 0 + for i, (ol, v) in enumerate(forlabel): + # advance to next label if not 0, and different from previous + if (i != 0) and (ol != forlabel[i - 1][0]): + current += 1 + label[v] = current + + # they are isomorphic if the labels of newroot1 and newroot2 are 0 + isomorphism = [] + if label[newroot1] == 0 and label[newroot2] == 0: + generate_isomorphism(newroot1, newroot2, isomorphism, ordered_children) + + # get the mapping back in terms of the old names + # return in sorted order for neatness + isomorphism = [(namemap[u], namemap[v]) for (u, v) in isomorphism] + + return isomorphism + + +@not_implemented_for("directed", "multigraph") +@nx._dispatch(graphs={"t1": 0, "t2": 1}) +def tree_isomorphism(t1, t2): + """ + Given two undirected (or free) trees `t1` and `t2`, + this routine will determine if they are isomorphic. + It returns the isomorphism, a mapping of the nodes of `t1` onto the nodes + of `t2`, such that two trees are then identical. + + Note that two trees may have more than one isomorphism, and this + routine just returns one valid mapping. + + Parameters + ---------- + t1 : undirected NetworkX graph + One of the trees being compared + + t2 : undirected NetworkX graph + The other tree being compared + + Returns + ------- + isomorphism : list + A list of pairs in which the left element is a node in `t1` + and the right element is a node in `t2`. The pairs are in + arbitrary order. If the nodes in one tree is mapped to the names in + the other, then trees will be identical. Note that an isomorphism + will not necessarily be unique. + + If `t1` and `t2` are not isomorphic, then it returns the empty list. + + Notes + ----- + This runs in O(n*log(n)) time for trees with n nodes. + """ + + assert nx.is_tree(t1) + assert nx.is_tree(t2) + + # To be isomorphic, t1 and t2 must have the same number of nodes. + if nx.number_of_nodes(t1) != nx.number_of_nodes(t2): + return [] + + # Another shortcut is that the sorted degree sequences need to be the same. + degree_sequence1 = sorted(d for (n, d) in t1.degree()) + degree_sequence2 = sorted(d for (n, d) in t2.degree()) + + if degree_sequence1 != degree_sequence2: + return [] + + # A tree can have either 1 or 2 centers. + # If the number doesn't match then t1 and t2 are not isomorphic. + center1 = nx.center(t1) + center2 = nx.center(t2) + + if len(center1) != len(center2): + return [] + + # If there is only 1 center in each, then use it. + if len(center1) == 1: + return rooted_tree_isomorphism(t1, center1[0], t2, center2[0]) + + # If there both have 2 centers, then try the first for t1 + # with the first for t2. + attempts = rooted_tree_isomorphism(t1, center1[0], t2, center2[0]) + + # If that worked we're done. + if len(attempts) > 0: + return attempts + + # Otherwise, try center1[0] with the center2[1], and see if that works + return rooted_tree_isomorphism(t1, center1[0], t2, center2[1]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2pp.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2pp.py new file mode 100644 index 0000000000000000000000000000000000000000..953204f669b76f9d86ef82849f7f39d0f9a11d88 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2pp.py @@ -0,0 +1,1068 @@ +""" +*************** +VF2++ Algorithm +*************** + +An implementation of the VF2++ algorithm [1]_ for Graph Isomorphism testing. + +The simplest interface to use this module is to call: + +`vf2pp_is_isomorphic`: to check whether two graphs are isomorphic. +`vf2pp_isomorphism`: to obtain the node mapping between two graphs, +in case they are isomorphic. +`vf2pp_all_isomorphisms`: to generate all possible mappings between two graphs, +if isomorphic. + +Introduction +------------ +The VF2++ algorithm, follows a similar logic to that of VF2, while also +introducing new easy-to-check cutting rules and determining the optimal access +order of nodes. It is also implemented in a non-recursive manner, which saves +both time and space, when compared to its previous counterpart. + +The optimal node ordering is obtained after taking into consideration both the +degree but also the label rarity of each node. +This way we place the nodes that are more likely to match, first in the order, +thus examining the most promising branches in the beginning. +The rules also consider node labels, making it easier to prune unfruitful +branches early in the process. + +Examples +-------- + +Suppose G1 and G2 are Isomorphic Graphs. Verification is as follows: + +Without node labels: + +>>> import networkx as nx +>>> G1 = nx.path_graph(4) +>>> G2 = nx.path_graph(4) +>>> nx.vf2pp_is_isomorphic(G1, G2, node_label=None) +True +>>> nx.vf2pp_isomorphism(G1, G2, node_label=None) +{1: 1, 2: 2, 0: 0, 3: 3} + +With node labels: + +>>> G1 = nx.path_graph(4) +>>> G2 = nx.path_graph(4) +>>> mapped = {1: 1, 2: 2, 3: 3, 0: 0} +>>> nx.set_node_attributes(G1, dict(zip(G1, ["blue", "red", "green", "yellow"])), "label") +>>> nx.set_node_attributes(G2, dict(zip([mapped[u] for u in G1], ["blue", "red", "green", "yellow"])), "label") +>>> nx.vf2pp_is_isomorphic(G1, G2, node_label="label") +True +>>> nx.vf2pp_isomorphism(G1, G2, node_label="label") +{1: 1, 2: 2, 0: 0, 3: 3} + +References +---------- +.. [1] Jüttner, Alpár & Madarasi, Péter. (2018). "VF2++—An improved subgraph + isomorphism algorithm". Discrete Applied Mathematics. 242. + https://doi.org/10.1016/j.dam.2018.02.018 + +""" +import collections + +import networkx as nx + +__all__ = ["vf2pp_isomorphism", "vf2pp_is_isomorphic", "vf2pp_all_isomorphisms"] + +_GraphParameters = collections.namedtuple( + "_GraphParameters", + [ + "G1", + "G2", + "G1_labels", + "G2_labels", + "nodes_of_G1Labels", + "nodes_of_G2Labels", + "G2_nodes_of_degree", + ], +) + +_StateParameters = collections.namedtuple( + "_StateParameters", + [ + "mapping", + "reverse_mapping", + "T1", + "T1_in", + "T1_tilde", + "T1_tilde_in", + "T2", + "T2_in", + "T2_tilde", + "T2_tilde_in", + ], +) + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"}) +def vf2pp_isomorphism(G1, G2, node_label=None, default_label=None): + """Return an isomorphic mapping between `G1` and `G2` if it exists. + + Parameters + ---------- + G1, G2 : NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism. + + node_label : str, optional + The name of the node attribute to be used when comparing nodes. + The default is `None`, meaning node attributes are not considered + in the comparison. Any node that doesn't have the `node_label` + attribute uses `default_label` instead. + + default_label : scalar + Default value to use when a node doesn't have an attribute + named `node_label`. Default is `None`. + + Returns + ------- + dict or None + Node mapping if the two graphs are isomorphic. None otherwise. + """ + try: + mapping = next(vf2pp_all_isomorphisms(G1, G2, node_label, default_label)) + return mapping + except StopIteration: + return None + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"}) +def vf2pp_is_isomorphic(G1, G2, node_label=None, default_label=None): + """Examines whether G1 and G2 are isomorphic. + + Parameters + ---------- + G1, G2 : NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism. + + node_label : str, optional + The name of the node attribute to be used when comparing nodes. + The default is `None`, meaning node attributes are not considered + in the comparison. Any node that doesn't have the `node_label` + attribute uses `default_label` instead. + + default_label : scalar + Default value to use when a node doesn't have an attribute + named `node_label`. Default is `None`. + + Returns + ------- + bool + True if the two graphs are isomorphic, False otherwise. + """ + if vf2pp_isomorphism(G1, G2, node_label, default_label) is not None: + return True + return False + + +@nx._dispatch(graphs={"G1": 0, "G2": 1}, node_attrs={"node_label": "default_label"}) +def vf2pp_all_isomorphisms(G1, G2, node_label=None, default_label=None): + """Yields all the possible mappings between G1 and G2. + + Parameters + ---------- + G1, G2 : NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism. + + node_label : str, optional + The name of the node attribute to be used when comparing nodes. + The default is `None`, meaning node attributes are not considered + in the comparison. Any node that doesn't have the `node_label` + attribute uses `default_label` instead. + + default_label : scalar + Default value to use when a node doesn't have an attribute + named `node_label`. Default is `None`. + + Yields + ------ + dict + Isomorphic mapping between the nodes in `G1` and `G2`. + """ + if G1.number_of_nodes() == 0 or G2.number_of_nodes() == 0: + return False + + # Create the degree dicts based on graph type + if G1.is_directed(): + G1_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G1.in_degree, G1.out_degree) + } + G2_degree = { + n: (in_degree, out_degree) + for (n, in_degree), (_, out_degree) in zip(G2.in_degree, G2.out_degree) + } + else: + G1_degree = dict(G1.degree) + G2_degree = dict(G2.degree) + + if not G1.is_directed(): + find_candidates = _find_candidates + restore_Tinout = _restore_Tinout + else: + find_candidates = _find_candidates_Di + restore_Tinout = _restore_Tinout_Di + + # Check that both graphs have the same number of nodes and degree sequence + if G1.order() != G2.order(): + return False + if sorted(G1_degree.values()) != sorted(G2_degree.values()): + return False + + # Initialize parameters and cache necessary information about degree and labels + graph_params, state_params = _initialize_parameters( + G1, G2, G2_degree, node_label, default_label + ) + + # Check if G1 and G2 have the same labels, and that number of nodes per label is equal between the two graphs + if not _precheck_label_properties(graph_params): + return False + + # Calculate the optimal node ordering + node_order = _matching_order(graph_params) + + # Initialize the stack + stack = [] + candidates = iter( + find_candidates(node_order[0], graph_params, state_params, G1_degree) + ) + stack.append((node_order[0], candidates)) + + mapping = state_params.mapping + reverse_mapping = state_params.reverse_mapping + + # Index of the node from the order, currently being examined + matching_node = 1 + + while stack: + current_node, candidate_nodes = stack[-1] + + try: + candidate = next(candidate_nodes) + except StopIteration: + # If no remaining candidates, return to a previous state, and follow another branch + stack.pop() + matching_node -= 1 + if stack: + # Pop the previously added u-v pair, and look for a different candidate _v for u + popped_node1, _ = stack[-1] + popped_node2 = mapping[popped_node1] + mapping.pop(popped_node1) + reverse_mapping.pop(popped_node2) + restore_Tinout(popped_node1, popped_node2, graph_params, state_params) + continue + + if _feasibility(current_node, candidate, graph_params, state_params): + # Terminate if mapping is extended to its full + if len(mapping) == G2.number_of_nodes() - 1: + cp_mapping = mapping.copy() + cp_mapping[current_node] = candidate + yield cp_mapping + continue + + # Feasibility rules pass, so extend the mapping and update the parameters + mapping[current_node] = candidate + reverse_mapping[candidate] = current_node + _update_Tinout(current_node, candidate, graph_params, state_params) + # Append the next node and its candidates to the stack + candidates = iter( + find_candidates( + node_order[matching_node], graph_params, state_params, G1_degree + ) + ) + stack.append((node_order[matching_node], candidates)) + matching_node += 1 + + +def _precheck_label_properties(graph_params): + G1, G2, G1_labels, G2_labels, nodes_of_G1Labels, nodes_of_G2Labels, _ = graph_params + if any( + label not in nodes_of_G1Labels or len(nodes_of_G1Labels[label]) != len(nodes) + for label, nodes in nodes_of_G2Labels.items() + ): + return False + return True + + +def _initialize_parameters(G1, G2, G2_degree, node_label=None, default_label=-1): + """Initializes all the necessary parameters for VF2++ + + Parameters + ---------- + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + Returns + ------- + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2 + G1_labels,G2_labels: dict + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_out, T2_out: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + """ + G1_labels = dict(G1.nodes(data=node_label, default=default_label)) + G2_labels = dict(G2.nodes(data=node_label, default=default_label)) + + graph_params = _GraphParameters( + G1, + G2, + G1_labels, + G2_labels, + nx.utils.groups(G1_labels), + nx.utils.groups(G2_labels), + nx.utils.groups(G2_degree), + ) + + T1, T1_in = set(), set() + T2, T2_in = set(), set() + if G1.is_directed(): + T1_tilde, T1_tilde_in = ( + set(G1.nodes()), + set(), + ) # todo: do we need Ti_tilde_in? What nodes does it have? + T2_tilde, T2_tilde_in = set(G2.nodes()), set() + else: + T1_tilde, T1_tilde_in = set(G1.nodes()), set() + T2_tilde, T2_tilde_in = set(G2.nodes()), set() + + state_params = _StateParameters( + {}, + {}, + T1, + T1_in, + T1_tilde, + T1_tilde_in, + T2, + T2_in, + T2_tilde, + T2_tilde_in, + ) + + return graph_params, state_params + + +def _matching_order(graph_params): + """The node ordering as introduced in VF2++. + + Notes + ----- + Taking into account the structure of the Graph and the node labeling, the nodes are placed in an order such that, + most of the unfruitful/infeasible branches of the search space can be pruned on high levels, significantly + decreasing the number of visited states. The premise is that, the algorithm will be able to recognize + inconsistencies early, proceeding to go deep into the search tree only if it's needed. + + Parameters + ---------- + graph_params: namedtuple + Contains: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism. + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively. + + Returns + ------- + node_order: list + The ordering of the nodes. + """ + G1, G2, G1_labels, _, _, nodes_of_G2Labels, _ = graph_params + if not G1 and not G2: + return {} + + if G1.is_directed(): + G1 = G1.to_undirected(as_view=True) + + V1_unordered = set(G1.nodes()) + label_rarity = {label: len(nodes) for label, nodes in nodes_of_G2Labels.items()} + used_degrees = {node: 0 for node in G1} + node_order = [] + + while V1_unordered: + max_rarity = min(label_rarity[G1_labels[x]] for x in V1_unordered) + rarest_nodes = [ + n for n in V1_unordered if label_rarity[G1_labels[n]] == max_rarity + ] + max_node = max(rarest_nodes, key=G1.degree) + + for dlevel_nodes in nx.bfs_layers(G1, max_node): + nodes_to_add = dlevel_nodes.copy() + while nodes_to_add: + max_used_degree = max(used_degrees[n] for n in nodes_to_add) + max_used_degree_nodes = [ + n for n in nodes_to_add if used_degrees[n] == max_used_degree + ] + max_degree = max(G1.degree[n] for n in max_used_degree_nodes) + max_degree_nodes = [ + n for n in max_used_degree_nodes if G1.degree[n] == max_degree + ] + next_node = min( + max_degree_nodes, key=lambda x: label_rarity[G1_labels[x]] + ) + + node_order.append(next_node) + for node in G1.neighbors(next_node): + used_degrees[node] += 1 + + nodes_to_add.remove(next_node) + label_rarity[G1_labels[next_node]] -= 1 + V1_unordered.discard(next_node) + + return node_order + + +def _find_candidates( + u, graph_params, state_params, G1_degree +): # todo: make the 4th argument the degree of u + """Given node u of G1, finds the candidates of u from G2. + + Parameters + ---------- + u: Graph node + The node from G1 for which to find the candidates from G2. + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_tilde, T2_tilde: set + Ti_tilde contains all the nodes from Gi, that are neither in the mapping nor in Ti + + Returns + ------- + candidates: set + The nodes from G2 which are candidates for u. + """ + G1, G2, G1_labels, _, _, nodes_of_G2Labels, G2_nodes_of_degree = graph_params + mapping, reverse_mapping, _, _, _, _, _, _, T2_tilde, _ = state_params + + covered_neighbors = [nbr for nbr in G1[u] if nbr in mapping] + if not covered_neighbors: + candidates = set(nodes_of_G2Labels[G1_labels[u]]) + candidates.intersection_update(G2_nodes_of_degree[G1_degree[u]]) + candidates.intersection_update(T2_tilde) + candidates.difference_update(reverse_mapping) + if G1.is_multigraph(): + candidates.difference_update( + { + node + for node in candidates + if G1.number_of_edges(u, u) != G2.number_of_edges(node, node) + } + ) + return candidates + + nbr1 = covered_neighbors[0] + common_nodes = set(G2[mapping[nbr1]]) + + for nbr1 in covered_neighbors[1:]: + common_nodes.intersection_update(G2[mapping[nbr1]]) + + common_nodes.difference_update(reverse_mapping) + common_nodes.intersection_update(G2_nodes_of_degree[G1_degree[u]]) + common_nodes.intersection_update(nodes_of_G2Labels[G1_labels[u]]) + if G1.is_multigraph(): + common_nodes.difference_update( + { + node + for node in common_nodes + if G1.number_of_edges(u, u) != G2.number_of_edges(node, node) + } + ) + return common_nodes + + +def _find_candidates_Di(u, graph_params, state_params, G1_degree): + G1, G2, G1_labels, _, _, nodes_of_G2Labels, G2_nodes_of_degree = graph_params + mapping, reverse_mapping, _, _, _, _, _, _, T2_tilde, _ = state_params + + covered_successors = [succ for succ in G1[u] if succ in mapping] + covered_predecessors = [pred for pred in G1.pred[u] if pred in mapping] + + if not (covered_successors or covered_predecessors): + candidates = set(nodes_of_G2Labels[G1_labels[u]]) + candidates.intersection_update(G2_nodes_of_degree[G1_degree[u]]) + candidates.intersection_update(T2_tilde) + candidates.difference_update(reverse_mapping) + if G1.is_multigraph(): + candidates.difference_update( + { + node + for node in candidates + if G1.number_of_edges(u, u) != G2.number_of_edges(node, node) + } + ) + return candidates + + if covered_successors: + succ1 = covered_successors[0] + common_nodes = set(G2.pred[mapping[succ1]]) + + for succ1 in covered_successors[1:]: + common_nodes.intersection_update(G2.pred[mapping[succ1]]) + else: + pred1 = covered_predecessors.pop() + common_nodes = set(G2[mapping[pred1]]) + + for pred1 in covered_predecessors: + common_nodes.intersection_update(G2[mapping[pred1]]) + + common_nodes.difference_update(reverse_mapping) + common_nodes.intersection_update(G2_nodes_of_degree[G1_degree[u]]) + common_nodes.intersection_update(nodes_of_G2Labels[G1_labels[u]]) + if G1.is_multigraph(): + common_nodes.difference_update( + { + node + for node in common_nodes + if G1.number_of_edges(u, u) != G2.number_of_edges(node, node) + } + ) + return common_nodes + + +def _feasibility(node1, node2, graph_params, state_params): + """Given a candidate pair of nodes u and v from G1 and G2 respectively, checks if it's feasible to extend the + mapping, i.e. if u and v can be matched. + + Notes + ----- + This function performs all the necessary checking by applying both consistency and cutting rules. + + Parameters + ---------- + node1, node2: Graph node + The candidate pair of nodes being checked for matching + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_out, T2_out: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + + Returns + ------- + True if all checks are successful, False otherwise. + """ + G1 = graph_params.G1 + + if _cut_PT(node1, node2, graph_params, state_params): + return False + + if G1.is_multigraph(): + if not _consistent_PT(node1, node2, graph_params, state_params): + return False + + return True + + +def _cut_PT(u, v, graph_params, state_params): + """Implements the cutting rules for the ISO problem. + + Parameters + ---------- + u, v: Graph node + The two candidate nodes being examined. + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_tilde, T2_tilde: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + + Returns + ------- + True if we should prune this branch, i.e. the node pair failed the cutting checks. False otherwise. + """ + G1, G2, G1_labels, G2_labels, _, _, _ = graph_params + ( + _, + _, + T1, + T1_in, + T1_tilde, + _, + T2, + T2_in, + T2_tilde, + _, + ) = state_params + + u_labels_predecessors, v_labels_predecessors = {}, {} + if G1.is_directed(): + u_labels_predecessors = nx.utils.groups( + {n1: G1_labels[n1] for n1 in G1.pred[u]} + ) + v_labels_predecessors = nx.utils.groups( + {n2: G2_labels[n2] for n2 in G2.pred[v]} + ) + + if set(u_labels_predecessors.keys()) != set(v_labels_predecessors.keys()): + return True + + u_labels_successors = nx.utils.groups({n1: G1_labels[n1] for n1 in G1[u]}) + v_labels_successors = nx.utils.groups({n2: G2_labels[n2] for n2 in G2[v]}) + + # if the neighbors of u, do not have the same labels as those of v, NOT feasible. + if set(u_labels_successors.keys()) != set(v_labels_successors.keys()): + return True + + for label, G1_nbh in u_labels_successors.items(): + G2_nbh = v_labels_successors[label] + + if G1.is_multigraph(): + # Check for every neighbor in the neighborhood, if u-nbr1 has same edges as v-nbr2 + u_nbrs_edges = sorted(G1.number_of_edges(u, x) for x in G1_nbh) + v_nbrs_edges = sorted(G2.number_of_edges(v, x) for x in G2_nbh) + if any( + u_nbr_edges != v_nbr_edges + for u_nbr_edges, v_nbr_edges in zip(u_nbrs_edges, v_nbrs_edges) + ): + return True + + if len(T1.intersection(G1_nbh)) != len(T2.intersection(G2_nbh)): + return True + if len(T1_tilde.intersection(G1_nbh)) != len(T2_tilde.intersection(G2_nbh)): + return True + if G1.is_directed() and len(T1_in.intersection(G1_nbh)) != len( + T2_in.intersection(G2_nbh) + ): + return True + + if not G1.is_directed(): + return False + + for label, G1_pred in u_labels_predecessors.items(): + G2_pred = v_labels_predecessors[label] + + if G1.is_multigraph(): + # Check for every neighbor in the neighborhood, if u-nbr1 has same edges as v-nbr2 + u_pred_edges = sorted(G1.number_of_edges(u, x) for x in G1_pred) + v_pred_edges = sorted(G2.number_of_edges(v, x) for x in G2_pred) + if any( + u_nbr_edges != v_nbr_edges + for u_nbr_edges, v_nbr_edges in zip(u_pred_edges, v_pred_edges) + ): + return True + + if len(T1.intersection(G1_pred)) != len(T2.intersection(G2_pred)): + return True + if len(T1_tilde.intersection(G1_pred)) != len(T2_tilde.intersection(G2_pred)): + return True + if len(T1_in.intersection(G1_pred)) != len(T2_in.intersection(G2_pred)): + return True + + return False + + +def _consistent_PT(u, v, graph_params, state_params): + """Checks the consistency of extending the mapping using the current node pair. + + Parameters + ---------- + u, v: Graph node + The two candidate nodes being examined. + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_out, T2_out: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + + Returns + ------- + True if the pair passes all the consistency checks successfully. False otherwise. + """ + G1, G2 = graph_params.G1, graph_params.G2 + mapping, reverse_mapping = state_params.mapping, state_params.reverse_mapping + + for neighbor in G1[u]: + if neighbor in mapping: + if G1.number_of_edges(u, neighbor) != G2.number_of_edges( + v, mapping[neighbor] + ): + return False + + for neighbor in G2[v]: + if neighbor in reverse_mapping: + if G1.number_of_edges(u, reverse_mapping[neighbor]) != G2.number_of_edges( + v, neighbor + ): + return False + + if not G1.is_directed(): + return True + + for predecessor in G1.pred[u]: + if predecessor in mapping: + if G1.number_of_edges(predecessor, u) != G2.number_of_edges( + mapping[predecessor], v + ): + return False + + for predecessor in G2.pred[v]: + if predecessor in reverse_mapping: + if G1.number_of_edges( + reverse_mapping[predecessor], u + ) != G2.number_of_edges(predecessor, v): + return False + + return True + + +def _update_Tinout(new_node1, new_node2, graph_params, state_params): + """Updates the Ti/Ti_out (i=1,2) when a new node pair u-v is added to the mapping. + + Notes + ----- + This function should be called right after the feasibility checks are passed, and node1 is mapped to node2. The + purpose of this function is to avoid brute force computing of Ti/Ti_out by iterating over all nodes of the graph + and checking which nodes satisfy the necessary conditions. Instead, in every step of the algorithm we focus + exclusively on the two nodes that are being added to the mapping, incrementally updating Ti/Ti_out. + + Parameters + ---------- + new_node1, new_node2: Graph node + The two new nodes, added to the mapping. + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_tilde, T2_tilde: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + """ + G1, G2, _, _, _, _, _ = graph_params + ( + mapping, + reverse_mapping, + T1, + T1_in, + T1_tilde, + T1_tilde_in, + T2, + T2_in, + T2_tilde, + T2_tilde_in, + ) = state_params + + uncovered_successors_G1 = {succ for succ in G1[new_node1] if succ not in mapping} + uncovered_successors_G2 = { + succ for succ in G2[new_node2] if succ not in reverse_mapping + } + + # Add the uncovered neighbors of node1 and node2 in T1 and T2 respectively + T1.update(uncovered_successors_G1) + T2.update(uncovered_successors_G2) + T1.discard(new_node1) + T2.discard(new_node2) + + T1_tilde.difference_update(uncovered_successors_G1) + T2_tilde.difference_update(uncovered_successors_G2) + T1_tilde.discard(new_node1) + T2_tilde.discard(new_node2) + + if not G1.is_directed(): + return + + uncovered_predecessors_G1 = { + pred for pred in G1.pred[new_node1] if pred not in mapping + } + uncovered_predecessors_G2 = { + pred for pred in G2.pred[new_node2] if pred not in reverse_mapping + } + + T1_in.update(uncovered_predecessors_G1) + T2_in.update(uncovered_predecessors_G2) + T1_in.discard(new_node1) + T2_in.discard(new_node2) + + T1_tilde.difference_update(uncovered_predecessors_G1) + T2_tilde.difference_update(uncovered_predecessors_G2) + T1_tilde.discard(new_node1) + T2_tilde.discard(new_node2) + + +def _restore_Tinout(popped_node1, popped_node2, graph_params, state_params): + """Restores the previous version of Ti/Ti_out when a node pair is deleted from the mapping. + + Parameters + ---------- + popped_node1, popped_node2: Graph node + The two nodes deleted from the mapping. + + graph_params: namedtuple + Contains all the Graph-related parameters: + + G1,G2: NetworkX Graph or MultiGraph instances. + The two graphs to check for isomorphism or monomorphism + + G1_labels,G2_labels: dict + The label of every node in G1 and G2 respectively + + state_params: namedtuple + Contains all the State-related parameters: + + mapping: dict + The mapping as extended so far. Maps nodes of G1 to nodes of G2 + + reverse_mapping: dict + The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed + + T1, T2: set + Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are + neighbors of nodes that are. + + T1_tilde, T2_tilde: set + Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti + """ + # If the node we want to remove from the mapping, has at least one covered neighbor, add it to T1. + G1, G2, _, _, _, _, _ = graph_params + ( + mapping, + reverse_mapping, + T1, + T1_in, + T1_tilde, + T1_tilde_in, + T2, + T2_in, + T2_tilde, + T2_tilde_in, + ) = state_params + + is_added = False + for neighbor in G1[popped_node1]: + if neighbor in mapping: + # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1 + is_added = True + T1.add(popped_node1) + else: + # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1 + if any(nbr in mapping for nbr in G1[neighbor]): + continue + T1.discard(neighbor) + T1_tilde.add(neighbor) + + # Case where the node is not present in neither the mapping nor T1. By definition, it should belong to T1_tilde + if not is_added: + T1_tilde.add(popped_node1) + + is_added = False + for neighbor in G2[popped_node2]: + if neighbor in reverse_mapping: + is_added = True + T2.add(popped_node2) + else: + if any(nbr in reverse_mapping for nbr in G2[neighbor]): + continue + T2.discard(neighbor) + T2_tilde.add(neighbor) + + if not is_added: + T2_tilde.add(popped_node2) + + +def _restore_Tinout_Di(popped_node1, popped_node2, graph_params, state_params): + # If the node we want to remove from the mapping, has at least one covered neighbor, add it to T1. + G1, G2, _, _, _, _, _ = graph_params + ( + mapping, + reverse_mapping, + T1, + T1_in, + T1_tilde, + T1_tilde_in, + T2, + T2_in, + T2_tilde, + T2_tilde_in, + ) = state_params + + is_added = False + for successor in G1[popped_node1]: + if successor in mapping: + # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1 + is_added = True + T1_in.add(popped_node1) + else: + # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1 + if not any(pred in mapping for pred in G1.pred[successor]): + T1.discard(successor) + + if not any(succ in mapping for succ in G1[successor]): + T1_in.discard(successor) + + if successor not in T1: + if successor not in T1_in: + T1_tilde.add(successor) + + for predecessor in G1.pred[popped_node1]: + if predecessor in mapping: + # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1 + is_added = True + T1.add(popped_node1) + else: + # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1 + if not any(pred in mapping for pred in G1.pred[predecessor]): + T1.discard(predecessor) + + if not any(succ in mapping for succ in G1[predecessor]): + T1_in.discard(predecessor) + + if not (predecessor in T1 or predecessor in T1_in): + T1_tilde.add(predecessor) + + # Case where the node is not present in neither the mapping nor T1. By definition it should belong to T1_tilde + if not is_added: + T1_tilde.add(popped_node1) + + is_added = False + for successor in G2[popped_node2]: + if successor in reverse_mapping: + is_added = True + T2_in.add(popped_node2) + else: + if not any(pred in reverse_mapping for pred in G2.pred[successor]): + T2.discard(successor) + + if not any(succ in reverse_mapping for succ in G2[successor]): + T2_in.discard(successor) + + if successor not in T2: + if successor not in T2_in: + T2_tilde.add(successor) + + for predecessor in G2.pred[popped_node2]: + if predecessor in reverse_mapping: + # if a neighbor of the excluded node1 is in the mapping, keep node1 in T1 + is_added = True + T2.add(popped_node2) + else: + # check if its neighbor has another connection with a covered node. If not, only then exclude it from T1 + if not any(pred in reverse_mapping for pred in G2.pred[predecessor]): + T2.discard(predecessor) + + if not any(succ in reverse_mapping for succ in G2[predecessor]): + T2_in.discard(predecessor) + + if not (predecessor in T2 or predecessor in T2_in): + T2_tilde.add(predecessor) + + if not is_added: + T2_tilde.add(popped_node2) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2userfunc.py b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2userfunc.py new file mode 100644 index 0000000000000000000000000000000000000000..9484edc042ac127451b7141f9da659e3e429b679 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/isomorphism/vf2userfunc.py @@ -0,0 +1,192 @@ +""" + Module to simplify the specification of user-defined equality functions for + node and edge attributes during isomorphism checks. + + During the construction of an isomorphism, the algorithm considers two + candidate nodes n1 in G1 and n2 in G2. The graphs G1 and G2 are then + compared with respect to properties involving n1 and n2, and if the outcome + is good, then the candidate nodes are considered isomorphic. NetworkX + provides a simple mechanism for users to extend the comparisons to include + node and edge attributes. + + Node attributes are handled by the node_match keyword. When considering + n1 and n2, the algorithm passes their node attribute dictionaries to + node_match, and if it returns False, then n1 and n2 cannot be + considered to be isomorphic. + + Edge attributes are handled by the edge_match keyword. When considering + n1 and n2, the algorithm must verify that outgoing edges from n1 are + commensurate with the outgoing edges for n2. If the graph is directed, + then a similar check is also performed for incoming edges. + + Focusing only on outgoing edges, we consider pairs of nodes (n1, v1) from + G1 and (n2, v2) from G2. For graphs and digraphs, there is only one edge + between (n1, v1) and only one edge between (n2, v2). Those edge attribute + dictionaries are passed to edge_match, and if it returns False, then + n1 and n2 cannot be considered isomorphic. For multigraphs and + multidigraphs, there can be multiple edges between (n1, v1) and also + multiple edges between (n2, v2). Now, there must exist an isomorphism + from "all the edges between (n1, v1)" to "all the edges between (n2, v2)". + So, all of the edge attribute dictionaries are passed to edge_match, and + it must determine if there is an isomorphism between the two sets of edges. +""" + +from . import isomorphvf2 as vf2 + +__all__ = ["GraphMatcher", "DiGraphMatcher", "MultiGraphMatcher", "MultiDiGraphMatcher"] + + +def _semantic_feasibility(self, G1_node, G2_node): + """Returns True if mapping G1_node to G2_node is semantically feasible.""" + # Make sure the nodes match + if self.node_match is not None: + nm = self.node_match(self.G1.nodes[G1_node], self.G2.nodes[G2_node]) + if not nm: + return False + + # Make sure the edges match + if self.edge_match is not None: + # Cached lookups + G1nbrs = self.G1_adj[G1_node] + G2nbrs = self.G2_adj[G2_node] + core_1 = self.core_1 + edge_match = self.edge_match + + for neighbor in G1nbrs: + # G1_node is not in core_1, so we must handle R_self separately + if neighbor == G1_node: + if G2_node in G2nbrs and not edge_match( + G1nbrs[G1_node], G2nbrs[G2_node] + ): + return False + elif neighbor in core_1: + G2_nbr = core_1[neighbor] + if G2_nbr in G2nbrs and not edge_match( + G1nbrs[neighbor], G2nbrs[G2_nbr] + ): + return False + # syntactic check has already verified that neighbors are symmetric + + return True + + +class GraphMatcher(vf2.GraphMatcher): + """VF2 isomorphism checker for undirected graphs.""" + + def __init__(self, G1, G2, node_match=None, edge_match=None): + """Initialize graph matcher. + + Parameters + ---------- + G1, G2: graph + The graphs to be tested. + + node_match: callable + A function that returns True iff node n1 in G1 and n2 in G2 + should be considered equal during the isomorphism test. The + function will be called like:: + + node_match(G1.nodes[n1], G2.nodes[n2]) + + That is, the function will receive the node attribute dictionaries + of the nodes under consideration. If None, then no attributes are + considered when testing for an isomorphism. + + edge_match: callable + A function that returns True iff the edge attribute dictionary for + the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be + considered equal during the isomorphism test. The function will be + called like:: + + edge_match(G1[u1][v1], G2[u2][v2]) + + That is, the function will receive the edge attribute dictionaries + of the edges under consideration. If None, then no attributes are + considered when testing for an isomorphism. + + """ + vf2.GraphMatcher.__init__(self, G1, G2) + + self.node_match = node_match + self.edge_match = edge_match + + # These will be modified during checks to minimize code repeat. + self.G1_adj = self.G1.adj + self.G2_adj = self.G2.adj + + semantic_feasibility = _semantic_feasibility + + +class DiGraphMatcher(vf2.DiGraphMatcher): + """VF2 isomorphism checker for directed graphs.""" + + def __init__(self, G1, G2, node_match=None, edge_match=None): + """Initialize graph matcher. + + Parameters + ---------- + G1, G2 : graph + The graphs to be tested. + + node_match : callable + A function that returns True iff node n1 in G1 and n2 in G2 + should be considered equal during the isomorphism test. The + function will be called like:: + + node_match(G1.nodes[n1], G2.nodes[n2]) + + That is, the function will receive the node attribute dictionaries + of the nodes under consideration. If None, then no attributes are + considered when testing for an isomorphism. + + edge_match : callable + A function that returns True iff the edge attribute dictionary for + the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be + considered equal during the isomorphism test. The function will be + called like:: + + edge_match(G1[u1][v1], G2[u2][v2]) + + That is, the function will receive the edge attribute dictionaries + of the edges under consideration. If None, then no attributes are + considered when testing for an isomorphism. + + """ + vf2.DiGraphMatcher.__init__(self, G1, G2) + + self.node_match = node_match + self.edge_match = edge_match + + # These will be modified during checks to minimize code repeat. + self.G1_adj = self.G1.adj + self.G2_adj = self.G2.adj + + def semantic_feasibility(self, G1_node, G2_node): + """Returns True if mapping G1_node to G2_node is semantically feasible.""" + + # Test node_match and also test edge_match on successors + feasible = _semantic_feasibility(self, G1_node, G2_node) + if not feasible: + return False + + # Test edge_match on predecessors + self.G1_adj = self.G1.pred + self.G2_adj = self.G2.pred + feasible = _semantic_feasibility(self, G1_node, G2_node) + self.G1_adj = self.G1.adj + self.G2_adj = self.G2.adj + + return feasible + + +# The "semantics" of edge_match are different for multi(di)graphs, but +# the implementation is the same. So, technically we do not need to +# provide "multi" versions, but we do so to match NetworkX's base classes. + + +class MultiGraphMatcher(GraphMatcher): + """VF2 isomorphism checker for undirected multigraphs.""" + + +class MultiDiGraphMatcher(DiGraphMatcher): + """VF2 isomorphism checker for directed multigraphs.""" diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6009f000814753ab436278e2d2cc38e961e80f3f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__init__.py @@ -0,0 +1,2 @@ +from networkx.algorithms.link_analysis.hits_alg import * +from networkx.algorithms.link_analysis.pagerank_alg import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e527687b5a756df1a5d22c5d93ddae4331f7083 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/hits_alg.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/hits_alg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..834a982d9d92a09dee750bd3f57363238cbf1fe2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/hits_alg.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/pagerank_alg.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/pagerank_alg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9302bf4583ce5f3411458b850aaf12520bdaf98b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/__pycache__/pagerank_alg.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/hits_alg.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/hits_alg.py new file mode 100644 index 0000000000000000000000000000000000000000..6d557f522143023fc4130148d518fddfab64a302 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/hits_alg.py @@ -0,0 +1,334 @@ +"""Hubs and authorities analysis of graph structure. +""" +import networkx as nx + +__all__ = ["hits"] + + +@nx._dispatch +def hits(G, max_iter=100, tol=1.0e-8, nstart=None, normalized=True): + """Returns HITS hubs and authorities values for nodes. + + The HITS algorithm computes two numbers for a node. + Authorities estimates the node value based on the incoming links. + Hubs estimates the node value based on outgoing links. + + Parameters + ---------- + G : graph + A NetworkX graph + + max_iter : integer, optional + Maximum number of iterations in power method. + + tol : float, optional + Error tolerance used to check convergence in power method iteration. + + nstart : dictionary, optional + Starting value of each node for power method iteration. + + normalized : bool (default=True) + Normalize results by the sum of all of the values. + + Returns + ------- + (hubs,authorities) : two-tuple of dictionaries + Two dictionaries keyed by node containing the hub and authority + values. + + Raises + ------ + PowerIterationFailedConvergence + If the algorithm fails to converge to the specified tolerance + within the specified number of iterations of the power iteration + method. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> h, a = nx.hits(G) + + Notes + ----- + The eigenvector calculation is done by the power iteration method + and has no guarantee of convergence. The iteration will stop + after max_iter iterations or an error tolerance of + number_of_nodes(G)*tol has been reached. + + The HITS algorithm was designed for directed graphs but this + algorithm does not check if the input graph is directed and will + execute on undirected graphs. + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Jon Kleinberg, + Authoritative sources in a hyperlinked environment + Journal of the ACM 46 (5): 604-32, 1999. + doi:10.1145/324133.324140. + http://www.cs.cornell.edu/home/kleinber/auth.pdf. + """ + import numpy as np + import scipy as sp + + if len(G) == 0: + return {}, {} + A = nx.adjacency_matrix(G, nodelist=list(G), dtype=float) + + if nstart is None: + _, _, vt = sp.sparse.linalg.svds(A, k=1, maxiter=max_iter, tol=tol) + else: + nstart = np.array(list(nstart.values())) + _, _, vt = sp.sparse.linalg.svds(A, k=1, v0=nstart, maxiter=max_iter, tol=tol) + + a = vt.flatten().real + h = A @ a + if normalized: + h /= h.sum() + a /= a.sum() + hubs = dict(zip(G, map(float, h))) + authorities = dict(zip(G, map(float, a))) + return hubs, authorities + + +def _hits_python(G, max_iter=100, tol=1.0e-8, nstart=None, normalized=True): + if isinstance(G, (nx.MultiGraph, nx.MultiDiGraph)): + raise Exception("hits() not defined for graphs with multiedges.") + if len(G) == 0: + return {}, {} + # choose fixed starting vector if not given + if nstart is None: + h = dict.fromkeys(G, 1.0 / G.number_of_nodes()) + else: + h = nstart + # normalize starting vector + s = 1.0 / sum(h.values()) + for k in h: + h[k] *= s + for _ in range(max_iter): # power iteration: make up to max_iter iterations + hlast = h + h = dict.fromkeys(hlast.keys(), 0) + a = dict.fromkeys(hlast.keys(), 0) + # this "matrix multiply" looks odd because it is + # doing a left multiply a^T=hlast^T*G + for n in h: + for nbr in G[n]: + a[nbr] += hlast[n] * G[n][nbr].get("weight", 1) + # now multiply h=Ga + for n in h: + for nbr in G[n]: + h[n] += a[nbr] * G[n][nbr].get("weight", 1) + # normalize vector + s = 1.0 / max(h.values()) + for n in h: + h[n] *= s + # normalize vector + s = 1.0 / max(a.values()) + for n in a: + a[n] *= s + # check convergence, l1 norm + err = sum(abs(h[n] - hlast[n]) for n in h) + if err < tol: + break + else: + raise nx.PowerIterationFailedConvergence(max_iter) + if normalized: + s = 1.0 / sum(a.values()) + for n in a: + a[n] *= s + s = 1.0 / sum(h.values()) + for n in h: + h[n] *= s + return h, a + + +def _hits_numpy(G, normalized=True): + """Returns HITS hubs and authorities values for nodes. + + The HITS algorithm computes two numbers for a node. + Authorities estimates the node value based on the incoming links. + Hubs estimates the node value based on outgoing links. + + Parameters + ---------- + G : graph + A NetworkX graph + + normalized : bool (default=True) + Normalize results by the sum of all of the values. + + Returns + ------- + (hubs,authorities) : two-tuple of dictionaries + Two dictionaries keyed by node containing the hub and authority + values. + + Examples + -------- + >>> G = nx.path_graph(4) + + The `hubs` and `authorities` are given by the eigenvectors corresponding to the + maximum eigenvalues of the hubs_matrix and the authority_matrix, respectively. + + The ``hubs`` and ``authority`` matrices are computed from the adjacency + matrix: + + >>> adj_ary = nx.to_numpy_array(G) + >>> hubs_matrix = adj_ary @ adj_ary.T + >>> authority_matrix = adj_ary.T @ adj_ary + + `_hits_numpy` maps the eigenvector corresponding to the maximum eigenvalue + of the respective matrices to the nodes in `G`: + + >>> from networkx.algorithms.link_analysis.hits_alg import _hits_numpy + >>> hubs, authority = _hits_numpy(G) + + Notes + ----- + The eigenvector calculation uses NumPy's interface to LAPACK. + + The HITS algorithm was designed for directed graphs but this + algorithm does not check if the input graph is directed and will + execute on undirected graphs. + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Jon Kleinberg, + Authoritative sources in a hyperlinked environment + Journal of the ACM 46 (5): 604-32, 1999. + doi:10.1145/324133.324140. + http://www.cs.cornell.edu/home/kleinber/auth.pdf. + """ + import numpy as np + + if len(G) == 0: + return {}, {} + adj_ary = nx.to_numpy_array(G) + # Hub matrix + H = adj_ary @ adj_ary.T + e, ev = np.linalg.eig(H) + h = ev[:, np.argmax(e)] # eigenvector corresponding to the maximum eigenvalue + # Authority matrix + A = adj_ary.T @ adj_ary + e, ev = np.linalg.eig(A) + a = ev[:, np.argmax(e)] # eigenvector corresponding to the maximum eigenvalue + if normalized: + h /= h.sum() + a /= a.sum() + else: + h /= h.max() + a /= a.max() + hubs = dict(zip(G, map(float, h))) + authorities = dict(zip(G, map(float, a))) + return hubs, authorities + + +def _hits_scipy(G, max_iter=100, tol=1.0e-6, nstart=None, normalized=True): + """Returns HITS hubs and authorities values for nodes. + + + The HITS algorithm computes two numbers for a node. + Authorities estimates the node value based on the incoming links. + Hubs estimates the node value based on outgoing links. + + Parameters + ---------- + G : graph + A NetworkX graph + + max_iter : integer, optional + Maximum number of iterations in power method. + + tol : float, optional + Error tolerance used to check convergence in power method iteration. + + nstart : dictionary, optional + Starting value of each node for power method iteration. + + normalized : bool (default=True) + Normalize results by the sum of all of the values. + + Returns + ------- + (hubs,authorities) : two-tuple of dictionaries + Two dictionaries keyed by node containing the hub and authority + values. + + Examples + -------- + >>> from networkx.algorithms.link_analysis.hits_alg import _hits_scipy + >>> G = nx.path_graph(4) + >>> h, a = _hits_scipy(G) + + Notes + ----- + This implementation uses SciPy sparse matrices. + + The eigenvector calculation is done by the power iteration method + and has no guarantee of convergence. The iteration will stop + after max_iter iterations or an error tolerance of + number_of_nodes(G)*tol has been reached. + + The HITS algorithm was designed for directed graphs but this + algorithm does not check if the input graph is directed and will + execute on undirected graphs. + + Raises + ------ + PowerIterationFailedConvergence + If the algorithm fails to converge to the specified tolerance + within the specified number of iterations of the power iteration + method. + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Jon Kleinberg, + Authoritative sources in a hyperlinked environment + Journal of the ACM 46 (5): 604-632, 1999. + doi:10.1145/324133.324140. + http://www.cs.cornell.edu/home/kleinber/auth.pdf. + """ + import numpy as np + + if len(G) == 0: + return {}, {} + A = nx.to_scipy_sparse_array(G, nodelist=list(G)) + (n, _) = A.shape # should be square + ATA = A.T @ A # authority matrix + # choose fixed starting vector if not given + if nstart is None: + x = np.ones((n, 1)) / n + else: + x = np.array([nstart.get(n, 0) for n in list(G)], dtype=float) + x /= x.sum() + + # power iteration on authority matrix + i = 0 + while True: + xlast = x + x = ATA @ x + x /= x.max() + # check convergence, l1 norm + err = np.absolute(x - xlast).sum() + if err < tol: + break + if i > max_iter: + raise nx.PowerIterationFailedConvergence(max_iter) + i += 1 + + a = x.flatten() + h = A @ a + if normalized: + h /= h.sum() + a /= a.sum() + hubs = dict(zip(G, map(float, h))) + authorities = dict(zip(G, map(float, a))) + return hubs, authorities diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/pagerank_alg.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/pagerank_alg.py new file mode 100644 index 0000000000000000000000000000000000000000..371dd60edd9113ffee7224b9a42965f8c7c57bbd --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/pagerank_alg.py @@ -0,0 +1,499 @@ +"""PageRank analysis of graph structure. """ +from warnings import warn + +import networkx as nx + +__all__ = ["pagerank", "google_matrix"] + + +@nx._dispatch(edge_attrs="weight") +def pagerank( + G, + alpha=0.85, + personalization=None, + max_iter=100, + tol=1.0e-6, + nstart=None, + weight="weight", + dangling=None, +): + """Returns the PageRank of the nodes in the graph. + + PageRank computes a ranking of the nodes in the graph G based on + the structure of the incoming links. It was originally designed as + an algorithm to rank web pages. + + Parameters + ---------- + G : graph + A NetworkX graph. Undirected graphs will be converted to a directed + graph with two directed edges for each undirected edge. + + alpha : float, optional + Damping parameter for PageRank, default=0.85. + + personalization: dict, optional + The "personalization vector" consisting of a dictionary with a + key some subset of graph nodes and personalization value each of those. + At least one personalization value must be non-zero. + If not specified, a nodes personalization value will be zero. + By default, a uniform distribution is used. + + max_iter : integer, optional + Maximum number of iterations in power method eigenvalue solver. + + tol : float, optional + Error tolerance used to check convergence in power method solver. + The iteration will stop after a tolerance of ``len(G) * tol`` is reached. + + nstart : dictionary, optional + Starting value of PageRank iteration for each node. + + weight : key, optional + Edge data key to use as weight. If None weights are set to 1. + + dangling: dict, optional + The outedges to be assigned to any "dangling" nodes, i.e., nodes without + any outedges. The dict key is the node the outedge points to and the dict + value is the weight of that outedge. By default, dangling nodes are given + outedges according to the personalization vector (uniform if not + specified). This must be selected to result in an irreducible transition + matrix (see notes under google_matrix). It may be common to have the + dangling dict to be the same as the personalization dict. + + + Returns + ------- + pagerank : dictionary + Dictionary of nodes with PageRank as value + + Examples + -------- + >>> G = nx.DiGraph(nx.path_graph(4)) + >>> pr = nx.pagerank(G, alpha=0.9) + + Notes + ----- + The eigenvector calculation is done by the power iteration method + and has no guarantee of convergence. The iteration will stop after + an error tolerance of ``len(G) * tol`` has been reached. If the + number of iterations exceed `max_iter`, a + :exc:`networkx.exception.PowerIterationFailedConvergence` exception + is raised. + + The PageRank algorithm was designed for directed graphs but this + algorithm does not check if the input graph is directed and will + execute on undirected graphs by converting each edge in the + directed graph to two edges. + + See Also + -------- + google_matrix + + Raises + ------ + PowerIterationFailedConvergence + If the algorithm fails to converge to the specified tolerance + within the specified number of iterations of the power iteration + method. + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, + The PageRank citation ranking: Bringing order to the Web. 1999 + http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf + + """ + return _pagerank_scipy( + G, alpha, personalization, max_iter, tol, nstart, weight, dangling + ) + + +def _pagerank_python( + G, + alpha=0.85, + personalization=None, + max_iter=100, + tol=1.0e-6, + nstart=None, + weight="weight", + dangling=None, +): + if len(G) == 0: + return {} + + D = G.to_directed() + + # Create a copy in (right) stochastic form + W = nx.stochastic_graph(D, weight=weight) + N = W.number_of_nodes() + + # Choose fixed starting vector if not given + if nstart is None: + x = dict.fromkeys(W, 1.0 / N) + else: + # Normalized nstart vector + s = sum(nstart.values()) + x = {k: v / s for k, v in nstart.items()} + + if personalization is None: + # Assign uniform personalization vector if not given + p = dict.fromkeys(W, 1.0 / N) + else: + s = sum(personalization.values()) + p = {k: v / s for k, v in personalization.items()} + + if dangling is None: + # Use personalization vector if dangling vector not specified + dangling_weights = p + else: + s = sum(dangling.values()) + dangling_weights = {k: v / s for k, v in dangling.items()} + dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0] + + # power iteration: make up to max_iter iterations + for _ in range(max_iter): + xlast = x + x = dict.fromkeys(xlast.keys(), 0) + danglesum = alpha * sum(xlast[n] for n in dangling_nodes) + for n in x: + # this matrix multiply looks odd because it is + # doing a left multiply x^T=xlast^T*W + for _, nbr, wt in W.edges(n, data=weight): + x[nbr] += alpha * xlast[n] * wt + x[n] += danglesum * dangling_weights.get(n, 0) + (1.0 - alpha) * p.get(n, 0) + # check convergence, l1 norm + err = sum(abs(x[n] - xlast[n]) for n in x) + if err < N * tol: + return x + raise nx.PowerIterationFailedConvergence(max_iter) + + +@nx._dispatch(edge_attrs="weight") +def google_matrix( + G, alpha=0.85, personalization=None, nodelist=None, weight="weight", dangling=None +): + """Returns the Google matrix of the graph. + + Parameters + ---------- + G : graph + A NetworkX graph. Undirected graphs will be converted to a directed + graph with two directed edges for each undirected edge. + + alpha : float + The damping factor. + + personalization: dict, optional + The "personalization vector" consisting of a dictionary with a + key some subset of graph nodes and personalization value each of those. + At least one personalization value must be non-zero. + If not specified, a nodes personalization value will be zero. + By default, a uniform distribution is used. + + nodelist : list, optional + The rows and columns are ordered according to the nodes in nodelist. + If nodelist is None, then the ordering is produced by G.nodes(). + + weight : key, optional + Edge data key to use as weight. If None weights are set to 1. + + dangling: dict, optional + The outedges to be assigned to any "dangling" nodes, i.e., nodes without + any outedges. The dict key is the node the outedge points to and the dict + value is the weight of that outedge. By default, dangling nodes are given + outedges according to the personalization vector (uniform if not + specified) This must be selected to result in an irreducible transition + matrix (see notes below). It may be common to have the dangling dict to + be the same as the personalization dict. + + Returns + ------- + A : 2D NumPy ndarray + Google matrix of the graph + + Notes + ----- + The array returned represents the transition matrix that describes the + Markov chain used in PageRank. For PageRank to converge to a unique + solution (i.e., a unique stationary distribution in a Markov chain), the + transition matrix must be irreducible. In other words, it must be that + there exists a path between every pair of nodes in the graph, or else there + is the potential of "rank sinks." + + This implementation works with Multi(Di)Graphs. For multigraphs the + weight between two nodes is set to be the sum of all edge weights + between those nodes. + + See Also + -------- + pagerank + """ + import numpy as np + + if nodelist is None: + nodelist = list(G) + + A = nx.to_numpy_array(G, nodelist=nodelist, weight=weight) + N = len(G) + if N == 0: + return A + + # Personalization vector + if personalization is None: + p = np.repeat(1.0 / N, N) + else: + p = np.array([personalization.get(n, 0) for n in nodelist], dtype=float) + if p.sum() == 0: + raise ZeroDivisionError + p /= p.sum() + + # Dangling nodes + if dangling is None: + dangling_weights = p + else: + # Convert the dangling dictionary into an array in nodelist order + dangling_weights = np.array([dangling.get(n, 0) for n in nodelist], dtype=float) + dangling_weights /= dangling_weights.sum() + dangling_nodes = np.where(A.sum(axis=1) == 0)[0] + + # Assign dangling_weights to any dangling nodes (nodes with no out links) + A[dangling_nodes] = dangling_weights + + A /= A.sum(axis=1)[:, np.newaxis] # Normalize rows to sum to 1 + + return alpha * A + (1 - alpha) * p + + +def _pagerank_numpy( + G, alpha=0.85, personalization=None, weight="weight", dangling=None +): + """Returns the PageRank of the nodes in the graph. + + PageRank computes a ranking of the nodes in the graph G based on + the structure of the incoming links. It was originally designed as + an algorithm to rank web pages. + + Parameters + ---------- + G : graph + A NetworkX graph. Undirected graphs will be converted to a directed + graph with two directed edges for each undirected edge. + + alpha : float, optional + Damping parameter for PageRank, default=0.85. + + personalization: dict, optional + The "personalization vector" consisting of a dictionary with a + key some subset of graph nodes and personalization value each of those. + At least one personalization value must be non-zero. + If not specified, a nodes personalization value will be zero. + By default, a uniform distribution is used. + + weight : key, optional + Edge data key to use as weight. If None weights are set to 1. + + dangling: dict, optional + The outedges to be assigned to any "dangling" nodes, i.e., nodes without + any outedges. The dict key is the node the outedge points to and the dict + value is the weight of that outedge. By default, dangling nodes are given + outedges according to the personalization vector (uniform if not + specified) This must be selected to result in an irreducible transition + matrix (see notes under google_matrix). It may be common to have the + dangling dict to be the same as the personalization dict. + + Returns + ------- + pagerank : dictionary + Dictionary of nodes with PageRank as value. + + Examples + -------- + >>> from networkx.algorithms.link_analysis.pagerank_alg import _pagerank_numpy + >>> G = nx.DiGraph(nx.path_graph(4)) + >>> pr = _pagerank_numpy(G, alpha=0.9) + + Notes + ----- + The eigenvector calculation uses NumPy's interface to the LAPACK + eigenvalue solvers. This will be the fastest and most accurate + for small graphs. + + This implementation works with Multi(Di)Graphs. For multigraphs the + weight between two nodes is set to be the sum of all edge weights + between those nodes. + + See Also + -------- + pagerank, google_matrix + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, + The PageRank citation ranking: Bringing order to the Web. 1999 + http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf + """ + import numpy as np + + if len(G) == 0: + return {} + M = google_matrix( + G, alpha, personalization=personalization, weight=weight, dangling=dangling + ) + # use numpy LAPACK solver + eigenvalues, eigenvectors = np.linalg.eig(M.T) + ind = np.argmax(eigenvalues) + # eigenvector of largest eigenvalue is at ind, normalized + largest = np.array(eigenvectors[:, ind]).flatten().real + norm = largest.sum() + return dict(zip(G, map(float, largest / norm))) + + +def _pagerank_scipy( + G, + alpha=0.85, + personalization=None, + max_iter=100, + tol=1.0e-6, + nstart=None, + weight="weight", + dangling=None, +): + """Returns the PageRank of the nodes in the graph. + + PageRank computes a ranking of the nodes in the graph G based on + the structure of the incoming links. It was originally designed as + an algorithm to rank web pages. + + Parameters + ---------- + G : graph + A NetworkX graph. Undirected graphs will be converted to a directed + graph with two directed edges for each undirected edge. + + alpha : float, optional + Damping parameter for PageRank, default=0.85. + + personalization: dict, optional + The "personalization vector" consisting of a dictionary with a + key some subset of graph nodes and personalization value each of those. + At least one personalization value must be non-zero. + If not specified, a nodes personalization value will be zero. + By default, a uniform distribution is used. + + max_iter : integer, optional + Maximum number of iterations in power method eigenvalue solver. + + tol : float, optional + Error tolerance used to check convergence in power method solver. + The iteration will stop after a tolerance of ``len(G) * tol`` is reached. + + nstart : dictionary, optional + Starting value of PageRank iteration for each node. + + weight : key, optional + Edge data key to use as weight. If None weights are set to 1. + + dangling: dict, optional + The outedges to be assigned to any "dangling" nodes, i.e., nodes without + any outedges. The dict key is the node the outedge points to and the dict + value is the weight of that outedge. By default, dangling nodes are given + outedges according to the personalization vector (uniform if not + specified) This must be selected to result in an irreducible transition + matrix (see notes under google_matrix). It may be common to have the + dangling dict to be the same as the personalization dict. + + Returns + ------- + pagerank : dictionary + Dictionary of nodes with PageRank as value + + Examples + -------- + >>> from networkx.algorithms.link_analysis.pagerank_alg import _pagerank_scipy + >>> G = nx.DiGraph(nx.path_graph(4)) + >>> pr = _pagerank_scipy(G, alpha=0.9) + + Notes + ----- + The eigenvector calculation uses power iteration with a SciPy + sparse matrix representation. + + This implementation works with Multi(Di)Graphs. For multigraphs the + weight between two nodes is set to be the sum of all edge weights + between those nodes. + + See Also + -------- + pagerank + + Raises + ------ + PowerIterationFailedConvergence + If the algorithm fails to converge to the specified tolerance + within the specified number of iterations of the power iteration + method. + + References + ---------- + .. [1] A. Langville and C. Meyer, + "A survey of eigenvector methods of web information retrieval." + http://citeseer.ist.psu.edu/713792.html + .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, + The PageRank citation ranking: Bringing order to the Web. 1999 + http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf + """ + import numpy as np + import scipy as sp + + N = len(G) + if N == 0: + return {} + + nodelist = list(G) + A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float) + S = A.sum(axis=1) + S[S != 0] = 1.0 / S[S != 0] + # TODO: csr_array + Q = sp.sparse.csr_array(sp.sparse.spdiags(S.T, 0, *A.shape)) + A = Q @ A + + # initial vector + if nstart is None: + x = np.repeat(1.0 / N, N) + else: + x = np.array([nstart.get(n, 0) for n in nodelist], dtype=float) + x /= x.sum() + + # Personalization vector + if personalization is None: + p = np.repeat(1.0 / N, N) + else: + p = np.array([personalization.get(n, 0) for n in nodelist], dtype=float) + if p.sum() == 0: + raise ZeroDivisionError + p /= p.sum() + # Dangling nodes + if dangling is None: + dangling_weights = p + else: + # Convert the dangling dictionary into an array in nodelist order + dangling_weights = np.array([dangling.get(n, 0) for n in nodelist], dtype=float) + dangling_weights /= dangling_weights.sum() + is_dangling = np.where(S == 0)[0] + + # power iteration: make up to max_iter iterations + for _ in range(max_iter): + xlast = x + x = alpha * (x @ A + sum(x[is_dangling]) * dangling_weights) + (1 - alpha) * p + # check convergence, l1 norm + err = np.absolute(x - xlast).sum() + if err < N * tol: + return dict(zip(nodelist, map(float, x))) + raise nx.PowerIterationFailedConvergence(max_iter) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..020cb6002b0c5468f0d366669fedb9c55901af27 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_hits.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_hits.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0307bc7a8997fd437bb8a4b6eb08cddd2396d70 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_hits.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_pagerank.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_pagerank.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..180a24420e24c57dee3a4548fe2a50dd22bcb2b6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/__pycache__/test_pagerank.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_hits.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_hits.py new file mode 100644 index 0000000000000000000000000000000000000000..880803d89f8523753e1321543fa06cfd630da3f0 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_hits.py @@ -0,0 +1,78 @@ +import pytest + +import networkx as nx + +np = pytest.importorskip("numpy") +sp = pytest.importorskip("scipy") + +from networkx.algorithms.link_analysis.hits_alg import ( + _hits_numpy, + _hits_python, + _hits_scipy, +) + +# Example from +# A. Langville and C. Meyer, "A survey of eigenvector methods of web +# information retrieval." http://citeseer.ist.psu.edu/713792.html + + +class TestHITS: + @classmethod + def setup_class(cls): + G = nx.DiGraph() + + edges = [(1, 3), (1, 5), (2, 1), (3, 5), (5, 4), (5, 3), (6, 5)] + + G.add_edges_from(edges, weight=1) + cls.G = G + cls.G.a = dict( + zip(sorted(G), [0.000000, 0.000000, 0.366025, 0.133975, 0.500000, 0.000000]) + ) + cls.G.h = dict( + zip(sorted(G), [0.366025, 0.000000, 0.211325, 0.000000, 0.211325, 0.211325]) + ) + + def test_hits_numpy(self): + G = self.G + h, a = _hits_numpy(G) + for n in G: + assert h[n] == pytest.approx(G.h[n], abs=1e-4) + for n in G: + assert a[n] == pytest.approx(G.a[n], abs=1e-4) + + @pytest.mark.parametrize("hits_alg", (nx.hits, _hits_python, _hits_scipy)) + def test_hits(self, hits_alg): + G = self.G + h, a = hits_alg(G, tol=1.0e-08) + for n in G: + assert h[n] == pytest.approx(G.h[n], abs=1e-4) + for n in G: + assert a[n] == pytest.approx(G.a[n], abs=1e-4) + nstart = {i: 1.0 / 2 for i in G} + h, a = hits_alg(G, nstart=nstart) + for n in G: + assert h[n] == pytest.approx(G.h[n], abs=1e-4) + for n in G: + assert a[n] == pytest.approx(G.a[n], abs=1e-4) + + def test_empty(self): + G = nx.Graph() + assert nx.hits(G) == ({}, {}) + assert _hits_numpy(G) == ({}, {}) + assert _hits_python(G) == ({}, {}) + assert _hits_scipy(G) == ({}, {}) + + def test_hits_not_convergent(self): + G = nx.path_graph(50) + with pytest.raises(nx.PowerIterationFailedConvergence): + _hits_scipy(G, max_iter=1) + with pytest.raises(nx.PowerIterationFailedConvergence): + _hits_python(G, max_iter=1) + with pytest.raises(nx.PowerIterationFailedConvergence): + _hits_scipy(G, max_iter=0) + with pytest.raises(nx.PowerIterationFailedConvergence): + _hits_python(G, max_iter=0) + with pytest.raises(ValueError): + nx.hits(G, max_iter=0) + with pytest.raises(sp.sparse.linalg.ArpackNoConvergence): + nx.hits(G, max_iter=1) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_pagerank.py b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_pagerank.py new file mode 100644 index 0000000000000000000000000000000000000000..6a30f0cd12c3af40f11235d9d8232347df31f56f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/link_analysis/tests/test_pagerank.py @@ -0,0 +1,217 @@ +import random + +import pytest + +import networkx as nx +from networkx.classes.tests import dispatch_interface + +np = pytest.importorskip("numpy") +pytest.importorskip("scipy") + +from networkx.algorithms.link_analysis.pagerank_alg import ( + _pagerank_numpy, + _pagerank_python, + _pagerank_scipy, +) + +# Example from +# A. Langville and C. Meyer, "A survey of eigenvector methods of web +# information retrieval." http://citeseer.ist.psu.edu/713792.html + + +class TestPageRank: + @classmethod + def setup_class(cls): + G = nx.DiGraph() + edges = [ + (1, 2), + (1, 3), + # 2 is a dangling node + (3, 1), + (3, 2), + (3, 5), + (4, 5), + (4, 6), + (5, 4), + (5, 6), + (6, 4), + ] + G.add_edges_from(edges) + cls.G = G + cls.G.pagerank = dict( + zip( + sorted(G), + [ + 0.03721197, + 0.05395735, + 0.04150565, + 0.37508082, + 0.20599833, + 0.28624589, + ], + ) + ) + cls.dangling_node_index = 1 + cls.dangling_edges = {1: 2, 2: 3, 3: 0, 4: 0, 5: 0, 6: 0} + cls.G.dangling_pagerank = dict( + zip( + sorted(G), + [0.10844518, 0.18618601, 0.0710892, 0.2683668, 0.15919783, 0.20671497], + ) + ) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python)) + def test_pagerank(self, alg): + G = self.G + p = alg(G, alpha=0.9, tol=1.0e-08) + for n in G: + assert p[n] == pytest.approx(G.pagerank[n], abs=1e-4) + + nstart = {n: random.random() for n in G} + p = alg(G, alpha=0.9, tol=1.0e-08, nstart=nstart) + for n in G: + assert p[n] == pytest.approx(G.pagerank[n], abs=1e-4) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python)) + def test_pagerank_max_iter(self, alg): + with pytest.raises(nx.PowerIterationFailedConvergence): + alg(self.G, max_iter=0) + + def test_numpy_pagerank(self): + G = self.G + p = _pagerank_numpy(G, alpha=0.9) + for n in G: + assert p[n] == pytest.approx(G.pagerank[n], abs=1e-4) + + # This additionally tests the @nx._dispatch mechanism, treating + # nx.google_matrix as if it were a re-implementation from another package + @pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert]) + def test_google_matrix(self, wrapper): + G = wrapper(self.G) + M = nx.google_matrix(G, alpha=0.9, nodelist=sorted(G)) + _, ev = np.linalg.eig(M.T) + p = ev[:, 0] / ev[:, 0].sum() + for a, b in zip(p, self.G.pagerank.values()): + assert a == pytest.approx(b, abs=1e-7) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python, _pagerank_numpy)) + def test_personalization(self, alg): + G = nx.complete_graph(4) + personalize = {0: 1, 1: 1, 2: 4, 3: 4} + answer = { + 0: 0.23246732615667579, + 1: 0.23246732615667579, + 2: 0.267532673843324, + 3: 0.2675326738433241, + } + p = alg(G, alpha=0.85, personalization=personalize) + for n in G: + assert p[n] == pytest.approx(answer[n], abs=1e-4) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python, nx.google_matrix)) + def test_zero_personalization_vector(self, alg): + G = nx.complete_graph(4) + personalize = {0: 0, 1: 0, 2: 0, 3: 0} + pytest.raises(ZeroDivisionError, alg, G, personalization=personalize) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python)) + def test_one_nonzero_personalization_value(self, alg): + G = nx.complete_graph(4) + personalize = {0: 0, 1: 0, 2: 0, 3: 1} + answer = { + 0: 0.22077931820379187, + 1: 0.22077931820379187, + 2: 0.22077931820379187, + 3: 0.3376620453886241, + } + p = alg(G, alpha=0.85, personalization=personalize) + for n in G: + assert p[n] == pytest.approx(answer[n], abs=1e-4) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python)) + def test_incomplete_personalization(self, alg): + G = nx.complete_graph(4) + personalize = {3: 1} + answer = { + 0: 0.22077931820379187, + 1: 0.22077931820379187, + 2: 0.22077931820379187, + 3: 0.3376620453886241, + } + p = alg(G, alpha=0.85, personalization=personalize) + for n in G: + assert p[n] == pytest.approx(answer[n], abs=1e-4) + + def test_dangling_matrix(self): + """ + Tests that the google_matrix doesn't change except for the dangling + nodes. + """ + G = self.G + dangling = self.dangling_edges + dangling_sum = sum(dangling.values()) + M1 = nx.google_matrix(G, personalization=dangling) + M2 = nx.google_matrix(G, personalization=dangling, dangling=dangling) + for i in range(len(G)): + for j in range(len(G)): + if i == self.dangling_node_index and (j + 1) in dangling: + assert M2[i, j] == pytest.approx( + dangling[j + 1] / dangling_sum, abs=1e-4 + ) + else: + assert M2[i, j] == pytest.approx(M1[i, j], abs=1e-4) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python, _pagerank_numpy)) + def test_dangling_pagerank(self, alg): + pr = alg(self.G, dangling=self.dangling_edges) + for n in self.G: + assert pr[n] == pytest.approx(self.G.dangling_pagerank[n], abs=1e-4) + + def test_empty(self): + G = nx.Graph() + assert nx.pagerank(G) == {} + assert _pagerank_python(G) == {} + assert _pagerank_numpy(G) == {} + assert nx.google_matrix(G).shape == (0, 0) + + @pytest.mark.parametrize("alg", (nx.pagerank, _pagerank_python)) + def test_multigraph(self, alg): + G = nx.MultiGraph() + G.add_edges_from([(1, 2), (1, 2), (1, 2), (2, 3), (2, 3), ("3", 3), ("3", 3)]) + answer = { + 1: 0.21066048614468322, + 2: 0.3395308825985378, + 3: 0.28933951385531687, + "3": 0.16046911740146227, + } + p = alg(G) + for n in G: + assert p[n] == pytest.approx(answer[n], abs=1e-4) + + +class TestPageRankScipy(TestPageRank): + def test_scipy_pagerank(self): + G = self.G + p = _pagerank_scipy(G, alpha=0.9, tol=1.0e-08) + for n in G: + assert p[n] == pytest.approx(G.pagerank[n], abs=1e-4) + personalize = {n: random.random() for n in G} + p = _pagerank_scipy(G, alpha=0.9, tol=1.0e-08, personalization=personalize) + + nstart = {n: random.random() for n in G} + p = _pagerank_scipy(G, alpha=0.9, tol=1.0e-08, nstart=nstart) + for n in G: + assert p[n] == pytest.approx(G.pagerank[n], abs=1e-4) + + def test_scipy_pagerank_max_iter(self): + with pytest.raises(nx.PowerIterationFailedConvergence): + _pagerank_scipy(self.G, max_iter=0) + + def test_dangling_scipy_pagerank(self): + pr = _pagerank_scipy(self.G, dangling=self.dangling_edges) + for n in self.G: + assert pr[n] == pytest.approx(self.G.dangling_pagerank[n], abs=1e-4) + + def test_empty_scipy(self): + G = nx.Graph() + assert _pagerank_scipy(G) == {} diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/minors/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cf15ddb592541a959149842a4d581cf9f0a3e5e1 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/minors/__init__.py @@ -0,0 +1,27 @@ +""" +Subpackages related to graph-minor problems. + +In graph theory, an undirected graph H is called a minor of the graph G if H +can be formed from G by deleting edges and vertices and by contracting edges +[1]_. + +References +---------- +.. [1] https://en.wikipedia.org/wiki/Graph_minor +""" + +from networkx.algorithms.minors.contraction import ( + contracted_edge, + contracted_nodes, + equivalence_classes, + identified_nodes, + quotient_graph, +) + +__all__ = [ + "contracted_edge", + "contracted_nodes", + "equivalence_classes", + "identified_nodes", + "quotient_graph", +] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..351557b3ee8597b736109d562447fa830525116e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/contraction.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/contraction.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a8e38ecb638a0a7dbc403ff2d9faec56e19d671 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/minors/__pycache__/contraction.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/contraction.py b/phivenv/Lib/site-packages/networkx/algorithms/minors/contraction.py new file mode 100644 index 0000000000000000000000000000000000000000..1b4da352296a6c99a5e2dcd67f495a8542f25ee0 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/minors/contraction.py @@ -0,0 +1,630 @@ +"""Provides functions for computing minors of a graph.""" +from itertools import chain, combinations, permutations, product + +import networkx as nx +from networkx import density +from networkx.exception import NetworkXException +from networkx.utils import arbitrary_element + +__all__ = [ + "contracted_edge", + "contracted_nodes", + "equivalence_classes", + "identified_nodes", + "quotient_graph", +] + +chaini = chain.from_iterable + + +def equivalence_classes(iterable, relation): + """Returns equivalence classes of `relation` when applied to `iterable`. + + The equivalence classes, or blocks, consist of objects from `iterable` + which are all equivalent. They are defined to be equivalent if the + `relation` function returns `True` when passed any two objects from that + class, and `False` otherwise. To define an equivalence relation the + function must be reflexive, symmetric and transitive. + + Parameters + ---------- + iterable : list, tuple, or set + An iterable of elements/nodes. + + relation : function + A Boolean-valued function that implements an equivalence relation + (reflexive, symmetric, transitive binary relation) on the elements + of `iterable` - it must take two elements and return `True` if + they are related, or `False` if not. + + Returns + ------- + set of frozensets + A set of frozensets representing the partition induced by the equivalence + relation function `relation` on the elements of `iterable`. Each + member set in the return set represents an equivalence class, or + block, of the partition. + + Duplicate elements will be ignored so it makes the most sense for + `iterable` to be a :class:`set`. + + Notes + ----- + This function does not check that `relation` represents an equivalence + relation. You can check that your equivalence classes provide a partition + using `is_partition`. + + Examples + -------- + Let `X` be the set of integers from `0` to `9`, and consider an equivalence + relation `R` on `X` of congruence modulo `3`: this means that two integers + `x` and `y` in `X` are equivalent under `R` if they leave the same + remainder when divided by `3`, i.e. `(x - y) mod 3 = 0`. + + The equivalence classes of this relation are `{0, 3, 6, 9}`, `{1, 4, 7}`, + `{2, 5, 8}`: `0`, `3`, `6`, `9` are all divisible by `3` and leave zero + remainder; `1`, `4`, `7` leave remainder `1`; while `2`, `5` and `8` leave + remainder `2`. We can see this by calling `equivalence_classes` with + `X` and a function implementation of `R`. + + >>> X = set(range(10)) + >>> def mod3(x, y): return (x - y) % 3 == 0 + >>> equivalence_classes(X, mod3) # doctest: +SKIP + {frozenset({1, 4, 7}), frozenset({8, 2, 5}), frozenset({0, 9, 3, 6})} + """ + # For simplicity of implementation, we initialize the return value as a + # list of lists, then convert it to a set of sets at the end of the + # function. + blocks = [] + # Determine the equivalence class for each element of the iterable. + for y in iterable: + # Each element y must be in *exactly one* equivalence class. + # + # Each block is guaranteed to be non-empty + for block in blocks: + x = arbitrary_element(block) + if relation(x, y): + block.append(y) + break + else: + # If the element y is not part of any known equivalence class, it + # must be in its own, so we create a new singleton equivalence + # class for it. + blocks.append([y]) + return {frozenset(block) for block in blocks} + + +@nx._dispatch(edge_attrs="weight") +def quotient_graph( + G, + partition, + edge_relation=None, + node_data=None, + edge_data=None, + weight="weight", + relabel=False, + create_using=None, +): + """Returns the quotient graph of `G` under the specified equivalence + relation on nodes. + + Parameters + ---------- + G : NetworkX graph + The graph for which to return the quotient graph with the + specified node relation. + + partition : function, or dict or list of lists, tuples or sets + If a function, this function must represent an equivalence + relation on the nodes of `G`. It must take two arguments *u* + and *v* and return True exactly when *u* and *v* are in the + same equivalence class. The equivalence classes form the nodes + in the returned graph. + + If a dict of lists/tuples/sets, the keys can be any meaningful + block labels, but the values must be the block lists/tuples/sets + (one list/tuple/set per block), and the blocks must form a valid + partition of the nodes of the graph. That is, each node must be + in exactly one block of the partition. + + If a list of sets, the list must form a valid partition of + the nodes of the graph. That is, each node must be in exactly + one block of the partition. + + edge_relation : Boolean function with two arguments + This function must represent an edge relation on the *blocks* of + the `partition` of `G`. It must take two arguments, *B* and *C*, + each one a set of nodes, and return True exactly when there should be + an edge joining block *B* to block *C* in the returned graph. + + If `edge_relation` is not specified, it is assumed to be the + following relation. Block *B* is related to block *C* if and + only if some node in *B* is adjacent to some node in *C*, + according to the edge set of `G`. + + node_data : function + This function takes one argument, *B*, a set of nodes in `G`, + and must return a dictionary representing the node data + attributes to set on the node representing *B* in the quotient graph. + If None, the following node attributes will be set: + + * 'graph', the subgraph of the graph `G` that this block + represents, + * 'nnodes', the number of nodes in this block, + * 'nedges', the number of edges within this block, + * 'density', the density of the subgraph of `G` that this + block represents. + + edge_data : function + This function takes two arguments, *B* and *C*, each one a set + of nodes, and must return a dictionary representing the edge + data attributes to set on the edge joining *B* and *C*, should + there be an edge joining *B* and *C* in the quotient graph (if + no such edge occurs in the quotient graph as determined by + `edge_relation`, then the output of this function is ignored). + + If the quotient graph would be a multigraph, this function is + not applied, since the edge data from each edge in the graph + `G` appears in the edges of the quotient graph. + + weight : string or None, optional (default="weight") + The name of an edge attribute that holds the numerical value + used as a weight. If None then each edge has weight 1. + + relabel : bool + If True, relabel the nodes of the quotient graph to be + nonnegative integers. Otherwise, the nodes are identified with + :class:`frozenset` instances representing the blocks given in + `partition`. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + NetworkX graph + The quotient graph of `G` under the equivalence relation + specified by `partition`. If the partition were given as a + list of :class:`set` instances and `relabel` is False, + each node will be a :class:`frozenset` corresponding to the same + :class:`set`. + + Raises + ------ + NetworkXException + If the given partition is not a valid partition of the nodes of + `G`. + + Examples + -------- + The quotient graph of the complete bipartite graph under the "same + neighbors" equivalence relation is `K_2`. Under this relation, two nodes + are equivalent if they are not adjacent but have the same neighbor set. + + >>> G = nx.complete_bipartite_graph(2, 3) + >>> same_neighbors = lambda u, v: ( + ... u not in G[v] and v not in G[u] and G[u] == G[v] + ... ) + >>> Q = nx.quotient_graph(G, same_neighbors) + >>> K2 = nx.complete_graph(2) + >>> nx.is_isomorphic(Q, K2) + True + + The quotient graph of a directed graph under the "same strongly connected + component" equivalence relation is the condensation of the graph (see + :func:`condensation`). This example comes from the Wikipedia article + *`Strongly connected component`_*. + + >>> G = nx.DiGraph() + >>> edges = [ + ... "ab", + ... "be", + ... "bf", + ... "bc", + ... "cg", + ... "cd", + ... "dc", + ... "dh", + ... "ea", + ... "ef", + ... "fg", + ... "gf", + ... "hd", + ... "hf", + ... ] + >>> G.add_edges_from(tuple(x) for x in edges) + >>> components = list(nx.strongly_connected_components(G)) + >>> sorted(sorted(component) for component in components) + [['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']] + >>> + >>> C = nx.condensation(G, components) + >>> component_of = C.graph["mapping"] + >>> same_component = lambda u, v: component_of[u] == component_of[v] + >>> Q = nx.quotient_graph(G, same_component) + >>> nx.is_isomorphic(C, Q) + True + + Node identification can be represented as the quotient of a graph under the + equivalence relation that places the two nodes in one block and each other + node in its own singleton block. + + >>> K24 = nx.complete_bipartite_graph(2, 4) + >>> K34 = nx.complete_bipartite_graph(3, 4) + >>> C = nx.contracted_nodes(K34, 1, 2) + >>> nodes = {1, 2} + >>> is_contracted = lambda u, v: u in nodes and v in nodes + >>> Q = nx.quotient_graph(K34, is_contracted) + >>> nx.is_isomorphic(Q, C) + True + >>> nx.is_isomorphic(Q, K24) + True + + The blockmodeling technique described in [1]_ can be implemented as a + quotient graph. + + >>> G = nx.path_graph(6) + >>> partition = [{0, 1}, {2, 3}, {4, 5}] + >>> M = nx.quotient_graph(G, partition, relabel=True) + >>> list(M.edges()) + [(0, 1), (1, 2)] + + Here is the sample example but using partition as a dict of block sets. + + >>> G = nx.path_graph(6) + >>> partition = {0: {0, 1}, 2: {2, 3}, 4: {4, 5}} + >>> M = nx.quotient_graph(G, partition, relabel=True) + >>> list(M.edges()) + [(0, 1), (1, 2)] + + Partitions can be represented in various ways: + + 0. a list/tuple/set of block lists/tuples/sets + 1. a dict with block labels as keys and blocks lists/tuples/sets as values + 2. a dict with block lists/tuples/sets as keys and block labels as values + 3. a function from nodes in the original iterable to block labels + 4. an equivalence relation function on the target iterable + + As `quotient_graph` is designed to accept partitions represented as (0), (1) or + (4) only, the `equivalence_classes` function can be used to get the partitions + in the right form, in order to call `quotient_graph`. + + .. _Strongly connected component: https://en.wikipedia.org/wiki/Strongly_connected_component + + References + ---------- + .. [1] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj. + *Generalized Blockmodeling*. + Cambridge University Press, 2004. + + """ + # If the user provided an equivalence relation as a function to compute + # the blocks of the partition on the nodes of G induced by the + # equivalence relation. + if callable(partition): + # equivalence_classes always return partition of whole G. + partition = equivalence_classes(G, partition) + if not nx.community.is_partition(G, partition): + raise nx.NetworkXException( + "Input `partition` is not an equivalence relation for nodes of G" + ) + return _quotient_graph( + G, + partition, + edge_relation, + node_data, + edge_data, + weight, + relabel, + create_using, + ) + + # If the partition is a dict, it is assumed to be one where the keys are + # user-defined block labels, and values are block lists, tuples or sets. + if isinstance(partition, dict): + partition = list(partition.values()) + + # If the user provided partition as a collection of sets. Then we + # need to check if partition covers all of G nodes. If the answer + # is 'No' then we need to prepare suitable subgraph view. + partition_nodes = set().union(*partition) + if len(partition_nodes) != len(G): + G = G.subgraph(partition_nodes) + # Each node in the graph/subgraph must be in exactly one block. + if not nx.community.is_partition(G, partition): + raise NetworkXException("each node must be in exactly one part of `partition`") + return _quotient_graph( + G, + partition, + edge_relation, + node_data, + edge_data, + weight, + relabel, + create_using, + ) + + +def _quotient_graph( + G, partition, edge_relation, node_data, edge_data, weight, relabel, create_using +): + """Construct the quotient graph assuming input has been checked""" + if create_using is None: + H = G.__class__() + else: + H = nx.empty_graph(0, create_using) + # By default set some basic information about the subgraph that each block + # represents on the nodes in the quotient graph. + if node_data is None: + + def node_data(b): + S = G.subgraph(b) + return { + "graph": S, + "nnodes": len(S), + "nedges": S.number_of_edges(), + "density": density(S), + } + + # Each block of the partition becomes a node in the quotient graph. + partition = [frozenset(b) for b in partition] + H.add_nodes_from((b, node_data(b)) for b in partition) + # By default, the edge relation is the relation defined as follows. B is + # adjacent to C if a node in B is adjacent to a node in C, according to the + # edge set of G. + # + # This is not a particularly efficient implementation of this relation: + # there are O(n^2) pairs to check and each check may require O(log n) time + # (to check set membership). This can certainly be parallelized. + if edge_relation is None: + + def edge_relation(b, c): + return any(v in G[u] for u, v in product(b, c)) + + # By default, sum the weights of the edges joining pairs of nodes across + # blocks to get the weight of the edge joining those two blocks. + if edge_data is None: + + def edge_data(b, c): + edgedata = ( + d + for u, v, d in G.edges(b | c, data=True) + if (u in b and v in c) or (u in c and v in b) + ) + return {"weight": sum(d.get(weight, 1) for d in edgedata)} + + block_pairs = permutations(H, 2) if H.is_directed() else combinations(H, 2) + # In a multigraph, add one edge in the quotient graph for each edge + # in the original graph. + if H.is_multigraph(): + edges = chaini( + ( + (b, c, G.get_edge_data(u, v, default={})) + for u, v in product(b, c) + if v in G[u] + ) + for b, c in block_pairs + if edge_relation(b, c) + ) + # In a simple graph, apply the edge data function to each pair of + # blocks to determine the edge data attributes to apply to each edge + # in the quotient graph. + else: + edges = ( + (b, c, edge_data(b, c)) for (b, c) in block_pairs if edge_relation(b, c) + ) + H.add_edges_from(edges) + # If requested by the user, relabel the nodes to be integers, + # numbered in increasing order from zero in the same order as the + # iteration order of `partition`. + if relabel: + # Can't use nx.convert_node_labels_to_integers() here since we + # want the order of iteration to be the same for backward + # compatibility with the nx.blockmodel() function. + labels = {b: i for i, b in enumerate(partition)} + H = nx.relabel_nodes(H, labels) + return H + + +@nx._dispatch(preserve_all_attrs=True) +def contracted_nodes(G, u, v, self_loops=True, copy=True): + """Returns the graph that results from contracting `u` and `v`. + + Node contraction identifies the two nodes as a single node incident to any + edge that was incident to the original two nodes. + + Parameters + ---------- + G : NetworkX graph + The graph whose nodes will be contracted. + + u, v : nodes + Must be nodes in `G`. + + self_loops : Boolean + If this is True, any edges joining `u` and `v` in `G` become + self-loops on the new node in the returned graph. + + copy : Boolean + If this is True (default True), make a copy of + `G` and return that instead of directly changing `G`. + + + Returns + ------- + Networkx graph + If Copy is True, + A new graph object of the same type as `G` (leaving `G` unmodified) + with `u` and `v` identified in a single node. The right node `v` + will be merged into the node `u`, so only `u` will appear in the + returned graph. + If copy is False, + Modifies `G` with `u` and `v` identified in a single node. + The right node `v` will be merged into the node `u`, so + only `u` will appear in the returned graph. + + Notes + ----- + For multigraphs, the edge keys for the realigned edges may + not be the same as the edge keys for the old edges. This is + natural because edge keys are unique only within each pair of nodes. + + For non-multigraphs where `u` and `v` are adjacent to a third node + `w`, the edge (`v`, `w`) will be contracted into the edge (`u`, + `w`) with its attributes stored into a "contraction" attribute. + + This function is also available as `identified_nodes`. + + Examples + -------- + Contracting two nonadjacent nodes of the cycle graph on four nodes `C_4` + yields the path graph (ignoring parallel edges): + + >>> G = nx.cycle_graph(4) + >>> M = nx.contracted_nodes(G, 1, 3) + >>> P3 = nx.path_graph(3) + >>> nx.is_isomorphic(M, P3) + True + + >>> G = nx.MultiGraph(P3) + >>> M = nx.contracted_nodes(G, 0, 2) + >>> M.edges + MultiEdgeView([(0, 1, 0), (0, 1, 1)]) + + >>> G = nx.Graph([(1, 2), (2, 2)]) + >>> H = nx.contracted_nodes(G, 1, 2, self_loops=False) + >>> list(H.nodes()) + [1] + >>> list(H.edges()) + [(1, 1)] + + In a ``MultiDiGraph`` with a self loop, the in and out edges will + be treated separately as edges, so while contracting a node which + has a self loop the contraction will add multiple edges: + + >>> G = nx.MultiDiGraph([(1, 2), (2, 2)]) + >>> H = nx.contracted_nodes(G, 1, 2) + >>> list(H.edges()) # edge 1->2, 2->2, 2<-2 from the original Graph G + [(1, 1), (1, 1), (1, 1)] + >>> H = nx.contracted_nodes(G, 1, 2, self_loops=False) + >>> list(H.edges()) # edge 2->2, 2<-2 from the original Graph G + [(1, 1), (1, 1)] + + See Also + -------- + contracted_edge + quotient_graph + + """ + # Copying has significant overhead and can be disabled if needed + if copy: + H = G.copy() + else: + H = G + + # edge code uses G.edges(v) instead of G.adj[v] to handle multiedges + if H.is_directed(): + edges_to_remap = chain(G.in_edges(v, data=True), G.out_edges(v, data=True)) + else: + edges_to_remap = G.edges(v, data=True) + + # If the H=G, the generators change as H changes + # This makes the edges_to_remap independent of H + if not copy: + edges_to_remap = list(edges_to_remap) + + v_data = H.nodes[v] + H.remove_node(v) + + for prev_w, prev_x, d in edges_to_remap: + w = prev_w if prev_w != v else u + x = prev_x if prev_x != v else u + + if ({prev_w, prev_x} == {u, v}) and not self_loops: + continue + + if not H.has_edge(w, x) or G.is_multigraph(): + H.add_edge(w, x, **d) + else: + if "contraction" in H.edges[(w, x)]: + H.edges[(w, x)]["contraction"][(prev_w, prev_x)] = d + else: + H.edges[(w, x)]["contraction"] = {(prev_w, prev_x): d} + + if "contraction" in H.nodes[u]: + H.nodes[u]["contraction"][v] = v_data + else: + H.nodes[u]["contraction"] = {v: v_data} + return H + + +identified_nodes = contracted_nodes + + +@nx._dispatch(preserve_edge_attrs=True) +def contracted_edge(G, edge, self_loops=True, copy=True): + """Returns the graph that results from contracting the specified edge. + + Edge contraction identifies the two endpoints of the edge as a single node + incident to any edge that was incident to the original two nodes. A graph + that results from edge contraction is called a *minor* of the original + graph. + + Parameters + ---------- + G : NetworkX graph + The graph whose edge will be contracted. + + edge : tuple + Must be a pair of nodes in `G`. + + self_loops : Boolean + If this is True, any edges (including `edge`) joining the + endpoints of `edge` in `G` become self-loops on the new node in the + returned graph. + + copy : Boolean (default True) + If this is True, a the contraction will be performed on a copy of `G`, + otherwise the contraction will happen in place. + + Returns + ------- + Networkx graph + A new graph object of the same type as `G` (leaving `G` unmodified) + with endpoints of `edge` identified in a single node. The right node + of `edge` will be merged into the left one, so only the left one will + appear in the returned graph. + + Raises + ------ + ValueError + If `edge` is not an edge in `G`. + + Examples + -------- + Attempting to contract two nonadjacent nodes yields an error: + + >>> G = nx.cycle_graph(4) + >>> nx.contracted_edge(G, (1, 3)) + Traceback (most recent call last): + ... + ValueError: Edge (1, 3) does not exist in graph G; cannot contract it + + Contracting two adjacent nodes in the cycle graph on *n* nodes yields the + cycle graph on *n - 1* nodes: + + >>> C5 = nx.cycle_graph(5) + >>> C4 = nx.cycle_graph(4) + >>> M = nx.contracted_edge(C5, (0, 1), self_loops=False) + >>> nx.is_isomorphic(M, C4) + True + + See also + -------- + contracted_nodes + quotient_graph + + """ + u, v = edge[:2] + if not G.has_edge(u, v): + raise ValueError(f"Edge {edge} does not exist in graph G; cannot contract it") + return contracted_nodes(G, u, v, self_loops=self_loops, copy=copy) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/__pycache__/test_contraction.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/__pycache__/test_contraction.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..023123c461fa0200bcf8b1c9929f076292ee9019 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/__pycache__/test_contraction.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/test_contraction.py b/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/test_contraction.py new file mode 100644 index 0000000000000000000000000000000000000000..5b7b7ccd3ea96019af8ec34cab2715e80c6b88ba --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/minors/tests/test_contraction.py @@ -0,0 +1,445 @@ +"""Unit tests for the :mod:`networkx.algorithms.minors.contraction` module.""" +import pytest + +import networkx as nx +from networkx.utils import arbitrary_element, edges_equal, nodes_equal + + +def test_quotient_graph_complete_multipartite(): + """Tests that the quotient graph of the complete *n*-partite graph + under the "same neighbors" node relation is the complete graph on *n* + nodes. + + """ + G = nx.complete_multipartite_graph(2, 3, 4) + # Two nodes are equivalent if they are not adjacent but have the same + # neighbor set. + + def same_neighbors(u, v): + return u not in G[v] and v not in G[u] and G[u] == G[v] + + expected = nx.complete_graph(3) + actual = nx.quotient_graph(G, same_neighbors) + # It won't take too long to run a graph isomorphism algorithm on such + # small graphs. + assert nx.is_isomorphic(expected, actual) + + +def test_quotient_graph_complete_bipartite(): + """Tests that the quotient graph of the complete bipartite graph under + the "same neighbors" node relation is `K_2`. + + """ + G = nx.complete_bipartite_graph(2, 3) + # Two nodes are equivalent if they are not adjacent but have the same + # neighbor set. + + def same_neighbors(u, v): + return u not in G[v] and v not in G[u] and G[u] == G[v] + + expected = nx.complete_graph(2) + actual = nx.quotient_graph(G, same_neighbors) + # It won't take too long to run a graph isomorphism algorithm on such + # small graphs. + assert nx.is_isomorphic(expected, actual) + + +def test_quotient_graph_edge_relation(): + """Tests for specifying an alternate edge relation for the quotient + graph. + + """ + G = nx.path_graph(5) + + def identity(u, v): + return u == v + + def same_parity(b, c): + return arbitrary_element(b) % 2 == arbitrary_element(c) % 2 + + actual = nx.quotient_graph(G, identity, same_parity) + expected = nx.Graph() + expected.add_edges_from([(0, 2), (0, 4), (2, 4)]) + expected.add_edge(1, 3) + assert nx.is_isomorphic(actual, expected) + + +def test_condensation_as_quotient(): + """This tests that the condensation of a graph can be viewed as the + quotient graph under the "in the same connected component" equivalence + relation. + + """ + # This example graph comes from the file `test_strongly_connected.py`. + G = nx.DiGraph() + G.add_edges_from( + [ + (1, 2), + (2, 3), + (2, 11), + (2, 12), + (3, 4), + (4, 3), + (4, 5), + (5, 6), + (6, 5), + (6, 7), + (7, 8), + (7, 9), + (7, 10), + (8, 9), + (9, 7), + (10, 6), + (11, 2), + (11, 4), + (11, 6), + (12, 6), + (12, 11), + ] + ) + scc = list(nx.strongly_connected_components(G)) + C = nx.condensation(G, scc) + component_of = C.graph["mapping"] + # Two nodes are equivalent if they are in the same connected component. + + def same_component(u, v): + return component_of[u] == component_of[v] + + Q = nx.quotient_graph(G, same_component) + assert nx.is_isomorphic(C, Q) + + +def test_path(): + G = nx.path_graph(6) + partition = [{0, 1}, {2, 3}, {4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_path__partition_provided_as_dict_of_lists(): + G = nx.path_graph(6) + partition = {0: [0, 1], 2: [2, 3], 4: [4, 5]} + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_path__partition_provided_as_dict_of_tuples(): + G = nx.path_graph(6) + partition = {0: (0, 1), 2: (2, 3), 4: (4, 5)} + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_path__partition_provided_as_dict_of_sets(): + G = nx.path_graph(6) + partition = {0: {0, 1}, 2: {2, 3}, 4: {4, 5}} + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_multigraph_path(): + G = nx.MultiGraph(nx.path_graph(6)) + partition = [{0, 1}, {2, 3}, {4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_directed_path(): + G = nx.DiGraph() + nx.add_path(G, range(6)) + partition = [{0, 1}, {2, 3}, {4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 0.5 + + +def test_directed_multigraph_path(): + G = nx.MultiDiGraph() + nx.add_path(G, range(6)) + partition = [{0, 1}, {2, 3}, {4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 0.5 + + +def test_overlapping_blocks(): + with pytest.raises(nx.NetworkXException): + G = nx.path_graph(6) + partition = [{0, 1, 2}, {2, 3}, {4, 5}] + nx.quotient_graph(G, partition) + + +def test_weighted_path(): + G = nx.path_graph(6) + for i in range(5): + G[i][i + 1]["w"] = i + 1 + partition = [{0, 1}, {2, 3}, {4, 5}] + M = nx.quotient_graph(G, partition, weight="w", relabel=True) + assert nodes_equal(M, [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + assert M[0][1]["weight"] == 2 + assert M[1][2]["weight"] == 4 + for n in M: + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1 + + +def test_barbell(): + G = nx.barbell_graph(3, 0) + partition = [{0, 1, 2}, {3, 4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1]) + assert edges_equal(M.edges(), [(0, 1)]) + for n in M: + assert M.nodes[n]["nedges"] == 3 + assert M.nodes[n]["nnodes"] == 3 + assert M.nodes[n]["density"] == 1 + + +def test_barbell_plus(): + G = nx.barbell_graph(3, 0) + # Add an extra edge joining the bells. + G.add_edge(0, 5) + partition = [{0, 1, 2}, {3, 4, 5}] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M, [0, 1]) + assert edges_equal(M.edges(), [(0, 1)]) + assert M[0][1]["weight"] == 2 + for n in M: + assert M.nodes[n]["nedges"] == 3 + assert M.nodes[n]["nnodes"] == 3 + assert M.nodes[n]["density"] == 1 + + +def test_blockmodel(): + G = nx.path_graph(6) + partition = [[0, 1], [2, 3], [4, 5]] + M = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(M.nodes(), [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M.nodes(): + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1.0 + + +def test_multigraph_blockmodel(): + G = nx.MultiGraph(nx.path_graph(6)) + partition = [[0, 1], [2, 3], [4, 5]] + M = nx.quotient_graph(G, partition, create_using=nx.MultiGraph(), relabel=True) + assert nodes_equal(M.nodes(), [0, 1, 2]) + assert edges_equal(M.edges(), [(0, 1), (1, 2)]) + for n in M.nodes(): + assert M.nodes[n]["nedges"] == 1 + assert M.nodes[n]["nnodes"] == 2 + assert M.nodes[n]["density"] == 1.0 + + +def test_quotient_graph_incomplete_partition(): + G = nx.path_graph(6) + partition = [] + H = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(H.nodes(), []) + assert edges_equal(H.edges(), []) + + partition = [[0, 1], [2, 3], [5]] + H = nx.quotient_graph(G, partition, relabel=True) + assert nodes_equal(H.nodes(), [0, 1, 2]) + assert edges_equal(H.edges(), [(0, 1)]) + + +def test_undirected_node_contraction(): + """Tests for node contraction in an undirected graph.""" + G = nx.cycle_graph(4) + actual = nx.contracted_nodes(G, 0, 1) + expected = nx.cycle_graph(3) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, expected) + + +def test_directed_node_contraction(): + """Tests for node contraction in a directed graph.""" + G = nx.DiGraph(nx.cycle_graph(4)) + actual = nx.contracted_nodes(G, 0, 1) + expected = nx.DiGraph(nx.cycle_graph(3)) + expected.add_edge(0, 0) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, expected) + + +def test_undirected_node_contraction_no_copy(): + """Tests for node contraction in an undirected graph + by making changes in place.""" + G = nx.cycle_graph(4) + actual = nx.contracted_nodes(G, 0, 1, copy=False) + expected = nx.cycle_graph(3) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, G) + assert nx.is_isomorphic(actual, expected) + + +def test_directed_node_contraction_no_copy(): + """Tests for node contraction in a directed graph + by making changes in place.""" + G = nx.DiGraph(nx.cycle_graph(4)) + actual = nx.contracted_nodes(G, 0, 1, copy=False) + expected = nx.DiGraph(nx.cycle_graph(3)) + expected.add_edge(0, 0) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, G) + assert nx.is_isomorphic(actual, expected) + + +def test_create_multigraph(): + """Tests that using a MultiGraph creates multiple edges.""" + G = nx.path_graph(3, create_using=nx.MultiGraph()) + G.add_edge(0, 1) + G.add_edge(0, 0) + G.add_edge(0, 2) + actual = nx.contracted_nodes(G, 0, 2) + expected = nx.MultiGraph() + expected.add_edge(0, 1) + expected.add_edge(0, 1) + expected.add_edge(0, 1) + expected.add_edge(0, 0) + expected.add_edge(0, 0) + assert edges_equal(actual.edges, expected.edges) + + +def test_multigraph_keys(): + """Tests that multiedge keys are reset in new graph.""" + G = nx.path_graph(3, create_using=nx.MultiGraph()) + G.add_edge(0, 1, 5) + G.add_edge(0, 0, 0) + G.add_edge(0, 2, 5) + actual = nx.contracted_nodes(G, 0, 2) + expected = nx.MultiGraph() + expected.add_edge(0, 1, 0) + expected.add_edge(0, 1, 5) + expected.add_edge(0, 1, 2) # keyed as 2 b/c 2 edges already in G + expected.add_edge(0, 0, 0) + expected.add_edge(0, 0, 1) # this comes from (0, 2, 5) + assert edges_equal(actual.edges, expected.edges) + + +def test_node_attributes(): + """Tests that node contraction preserves node attributes.""" + G = nx.cycle_graph(4) + # Add some data to the two nodes being contracted. + G.nodes[0]["foo"] = "bar" + G.nodes[1]["baz"] = "xyzzy" + actual = nx.contracted_nodes(G, 0, 1) + # We expect that contracting the nodes 0 and 1 in C_4 yields K_3, but + # with nodes labeled 0, 2, and 3, and with a -loop on 0. + expected = nx.complete_graph(3) + expected = nx.relabel_nodes(expected, {1: 2, 2: 3}) + expected.add_edge(0, 0) + cdict = {1: {"baz": "xyzzy"}} + expected.nodes[0].update({"foo": "bar", "contraction": cdict}) + assert nx.is_isomorphic(actual, expected) + assert actual.nodes == expected.nodes + + +def test_edge_attributes(): + """Tests that node contraction preserves edge attributes.""" + # Shape: src1 --> dest <-- src2 + G = nx.DiGraph([("src1", "dest"), ("src2", "dest")]) + G["src1"]["dest"]["value"] = "src1-->dest" + G["src2"]["dest"]["value"] = "src2-->dest" + H = nx.MultiDiGraph(G) + + G = nx.contracted_nodes(G, "src1", "src2") # New Shape: src1 --> dest + assert G.edges[("src1", "dest")]["value"] == "src1-->dest" + assert ( + G.edges[("src1", "dest")]["contraction"][("src2", "dest")]["value"] + == "src2-->dest" + ) + + H = nx.contracted_nodes(H, "src1", "src2") # New Shape: src1 -(x2)-> dest + assert len(H.edges(("src1", "dest"))) == 2 + + +def test_without_self_loops(): + """Tests for node contraction without preserving -loops.""" + G = nx.cycle_graph(4) + actual = nx.contracted_nodes(G, 0, 1, self_loops=False) + expected = nx.complete_graph(3) + assert nx.is_isomorphic(actual, expected) + + +def test_contract_loop_graph(): + """Tests for node contraction when nodes have loops.""" + G = nx.cycle_graph(4) + G.add_edge(0, 0) + actual = nx.contracted_nodes(G, 0, 1) + expected = nx.complete_graph([0, 2, 3]) + expected.add_edge(0, 0) + expected.add_edge(0, 0) + assert edges_equal(actual.edges, expected.edges) + actual = nx.contracted_nodes(G, 1, 0) + expected = nx.complete_graph([1, 2, 3]) + expected.add_edge(1, 1) + expected.add_edge(1, 1) + assert edges_equal(actual.edges, expected.edges) + + +def test_undirected_edge_contraction(): + """Tests for edge contraction in an undirected graph.""" + G = nx.cycle_graph(4) + actual = nx.contracted_edge(G, (0, 1)) + expected = nx.complete_graph(3) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, expected) + + +def test_multigraph_edge_contraction(): + """Tests for edge contraction in a multigraph""" + G = nx.cycle_graph(4) + actual = nx.contracted_edge(G, (0, 1, 0)) + expected = nx.complete_graph(3) + expected.add_edge(0, 0) + assert nx.is_isomorphic(actual, expected) + + +def test_nonexistent_edge(): + """Tests that attempting to contract a nonexistent edge raises an + exception. + + """ + with pytest.raises(ValueError): + G = nx.cycle_graph(4) + nx.contracted_edge(G, (0, 2)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0ebc6ab9998db144234c2601c24861b2c48fa339 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/__init__.py @@ -0,0 +1,4 @@ +from networkx.algorithms.operators.all import * +from networkx.algorithms.operators.binary import * +from networkx.algorithms.operators.product import * +from networkx.algorithms.operators.unary import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5594cb164d972cd1c792483102972a680b341d0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/all.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/all.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ffc6361f3d43879c04ada08988f66b6d09e23cb Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/all.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51791b26f14e20959fb614d551ed7e04859dfd6f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6fdd58b55b8fe274e566265d76d2b1b39ca8bc71 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/unary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/unary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8069ebbeb4605a9982eff1a5c646a870ebccabd Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/__pycache__/unary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/all.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/all.py new file mode 100644 index 0000000000000000000000000000000000000000..c9498c0a34d712e2a06531219ada75e603677d82 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/all.py @@ -0,0 +1,319 @@ +"""Operations on many graphs. +""" +from itertools import chain, repeat + +import networkx as nx + +__all__ = ["union_all", "compose_all", "disjoint_union_all", "intersection_all"] + + +@nx._dispatch(graphs="[graphs]", preserve_all_attrs=True) +def union_all(graphs, rename=()): + """Returns the union of all graphs. + + The graphs must be disjoint, otherwise an exception is raised. + + Parameters + ---------- + graphs : iterable + Iterable of NetworkX graphs + + rename : iterable , optional + Node names of graphs can be changed by specifying the tuple + rename=('G-','H-') (for example). Node "u" in G is then renamed + "G-u" and "v" in H is renamed "H-v". Infinite generators (like itertools.count) + are also supported. + + Returns + ------- + U : a graph with the same type as the first graph in list + + Raises + ------ + ValueError + If `graphs` is an empty list. + + NetworkXError + In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs. + + Notes + ----- + For operating on mixed type graphs, they should be converted to the same type. + >>> G = nx.Graph() + >>> H = nx.DiGraph() + >>> GH = union_all([nx.DiGraph(G), H]) + + To force a disjoint union with node relabeling, use + disjoint_union_all(G,H) or convert_node_labels_to integers(). + + Graph, edge, and node attributes are propagated to the union graph. + If a graph attribute is present in multiple graphs, then the value + from the last graph in the list with that attribute is used. + + Examples + -------- + >>> G1 = nx.Graph([(1, 2), (2, 3)]) + >>> G2 = nx.Graph([(4, 5), (5, 6)]) + >>> result_graph = nx.union_all([G1, G2]) + >>> result_graph.nodes() + NodeView((1, 2, 3, 4, 5, 6)) + >>> result_graph.edges() + EdgeView([(1, 2), (2, 3), (4, 5), (5, 6)]) + + See Also + -------- + union + disjoint_union_all + """ + R = None + seen_nodes = set() + + # rename graph to obtain disjoint node labels + def add_prefix(graph, prefix): + if prefix is None: + return graph + + def label(x): + return f"{prefix}{x}" + + return nx.relabel_nodes(graph, label) + + rename = chain(rename, repeat(None)) + graphs = (add_prefix(G, name) for G, name in zip(graphs, rename)) + + for i, G in enumerate(graphs): + G_nodes_set = set(G.nodes) + if i == 0: + # Union is the same type as first graph + R = G.__class__() + elif G.is_directed() != R.is_directed(): + raise nx.NetworkXError("All graphs must be directed or undirected.") + elif G.is_multigraph() != R.is_multigraph(): + raise nx.NetworkXError("All graphs must be graphs or multigraphs.") + elif not seen_nodes.isdisjoint(G_nodes_set): + raise nx.NetworkXError( + "The node sets of the graphs are not disjoint.", + "Use appropriate rename" + "=(G1prefix,G2prefix,...,GNprefix)" + "or use disjoint_union(G1,G2,...,GN).", + ) + + seen_nodes |= G_nodes_set + R.graph.update(G.graph) + R.add_nodes_from(G.nodes(data=True)) + R.add_edges_from( + G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True) + ) + + if R is None: + raise ValueError("cannot apply union_all to an empty list") + + return R + + +@nx._dispatch(graphs="[graphs]", preserve_all_attrs=True) +def disjoint_union_all(graphs): + """Returns the disjoint union of all graphs. + + This operation forces distinct integer node labels starting with 0 + for the first graph in the list and numbering consecutively. + + Parameters + ---------- + graphs : iterable + Iterable of NetworkX graphs + + Returns + ------- + U : A graph with the same type as the first graph in list + + Raises + ------ + ValueError + If `graphs` is an empty list. + + NetworkXError + In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs. + + Examples + -------- + >>> G1 = nx.Graph([(1, 2), (2, 3)]) + >>> G2 = nx.Graph([(4, 5), (5, 6)]) + >>> U = nx.disjoint_union_all([G1, G2]) + >>> list(U.nodes()) + [0, 1, 2, 3, 4, 5] + >>> list(U.edges()) + [(0, 1), (1, 2), (3, 4), (4, 5)] + + Notes + ----- + For operating on mixed type graphs, they should be converted to the same type. + + Graph, edge, and node attributes are propagated to the union graph. + If a graph attribute is present in multiple graphs, then the value + from the last graph in the list with that attribute is used. + """ + + def yield_relabeled(graphs): + first_label = 0 + for G in graphs: + yield nx.convert_node_labels_to_integers(G, first_label=first_label) + first_label += len(G) + + R = union_all(yield_relabeled(graphs)) + + return R + + +@nx._dispatch(graphs="[graphs]", preserve_all_attrs=True) +def compose_all(graphs): + """Returns the composition of all graphs. + + Composition is the simple union of the node sets and edge sets. + The node sets of the supplied graphs need not be disjoint. + + Parameters + ---------- + graphs : iterable + Iterable of NetworkX graphs + + Returns + ------- + C : A graph with the same type as the first graph in list + + Raises + ------ + ValueError + If `graphs` is an empty list. + + NetworkXError + In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs. + + Examples + -------- + >>> G1 = nx.Graph([(1, 2), (2, 3)]) + >>> G2 = nx.Graph([(3, 4), (5, 6)]) + >>> C = nx.compose_all([G1, G2]) + >>> list(C.nodes()) + [1, 2, 3, 4, 5, 6] + >>> list(C.edges()) + [(1, 2), (2, 3), (3, 4), (5, 6)] + + Notes + ----- + For operating on mixed type graphs, they should be converted to the same type. + + Graph, edge, and node attributes are propagated to the union graph. + If a graph attribute is present in multiple graphs, then the value + from the last graph in the list with that attribute is used. + """ + R = None + + # add graph attributes, H attributes take precedent over G attributes + for i, G in enumerate(graphs): + if i == 0: + # create new graph + R = G.__class__() + elif G.is_directed() != R.is_directed(): + raise nx.NetworkXError("All graphs must be directed or undirected.") + elif G.is_multigraph() != R.is_multigraph(): + raise nx.NetworkXError("All graphs must be graphs or multigraphs.") + + R.graph.update(G.graph) + R.add_nodes_from(G.nodes(data=True)) + R.add_edges_from( + G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True) + ) + + if R is None: + raise ValueError("cannot apply compose_all to an empty list") + + return R + + +@nx._dispatch(graphs="[graphs]") +def intersection_all(graphs): + """Returns a new graph that contains only the nodes and the edges that exist in + all graphs. + + Parameters + ---------- + graphs : iterable + Iterable of NetworkX graphs + + Returns + ------- + R : A new graph with the same type as the first graph in list + + Raises + ------ + ValueError + If `graphs` is an empty list. + + NetworkXError + In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs. + + Notes + ----- + For operating on mixed type graphs, they should be converted to the same type. + + Attributes from the graph, nodes, and edges are not copied to the new + graph. + + The resulting graph can be updated with attributes if desired. For example, code which adds the minimum attribute for each node across all graphs could work. + >>> g = nx.Graph() + >>> g.add_node(0, capacity=4) + >>> g.add_node(1, capacity=3) + >>> g.add_edge(0, 1) + + >>> h = g.copy() + >>> h.nodes[0]["capacity"] = 2 + + >>> gh = nx.intersection_all([g, h]) + + >>> new_node_attr = {n: min(*(anyG.nodes[n].get('capacity', float('inf')) for anyG in [g, h])) for n in gh} + >>> nx.set_node_attributes(gh, new_node_attr, 'new_capacity') + >>> gh.nodes(data=True) + NodeDataView({0: {'new_capacity': 2}, 1: {'new_capacity': 3}}) + + Examples + -------- + >>> G1 = nx.Graph([(1, 2), (2, 3)]) + >>> G2 = nx.Graph([(2, 3), (3, 4)]) + >>> R = nx.intersection_all([G1, G2]) + >>> list(R.nodes()) + [2, 3] + >>> list(R.edges()) + [(2, 3)] + + """ + R = None + + for i, G in enumerate(graphs): + G_nodes_set = set(G.nodes) + G_edges_set = set(G.edges) + if not G.is_directed(): + if G.is_multigraph(): + G_edges_set.update((v, u, k) for u, v, k in list(G_edges_set)) + else: + G_edges_set.update((v, u) for u, v in list(G_edges_set)) + if i == 0: + # create new graph + R = G.__class__() + node_intersection = G_nodes_set + edge_intersection = G_edges_set + elif G.is_directed() != R.is_directed(): + raise nx.NetworkXError("All graphs must be directed or undirected.") + elif G.is_multigraph() != R.is_multigraph(): + raise nx.NetworkXError("All graphs must be graphs or multigraphs.") + else: + node_intersection &= G_nodes_set + edge_intersection &= G_edges_set + + if R is None: + raise ValueError("cannot apply intersection_all to an empty list") + + R.add_nodes_from(node_intersection) + R.add_edges_from(edge_intersection) + + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/binary.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/binary.py new file mode 100644 index 0000000000000000000000000000000000000000..1979e80b68aa246d919688146a91dcbe5ab84b90 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/binary.py @@ -0,0 +1,444 @@ +""" +Operations on graphs including union, intersection, difference. +""" +import networkx as nx + +__all__ = [ + "union", + "compose", + "disjoint_union", + "intersection", + "difference", + "symmetric_difference", + "full_join", +] +_G_H = {"G": 0, "H": 1} + + +@nx._dispatch(graphs=_G_H, preserve_all_attrs=True) +def union(G, H, rename=()): + """Combine graphs G and H. The names of nodes must be unique. + + A name collision between the graphs will raise an exception. + + A renaming facility is provided to avoid name collisions. + + + Parameters + ---------- + G, H : graph + A NetworkX graph + + rename : iterable , optional + Node names of G and H can be changed by specifying the tuple + rename=('G-','H-') (for example). Node "u" in G is then renamed + "G-u" and "v" in H is renamed "H-v". + + Returns + ------- + U : A union graph with the same type as G. + + See Also + -------- + compose + :func:`~networkx.Graph.update` + disjoint_union + + Notes + ----- + To combine graphs that have common nodes, consider compose(G, H) + or the method, Graph.update(). + + disjoint_union() is similar to union() except that it avoids name clashes + by relabeling the nodes with sequential integers. + + Edge and node attributes are propagated from G and H to the union graph. + Graph attributes are also propagated, but if they are present in both G and H, + then the value from H is used. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)]) + >>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)]) + >>> U = nx.union(G, H, rename=("G", "H")) + >>> U.nodes + NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2')) + >>> U.edges + EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')]) + + + """ + return nx.union_all([G, H], rename) + + +@nx._dispatch(graphs=_G_H, preserve_all_attrs=True) +def disjoint_union(G, H): + """Combine graphs G and H. The nodes are assumed to be unique (disjoint). + + This algorithm automatically relabels nodes to avoid name collisions. + + Parameters + ---------- + G,H : graph + A NetworkX graph + + Returns + ------- + U : A union graph with the same type as G. + + See Also + -------- + union + compose + :func:`~networkx.Graph.update` + + Notes + ----- + A new graph is created, of the same class as G. It is recommended + that G and H be either both directed or both undirected. + + The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are + relabeled len(G) to len(G)+len(H)-1. + + Renumbering forces G and H to be disjoint, so no exception is ever raised for a name collision. + To preserve the check for common nodes, use union(). + + Edge and node attributes are propagated from G and H to the union graph. + Graph attributes are also propagated, but if they are present in both G and H, + then the value from H is used. + + To combine graphs that have common nodes, consider compose(G, H) + or the method, Graph.update(). + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)]) + >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)]) + >>> G.nodes[0]["key1"] = 5 + >>> H.nodes[0]["key2"] = 10 + >>> U = nx.disjoint_union(G, H) + >>> U.nodes(data=True) + NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}}) + >>> U.edges + EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)]) + """ + return nx.disjoint_union_all([G, H]) + + +@nx._dispatch(graphs=_G_H) +def intersection(G, H): + """Returns a new graph that contains only the nodes and the edges that exist in + both G and H. + + Parameters + ---------- + G,H : graph + A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs. + + Raises + ------ + NetworkXError + If one is a MultiGraph and the other one is a graph. + + Returns + ------- + GH : A new graph with the same type as G. + + Notes + ----- + Attributes from the graph, nodes, and edges are not copied to the new + graph. If you want a new graph of the intersection of G and H + with the attributes (including edge data) from G use remove_nodes_from() + as follows + + >>> G = nx.path_graph(3) + >>> H = nx.path_graph(5) + >>> R = G.copy() + >>> R.remove_nodes_from(n for n in G if n not in H) + >>> R.remove_edges_from(e for e in G.edges if e not in H.edges) + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)]) + >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)]) + >>> R = nx.intersection(G, H) + >>> R.nodes + NodeView((0, 1, 2)) + >>> R.edges + EdgeView([(1, 2)]) + """ + return nx.intersection_all([G, H]) + + +@nx._dispatch(graphs=_G_H) +def difference(G, H): + """Returns a new graph that contains the edges that exist in G but not in H. + + The node sets of H and G must be the same. + + Parameters + ---------- + G,H : graph + A NetworkX graph. G and H must have the same node sets. + + Returns + ------- + D : A new graph with the same type as G. + + Notes + ----- + Attributes from the graph, nodes, and edges are not copied to the new + graph. If you want a new graph of the difference of G and H with + the attributes (including edge data) from G use remove_nodes_from() + as follows: + + >>> G = nx.path_graph(3) + >>> H = nx.path_graph(5) + >>> R = G.copy() + >>> R.remove_nodes_from(n for n in G if n in H) + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)]) + >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)]) + >>> R = nx.difference(G, H) + >>> R.nodes + NodeView((0, 1, 2, 3)) + >>> R.edges + EdgeView([(0, 2), (1, 3)]) + """ + # create new graph + if not G.is_multigraph() == H.is_multigraph(): + raise nx.NetworkXError("G and H must both be graphs or multigraphs.") + R = nx.create_empty_copy(G) + + if set(G) != set(H): + raise nx.NetworkXError("Node sets of graphs not equal") + + if G.is_multigraph(): + edges = G.edges(keys=True) + else: + edges = G.edges() + for e in edges: + if not H.has_edge(*e): + R.add_edge(*e) + return R + + +@nx._dispatch(graphs=_G_H) +def symmetric_difference(G, H): + """Returns new graph with edges that exist in either G or H but not both. + + The node sets of H and G must be the same. + + Parameters + ---------- + G,H : graph + A NetworkX graph. G and H must have the same node sets. + + Returns + ------- + D : A new graph with the same type as G. + + Notes + ----- + Attributes from the graph, nodes, and edges are not copied to the new + graph. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)]) + >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)]) + >>> R = nx.symmetric_difference(G, H) + >>> R.nodes + NodeView((0, 1, 2, 3)) + >>> R.edges + EdgeView([(0, 2), (0, 3), (1, 3)]) + """ + # create new graph + if not G.is_multigraph() == H.is_multigraph(): + raise nx.NetworkXError("G and H must both be graphs or multigraphs.") + R = nx.create_empty_copy(G) + + if set(G) != set(H): + raise nx.NetworkXError("Node sets of graphs not equal") + + gnodes = set(G) # set of nodes in G + hnodes = set(H) # set of nodes in H + nodes = gnodes.symmetric_difference(hnodes) + R.add_nodes_from(nodes) + + if G.is_multigraph(): + edges = G.edges(keys=True) + else: + edges = G.edges() + # we could copy the data here but then this function doesn't + # match intersection and difference + for e in edges: + if not H.has_edge(*e): + R.add_edge(*e) + + if H.is_multigraph(): + edges = H.edges(keys=True) + else: + edges = H.edges() + for e in edges: + if not G.has_edge(*e): + R.add_edge(*e) + return R + + +@nx._dispatch(graphs=_G_H, preserve_all_attrs=True) +def compose(G, H): + """Compose graph G with H by combining nodes and edges into a single graph. + + The node sets and edges sets do not need to be disjoint. + + Composing preserves the attributes of nodes and edges. + Attribute values from H take precedent over attribute values from G. + + Parameters + ---------- + G, H : graph + A NetworkX graph + + Returns + ------- + C: A new graph with the same type as G + + See Also + -------- + :func:`~networkx.Graph.update` + union + disjoint_union + + Notes + ----- + It is recommended that G and H be either both directed or both undirected. + + For MultiGraphs, the edges are identified by incident nodes AND edge-key. + This can cause surprises (i.e., edge `(1, 2)` may or may not be the same + in two graphs) if you use MultiGraph without keeping track of edge keys. + + If combining the attributes of common nodes is not desired, consider union(), + which raises an exception for name collisions. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2)]) + >>> H = nx.Graph([(0, 1), (1, 2)]) + >>> R = nx.compose(G, H) + >>> R.nodes + NodeView((0, 1, 2)) + >>> R.edges + EdgeView([(0, 1), (0, 2), (1, 2)]) + + By default, the attributes from `H` take precedent over attributes from `G`. + If you prefer another way of combining attributes, you can update them after the compose operation: + + >>> G = nx.Graph([(0, 1, {'weight': 2.0}), (3, 0, {'weight': 100.0})]) + >>> H = nx.Graph([(0, 1, {'weight': 10.0}), (1, 2, {'weight': -1.0})]) + >>> nx.set_node_attributes(G, {0: 'dark', 1: 'light', 3: 'black'}, name='color') + >>> nx.set_node_attributes(H, {0: 'green', 1: 'orange', 2: 'yellow'}, name='color') + >>> GcomposeH = nx.compose(G, H) + + Normally, color attribute values of nodes of GcomposeH come from H. We can workaround this as follows: + + >>> node_data = {n: G.nodes[n]['color'] + " " + H.nodes[n]['color'] for n in G.nodes & H.nodes} + >>> nx.set_node_attributes(GcomposeH, node_data, 'color') + >>> print(GcomposeH.nodes[0]['color']) + dark green + + >>> print(GcomposeH.nodes[3]['color']) + black + + Similarly, we can update edge attributes after the compose operation in a way we prefer: + + >>> edge_data = {e: G.edges[e]['weight'] * H.edges[e]['weight'] for e in G.edges & H.edges} + >>> nx.set_edge_attributes(GcomposeH, edge_data, 'weight') + >>> print(GcomposeH.edges[(0, 1)]['weight']) + 20.0 + + >>> print(GcomposeH.edges[(3, 0)]['weight']) + 100.0 + """ + return nx.compose_all([G, H]) + + +@nx._dispatch(graphs=_G_H, preserve_all_attrs=True) +def full_join(G, H, rename=(None, None)): + """Returns the full join of graphs G and H. + + Full join is the union of G and H in which all edges between + G and H are added. + The node sets of G and H must be disjoint, + otherwise an exception is raised. + + Parameters + ---------- + G, H : graph + A NetworkX graph + + rename : tuple , default=(None, None) + Node names of G and H can be changed by specifying the tuple + rename=('G-','H-') (for example). Node "u" in G is then renamed + "G-u" and "v" in H is renamed "H-v". + + Returns + ------- + U : The full join graph with the same type as G. + + Notes + ----- + It is recommended that G and H be either both directed or both undirected. + + If G is directed, then edges from G to H are added as well as from H to G. + + Note that full_join() does not produce parallel edges for MultiGraphs. + + The full join operation of graphs G and H is the same as getting + their complement, performing a disjoint union, and finally getting + the complement of the resulting graph. + + Graph, edge, and node attributes are propagated from G and H + to the union graph. If a graph attribute is present in both + G and H the value from H is used. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2)]) + >>> H = nx.Graph([(3, 4)]) + >>> R = nx.full_join(G, H, rename=("G", "H")) + >>> R.nodes + NodeView(('G0', 'G1', 'G2', 'H3', 'H4')) + >>> R.edges + EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')]) + + See Also + -------- + union + disjoint_union + """ + R = union(G, H, rename) + + def add_prefix(graph, prefix): + if prefix is None: + return graph + + def label(x): + return f"{prefix}{x}" + + return nx.relabel_nodes(graph, label) + + G = add_prefix(G, rename[0]) + H = add_prefix(H, rename[1]) + + for i in G: + for j in H: + R.add_edge(i, j) + if R.is_directed(): + for i in H: + for j in G: + R.add_edge(i, j) + + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/product.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/product.py new file mode 100644 index 0000000000000000000000000000000000000000..639cec3908560cbdf7993541025d0567e16e48ae --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/product.py @@ -0,0 +1,534 @@ +""" +Graph products. +""" +from itertools import product + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = [ + "tensor_product", + "cartesian_product", + "lexicographic_product", + "strong_product", + "power", + "rooted_product", + "corona_product", +] +_G_H = {"G": 0, "H": 1} + + +def _dict_product(d1, d2): + return {k: (d1.get(k), d2.get(k)) for k in set(d1) | set(d2)} + + +# Generators for producing graph products +def _node_product(G, H): + for u, v in product(G, H): + yield ((u, v), _dict_product(G.nodes[u], H.nodes[v])) + + +def _directed_edges_cross_edges(G, H): + if not G.is_multigraph() and not H.is_multigraph(): + for u, v, c in G.edges(data=True): + for x, y, d in H.edges(data=True): + yield (u, x), (v, y), _dict_product(c, d) + if not G.is_multigraph() and H.is_multigraph(): + for u, v, c in G.edges(data=True): + for x, y, k, d in H.edges(data=True, keys=True): + yield (u, x), (v, y), k, _dict_product(c, d) + if G.is_multigraph() and not H.is_multigraph(): + for u, v, k, c in G.edges(data=True, keys=True): + for x, y, d in H.edges(data=True): + yield (u, x), (v, y), k, _dict_product(c, d) + if G.is_multigraph() and H.is_multigraph(): + for u, v, j, c in G.edges(data=True, keys=True): + for x, y, k, d in H.edges(data=True, keys=True): + yield (u, x), (v, y), (j, k), _dict_product(c, d) + + +def _undirected_edges_cross_edges(G, H): + if not G.is_multigraph() and not H.is_multigraph(): + for u, v, c in G.edges(data=True): + for x, y, d in H.edges(data=True): + yield (v, x), (u, y), _dict_product(c, d) + if not G.is_multigraph() and H.is_multigraph(): + for u, v, c in G.edges(data=True): + for x, y, k, d in H.edges(data=True, keys=True): + yield (v, x), (u, y), k, _dict_product(c, d) + if G.is_multigraph() and not H.is_multigraph(): + for u, v, k, c in G.edges(data=True, keys=True): + for x, y, d in H.edges(data=True): + yield (v, x), (u, y), k, _dict_product(c, d) + if G.is_multigraph() and H.is_multigraph(): + for u, v, j, c in G.edges(data=True, keys=True): + for x, y, k, d in H.edges(data=True, keys=True): + yield (v, x), (u, y), (j, k), _dict_product(c, d) + + +def _edges_cross_nodes(G, H): + if G.is_multigraph(): + for u, v, k, d in G.edges(data=True, keys=True): + for x in H: + yield (u, x), (v, x), k, d + else: + for u, v, d in G.edges(data=True): + for x in H: + if H.is_multigraph(): + yield (u, x), (v, x), None, d + else: + yield (u, x), (v, x), d + + +def _nodes_cross_edges(G, H): + if H.is_multigraph(): + for x in G: + for u, v, k, d in H.edges(data=True, keys=True): + yield (x, u), (x, v), k, d + else: + for x in G: + for u, v, d in H.edges(data=True): + if G.is_multigraph(): + yield (x, u), (x, v), None, d + else: + yield (x, u), (x, v), d + + +def _edges_cross_nodes_and_nodes(G, H): + if G.is_multigraph(): + for u, v, k, d in G.edges(data=True, keys=True): + for x in H: + for y in H: + yield (u, x), (v, y), k, d + else: + for u, v, d in G.edges(data=True): + for x in H: + for y in H: + if H.is_multigraph(): + yield (u, x), (v, y), None, d + else: + yield (u, x), (v, y), d + + +def _init_product_graph(G, H): + if G.is_directed() != H.is_directed(): + msg = "G and H must be both directed or both undirected" + raise nx.NetworkXError(msg) + if G.is_multigraph() or H.is_multigraph(): + GH = nx.MultiGraph() + else: + GH = nx.Graph() + if G.is_directed(): + GH = GH.to_directed() + return GH + + +@nx._dispatch(graphs=_G_H) +def tensor_product(G, H): + r"""Returns the tensor product of G and H. + + The tensor product $P$ of the graphs $G$ and $H$ has a node set that + is the tensor product of the node sets, $V(P)=V(G) \times V(H)$. + $P$ has an edge $((u,v), (x,y))$ if and only if $(u,x)$ is an edge in $G$ + and $(v,y)$ is an edge in $H$. + + Tensor product is sometimes also referred to as the categorical product, + direct product, cardinal product or conjunction. + + + Parameters + ---------- + G, H: graphs + Networkx graphs. + + Returns + ------- + P: NetworkX graph + The tensor product of G and H. P will be a multi-graph if either G + or H is a multi-graph, will be a directed if G and H are directed, + and undirected if G and H are undirected. + + Raises + ------ + NetworkXError + If G and H are not both directed or both undirected. + + Notes + ----- + Node attributes in P are two-tuple of the G and H node attributes. + Missing attributes are assigned None. + + Examples + -------- + >>> G = nx.Graph() + >>> H = nx.Graph() + >>> G.add_node(0, a1=True) + >>> H.add_node("a", a2="Spam") + >>> P = nx.tensor_product(G, H) + >>> list(P) + [(0, 'a')] + + Edge attributes and edge keys (for multigraphs) are also copied to the + new product graph + """ + GH = _init_product_graph(G, H) + GH.add_nodes_from(_node_product(G, H)) + GH.add_edges_from(_directed_edges_cross_edges(G, H)) + if not GH.is_directed(): + GH.add_edges_from(_undirected_edges_cross_edges(G, H)) + return GH + + +@nx._dispatch(graphs=_G_H) +def cartesian_product(G, H): + r"""Returns the Cartesian product of G and H. + + The Cartesian product $P$ of the graphs $G$ and $H$ has a node set that + is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$. + $P$ has an edge $((u,v),(x,y))$ if and only if either $u$ is equal to $x$ + and both $v$ and $y$ are adjacent in $H$ or if $v$ is equal to $y$ and + both $u$ and $x$ are adjacent in $G$. + + Parameters + ---------- + G, H: graphs + Networkx graphs. + + Returns + ------- + P: NetworkX graph + The Cartesian product of G and H. P will be a multi-graph if either G + or H is a multi-graph. Will be a directed if G and H are directed, + and undirected if G and H are undirected. + + Raises + ------ + NetworkXError + If G and H are not both directed or both undirected. + + Notes + ----- + Node attributes in P are two-tuple of the G and H node attributes. + Missing attributes are assigned None. + + Examples + -------- + >>> G = nx.Graph() + >>> H = nx.Graph() + >>> G.add_node(0, a1=True) + >>> H.add_node("a", a2="Spam") + >>> P = nx.cartesian_product(G, H) + >>> list(P) + [(0, 'a')] + + Edge attributes and edge keys (for multigraphs) are also copied to the + new product graph + """ + GH = _init_product_graph(G, H) + GH.add_nodes_from(_node_product(G, H)) + GH.add_edges_from(_edges_cross_nodes(G, H)) + GH.add_edges_from(_nodes_cross_edges(G, H)) + return GH + + +@nx._dispatch(graphs=_G_H) +def lexicographic_product(G, H): + r"""Returns the lexicographic product of G and H. + + The lexicographical product $P$ of the graphs $G$ and $H$ has a node set + that is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$. + $P$ has an edge $((u,v), (x,y))$ if and only if $(u,v)$ is an edge in $G$ + or $u==v$ and $(x,y)$ is an edge in $H$. + + Parameters + ---------- + G, H: graphs + Networkx graphs. + + Returns + ------- + P: NetworkX graph + The Cartesian product of G and H. P will be a multi-graph if either G + or H is a multi-graph. Will be a directed if G and H are directed, + and undirected if G and H are undirected. + + Raises + ------ + NetworkXError + If G and H are not both directed or both undirected. + + Notes + ----- + Node attributes in P are two-tuple of the G and H node attributes. + Missing attributes are assigned None. + + Examples + -------- + >>> G = nx.Graph() + >>> H = nx.Graph() + >>> G.add_node(0, a1=True) + >>> H.add_node("a", a2="Spam") + >>> P = nx.lexicographic_product(G, H) + >>> list(P) + [(0, 'a')] + + Edge attributes and edge keys (for multigraphs) are also copied to the + new product graph + """ + GH = _init_product_graph(G, H) + GH.add_nodes_from(_node_product(G, H)) + # Edges in G regardless of H designation + GH.add_edges_from(_edges_cross_nodes_and_nodes(G, H)) + # For each x in G, only if there is an edge in H + GH.add_edges_from(_nodes_cross_edges(G, H)) + return GH + + +@nx._dispatch(graphs=_G_H) +def strong_product(G, H): + r"""Returns the strong product of G and H. + + The strong product $P$ of the graphs $G$ and $H$ has a node set that + is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$. + $P$ has an edge $((u,v), (x,y))$ if and only if + $u==v$ and $(x,y)$ is an edge in $H$, or + $x==y$ and $(u,v)$ is an edge in $G$, or + $(u,v)$ is an edge in $G$ and $(x,y)$ is an edge in $H$. + + Parameters + ---------- + G, H: graphs + Networkx graphs. + + Returns + ------- + P: NetworkX graph + The Cartesian product of G and H. P will be a multi-graph if either G + or H is a multi-graph. Will be a directed if G and H are directed, + and undirected if G and H are undirected. + + Raises + ------ + NetworkXError + If G and H are not both directed or both undirected. + + Notes + ----- + Node attributes in P are two-tuple of the G and H node attributes. + Missing attributes are assigned None. + + Examples + -------- + >>> G = nx.Graph() + >>> H = nx.Graph() + >>> G.add_node(0, a1=True) + >>> H.add_node("a", a2="Spam") + >>> P = nx.strong_product(G, H) + >>> list(P) + [(0, 'a')] + + Edge attributes and edge keys (for multigraphs) are also copied to the + new product graph + """ + GH = _init_product_graph(G, H) + GH.add_nodes_from(_node_product(G, H)) + GH.add_edges_from(_nodes_cross_edges(G, H)) + GH.add_edges_from(_edges_cross_nodes(G, H)) + GH.add_edges_from(_directed_edges_cross_edges(G, H)) + if not GH.is_directed(): + GH.add_edges_from(_undirected_edges_cross_edges(G, H)) + return GH + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch +def power(G, k): + """Returns the specified power of a graph. + + The $k$th power of a simple graph $G$, denoted $G^k$, is a + graph on the same set of nodes in which two distinct nodes $u$ and + $v$ are adjacent in $G^k$ if and only if the shortest path + distance between $u$ and $v$ in $G$ is at most $k$. + + Parameters + ---------- + G : graph + A NetworkX simple graph object. + + k : positive integer + The power to which to raise the graph `G`. + + Returns + ------- + NetworkX simple graph + `G` to the power `k`. + + Raises + ------ + ValueError + If the exponent `k` is not positive. + + NetworkXNotImplemented + If `G` is not a simple graph. + + Examples + -------- + The number of edges will never decrease when taking successive + powers: + + >>> G = nx.path_graph(4) + >>> list(nx.power(G, 2).edges) + [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] + >>> list(nx.power(G, 3).edges) + [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)] + + The `k` th power of a cycle graph on *n* nodes is the complete graph + on *n* nodes, if `k` is at least ``n // 2``: + + >>> G = nx.cycle_graph(5) + >>> H = nx.complete_graph(5) + >>> nx.is_isomorphic(nx.power(G, 2), H) + True + >>> G = nx.cycle_graph(8) + >>> H = nx.complete_graph(8) + >>> nx.is_isomorphic(nx.power(G, 4), H) + True + + References + ---------- + .. [1] J. A. Bondy, U. S. R. Murty, *Graph Theory*. Springer, 2008. + + Notes + ----- + This definition of "power graph" comes from Exercise 3.1.6 of + *Graph Theory* by Bondy and Murty [1]_. + + """ + if k <= 0: + raise ValueError("k must be a positive integer") + H = nx.Graph() + H.add_nodes_from(G) + # update BFS code to ignore self loops. + for n in G: + seen = {} # level (number of hops) when seen in BFS + level = 1 # the current level + nextlevel = G[n] + while nextlevel: + thislevel = nextlevel # advance to next level + nextlevel = {} # and start a new list (fringe) + for v in thislevel: + if v == n: # avoid self loop + continue + if v not in seen: + seen[v] = level # set the level of vertex v + nextlevel.update(G[v]) # add neighbors of v + if k <= level: + break + level += 1 + H.add_edges_from((n, nbr) for nbr in seen) + return H + + +@not_implemented_for("multigraph") +@nx._dispatch(graphs=_G_H) +def rooted_product(G, H, root): + """Return the rooted product of graphs G and H rooted at root in H. + + A new graph is constructed representing the rooted product of + the inputted graphs, G and H, with a root in H. + A rooted product duplicates H for each nodes in G with the root + of H corresponding to the node in G. Nodes are renamed as the direct + product of G and H. The result is a subgraph of the cartesian product. + + Parameters + ---------- + G,H : graph + A NetworkX graph + root : node + A node in H + + Returns + ------- + R : The rooted product of G and H with a specified root in H + + Notes + ----- + The nodes of R are the Cartesian Product of the nodes of G and H. + The nodes of G and H are not relabeled. + """ + if root not in H: + raise nx.NetworkXError("root must be a vertex in H") + + R = nx.Graph() + R.add_nodes_from(product(G, H)) + + R.add_edges_from(((e[0], root), (e[1], root)) for e in G.edges()) + R.add_edges_from(((g, e[0]), (g, e[1])) for g in G for e in H.edges()) + + return R + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatch(graphs=_G_H) +def corona_product(G, H): + r"""Returns the Corona product of G and H. + + The corona product of $G$ and $H$ is the graph $C = G \circ H$ obtained by + taking one copy of $G$, called the center graph, $|V(G)|$ copies of $H$, + called the outer graph, and making the $i$-th vertex of $G$ adjacent to + every vertex of the $i$-th copy of $H$, where $1 ≤ i ≤ |V(G)|$. + + Parameters + ---------- + G, H: NetworkX graphs + The graphs to take the carona product of. + `G` is the center graph and `H` is the outer graph + + Returns + ------- + C: NetworkX graph + The Corona product of G and H. + + Raises + ------ + NetworkXError + If G and H are not both directed or both undirected. + + Examples + -------- + >>> G = nx.cycle_graph(4) + >>> H = nx.path_graph(2) + >>> C = nx.corona_product(G, H) + >>> list(C) + [0, 1, 2, 3, (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)] + >>> print(C) + Graph with 12 nodes and 16 edges + + References + ---------- + [1] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi, + "Studying the corona product of graphs under some graph invariants," + Transactions on Combinatorics, vol. 3, no. 3, pp. 43–49, Sep. 2014, + doi: 10.22108/toc.2014.5542. + [2] A. Faraji, "Corona Product in Graph Theory," Ali Faraji, May 11, 2021. + https://blog.alifaraji.ir/math/graph-theory/corona-product.html (accessed Dec. 07, 2021). + """ + GH = _init_product_graph(G, H) + GH.add_nodes_from(G) + GH.add_edges_from(G.edges) + + for G_node in G: + # copy nodes of H in GH, call it H_i + GH.add_nodes_from((G_node, v) for v in H) + + # copy edges of H_i based on H + GH.add_edges_from( + ((G_node, e0), (G_node, e1), d) for e0, e1, d in H.edges.data() + ) + + # creating new edges between H_i and a G's node + GH.add_edges_from((G_node, (G_node, H_node)) for H_node in H) + + return GH diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40d233165813427d81d38721dd9f20457ea2242c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..04b4fb52bd41b04202647f898e81b522cde9b7d9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..634e7c2c1a626cf150a43408f1cb94a87c88d79b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d7ccf8996d2ad45d07e482e55ebeab1c88e08411 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c3092a667f33f3209ba9752e7a20fa13be0b106 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_all.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_all.py new file mode 100644 index 0000000000000000000000000000000000000000..8ec29c150306080d536c1b1dc785209d4a113f6d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_all.py @@ -0,0 +1,328 @@ +import pytest + +import networkx as nx +from networkx.utils import edges_equal + + +def test_union_all_attributes(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + + j = g.copy() + j.graph["name"] = "j" + j.graph["attr"] = "attr" + j.nodes[0]["x"] = 7 + + ghj = nx.union_all([g, h, j], rename=("g", "h", "j")) + assert set(ghj.nodes()) == {"h0", "h1", "g0", "g1", "j0", "j1"} + for n in ghj: + graph, node = n + assert ghj.nodes[n] == eval(graph).nodes[int(node)] + + assert ghj.graph["attr"] == "attr" + assert ghj.graph["name"] == "j" # j graph attributes take precedent + + +def test_intersection_all(): + G = nx.Graph() + H = nx.Graph() + R = nx.Graph(awesome=True) + G.add_nodes_from([1, 2, 3, 4]) + G.add_edge(1, 2) + G.add_edge(2, 3) + H.add_nodes_from([1, 2, 3, 4]) + H.add_edge(2, 3) + H.add_edge(3, 4) + R.add_nodes_from([1, 2, 3, 4]) + R.add_edge(2, 3) + R.add_edge(4, 1) + I = nx.intersection_all([G, H, R]) + assert set(I.nodes()) == {1, 2, 3, 4} + assert sorted(I.edges()) == [(2, 3)] + assert I.graph == {} + + +def test_intersection_all_different_node_sets(): + G = nx.Graph() + H = nx.Graph() + R = nx.Graph() + G.add_nodes_from([1, 2, 3, 4, 6, 7]) + G.add_edge(1, 2) + G.add_edge(2, 3) + G.add_edge(6, 7) + H.add_nodes_from([1, 2, 3, 4]) + H.add_edge(2, 3) + H.add_edge(3, 4) + R.add_nodes_from([1, 2, 3, 4, 8, 9]) + R.add_edge(2, 3) + R.add_edge(4, 1) + R.add_edge(8, 9) + I = nx.intersection_all([G, H, R]) + assert set(I.nodes()) == {1, 2, 3, 4} + assert sorted(I.edges()) == [(2, 3)] + + +def test_intersection_all_attributes(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + + gh = nx.intersection_all([g, h]) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == sorted(g.edges()) + + +def test_intersection_all_attributes_different_node_sets(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + g.add_node(2) + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + + gh = nx.intersection_all([g, h]) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == sorted(g.edges()) + + +def test_intersection_all_multigraph_attributes(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=3) + gh = nx.intersection_all([g, h]) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [(0, 1)] + assert sorted(gh.edges(keys=True)) == [(0, 1, 0)] + + +def test_intersection_all_multigraph_attributes_different_node_sets(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + g.add_edge(1, 2, key=1) + g.add_edge(1, 2, key=2) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=2) + h.add_edge(0, 1, key=3) + gh = nx.intersection_all([g, h]) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [(0, 1), (0, 1)] + assert sorted(gh.edges(keys=True)) == [(0, 1, 0), (0, 1, 2)] + + +def test_intersection_all_digraph(): + g = nx.DiGraph() + g.add_edges_from([(1, 2), (2, 3)]) + h = nx.DiGraph() + h.add_edges_from([(2, 1), (2, 3)]) + gh = nx.intersection_all([g, h]) + assert sorted(gh.edges()) == [(2, 3)] + + +def test_union_all_and_compose_all(): + K3 = nx.complete_graph(3) + P3 = nx.path_graph(3) + + G1 = nx.DiGraph() + G1.add_edge("A", "B") + G1.add_edge("A", "C") + G1.add_edge("A", "D") + G2 = nx.DiGraph() + G2.add_edge("1", "2") + G2.add_edge("1", "3") + G2.add_edge("1", "4") + + G = nx.union_all([G1, G2]) + H = nx.compose_all([G1, G2]) + assert edges_equal(G.edges(), H.edges()) + assert not G.has_edge("A", "1") + pytest.raises(nx.NetworkXError, nx.union, K3, P3) + H1 = nx.union_all([H, G1], rename=("H", "G1")) + assert sorted(H1.nodes()) == [ + "G1A", + "G1B", + "G1C", + "G1D", + "H1", + "H2", + "H3", + "H4", + "HA", + "HB", + "HC", + "HD", + ] + + H2 = nx.union_all([H, G2], rename=("H", "")) + assert sorted(H2.nodes()) == [ + "1", + "2", + "3", + "4", + "H1", + "H2", + "H3", + "H4", + "HA", + "HB", + "HC", + "HD", + ] + + assert not H1.has_edge("NB", "NA") + + G = nx.compose_all([G, G]) + assert edges_equal(G.edges(), H.edges()) + + G2 = nx.union_all([G2, G2], rename=("", "copy")) + assert sorted(G2.nodes()) == [ + "1", + "2", + "3", + "4", + "copy1", + "copy2", + "copy3", + "copy4", + ] + + assert sorted(G2.neighbors("copy4")) == [] + assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"] + assert len(G) == 8 + assert nx.number_of_edges(G) == 6 + + E = nx.disjoint_union_all([G, G]) + assert len(E) == 16 + assert nx.number_of_edges(E) == 12 + + E = nx.disjoint_union_all([G1, G2]) + assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] + + G1 = nx.DiGraph() + G1.add_edge("A", "B") + G2 = nx.DiGraph() + G2.add_edge(1, 2) + G3 = nx.DiGraph() + G3.add_edge(11, 22) + G4 = nx.union_all([G1, G2, G3], rename=("G1", "G2", "G3")) + assert sorted(G4.nodes()) == ["G1A", "G1B", "G21", "G22", "G311", "G322"] + + +def test_union_all_multigraph(): + G = nx.MultiGraph() + G.add_edge(1, 2, key=0) + G.add_edge(1, 2, key=1) + H = nx.MultiGraph() + H.add_edge(3, 4, key=0) + H.add_edge(3, 4, key=1) + GH = nx.union_all([G, H]) + assert set(GH) == set(G) | set(H) + assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True)) + + +def test_input_output(): + l = [nx.Graph([(1, 2)]), nx.Graph([(3, 4)], awesome=True)] + U = nx.disjoint_union_all(l) + assert len(l) == 2 + assert U.graph["awesome"] + C = nx.compose_all(l) + assert len(l) == 2 + l = [nx.Graph([(1, 2)]), nx.Graph([(1, 2)])] + R = nx.intersection_all(l) + assert len(l) == 2 + + +def test_mixed_type_union(): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + H = nx.MultiGraph() + I = nx.Graph() + U = nx.union_all([G, H, I]) + with pytest.raises(nx.NetworkXError): + X = nx.Graph() + Y = nx.DiGraph() + XY = nx.union_all([X, Y]) + + +def test_mixed_type_disjoint_union(): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + H = nx.MultiGraph() + I = nx.Graph() + U = nx.disjoint_union_all([G, H, I]) + with pytest.raises(nx.NetworkXError): + X = nx.Graph() + Y = nx.DiGraph() + XY = nx.disjoint_union_all([X, Y]) + + +def test_mixed_type_intersection(): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + H = nx.MultiGraph() + I = nx.Graph() + U = nx.intersection_all([G, H, I]) + with pytest.raises(nx.NetworkXError): + X = nx.Graph() + Y = nx.DiGraph() + XY = nx.intersection_all([X, Y]) + + +def test_mixed_type_compose(): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + H = nx.MultiGraph() + I = nx.Graph() + U = nx.compose_all([G, H, I]) + with pytest.raises(nx.NetworkXError): + X = nx.Graph() + Y = nx.DiGraph() + XY = nx.compose_all([X, Y]) + + +def test_empty_union(): + with pytest.raises(ValueError): + nx.union_all([]) + + +def test_empty_disjoint_union(): + with pytest.raises(ValueError): + nx.disjoint_union_all([]) + + +def test_empty_compose_all(): + with pytest.raises(ValueError): + nx.compose_all([]) + + +def test_empty_intersection_all(): + with pytest.raises(ValueError): + nx.intersection_all([]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_binary.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_binary.py new file mode 100644 index 0000000000000000000000000000000000000000..97743822dd83fc45ac7c6ec9cb283e0c4d5ba723 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_binary.py @@ -0,0 +1,468 @@ +import os + +import pytest + +import networkx as nx +from networkx.classes.tests import dispatch_interface +from networkx.utils import edges_equal + + +def test_union_attributes(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + + gh = nx.union(g, h, rename=("g", "h")) + assert set(gh.nodes()) == {"h0", "h1", "g0", "g1"} + for n in gh: + graph, node = n + assert gh.nodes[n] == eval(graph).nodes[int(node)] + + assert gh.graph["attr"] == "attr" + assert gh.graph["name"] == "h" # h graph attributes take precedent + + +def test_intersection(): + G = nx.Graph() + H = nx.Graph() + G.add_nodes_from([1, 2, 3, 4]) + G.add_edge(1, 2) + G.add_edge(2, 3) + H.add_nodes_from([1, 2, 3, 4]) + H.add_edge(2, 3) + H.add_edge(3, 4) + I = nx.intersection(G, H) + assert set(I.nodes()) == {1, 2, 3, 4} + assert sorted(I.edges()) == [(2, 3)] + + ################## + # Tests for @nx._dispatch mechanism with multiple graph arguments + # nx.intersection is called as if it were a re-implementation + # from another package. + ################### + G2 = dispatch_interface.convert(G) + H2 = dispatch_interface.convert(H) + I2 = nx.intersection(G2, H2) + assert set(I2.nodes()) == {1, 2, 3, 4} + assert sorted(I2.edges()) == [(2, 3)] + # Only test if not performing auto convert testing of backend implementations + if not nx.utils.backends._dispatch._automatic_backends: + with pytest.raises(TypeError): + nx.intersection(G2, H) + with pytest.raises(TypeError): + nx.intersection(G, H2) + + +def test_intersection_node_sets_different(): + G = nx.Graph() + H = nx.Graph() + G.add_nodes_from([1, 2, 3, 4, 7]) + G.add_edge(1, 2) + G.add_edge(2, 3) + H.add_nodes_from([1, 2, 3, 4, 5, 6]) + H.add_edge(2, 3) + H.add_edge(3, 4) + H.add_edge(5, 6) + I = nx.intersection(G, H) + assert set(I.nodes()) == {1, 2, 3, 4} + assert sorted(I.edges()) == [(2, 3)] + + +def test_intersection_attributes(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + gh = nx.intersection(g, h) + + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == sorted(g.edges()) + + +def test_intersection_attributes_node_sets_different(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_node(2, x=3) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + h.remove_node(2) + + gh = nx.intersection(g, h) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == sorted(g.edges()) + + +def test_intersection_multigraph_attributes(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=3) + gh = nx.intersection(g, h) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [(0, 1)] + assert sorted(gh.edges(keys=True)) == [(0, 1, 0)] + + +def test_intersection_multigraph_attributes_node_set_different(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + g.add_edge(0, 2, key=2) + g.add_edge(0, 2, key=1) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=3) + gh = nx.intersection(g, h) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [(0, 1)] + assert sorted(gh.edges(keys=True)) == [(0, 1, 0)] + + +def test_difference(): + G = nx.Graph() + H = nx.Graph() + G.add_nodes_from([1, 2, 3, 4]) + G.add_edge(1, 2) + G.add_edge(2, 3) + H.add_nodes_from([1, 2, 3, 4]) + H.add_edge(2, 3) + H.add_edge(3, 4) + D = nx.difference(G, H) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [(1, 2)] + D = nx.difference(H, G) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [(3, 4)] + D = nx.symmetric_difference(G, H) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [(1, 2), (3, 4)] + + +def test_difference2(): + G = nx.Graph() + H = nx.Graph() + G.add_nodes_from([1, 2, 3, 4]) + H.add_nodes_from([1, 2, 3, 4]) + G.add_edge(1, 2) + H.add_edge(1, 2) + G.add_edge(2, 3) + D = nx.difference(G, H) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [(2, 3)] + D = nx.difference(H, G) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [] + H.add_edge(3, 4) + D = nx.difference(H, G) + assert set(D.nodes()) == {1, 2, 3, 4} + assert sorted(D.edges()) == [(3, 4)] + + +def test_difference_attributes(): + g = nx.Graph() + g.add_node(0, x=4) + g.add_node(1, x=5) + g.add_edge(0, 1, size=5) + g.graph["name"] = "g" + + h = g.copy() + h.graph["name"] = "h" + h.graph["attr"] = "attr" + h.nodes[0]["x"] = 7 + + gh = nx.difference(g, h) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [] + + +def test_difference_multigraph_attributes(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=3) + gh = nx.difference(g, h) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == [(0, 1), (0, 1)] + assert sorted(gh.edges(keys=True)) == [(0, 1, 1), (0, 1, 2)] + + +def test_difference_raise(): + G = nx.path_graph(4) + H = nx.path_graph(3) + pytest.raises(nx.NetworkXError, nx.difference, G, H) + pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H) + + +def test_symmetric_difference_multigraph(): + g = nx.MultiGraph() + g.add_edge(0, 1, key=0) + g.add_edge(0, 1, key=1) + g.add_edge(0, 1, key=2) + h = nx.MultiGraph() + h.add_edge(0, 1, key=0) + h.add_edge(0, 1, key=3) + gh = nx.symmetric_difference(g, h) + assert set(gh.nodes()) == set(g.nodes()) + assert set(gh.nodes()) == set(h.nodes()) + assert sorted(gh.edges()) == 3 * [(0, 1)] + assert sorted(sorted(e) for e in gh.edges(keys=True)) == [ + [0, 1, 1], + [0, 1, 2], + [0, 1, 3], + ] + + +def test_union_and_compose(): + K3 = nx.complete_graph(3) + P3 = nx.path_graph(3) + + G1 = nx.DiGraph() + G1.add_edge("A", "B") + G1.add_edge("A", "C") + G1.add_edge("A", "D") + G2 = nx.DiGraph() + G2.add_edge("1", "2") + G2.add_edge("1", "3") + G2.add_edge("1", "4") + + G = nx.union(G1, G2) + H = nx.compose(G1, G2) + assert edges_equal(G.edges(), H.edges()) + assert not G.has_edge("A", 1) + pytest.raises(nx.NetworkXError, nx.union, K3, P3) + H1 = nx.union(H, G1, rename=("H", "G1")) + assert sorted(H1.nodes()) == [ + "G1A", + "G1B", + "G1C", + "G1D", + "H1", + "H2", + "H3", + "H4", + "HA", + "HB", + "HC", + "HD", + ] + + H2 = nx.union(H, G2, rename=("H", "")) + assert sorted(H2.nodes()) == [ + "1", + "2", + "3", + "4", + "H1", + "H2", + "H3", + "H4", + "HA", + "HB", + "HC", + "HD", + ] + + assert not H1.has_edge("NB", "NA") + + G = nx.compose(G, G) + assert edges_equal(G.edges(), H.edges()) + + G2 = nx.union(G2, G2, rename=("", "copy")) + assert sorted(G2.nodes()) == [ + "1", + "2", + "3", + "4", + "copy1", + "copy2", + "copy3", + "copy4", + ] + + assert sorted(G2.neighbors("copy4")) == [] + assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"] + assert len(G) == 8 + assert nx.number_of_edges(G) == 6 + + E = nx.disjoint_union(G, G) + assert len(E) == 16 + assert nx.number_of_edges(E) == 12 + + E = nx.disjoint_union(G1, G2) + assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] + + G = nx.Graph() + H = nx.Graph() + G.add_nodes_from([(1, {"a1": 1})]) + H.add_nodes_from([(1, {"b1": 1})]) + R = nx.compose(G, H) + assert R.nodes == {1: {"a1": 1, "b1": 1}} + + +def test_union_multigraph(): + G = nx.MultiGraph() + G.add_edge(1, 2, key=0) + G.add_edge(1, 2, key=1) + H = nx.MultiGraph() + H.add_edge(3, 4, key=0) + H.add_edge(3, 4, key=1) + GH = nx.union(G, H) + assert set(GH) == set(G) | set(H) + assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True)) + + +def test_disjoint_union_multigraph(): + G = nx.MultiGraph() + G.add_edge(0, 1, key=0) + G.add_edge(0, 1, key=1) + H = nx.MultiGraph() + H.add_edge(2, 3, key=0) + H.add_edge(2, 3, key=1) + GH = nx.disjoint_union(G, H) + assert set(GH) == set(G) | set(H) + assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True)) + + +def test_compose_multigraph(): + G = nx.MultiGraph() + G.add_edge(1, 2, key=0) + G.add_edge(1, 2, key=1) + H = nx.MultiGraph() + H.add_edge(3, 4, key=0) + H.add_edge(3, 4, key=1) + GH = nx.compose(G, H) + assert set(GH) == set(G) | set(H) + assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True)) + H.add_edge(1, 2, key=2) + GH = nx.compose(G, H) + assert set(GH) == set(G) | set(H) + assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True)) + + +def test_full_join_graph(): + # Simple Graphs + G = nx.Graph() + G.add_node(0) + G.add_edge(1, 2) + H = nx.Graph() + H.add_edge(3, 4) + + U = nx.full_join(G, H) + assert set(U) == set(G) | set(H) + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) + + # Rename + U = nx.full_join(G, H, rename=("g", "h")) + assert set(U) == {"g0", "g1", "g2", "h3", "h4"} + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) + + # Rename graphs with string-like nodes + G = nx.Graph() + G.add_node("a") + G.add_edge("b", "c") + H = nx.Graph() + H.add_edge("d", "e") + + U = nx.full_join(G, H, rename=("g", "h")) + assert set(U) == {"ga", "gb", "gc", "hd", "he"} + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) + + # DiGraphs + G = nx.DiGraph() + G.add_node(0) + G.add_edge(1, 2) + H = nx.DiGraph() + H.add_edge(3, 4) + + U = nx.full_join(G, H) + assert set(U) == set(G) | set(H) + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 + + # DiGraphs Rename + U = nx.full_join(G, H, rename=("g", "h")) + assert set(U) == {"g0", "g1", "g2", "h3", "h4"} + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 + + +def test_full_join_multigraph(): + # MultiGraphs + G = nx.MultiGraph() + G.add_node(0) + G.add_edge(1, 2) + H = nx.MultiGraph() + H.add_edge(3, 4) + + U = nx.full_join(G, H) + assert set(U) == set(G) | set(H) + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) + + # MultiGraphs rename + U = nx.full_join(G, H, rename=("g", "h")) + assert set(U) == {"g0", "g1", "g2", "h3", "h4"} + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) + + # MultiDiGraphs + G = nx.MultiDiGraph() + G.add_node(0) + G.add_edge(1, 2) + H = nx.MultiDiGraph() + H.add_edge(3, 4) + + U = nx.full_join(G, H) + assert set(U) == set(G) | set(H) + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 + + # MultiDiGraphs rename + U = nx.full_join(G, H, rename=("g", "h")) + assert set(U) == {"g0", "g1", "g2", "h3", "h4"} + assert len(U) == len(G) + len(H) + assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 + + +def test_mixed_type_union(): + G = nx.Graph() + H = nx.MultiGraph() + pytest.raises(nx.NetworkXError, nx.union, G, H) + pytest.raises(nx.NetworkXError, nx.disjoint_union, G, H) + pytest.raises(nx.NetworkXError, nx.intersection, G, H) + pytest.raises(nx.NetworkXError, nx.difference, G, H) + pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H) + pytest.raises(nx.NetworkXError, nx.compose, G, H) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_product.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_product.py new file mode 100644 index 0000000000000000000000000000000000000000..50bc7b7e59e09b73e3091b99edfb5a9c06d115a2 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_product.py @@ -0,0 +1,435 @@ +import pytest + +import networkx as nx +from networkx.utils import edges_equal + + +def test_tensor_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.tensor_product(nx.DiGraph(), nx.Graph()) + + +def test_tensor_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.tensor_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.tensor_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_tensor_product_size(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + K5 = nx.complete_graph(5) + + G = nx.tensor_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_tensor_product_combinations(): + # basic smoke test, more realistic tests would be useful + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.tensor_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + G = nx.tensor_product(nx.DiGraph(P5), nx.DiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + +def test_tensor_product_classic_result(): + K2 = nx.complete_graph(2) + G = nx.petersen_graph() + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.desargues_graph()) + + G = nx.cycle_graph(5) + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.cycle_graph(10)) + + G = nx.tetrahedral_graph() + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.cubical_graph()) + + +def test_tensor_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.tensor_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if H.has_edge(u_H, v_H) and G.has_edge(u_G, v_G): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_cartesian_product_multigraph(): + G = nx.MultiGraph() + G.add_edge(1, 2, key=0) + G.add_edge(1, 2, key=1) + H = nx.MultiGraph() + H.add_edge(3, 4, key=0) + H.add_edge(3, 4, key=1) + GH = nx.cartesian_product(G, H) + assert set(GH) == {(1, 3), (2, 3), (2, 4), (1, 4)} + assert {(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)} == { + (frozenset([u, v]), k) + for u, v, k in [ + ((1, 3), (2, 3), 0), + ((1, 3), (2, 3), 1), + ((1, 3), (1, 4), 0), + ((1, 3), (1, 4), 1), + ((2, 3), (2, 4), 0), + ((2, 3), (2, 4), 1), + ((2, 4), (1, 4), 0), + ((2, 4), (1, 4), 1), + ] + } + + +def test_cartesian_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.cartesian_product(nx.DiGraph(), nx.Graph()) + + +def test_cartesian_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.cartesian_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.cartesian_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_cartesian_product_size(): + # order(GXH)=order(G)*order(H) + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.cartesian_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + assert nx.number_of_edges(G) == nx.number_of_edges(P5) * nx.number_of_nodes( + K3 + ) + nx.number_of_edges(K3) * nx.number_of_nodes(P5) + G = nx.cartesian_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + assert nx.number_of_edges(G) == nx.number_of_edges(K5) * nx.number_of_nodes( + K3 + ) + nx.number_of_edges(K3) * nx.number_of_nodes(K5) + + +def test_cartesian_product_classic(): + # test some classic product graphs + P2 = nx.path_graph(2) + P3 = nx.path_graph(3) + # cube = 2-path X 2-path + G = nx.cartesian_product(P2, P2) + G = nx.cartesian_product(P2, G) + assert nx.is_isomorphic(G, nx.cubical_graph()) + + # 3x3 grid + G = nx.cartesian_product(P3, P3) + assert nx.is_isomorphic(G, nx.grid_2d_graph(3, 3)) + + +def test_cartesian_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.cartesian_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if (u_G == v_G and H.has_edge(u_H, v_H)) or ( + u_H == v_H and G.has_edge(u_G, v_G) + ): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_lexicographic_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.lexicographic_product(nx.DiGraph(), nx.Graph()) + + +def test_lexicographic_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.lexicographic_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.lexicographic_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_lexicographic_product_size(): + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.lexicographic_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_lexicographic_product_combinations(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.lexicographic_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + # No classic easily found classic results for lexicographic product + + +def test_lexicographic_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.lexicographic_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if G.has_edge(u_G, v_G) or (u_G == v_G and H.has_edge(u_H, v_H)): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_strong_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.strong_product(nx.DiGraph(), nx.Graph()) + + +def test_strong_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.strong_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.strong_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_strong_product_size(): + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.strong_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_strong_product_combinations(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.strong_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + # No classic easily found classic results for strong product + + +def test_strong_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.strong_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if ( + (u_G == v_G and H.has_edge(u_H, v_H)) + or (u_H == v_H and G.has_edge(u_G, v_G)) + or (G.has_edge(u_G, v_G) and H.has_edge(u_H, v_H)) + ): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_graph_power_raises(): + with pytest.raises(nx.NetworkXNotImplemented): + nx.power(nx.MultiDiGraph(), 2) + + +def test_graph_power(): + # wikipedia example for graph power + G = nx.cycle_graph(7) + G.add_edge(6, 7) + G.add_edge(7, 8) + G.add_edge(8, 9) + G.add_edge(9, 2) + H = nx.power(G, 2) + + assert edges_equal( + list(H.edges()), + [ + (0, 1), + (0, 2), + (0, 5), + (0, 6), + (0, 7), + (1, 9), + (1, 2), + (1, 3), + (1, 6), + (2, 3), + (2, 4), + (2, 8), + (2, 9), + (3, 4), + (3, 5), + (3, 9), + (4, 5), + (4, 6), + (5, 6), + (5, 7), + (6, 7), + (6, 8), + (7, 8), + (7, 9), + (8, 9), + ], + ) + + +def test_graph_power_negative(): + with pytest.raises(ValueError): + nx.power(nx.Graph(), -1) + + +def test_rooted_product_raises(): + with pytest.raises(nx.NetworkXError): + nx.rooted_product(nx.Graph(), nx.path_graph(2), 10) + + +def test_rooted_product(): + G = nx.cycle_graph(5) + H = nx.Graph() + H.add_edges_from([("a", "b"), ("b", "c"), ("b", "d")]) + R = nx.rooted_product(G, H, "a") + assert len(R) == len(G) * len(H) + assert R.size() == G.size() + len(G) * H.size() + + +def test_corona_product(): + G = nx.cycle_graph(3) + H = nx.path_graph(2) + C = nx.corona_product(G, H) + assert len(C) == (len(G) * len(H)) + len(G) + assert C.size() == G.size() + len(G) * H.size() + len(G) * len(H) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_unary.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_unary.py new file mode 100644 index 0000000000000000000000000000000000000000..d68e55cd9c9fa37459b497c32a7a095576c306c3 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/tests/test_unary.py @@ -0,0 +1,55 @@ +import pytest + +import networkx as nx + + +def test_complement(): + null = nx.null_graph() + empty1 = nx.empty_graph(1) + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K5 = nx.complete_graph(5) + K10 = nx.complete_graph(10) + P2 = nx.path_graph(2) + P3 = nx.path_graph(3) + P5 = nx.path_graph(5) + P10 = nx.path_graph(10) + # complement of the complete graph is empty + + G = nx.complement(K3) + assert nx.is_isomorphic(G, nx.empty_graph(3)) + G = nx.complement(K5) + assert nx.is_isomorphic(G, nx.empty_graph(5)) + # for any G, G=complement(complement(G)) + P3cc = nx.complement(nx.complement(P3)) + assert nx.is_isomorphic(P3, P3cc) + nullcc = nx.complement(nx.complement(null)) + assert nx.is_isomorphic(null, nullcc) + b = nx.bull_graph() + bcc = nx.complement(nx.complement(b)) + assert nx.is_isomorphic(b, bcc) + + +def test_complement_2(): + G1 = nx.DiGraph() + G1.add_edge("A", "B") + G1.add_edge("A", "C") + G1.add_edge("A", "D") + G1C = nx.complement(G1) + assert sorted(G1C.edges()) == [ + ("B", "A"), + ("B", "C"), + ("B", "D"), + ("C", "A"), + ("C", "B"), + ("C", "D"), + ("D", "A"), + ("D", "B"), + ("D", "C"), + ] + + +def test_reverse1(): + # Other tests for reverse are done by the DiGraph and MultiDigraph. + G1 = nx.Graph() + pytest.raises(nx.NetworkXError, nx.reverse, G1) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/operators/unary.py b/phivenv/Lib/site-packages/networkx/algorithms/operators/unary.py new file mode 100644 index 0000000000000000000000000000000000000000..ce6d9be90575c362e19167f0fb8394b0555a7050 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/operators/unary.py @@ -0,0 +1,76 @@ +"""Unary operations on graphs""" +import networkx as nx + +__all__ = ["complement", "reverse"] + + +@nx._dispatch +def complement(G): + """Returns the graph complement of G. + + Parameters + ---------- + G : graph + A NetworkX graph + + Returns + ------- + GC : A new graph. + + Notes + ----- + Note that `complement` does not create self-loops and also + does not produce parallel edges for MultiGraphs. + + Graph, node, and edge data are not propagated to the new graph. + + Examples + -------- + >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)]) + >>> G_complement = nx.complement(G) + >>> G_complement.edges() # This shows the edges of the complemented graph + EdgeView([(1, 4), (1, 5), (2, 4), (2, 5), (4, 5)]) + + """ + R = G.__class__() + R.add_nodes_from(G) + R.add_edges_from( + ((n, n2) for n, nbrs in G.adjacency() for n2 in G if n2 not in nbrs if n != n2) + ) + return R + + +@nx._dispatch +def reverse(G, copy=True): + """Returns the reverse directed graph of G. + + Parameters + ---------- + G : directed graph + A NetworkX directed graph + copy : bool + If True, then a new graph is returned. If False, then the graph is + reversed in place. + + Returns + ------- + H : directed graph + The reversed G. + + Raises + ------ + NetworkXError + If graph is undirected. + + Examples + -------- + >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)]) + >>> G_reversed = nx.reverse(G) + >>> G_reversed.edges() + OutEdgeView([(2, 1), (3, 1), (3, 2), (4, 3), (5, 3)]) + + """ + if not G.is_directed(): + raise nx.NetworkXError("Cannot reverse an undirected graph.") + else: + return G.reverse(copy=copy) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..eb0d91cecc902f6390cb8309c017cb1558f7753f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__init__.py @@ -0,0 +1,5 @@ +from networkx.algorithms.shortest_paths.generic import * +from networkx.algorithms.shortest_paths.unweighted import * +from networkx.algorithms.shortest_paths.weighted import * +from networkx.algorithms.shortest_paths.astar import * +from networkx.algorithms.shortest_paths.dense import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c1c16a632d92b06761d7c0c9095a8346f71f482 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/astar.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/astar.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e6f1664917322dc1a648ea1f8c09bb404633850 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/astar.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/dense.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/dense.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9257f1e7547a851d30641df890960d5f1ae32da9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/dense.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/generic.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/generic.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a359383ad8868ec0533e23734083f16ece7ad27e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/generic.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/unweighted.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/unweighted.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c018cff32ce2a29b0414fdc5705e49c23fc15323 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/unweighted.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/weighted.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/weighted.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66959ebd7fcc2ca70f056d75f21291ce56cb5906 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/__pycache__/weighted.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/astar.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/astar.py new file mode 100644 index 0000000000000000000000000000000000000000..8f17a0c2a74b36f23baaac9310d14595dc353509 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/astar.py @@ -0,0 +1,214 @@ +"""Shortest paths and path lengths using the A* ("A star") algorithm. +""" +from heapq import heappop, heappush +from itertools import count + +import networkx as nx +from networkx.algorithms.shortest_paths.weighted import _weight_function + +__all__ = ["astar_path", "astar_path_length"] + + +@nx._dispatch(edge_attrs="weight", preserve_node_attrs="heuristic") +def astar_path(G, source, target, heuristic=None, weight="weight"): + """Returns a list of nodes in a shortest path between source and target + using the A* ("A-star") algorithm. + + There may be more than one shortest path. This returns only one. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path + + target : node + Ending node for path + + heuristic : function + A function to evaluate the estimate of the distance + from the a node to the target. The function takes + two nodes arguments and must return a number. + If the heuristic is inadmissible (if it might + overestimate the cost of reaching the goal from a node), + the result may not be a shortest path. + The algorithm does not support updating heuristic + values for the same node due to caching the first + heuristic calculation per node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Raises + ------ + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> print(nx.astar_path(G, 0, 4)) + [0, 1, 2, 3, 4] + >>> G = nx.grid_graph(dim=[3, 3]) # nodes are two-tuples (x,y) + >>> nx.set_edge_attributes(G, {e: e[1][0] * 2 for e in G.edges()}, "cost") + >>> def dist(a, b): + ... (x1, y1) = a + ... (x2, y2) = b + ... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 + >>> print(nx.astar_path(G, (0, 0), (2, 2), heuristic=dist, weight="cost")) + [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + See Also + -------- + shortest_path, dijkstra_path + + """ + if source not in G or target not in G: + msg = f"Either source {source} or target {target} is not in G" + raise nx.NodeNotFound(msg) + + if heuristic is None: + # The default heuristic is h=0 - same as Dijkstra's algorithm + def heuristic(u, v): + return 0 + + push = heappush + pop = heappop + weight = _weight_function(G, weight) + + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + + # The queue stores priority, node, cost to reach, and parent. + # Uses Python heapq to keep in priority order. + # Add a counter to the queue to prevent the underlying heap from + # attempting to compare the nodes themselves. The hash breaks ties in the + # priority and is guaranteed unique for all nodes in the graph. + c = count() + queue = [(0, next(c), source, 0, None)] + + # Maps enqueued nodes to distance of discovered paths and the + # computed heuristics to target. We avoid computing the heuristics + # more than once and inserting the node into the queue too many times. + enqueued = {} + # Maps explored nodes to parent closest to the source. + explored = {} + + while queue: + # Pop the smallest item from queue. + _, __, curnode, dist, parent = pop(queue) + + if curnode == target: + path = [curnode] + node = parent + while node is not None: + path.append(node) + node = explored[node] + path.reverse() + return path + + if curnode in explored: + # Do not override the parent of starting node + if explored[curnode] is None: + continue + + # Skip bad paths that were enqueued before finding a better one + qcost, h = enqueued[curnode] + if qcost < dist: + continue + + explored[curnode] = parent + + for neighbor, w in G_succ[curnode].items(): + cost = weight(curnode, neighbor, w) + if cost is None: + continue + ncost = dist + cost + if neighbor in enqueued: + qcost, h = enqueued[neighbor] + # if qcost <= ncost, a less costly path from the + # neighbor to the source was already determined. + # Therefore, we won't attempt to push this neighbor + # to the queue + if qcost <= ncost: + continue + else: + h = heuristic(neighbor, target) + enqueued[neighbor] = ncost, h + push(queue, (ncost + h, next(c), neighbor, ncost, curnode)) + + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") + + +@nx._dispatch(edge_attrs="weight", preserve_node_attrs="heuristic") +def astar_path_length(G, source, target, heuristic=None, weight="weight"): + """Returns the length of the shortest path between source and target using + the A* ("A-star") algorithm. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path + + target : node + Ending node for path + + heuristic : function + A function to evaluate the estimate of the distance + from the a node to the target. The function takes + two nodes arguments and must return a number. + If the heuristic is inadmissible (if it might + overestimate the cost of reaching the goal from a node), + the result may not be a shortest path. + The algorithm does not support updating heuristic + values for the same node due to caching the first + heuristic calculation per node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + Raises + ------ + NetworkXNoPath + If no path exists between source and target. + + See Also + -------- + astar_path + + """ + if source not in G or target not in G: + msg = f"Either source {source} or target {target} is not in G" + raise nx.NodeNotFound(msg) + + weight = _weight_function(G, weight) + path = astar_path(G, source, target, heuristic, weight) + return sum(weight(u, v, G[u][v]) for u, v in zip(path[:-1], path[1:])) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/dense.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/dense.py new file mode 100644 index 0000000000000000000000000000000000000000..08339b189dd68b5c7ae93af9308a4465558fc040 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/dense.py @@ -0,0 +1,256 @@ +"""Floyd-Warshall algorithm for shortest paths. +""" +import networkx as nx + +__all__ = [ + "floyd_warshall", + "floyd_warshall_predecessor_and_distance", + "reconstruct_path", + "floyd_warshall_numpy", +] + + +@nx._dispatch(edge_attrs="weight") +def floyd_warshall_numpy(G, nodelist=None, weight="weight"): + """Find all-pairs shortest path lengths using Floyd's algorithm. + + This algorithm for finding shortest paths takes advantage of + matrix representations of a graph and works well for dense + graphs where all-pairs shortest path lengths are desired. + The results are returned as a NumPy array, distance[i, j], + where i and j are the indexes of two nodes in nodelist. + The entry distance[i, j] is the distance along a shortest + path from i to j. If no path exists the distance is Inf. + + Parameters + ---------- + G : NetworkX graph + + nodelist : list, optional (default=G.nodes) + The rows and columns are ordered by the nodes in nodelist. + If nodelist is None then the ordering is produced by G.nodes. + Nodelist should include all nodes in G. + + weight: string, optional (default='weight') + Edge data key corresponding to the edge weight. + + Returns + ------- + distance : 2D numpy.ndarray + A numpy array of shortest path distances between nodes. + If there is no path between two nodes the value is Inf. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from([(0, 1, 5), (1, 2, 2), (2, 3, -3), (1, 3, 10), (3, 2, 8)]) + >>> nx.floyd_warshall_numpy(G) + array([[ 0., 5., 7., 4.], + [inf, 0., 2., -1.], + [inf, inf, 0., -3.], + [inf, inf, 8., 0.]]) + + Notes + ----- + Floyd's algorithm is appropriate for finding shortest paths in + dense graphs or graphs with negative weights when Dijkstra's + algorithm fails. This algorithm can still fail if there are negative + cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. + + Raises + ------ + NetworkXError + If nodelist is not a list of the nodes in G. + """ + import numpy as np + + if nodelist is not None: + if not (len(nodelist) == len(G) == len(set(nodelist))): + raise nx.NetworkXError( + "nodelist must contain every node in G with no repeats." + "If you wanted a subgraph of G use G.subgraph(nodelist)" + ) + + # To handle cases when an edge has weight=0, we must make sure that + # nonedges are not given the value 0 as well. + A = nx.to_numpy_array( + G, nodelist, multigraph_weight=min, weight=weight, nonedge=np.inf + ) + n, m = A.shape + np.fill_diagonal(A, 0) # diagonal elements should be zero + for i in range(n): + # The second term has the same shape as A due to broadcasting + A = np.minimum(A, A[i, :][np.newaxis, :] + A[:, i][:, np.newaxis]) + return A + + +@nx._dispatch(edge_attrs="weight") +def floyd_warshall_predecessor_and_distance(G, weight="weight"): + """Find all-pairs shortest path lengths using Floyd's algorithm. + + Parameters + ---------- + G : NetworkX graph + + weight: string, optional (default= 'weight') + Edge data key corresponding to the edge weight. + + Returns + ------- + predecessor,distance : dictionaries + Dictionaries, keyed by source and target, of predecessors and distances + in the shortest path. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... [ + ... ("s", "u", 10), + ... ("s", "x", 5), + ... ("u", "v", 1), + ... ("u", "x", 2), + ... ("v", "y", 1), + ... ("x", "u", 3), + ... ("x", "v", 5), + ... ("x", "y", 2), + ... ("y", "s", 7), + ... ("y", "v", 6), + ... ] + ... ) + >>> predecessors, _ = nx.floyd_warshall_predecessor_and_distance(G) + >>> print(nx.reconstruct_path("s", "v", predecessors)) + ['s', 'x', 'u', 'v'] + + Notes + ----- + Floyd's algorithm is appropriate for finding shortest paths + in dense graphs or graphs with negative weights when Dijkstra's algorithm + fails. This algorithm can still fail if there are negative cycles. + It has running time $O(n^3)$ with running space of $O(n^2)$. + + See Also + -------- + floyd_warshall + floyd_warshall_numpy + all_pairs_shortest_path + all_pairs_shortest_path_length + """ + from collections import defaultdict + + # dictionary-of-dictionaries representation for dist and pred + # use some defaultdict magick here + # for dist the default is the floating point inf value + dist = defaultdict(lambda: defaultdict(lambda: float("inf"))) + for u in G: + dist[u][u] = 0 + pred = defaultdict(dict) + # initialize path distance dictionary to be the adjacency matrix + # also set the distance to self to 0 (zero diagonal) + undirected = not G.is_directed() + for u, v, d in G.edges(data=True): + e_weight = d.get(weight, 1.0) + dist[u][v] = min(e_weight, dist[u][v]) + pred[u][v] = u + if undirected: + dist[v][u] = min(e_weight, dist[v][u]) + pred[v][u] = v + for w in G: + dist_w = dist[w] # save recomputation + for u in G: + dist_u = dist[u] # save recomputation + for v in G: + d = dist_u[w] + dist_w[v] + if dist_u[v] > d: + dist_u[v] = d + pred[u][v] = pred[w][v] + return dict(pred), dict(dist) + + +@nx._dispatch(graphs=None) +def reconstruct_path(source, target, predecessors): + """Reconstruct a path from source to target using the predecessors + dict as returned by floyd_warshall_predecessor_and_distance + + Parameters + ---------- + source : node + Starting node for path + + target : node + Ending node for path + + predecessors: dictionary + Dictionary, keyed by source and target, of predecessors in the + shortest path, as returned by floyd_warshall_predecessor_and_distance + + Returns + ------- + path : list + A list of nodes containing the shortest path from source to target + + If source and target are the same, an empty list is returned + + Notes + ----- + This function is meant to give more applicability to the + floyd_warshall_predecessor_and_distance function + + See Also + -------- + floyd_warshall_predecessor_and_distance + """ + if source == target: + return [] + prev = predecessors[source] + curr = prev[target] + path = [target, curr] + while curr != source: + curr = prev[curr] + path.append(curr) + return list(reversed(path)) + + +@nx._dispatch(edge_attrs="weight") +def floyd_warshall(G, weight="weight"): + """Find all-pairs shortest path lengths using Floyd's algorithm. + + Parameters + ---------- + G : NetworkX graph + + weight: string, optional (default= 'weight') + Edge data key corresponding to the edge weight. + + + Returns + ------- + distance : dict + A dictionary, keyed by source and target, of shortest paths distances + between nodes. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from([(0, 1, 5), (1, 2, 2), (2, 3, -3), (1, 3, 10), (3, 2, 8)]) + >>> fw = nx.floyd_warshall(G, weight='weight') + >>> results = {a: dict(b) for a, b in fw.items()} + >>> print(results) + {0: {0: 0, 1: 5, 2: 7, 3: 4}, 1: {1: 0, 2: 2, 3: -1, 0: inf}, 2: {2: 0, 3: -3, 0: inf, 1: inf}, 3: {3: 0, 2: 8, 0: inf, 1: inf}} + + Notes + ----- + Floyd's algorithm is appropriate for finding shortest paths + in dense graphs or graphs with negative weights when Dijkstra's algorithm + fails. This algorithm can still fail if there are negative cycles. + It has running time $O(n^3)$ with running space of $O(n^2)$. + + See Also + -------- + floyd_warshall_predecessor_and_distance + floyd_warshall_numpy + all_pairs_shortest_path + all_pairs_shortest_path_length + """ + # could make this its own function to reduce memory costs + return floyd_warshall_predecessor_and_distance(G, weight=weight)[1] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/generic.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/generic.py new file mode 100644 index 0000000000000000000000000000000000000000..e47c4b4f5a1fbc0811fbf67274b36f87c466ff00 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/generic.py @@ -0,0 +1,719 @@ +""" +Compute the shortest paths and path lengths between nodes in the graph. + +These algorithms work with undirected and directed graphs. + +""" +import warnings + +import networkx as nx + +__all__ = [ + "shortest_path", + "all_shortest_paths", + "single_source_all_shortest_paths", + "all_pairs_all_shortest_paths", + "shortest_path_length", + "average_shortest_path_length", + "has_path", +] + + +@nx._dispatch +def has_path(G, source, target): + """Returns *True* if *G* has a path from *source* to *target*. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path + + target : node + Ending node for path + """ + try: + nx.shortest_path(G, source, target) + except nx.NetworkXNoPath: + return False + return True + + +@nx._dispatch(edge_attrs="weight") +def shortest_path(G, source=None, target=None, weight=None, method="dijkstra"): + """Compute shortest paths in the graph. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Starting node for path. If not specified, compute shortest + paths for each possible starting node. + + target : node, optional + Ending node for path. If not specified, compute shortest + paths to all possible nodes. + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'dijkstra') + The algorithm to use to compute the path. + Supported options: 'dijkstra', 'bellman-ford'. + Other inputs produce a ValueError. + If `weight` is None, unweighted graph methods are used, and this + suggestion is ignored. + + Returns + ------- + path: list or dictionary + All returned paths include both the source and target in the path. + + If the source and target are both specified, return a single list + of nodes in a shortest path from the source to the target. + + If only the source is specified, return a dictionary keyed by + targets with a list of nodes in a shortest path from the source + to one of the targets. + + If only the target is specified, return a dictionary keyed by + sources with a list of nodes in a shortest path from one of the + sources to the target. + + If neither the source nor target are specified return a dictionary + of dictionaries with path[source][target]=[list of nodes in path]. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + ValueError + If `method` is not among the supported options. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> print(nx.shortest_path(G, source=0, target=4)) + [0, 1, 2, 3, 4] + >>> p = nx.shortest_path(G, source=0) # target not specified + >>> p[3] # shortest path from source=0 to target=3 + [0, 1, 2, 3] + >>> p = nx.shortest_path(G, target=4) # source not specified + >>> p[1] # shortest path from source=1 to target=4 + [1, 2, 3, 4] + >>> p = nx.shortest_path(G) # source, target not specified + >>> p[2][4] # shortest path from source=2 to target=4 + [2, 3, 4] + + Notes + ----- + There may be more than one shortest path between a source and target. + This returns only one of them. + + See Also + -------- + all_pairs_shortest_path + all_pairs_dijkstra_path + all_pairs_bellman_ford_path + single_source_shortest_path + single_source_dijkstra_path + single_source_bellman_ford_path + """ + if method not in ("dijkstra", "bellman-ford"): + # so we don't need to check in each branch later + raise ValueError(f"method not supported: {method}") + method = "unweighted" if weight is None else method + if source is None: + if target is None: + msg = "shortest_path for all_pairs will return an iterator in v3.3" + warnings.warn(msg, DeprecationWarning) + + # Find paths between all pairs. + if method == "unweighted": + paths = dict(nx.all_pairs_shortest_path(G)) + elif method == "dijkstra": + paths = dict(nx.all_pairs_dijkstra_path(G, weight=weight)) + else: # method == 'bellman-ford': + paths = dict(nx.all_pairs_bellman_ford_path(G, weight=weight)) + else: + # Find paths from all nodes co-accessible to the target. + if G.is_directed(): + G = G.reverse(copy=False) + if method == "unweighted": + paths = nx.single_source_shortest_path(G, target) + elif method == "dijkstra": + paths = nx.single_source_dijkstra_path(G, target, weight=weight) + else: # method == 'bellman-ford': + paths = nx.single_source_bellman_ford_path(G, target, weight=weight) + # Now flip the paths so they go from a source to the target. + for target in paths: + paths[target] = list(reversed(paths[target])) + else: + if target is None: + # Find paths to all nodes accessible from the source. + if method == "unweighted": + paths = nx.single_source_shortest_path(G, source) + elif method == "dijkstra": + paths = nx.single_source_dijkstra_path(G, source, weight=weight) + else: # method == 'bellman-ford': + paths = nx.single_source_bellman_ford_path(G, source, weight=weight) + else: + # Find shortest source-target path. + if method == "unweighted": + paths = nx.bidirectional_shortest_path(G, source, target) + elif method == "dijkstra": + _, paths = nx.bidirectional_dijkstra(G, source, target, weight) + else: # method == 'bellman-ford': + paths = nx.bellman_ford_path(G, source, target, weight) + return paths + + +@nx._dispatch(edge_attrs="weight") +def shortest_path_length(G, source=None, target=None, weight=None, method="dijkstra"): + """Compute shortest path lengths in the graph. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Starting node for path. + If not specified, compute shortest path lengths using all nodes as + source nodes. + + target : node, optional + Ending node for path. + If not specified, compute shortest path lengths using all nodes as + target nodes. + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'dijkstra') + The algorithm to use to compute the path length. + Supported options: 'dijkstra', 'bellman-ford'. + Other inputs produce a ValueError. + If `weight` is None, unweighted graph methods are used, and this + suggestion is ignored. + + Returns + ------- + length: int or iterator + If the source and target are both specified, return the length of + the shortest path from the source to the target. + + If only the source is specified, return a dict keyed by target + to the shortest path length from the source to that target. + + If only the target is specified, return a dict keyed by source + to the shortest path length from that source to the target. + + If neither the source nor target are specified, return an iterator + over (source, dictionary) where dictionary is keyed by target to + shortest path length from source to that target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + ValueError + If `method` is not among the supported options. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.shortest_path_length(G, source=0, target=4) + 4 + >>> p = nx.shortest_path_length(G, source=0) # target not specified + >>> p[4] + 4 + >>> p = nx.shortest_path_length(G, target=4) # source not specified + >>> p[0] + 4 + >>> p = dict(nx.shortest_path_length(G)) # source,target not specified + >>> p[0][4] + 4 + + Notes + ----- + The length of the path is always 1 less than the number of nodes involved + in the path since the length measures the number of edges followed. + + For digraphs this returns the shortest directed path length. To find path + lengths in the reverse direction use G.reverse(copy=False) first to flip + the edge orientation. + + See Also + -------- + all_pairs_shortest_path_length + all_pairs_dijkstra_path_length + all_pairs_bellman_ford_path_length + single_source_shortest_path_length + single_source_dijkstra_path_length + single_source_bellman_ford_path_length + """ + if method not in ("dijkstra", "bellman-ford"): + # so we don't need to check in each branch later + raise ValueError(f"method not supported: {method}") + method = "unweighted" if weight is None else method + if source is None: + if target is None: + # Find paths between all pairs. + if method == "unweighted": + paths = nx.all_pairs_shortest_path_length(G) + elif method == "dijkstra": + paths = nx.all_pairs_dijkstra_path_length(G, weight=weight) + else: # method == 'bellman-ford': + paths = nx.all_pairs_bellman_ford_path_length(G, weight=weight) + else: + # Find paths from all nodes co-accessible to the target. + if G.is_directed(): + G = G.reverse(copy=False) + if method == "unweighted": + path_length = nx.single_source_shortest_path_length + paths = path_length(G, target) + elif method == "dijkstra": + path_length = nx.single_source_dijkstra_path_length + paths = path_length(G, target, weight=weight) + else: # method == 'bellman-ford': + path_length = nx.single_source_bellman_ford_path_length + paths = path_length(G, target, weight=weight) + else: + if target is None: + # Find paths to all nodes accessible from the source. + if method == "unweighted": + paths = nx.single_source_shortest_path_length(G, source) + elif method == "dijkstra": + path_length = nx.single_source_dijkstra_path_length + paths = path_length(G, source, weight=weight) + else: # method == 'bellman-ford': + path_length = nx.single_source_bellman_ford_path_length + paths = path_length(G, source, weight=weight) + else: + # Find shortest source-target path. + if method == "unweighted": + p = nx.bidirectional_shortest_path(G, source, target) + paths = len(p) - 1 + elif method == "dijkstra": + paths = nx.dijkstra_path_length(G, source, target, weight) + else: # method == 'bellman-ford': + paths = nx.bellman_ford_path_length(G, source, target, weight) + return paths + + +@nx._dispatch(edge_attrs="weight") +def average_shortest_path_length(G, weight=None, method=None): + r"""Returns the average shortest path length. + + The average shortest path length is + + .. math:: + + a =\sum_{\substack{s,t \in V \\ s\neq t}} \frac{d(s, t)}{n(n-1)} + + where `V` is the set of nodes in `G`, + `d(s, t)` is the shortest path from `s` to `t`, + and `n` is the number of nodes in `G`. + + .. versionchanged:: 3.0 + An exception is raised for directed graphs that are not strongly + connected. + + Parameters + ---------- + G : NetworkX graph + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'unweighted' or 'dijkstra') + The algorithm to use to compute the path lengths. + Supported options are 'unweighted', 'dijkstra', 'bellman-ford', + 'floyd-warshall' and 'floyd-warshall-numpy'. + Other method values produce a ValueError. + The default method is 'unweighted' if `weight` is None, + otherwise the default method is 'dijkstra'. + + Raises + ------ + NetworkXPointlessConcept + If `G` is the null graph (that is, the graph on zero nodes). + + NetworkXError + If `G` is not connected (or not strongly connected, in the case + of a directed graph). + + ValueError + If `method` is not among the supported options. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.average_shortest_path_length(G) + 2.0 + + For disconnected graphs, you can compute the average shortest path + length for each component + + >>> G = nx.Graph([(1, 2), (3, 4)]) + >>> for C in (G.subgraph(c).copy() for c in nx.connected_components(G)): + ... print(nx.average_shortest_path_length(C)) + 1.0 + 1.0 + + """ + single_source_methods = ["unweighted", "dijkstra", "bellman-ford"] + all_pairs_methods = ["floyd-warshall", "floyd-warshall-numpy"] + supported_methods = single_source_methods + all_pairs_methods + + if method is None: + method = "unweighted" if weight is None else "dijkstra" + if method not in supported_methods: + raise ValueError(f"method not supported: {method}") + + n = len(G) + # For the special case of the null graph, raise an exception, since + # there are no paths in the null graph. + if n == 0: + msg = ( + "the null graph has no paths, thus there is no average " + "shortest path length" + ) + raise nx.NetworkXPointlessConcept(msg) + # For the special case of the trivial graph, return zero immediately. + if n == 1: + return 0 + # Shortest path length is undefined if the graph is not strongly connected. + if G.is_directed() and not nx.is_strongly_connected(G): + raise nx.NetworkXError("Graph is not strongly connected.") + # Shortest path length is undefined if the graph is not connected. + if not G.is_directed() and not nx.is_connected(G): + raise nx.NetworkXError("Graph is not connected.") + + # Compute all-pairs shortest paths. + def path_length(v): + if method == "unweighted": + return nx.single_source_shortest_path_length(G, v) + elif method == "dijkstra": + return nx.single_source_dijkstra_path_length(G, v, weight=weight) + elif method == "bellman-ford": + return nx.single_source_bellman_ford_path_length(G, v, weight=weight) + + if method in single_source_methods: + # Sum the distances for each (ordered) pair of source and target node. + s = sum(l for u in G for l in path_length(u).values()) + else: + if method == "floyd-warshall": + all_pairs = nx.floyd_warshall(G, weight=weight) + s = sum(sum(t.values()) for t in all_pairs.values()) + elif method == "floyd-warshall-numpy": + s = nx.floyd_warshall_numpy(G, weight=weight).sum() + return s / (n * (n - 1)) + + +@nx._dispatch(edge_attrs="weight") +def all_shortest_paths(G, source, target, weight=None, method="dijkstra"): + """Compute all shortest simple paths in the graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + target : node + Ending node for path. + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'dijkstra') + The algorithm to use to compute the path lengths. + Supported options: 'dijkstra', 'bellman-ford'. + Other inputs produce a ValueError. + If `weight` is None, unweighted graph methods are used, and this + suggestion is ignored. + + Returns + ------- + paths : generator of lists + A generator of all paths between source and target. + + Raises + ------ + ValueError + If `method` is not among the supported options. + + NetworkXNoPath + If `target` cannot be reached from `source`. + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2]) + >>> nx.add_path(G, [0, 10, 2]) + >>> print([p for p in nx.all_shortest_paths(G, source=0, target=2)]) + [[0, 1, 2], [0, 10, 2]] + + Notes + ----- + There may be many shortest paths between the source and target. If G + contains zero-weight cycles, this function will not produce all shortest + paths because doing so would produce infinitely many paths of unbounded + length -- instead, we only produce the shortest simple paths. + + See Also + -------- + shortest_path + single_source_shortest_path + all_pairs_shortest_path + """ + method = "unweighted" if weight is None else method + if method == "unweighted": + pred = nx.predecessor(G, source) + elif method == "dijkstra": + pred, dist = nx.dijkstra_predecessor_and_distance(G, source, weight=weight) + elif method == "bellman-ford": + pred, dist = nx.bellman_ford_predecessor_and_distance(G, source, weight=weight) + else: + raise ValueError(f"method not supported: {method}") + + return _build_paths_from_predecessors({source}, target, pred) + + +@nx._dispatch(edge_attrs="weight") +def single_source_all_shortest_paths(G, source, weight=None, method="dijkstra"): + """Compute all shortest simple paths from the given source in the graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'dijkstra') + The algorithm to use to compute the path lengths. + Supported options: 'dijkstra', 'bellman-ford'. + Other inputs produce a ValueError. + If `weight` is None, unweighted graph methods are used, and this + suggestion is ignored. + + Returns + ------- + paths : generator of dictionary + A generator of all paths between source and all nodes in the graph. + + Raises + ------ + ValueError + If `method` is not among the supported options. + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2, 3, 0]) + >>> dict(nx.single_source_all_shortest_paths(G, source=0)) + {0: [[0]], 1: [[0, 1]], 2: [[0, 1, 2], [0, 3, 2]], 3: [[0, 3]]} + + Notes + ----- + There may be many shortest paths between the source and target. If G + contains zero-weight cycles, this function will not produce all shortest + paths because doing so would produce infinitely many paths of unbounded + length -- instead, we only produce the shortest simple paths. + + See Also + -------- + shortest_path + all_shortest_paths + single_source_shortest_path + all_pairs_shortest_path + all_pairs_all_shortest_paths + """ + method = "unweighted" if weight is None else method + if method == "unweighted": + pred = nx.predecessor(G, source) + elif method == "dijkstra": + pred, dist = nx.dijkstra_predecessor_and_distance(G, source, weight=weight) + elif method == "bellman-ford": + pred, dist = nx.bellman_ford_predecessor_and_distance(G, source, weight=weight) + else: + raise ValueError(f"method not supported: {method}") + for n in G: + try: + yield n, list(_build_paths_from_predecessors({source}, n, pred)) + except nx.NetworkXNoPath: + pass + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_all_shortest_paths(G, weight=None, method="dijkstra"): + """Compute all shortest paths between all nodes. + + Parameters + ---------- + G : NetworkX graph + + weight : None, string or function, optional (default = None) + If None, every edge has weight/distance/cost 1. + If a string, use this edge attribute as the edge weight. + Any edge attribute not present defaults to 1. + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly + three positional arguments: the two endpoints of an edge and + the dictionary of edge attributes for that edge. + The function must return a number. + + method : string, optional (default = 'dijkstra') + The algorithm to use to compute the path lengths. + Supported options: 'dijkstra', 'bellman-ford'. + Other inputs produce a ValueError. + If `weight` is None, unweighted graph methods are used, and this + suggestion is ignored. + + Returns + ------- + paths : generator of dictionary + Dictionary of arrays, keyed by source and target, of all shortest paths. + + Raises + ------ + ValueError + If `method` is not among the supported options. + + Examples + -------- + >>> G = nx.cycle_graph(4) + >>> dict(nx.all_pairs_all_shortest_paths(G))[0][2] + [[0, 1, 2], [0, 3, 2]] + >>> dict(nx.all_pairs_all_shortest_paths(G))[0][3] + [[0, 3]] + + Notes + ----- + There may be multiple shortest paths with equal lengths. Unlike + all_pairs_shortest_path, this method returns all shortest paths. + + See Also + -------- + all_pairs_shortest_path + single_source_all_shortest_paths + """ + for n in G: + yield n, dict( + single_source_all_shortest_paths(G, n, weight=weight, method=method) + ) + + +def _build_paths_from_predecessors(sources, target, pred): + """Compute all simple paths to target, given the predecessors found in + pred, terminating when any source in sources is found. + + Parameters + ---------- + sources : set + Starting nodes for path. + + target : node + Ending node for path. + + pred : dict + A dictionary of predecessor lists, keyed by node + + Returns + ------- + paths : generator of lists + A generator of all paths between source and target. + + Raises + ------ + NetworkXNoPath + If `target` cannot be reached from `source`. + + Notes + ----- + There may be many paths between the sources and target. If there are + cycles among the predecessors, this function will not produce all + possible paths because doing so would produce infinitely many paths + of unbounded length -- instead, we only produce simple paths. + + See Also + -------- + shortest_path + single_source_shortest_path + all_pairs_shortest_path + all_shortest_paths + bellman_ford_path + """ + if target not in pred: + raise nx.NetworkXNoPath(f"Target {target} cannot be reached from given sources") + + seen = {target} + stack = [[target, 0]] + top = 0 + while top >= 0: + node, i = stack[top] + if node in sources: + yield [p for p, n in reversed(stack[: top + 1])] + if len(pred[node]) > i: + stack[top][1] = i + 1 + next = pred[node][i] + if next in seen: + continue + else: + seen.add(next) + top += 1 + if top == len(stack): + stack.append([next, 0]) + else: + stack[top][:] = [next, 0] + else: + seen.discard(node) + top -= 1 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bde6566650e759fbd983034ee9d47b3415d6e6d2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_astar.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_astar.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7269c7dccc0448931e680a0551513eeb9f777977 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_astar.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08d56eb8777be300384e9341fe930b66cfd0f3fb Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense_numpy.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense_numpy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e32060faf6586713584a4c5724930f3f20cb443e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_dense_numpy.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_generic.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_generic.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18aa9d0e2b068a2f355f9d64ed6a4d00cebc2d91 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_generic.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_unweighted.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_unweighted.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3ae3f93a25d6b8818045926e4143acf3d624b6c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_unweighted.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_weighted.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_weighted.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7939df39daa0dfc2c48fe302a19d4ccaa213e468 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_weighted.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_astar.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_astar.py new file mode 100644 index 0000000000000000000000000000000000000000..680f76efbf936505644419b294db5136e0fab983 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_astar.py @@ -0,0 +1,210 @@ +import pytest + +import networkx as nx +from networkx.utils import pairwise + + +class TestAStar: + @classmethod + def setup_class(cls): + edges = [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + cls.XG = nx.DiGraph() + cls.XG.add_weighted_edges_from(edges) + + def test_multiple_optimal_paths(self): + """Tests that A* algorithm finds any of multiple optimal paths""" + heuristic_values = {"a": 1.35, "b": 1.18, "c": 0.67, "d": 0} + + def h(u, v): + return heuristic_values[u] + + graph = nx.Graph() + points = ["a", "b", "c", "d"] + edges = [("a", "b", 0.18), ("a", "c", 0.68), ("b", "c", 0.50), ("c", "d", 0.67)] + + graph.add_nodes_from(points) + graph.add_weighted_edges_from(edges) + + path1 = ["a", "c", "d"] + path2 = ["a", "b", "c", "d"] + assert nx.astar_path(graph, "a", "d", h) in (path1, path2) + + def test_astar_directed(self): + assert nx.astar_path(self.XG, "s", "v") == ["s", "x", "u", "v"] + assert nx.astar_path_length(self.XG, "s", "v") == 9 + + def test_astar_directed_weight_function(self): + w1 = lambda u, v, d: d["weight"] + assert nx.astar_path(self.XG, "x", "u", weight=w1) == ["x", "u"] + assert nx.astar_path_length(self.XG, "x", "u", weight=w1) == 3 + assert nx.astar_path(self.XG, "s", "v", weight=w1) == ["s", "x", "u", "v"] + assert nx.astar_path_length(self.XG, "s", "v", weight=w1) == 9 + + w2 = lambda u, v, d: None if (u, v) == ("x", "u") else d["weight"] + assert nx.astar_path(self.XG, "x", "u", weight=w2) == ["x", "y", "s", "u"] + assert nx.astar_path_length(self.XG, "x", "u", weight=w2) == 19 + assert nx.astar_path(self.XG, "s", "v", weight=w2) == ["s", "x", "v"] + assert nx.astar_path_length(self.XG, "s", "v", weight=w2) == 10 + + w3 = lambda u, v, d: d["weight"] + 10 + assert nx.astar_path(self.XG, "x", "u", weight=w3) == ["x", "u"] + assert nx.astar_path_length(self.XG, "x", "u", weight=w3) == 13 + assert nx.astar_path(self.XG, "s", "v", weight=w3) == ["s", "x", "v"] + assert nx.astar_path_length(self.XG, "s", "v", weight=w3) == 30 + + def test_astar_multigraph(self): + G = nx.MultiDiGraph(self.XG) + G.add_weighted_edges_from((u, v, 1000) for (u, v) in list(G.edges())) + assert nx.astar_path(G, "s", "v") == ["s", "x", "u", "v"] + assert nx.astar_path_length(G, "s", "v") == 9 + + def test_astar_undirected(self): + GG = self.XG.to_undirected() + # make sure we get lower weight + # to_undirected might choose either edge with weight 2 or weight 3 + GG["u"]["x"]["weight"] = 2 + GG["y"]["v"]["weight"] = 2 + assert nx.astar_path(GG, "s", "v") == ["s", "x", "u", "v"] + assert nx.astar_path_length(GG, "s", "v") == 8 + + def test_astar_directed2(self): + XG2 = nx.DiGraph() + edges = [ + (1, 4, 1), + (4, 5, 1), + (5, 6, 1), + (6, 3, 1), + (1, 3, 50), + (1, 2, 100), + (2, 3, 100), + ] + XG2.add_weighted_edges_from(edges) + assert nx.astar_path(XG2, 1, 3) == [1, 4, 5, 6, 3] + + def test_astar_undirected2(self): + XG3 = nx.Graph() + edges = [(0, 1, 2), (1, 2, 12), (2, 3, 1), (3, 4, 5), (4, 5, 1), (5, 0, 10)] + XG3.add_weighted_edges_from(edges) + assert nx.astar_path(XG3, 0, 3) == [0, 1, 2, 3] + assert nx.astar_path_length(XG3, 0, 3) == 15 + + def test_astar_undirected3(self): + XG4 = nx.Graph() + edges = [ + (0, 1, 2), + (1, 2, 2), + (2, 3, 1), + (3, 4, 1), + (4, 5, 1), + (5, 6, 1), + (6, 7, 1), + (7, 0, 1), + ] + XG4.add_weighted_edges_from(edges) + assert nx.astar_path(XG4, 0, 2) == [0, 1, 2] + assert nx.astar_path_length(XG4, 0, 2) == 4 + + """ Tests that A* finds correct path when multiple paths exist + and the best one is not expanded first (GH issue #3464) + """ + + def test_astar_directed3(self): + heuristic_values = {"n5": 36, "n2": 4, "n1": 0, "n0": 0} + + def h(u, v): + return heuristic_values[u] + + edges = [("n5", "n1", 11), ("n5", "n2", 9), ("n2", "n1", 1), ("n1", "n0", 32)] + graph = nx.DiGraph() + graph.add_weighted_edges_from(edges) + answer = ["n5", "n2", "n1", "n0"] + assert nx.astar_path(graph, "n5", "n0", h) == answer + + """ Tests that parent is not wrongly overridden when a node + is re-explored multiple times. + """ + + def test_astar_directed4(self): + edges = [ + ("a", "b", 1), + ("a", "c", 1), + ("b", "d", 2), + ("c", "d", 1), + ("d", "e", 1), + ] + graph = nx.DiGraph() + graph.add_weighted_edges_from(edges) + assert nx.astar_path(graph, "a", "e") == ["a", "c", "d", "e"] + + # >>> MXG4=NX.MultiGraph(XG4) + # >>> MXG4.add_edge(0,1,3) + # >>> NX.dijkstra_path(MXG4,0,2) + # [0, 1, 2] + + def test_astar_w1(self): + G = nx.DiGraph() + G.add_edges_from( + [ + ("s", "u"), + ("s", "x"), + ("u", "v"), + ("u", "x"), + ("v", "y"), + ("x", "u"), + ("x", "w"), + ("w", "v"), + ("x", "y"), + ("y", "s"), + ("y", "v"), + ] + ) + assert nx.astar_path(G, "s", "v") == ["s", "u", "v"] + assert nx.astar_path_length(G, "s", "v") == 2 + + def test_astar_nopath(self): + with pytest.raises(nx.NodeNotFound): + nx.astar_path(self.XG, "s", "moon") + + def test_cycle(self): + C = nx.cycle_graph(7) + assert nx.astar_path(C, 0, 3) == [0, 1, 2, 3] + assert nx.dijkstra_path(C, 0, 4) == [0, 6, 5, 4] + + def test_unorderable_nodes(self): + """Tests that A* accommodates nodes that are not orderable. + + For more information, see issue #554. + + """ + # Create the cycle graph on four nodes, with nodes represented + # as (unorderable) Python objects. + nodes = [object() for n in range(4)] + G = nx.Graph() + G.add_edges_from(pairwise(nodes, cyclic=True)) + path = nx.astar_path(G, nodes[0], nodes[2]) + assert len(path) == 3 + + def test_astar_NetworkXNoPath(self): + """Tests that exception is raised when there exists no + path between source and target""" + G = nx.gnp_random_graph(10, 0.2, seed=10) + with pytest.raises(nx.NetworkXNoPath): + nx.astar_path(G, 4, 9) + + def test_astar_NodeNotFound(self): + """Tests that exception is raised when either + source or target is not in graph""" + G = nx.gnp_random_graph(10, 0.2, seed=10) + with pytest.raises(nx.NodeNotFound): + nx.astar_path_length(G, 11, 9) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense.py new file mode 100644 index 0000000000000000000000000000000000000000..6923bfef856c83bd3e65573b97fe96ff16cdbc71 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense.py @@ -0,0 +1,212 @@ +import pytest + +import networkx as nx + + +class TestFloyd: + @classmethod + def setup_class(cls): + pass + + def test_floyd_warshall_predecessor_and_distance(self): + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG) + assert dist["s"]["v"] == 9 + assert path["s"]["v"] == "u" + assert dist == { + "y": {"y": 0, "x": 12, "s": 7, "u": 15, "v": 6}, + "x": {"y": 2, "x": 0, "s": 9, "u": 3, "v": 4}, + "s": {"y": 7, "x": 5, "s": 0, "u": 8, "v": 9}, + "u": {"y": 2, "x": 2, "s": 9, "u": 0, "v": 1}, + "v": {"y": 1, "x": 13, "s": 8, "u": 16, "v": 0}, + } + + GG = XG.to_undirected() + # make sure we get lower weight + # to_undirected might choose either edge with weight 2 or weight 3 + GG["u"]["x"]["weight"] = 2 + path, dist = nx.floyd_warshall_predecessor_and_distance(GG) + assert dist["s"]["v"] == 8 + # skip this test, could be alternate path s-u-v + # assert_equal(path['s']['v'],'y') + + G = nx.DiGraph() # no weights + G.add_edges_from( + [ + ("s", "u"), + ("s", "x"), + ("u", "v"), + ("u", "x"), + ("v", "y"), + ("x", "u"), + ("x", "v"), + ("x", "y"), + ("y", "s"), + ("y", "v"), + ] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(G) + assert dist["s"]["v"] == 2 + # skip this test, could be alternate path s-u-v + # assert_equal(path['s']['v'],'x') + + # alternate interface + dist = nx.floyd_warshall(G) + assert dist["s"]["v"] == 2 + + # floyd_warshall_predecessor_and_distance returns + # dicts-of-defautdicts + # make sure we don't get empty dictionary + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [("v", "x", 5.0), ("y", "x", 5.0), ("v", "y", 6.0), ("x", "u", 2.0)] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG) + inf = float("inf") + assert dist == { + "v": {"v": 0, "x": 5.0, "y": 6.0, "u": 7.0}, + "x": {"x": 0, "u": 2.0, "v": inf, "y": inf}, + "y": {"y": 0, "x": 5.0, "v": inf, "u": 7.0}, + "u": {"u": 0, "v": inf, "x": inf, "y": inf}, + } + assert path == { + "v": {"x": "v", "y": "v", "u": "x"}, + "x": {"u": "x"}, + "y": {"x": "y", "u": "x"}, + } + + def test_reconstruct_path(self): + with pytest.raises(KeyError): + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + predecessors, _ = nx.floyd_warshall_predecessor_and_distance(XG) + + path = nx.reconstruct_path("s", "v", predecessors) + assert path == ["s", "x", "u", "v"] + + path = nx.reconstruct_path("s", "s", predecessors) + assert path == [] + + # this part raises the keyError + nx.reconstruct_path("1", "2", predecessors) + + def test_cycle(self): + path, dist = nx.floyd_warshall_predecessor_and_distance(nx.cycle_graph(7)) + assert dist[0][3] == 3 + assert path[0][3] == 2 + assert dist[0][4] == 3 + + def test_weighted(self): + XG3 = nx.Graph() + XG3.add_weighted_edges_from( + [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG3) + assert dist[0][3] == 15 + assert path[0][3] == 2 + + def test_weighted2(self): + XG4 = nx.Graph() + XG4.add_weighted_edges_from( + [ + [0, 1, 2], + [1, 2, 2], + [2, 3, 1], + [3, 4, 1], + [4, 5, 1], + [5, 6, 1], + [6, 7, 1], + [7, 0, 1], + ] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG4) + assert dist[0][2] == 4 + assert path[0][2] == 1 + + def test_weight_parameter(self): + XG4 = nx.Graph() + XG4.add_edges_from( + [ + (0, 1, {"heavy": 2}), + (1, 2, {"heavy": 2}), + (2, 3, {"heavy": 1}), + (3, 4, {"heavy": 1}), + (4, 5, {"heavy": 1}), + (5, 6, {"heavy": 1}), + (6, 7, {"heavy": 1}), + (7, 0, {"heavy": 1}), + ] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG4, weight="heavy") + assert dist[0][2] == 4 + assert path[0][2] == 1 + + def test_zero_distance(self): + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + path, dist = nx.floyd_warshall_predecessor_and_distance(XG) + + for u in XG: + assert dist[u][u] == 0 + + GG = XG.to_undirected() + # make sure we get lower weight + # to_undirected might choose either edge with weight 2 or weight 3 + GG["u"]["x"]["weight"] = 2 + path, dist = nx.floyd_warshall_predecessor_and_distance(GG) + + for u in GG: + dist[u][u] = 0 + + def test_zero_weight(self): + G = nx.DiGraph() + edges = [(1, 2, -2), (2, 3, -4), (1, 5, 1), (5, 4, 0), (4, 3, -5), (2, 5, -7)] + G.add_weighted_edges_from(edges) + dist = nx.floyd_warshall(G) + assert dist[1][3] == -14 + + G = nx.MultiDiGraph() + edges.append((2, 5, -7)) + G.add_weighted_edges_from(edges) + dist = nx.floyd_warshall(G) + assert dist[1][3] == -14 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense_numpy.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense_numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..1316e23e654a775e949cdbd34a86a474597f993a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_dense_numpy.py @@ -0,0 +1,89 @@ +import pytest + +np = pytest.importorskip("numpy") + + +import networkx as nx + + +def test_cycle_numpy(): + dist = nx.floyd_warshall_numpy(nx.cycle_graph(7)) + assert dist[0, 3] == 3 + assert dist[0, 4] == 3 + + +def test_weighted_numpy_three_edges(): + XG3 = nx.Graph() + XG3.add_weighted_edges_from( + [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]] + ) + dist = nx.floyd_warshall_numpy(XG3) + assert dist[0, 3] == 15 + + +def test_weighted_numpy_two_edges(): + XG4 = nx.Graph() + XG4.add_weighted_edges_from( + [ + [0, 1, 2], + [1, 2, 2], + [2, 3, 1], + [3, 4, 1], + [4, 5, 1], + [5, 6, 1], + [6, 7, 1], + [7, 0, 1], + ] + ) + dist = nx.floyd_warshall_numpy(XG4) + assert dist[0, 2] == 4 + + +def test_weight_parameter_numpy(): + XG4 = nx.Graph() + XG4.add_edges_from( + [ + (0, 1, {"heavy": 2}), + (1, 2, {"heavy": 2}), + (2, 3, {"heavy": 1}), + (3, 4, {"heavy": 1}), + (4, 5, {"heavy": 1}), + (5, 6, {"heavy": 1}), + (6, 7, {"heavy": 1}), + (7, 0, {"heavy": 1}), + ] + ) + dist = nx.floyd_warshall_numpy(XG4, weight="heavy") + assert dist[0, 2] == 4 + + +def test_directed_cycle_numpy(): + G = nx.DiGraph() + nx.add_cycle(G, [0, 1, 2, 3]) + pred, dist = nx.floyd_warshall_predecessor_and_distance(G) + D = nx.utils.dict_to_numpy_array(dist) + np.testing.assert_equal(nx.floyd_warshall_numpy(G), D) + + +def test_zero_weight(): + G = nx.DiGraph() + edges = [(1, 2, -2), (2, 3, -4), (1, 5, 1), (5, 4, 0), (4, 3, -5), (2, 5, -7)] + G.add_weighted_edges_from(edges) + dist = nx.floyd_warshall_numpy(G) + assert int(np.min(dist)) == -14 + + G = nx.MultiDiGraph() + edges.append((2, 5, -7)) + G.add_weighted_edges_from(edges) + dist = nx.floyd_warshall_numpy(G) + assert int(np.min(dist)) == -14 + + +def test_nodelist(): + G = nx.path_graph(7) + dist = nx.floyd_warshall_numpy(G, nodelist=[3, 5, 4, 6, 2, 1, 0]) + assert dist[0, 3] == 3 + assert dist[0, 1] == 2 + assert dist[6, 2] == 4 + pytest.raises(nx.NetworkXError, nx.floyd_warshall_numpy, G, [1, 3]) + pytest.raises(nx.NetworkXError, nx.floyd_warshall_numpy, G, list(range(9))) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_generic.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_generic.py new file mode 100644 index 0000000000000000000000000000000000000000..9cf7e7a50c4ea80f7a37c5a82291671e003f3efe --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_generic.py @@ -0,0 +1,444 @@ +import pytest + +import networkx as nx + + +def validate_grid_path(r, c, s, t, p): + assert isinstance(p, list) + assert p[0] == s + assert p[-1] == t + s = ((s - 1) // c, (s - 1) % c) + t = ((t - 1) // c, (t - 1) % c) + assert len(p) == abs(t[0] - s[0]) + abs(t[1] - s[1]) + 1 + p = [((u - 1) // c, (u - 1) % c) for u in p] + for u in p: + assert 0 <= u[0] < r + assert 0 <= u[1] < c + for u, v in zip(p[:-1], p[1:]): + assert (abs(v[0] - u[0]), abs(v[1] - u[1])) in [(0, 1), (1, 0)] + + +class TestGenericPath: + @classmethod + def setup_class(cls): + from networkx import convert_node_labels_to_integers as cnlti + + cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + cls.neg_weights = nx.DiGraph() + cls.neg_weights.add_edge(0, 1, weight=1) + cls.neg_weights.add_edge(0, 2, weight=3) + cls.neg_weights.add_edge(1, 3, weight=1) + cls.neg_weights.add_edge(2, 3, weight=-2) + + def test_shortest_path(self): + assert nx.shortest_path(self.cycle, 0, 3) == [0, 1, 2, 3] + assert nx.shortest_path(self.cycle, 0, 4) == [0, 6, 5, 4] + validate_grid_path(4, 4, 1, 12, nx.shortest_path(self.grid, 1, 12)) + assert nx.shortest_path(self.directed_cycle, 0, 3) == [0, 1, 2, 3] + # now with weights + assert nx.shortest_path(self.cycle, 0, 3, weight="weight") == [0, 1, 2, 3] + assert nx.shortest_path(self.cycle, 0, 4, weight="weight") == [0, 6, 5, 4] + validate_grid_path( + 4, 4, 1, 12, nx.shortest_path(self.grid, 1, 12, weight="weight") + ) + assert nx.shortest_path(self.directed_cycle, 0, 3, weight="weight") == [ + 0, + 1, + 2, + 3, + ] + # weights and method specified + assert nx.shortest_path( + self.directed_cycle, 0, 3, weight="weight", method="dijkstra" + ) == [0, 1, 2, 3] + assert nx.shortest_path( + self.directed_cycle, 0, 3, weight="weight", method="bellman-ford" + ) == [0, 1, 2, 3] + # when Dijkstra's will probably (depending on precise implementation) + # incorrectly return [0, 1, 3] instead + assert nx.shortest_path( + self.neg_weights, 0, 3, weight="weight", method="bellman-ford" + ) == [0, 2, 3] + # confirm bad method rejection + pytest.raises(ValueError, nx.shortest_path, self.cycle, method="SPAM") + # confirm absent source rejection + pytest.raises(nx.NodeNotFound, nx.shortest_path, self.cycle, 8) + + def test_shortest_path_target(self): + answer = {0: [0, 1], 1: [1], 2: [2, 1]} + sp = nx.shortest_path(nx.path_graph(3), target=1) + assert sp == answer + # with weights + sp = nx.shortest_path(nx.path_graph(3), target=1, weight="weight") + assert sp == answer + # weights and method specified + sp = nx.shortest_path( + nx.path_graph(3), target=1, weight="weight", method="dijkstra" + ) + assert sp == answer + sp = nx.shortest_path( + nx.path_graph(3), target=1, weight="weight", method="bellman-ford" + ) + assert sp == answer + + def test_shortest_path_length(self): + assert nx.shortest_path_length(self.cycle, 0, 3) == 3 + assert nx.shortest_path_length(self.grid, 1, 12) == 5 + assert nx.shortest_path_length(self.directed_cycle, 0, 4) == 4 + # now with weights + assert nx.shortest_path_length(self.cycle, 0, 3, weight="weight") == 3 + assert nx.shortest_path_length(self.grid, 1, 12, weight="weight") == 5 + assert nx.shortest_path_length(self.directed_cycle, 0, 4, weight="weight") == 4 + # weights and method specified + assert ( + nx.shortest_path_length( + self.cycle, 0, 3, weight="weight", method="dijkstra" + ) + == 3 + ) + assert ( + nx.shortest_path_length( + self.cycle, 0, 3, weight="weight", method="bellman-ford" + ) + == 3 + ) + # confirm bad method rejection + pytest.raises(ValueError, nx.shortest_path_length, self.cycle, method="SPAM") + # confirm absent source rejection + pytest.raises(nx.NodeNotFound, nx.shortest_path_length, self.cycle, 8) + + def test_shortest_path_length_target(self): + answer = {0: 1, 1: 0, 2: 1} + sp = dict(nx.shortest_path_length(nx.path_graph(3), target=1)) + assert sp == answer + # with weights + sp = nx.shortest_path_length(nx.path_graph(3), target=1, weight="weight") + assert sp == answer + # weights and method specified + sp = nx.shortest_path_length( + nx.path_graph(3), target=1, weight="weight", method="dijkstra" + ) + assert sp == answer + sp = nx.shortest_path_length( + nx.path_graph(3), target=1, weight="weight", method="bellman-ford" + ) + assert sp == answer + + def test_single_source_shortest_path(self): + p = nx.shortest_path(self.cycle, 0) + assert p[3] == [0, 1, 2, 3] + assert p == nx.single_source_shortest_path(self.cycle, 0) + p = nx.shortest_path(self.grid, 1) + validate_grid_path(4, 4, 1, 12, p[12]) + # now with weights + p = nx.shortest_path(self.cycle, 0, weight="weight") + assert p[3] == [0, 1, 2, 3] + assert p == nx.single_source_dijkstra_path(self.cycle, 0) + p = nx.shortest_path(self.grid, 1, weight="weight") + validate_grid_path(4, 4, 1, 12, p[12]) + # weights and method specified + p = nx.shortest_path(self.cycle, 0, method="dijkstra", weight="weight") + assert p[3] == [0, 1, 2, 3] + assert p == nx.single_source_shortest_path(self.cycle, 0) + p = nx.shortest_path(self.cycle, 0, method="bellman-ford", weight="weight") + assert p[3] == [0, 1, 2, 3] + assert p == nx.single_source_shortest_path(self.cycle, 0) + + def test_single_source_shortest_path_length(self): + ans = dict(nx.shortest_path_length(self.cycle, 0)) + assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.single_source_shortest_path_length(self.cycle, 0)) + ans = dict(nx.shortest_path_length(self.grid, 1)) + assert ans[16] == 6 + # now with weights + ans = dict(nx.shortest_path_length(self.cycle, 0, weight="weight")) + assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.single_source_dijkstra_path_length(self.cycle, 0)) + ans = dict(nx.shortest_path_length(self.grid, 1, weight="weight")) + assert ans[16] == 6 + # weights and method specified + ans = dict( + nx.shortest_path_length(self.cycle, 0, weight="weight", method="dijkstra") + ) + assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.single_source_dijkstra_path_length(self.cycle, 0)) + ans = dict( + nx.shortest_path_length( + self.cycle, 0, weight="weight", method="bellman-ford" + ) + ) + assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.single_source_bellman_ford_path_length(self.cycle, 0)) + + def test_single_source_all_shortest_paths(self): + cycle_ans = {0: [[0]], 1: [[0, 1]], 2: [[0, 1, 2], [0, 3, 2]], 3: [[0, 3]]} + ans = dict(nx.single_source_all_shortest_paths(nx.cycle_graph(4), 0)) + assert sorted(ans[2]) == cycle_ans[2] + ans = dict(nx.single_source_all_shortest_paths(self.grid, 1)) + grid_ans = [ + [1, 2, 3, 7, 11], + [1, 2, 6, 7, 11], + [1, 2, 6, 10, 11], + [1, 5, 6, 7, 11], + [1, 5, 6, 10, 11], + [1, 5, 9, 10, 11], + ] + assert sorted(ans[11]) == grid_ans + ans = dict( + nx.single_source_all_shortest_paths(nx.cycle_graph(4), 0, weight="weight") + ) + assert sorted(ans[2]) == cycle_ans[2] + ans = dict( + nx.single_source_all_shortest_paths( + nx.cycle_graph(4), 0, method="bellman-ford", weight="weight" + ) + ) + assert sorted(ans[2]) == cycle_ans[2] + ans = dict(nx.single_source_all_shortest_paths(self.grid, 1, weight="weight")) + assert sorted(ans[11]) == grid_ans + ans = dict( + nx.single_source_all_shortest_paths( + self.grid, 1, method="bellman-ford", weight="weight" + ) + ) + assert sorted(ans[11]) == grid_ans + G = nx.cycle_graph(4) + G.add_node(4) + ans = dict(nx.single_source_all_shortest_paths(G, 0)) + assert sorted(ans[2]) == [[0, 1, 2], [0, 3, 2]] + ans = dict(nx.single_source_all_shortest_paths(G, 4)) + assert sorted(ans[4]) == [[4]] + + def test_all_pairs_shortest_path(self): + p = nx.shortest_path(self.cycle) + assert p[0][3] == [0, 1, 2, 3] + assert p == dict(nx.all_pairs_shortest_path(self.cycle)) + p = nx.shortest_path(self.grid) + validate_grid_path(4, 4, 1, 12, p[1][12]) + # now with weights + p = nx.shortest_path(self.cycle, weight="weight") + assert p[0][3] == [0, 1, 2, 3] + assert p == dict(nx.all_pairs_dijkstra_path(self.cycle)) + p = nx.shortest_path(self.grid, weight="weight") + validate_grid_path(4, 4, 1, 12, p[1][12]) + # weights and method specified + p = nx.shortest_path(self.cycle, weight="weight", method="dijkstra") + assert p[0][3] == [0, 1, 2, 3] + assert p == dict(nx.all_pairs_dijkstra_path(self.cycle)) + p = nx.shortest_path(self.cycle, weight="weight", method="bellman-ford") + assert p[0][3] == [0, 1, 2, 3] + assert p == dict(nx.all_pairs_bellman_ford_path(self.cycle)) + + def test_all_pairs_shortest_path_length(self): + ans = dict(nx.shortest_path_length(self.cycle)) + assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.all_pairs_shortest_path_length(self.cycle)) + ans = dict(nx.shortest_path_length(self.grid)) + assert ans[1][16] == 6 + # now with weights + ans = dict(nx.shortest_path_length(self.cycle, weight="weight")) + assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.all_pairs_dijkstra_path_length(self.cycle)) + ans = dict(nx.shortest_path_length(self.grid, weight="weight")) + assert ans[1][16] == 6 + # weights and method specified + ans = dict( + nx.shortest_path_length(self.cycle, weight="weight", method="dijkstra") + ) + assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.all_pairs_dijkstra_path_length(self.cycle)) + ans = dict( + nx.shortest_path_length(self.cycle, weight="weight", method="bellman-ford") + ) + assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert ans == dict(nx.all_pairs_bellman_ford_path_length(self.cycle)) + + def test_all_pairs_all_shortest_paths(self): + ans = dict(nx.all_pairs_all_shortest_paths(nx.cycle_graph(4))) + assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]] + ans = dict(nx.all_pairs_all_shortest_paths(nx.cycle_graph(4)), weight="weight") + assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]] + ans = dict( + nx.all_pairs_all_shortest_paths(nx.cycle_graph(4)), + method="bellman-ford", + weight="weight", + ) + assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]] + G = nx.cycle_graph(4) + G.add_node(4) + ans = dict(nx.all_pairs_all_shortest_paths(G)) + assert sorted(ans[4][4]) == [[4]] + + def test_has_path(self): + G = nx.Graph() + nx.add_path(G, range(3)) + nx.add_path(G, range(3, 5)) + assert nx.has_path(G, 0, 2) + assert not nx.has_path(G, 0, 4) + + def test_all_shortest_paths(self): + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3]) + nx.add_path(G, [0, 10, 20, 3]) + assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted(nx.all_shortest_paths(G, 0, 3)) + # with weights + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3]) + nx.add_path(G, [0, 10, 20, 3]) + assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted( + nx.all_shortest_paths(G, 0, 3, weight="weight") + ) + # weights and method specified + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3]) + nx.add_path(G, [0, 10, 20, 3]) + assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted( + nx.all_shortest_paths(G, 0, 3, weight="weight", method="dijkstra") + ) + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3]) + nx.add_path(G, [0, 10, 20, 3]) + assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted( + nx.all_shortest_paths(G, 0, 3, weight="weight", method="bellman-ford") + ) + + def test_all_shortest_paths_raise(self): + with pytest.raises(nx.NetworkXNoPath): + G = nx.path_graph(4) + G.add_node(4) + list(nx.all_shortest_paths(G, 0, 4)) + + def test_bad_method(self): + with pytest.raises(ValueError): + G = nx.path_graph(2) + list(nx.all_shortest_paths(G, 0, 1, weight="weight", method="SPAM")) + + def test_single_source_all_shortest_paths_bad_method(self): + with pytest.raises(ValueError): + G = nx.path_graph(2) + dict( + nx.single_source_all_shortest_paths( + G, 0, weight="weight", method="SPAM" + ) + ) + + def test_all_shortest_paths_zero_weight_edge(self): + g = nx.Graph() + nx.add_path(g, [0, 1, 3]) + nx.add_path(g, [0, 1, 2, 3]) + g.edges[1, 2]["weight"] = 0 + paths30d = list( + nx.all_shortest_paths(g, 3, 0, weight="weight", method="dijkstra") + ) + paths03d = list( + nx.all_shortest_paths(g, 0, 3, weight="weight", method="dijkstra") + ) + paths30b = list( + nx.all_shortest_paths(g, 3, 0, weight="weight", method="bellman-ford") + ) + paths03b = list( + nx.all_shortest_paths(g, 0, 3, weight="weight", method="bellman-ford") + ) + assert sorted(paths03d) == sorted(p[::-1] for p in paths30d) + assert sorted(paths03d) == sorted(p[::-1] for p in paths30b) + assert sorted(paths03b) == sorted(p[::-1] for p in paths30b) + + +class TestAverageShortestPathLength: + def test_cycle_graph(self): + ans = nx.average_shortest_path_length(nx.cycle_graph(7)) + assert ans == pytest.approx(2, abs=1e-7) + + def test_path_graph(self): + ans = nx.average_shortest_path_length(nx.path_graph(5)) + assert ans == pytest.approx(2, abs=1e-7) + + def test_weighted(self): + G = nx.Graph() + nx.add_cycle(G, range(7), weight=2) + ans = nx.average_shortest_path_length(G, weight="weight") + assert ans == pytest.approx(4, abs=1e-7) + G = nx.Graph() + nx.add_path(G, range(5), weight=2) + ans = nx.average_shortest_path_length(G, weight="weight") + assert ans == pytest.approx(4, abs=1e-7) + + def test_specified_methods(self): + G = nx.Graph() + nx.add_cycle(G, range(7), weight=2) + ans = nx.average_shortest_path_length(G, weight="weight", method="dijkstra") + assert ans == pytest.approx(4, abs=1e-7) + ans = nx.average_shortest_path_length(G, weight="weight", method="bellman-ford") + assert ans == pytest.approx(4, abs=1e-7) + ans = nx.average_shortest_path_length( + G, weight="weight", method="floyd-warshall" + ) + assert ans == pytest.approx(4, abs=1e-7) + + G = nx.Graph() + nx.add_path(G, range(5), weight=2) + ans = nx.average_shortest_path_length(G, weight="weight", method="dijkstra") + assert ans == pytest.approx(4, abs=1e-7) + ans = nx.average_shortest_path_length(G, weight="weight", method="bellman-ford") + assert ans == pytest.approx(4, abs=1e-7) + ans = nx.average_shortest_path_length( + G, weight="weight", method="floyd-warshall" + ) + assert ans == pytest.approx(4, abs=1e-7) + + def test_directed_not_strongly_connected(self): + G = nx.DiGraph([(0, 1)]) + with pytest.raises(nx.NetworkXError, match="Graph is not strongly connected"): + nx.average_shortest_path_length(G) + + def test_undirected_not_connected(self): + g = nx.Graph() + g.add_nodes_from(range(3)) + g.add_edge(0, 1) + pytest.raises(nx.NetworkXError, nx.average_shortest_path_length, g) + + def test_trivial_graph(self): + """Tests that the trivial graph has average path length zero, + since there is exactly one path of length zero in the trivial + graph. + + For more information, see issue #1960. + + """ + G = nx.trivial_graph() + assert nx.average_shortest_path_length(G) == 0 + + def test_null_graph(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.average_shortest_path_length(nx.null_graph()) + + def test_bad_method(self): + with pytest.raises(ValueError): + G = nx.path_graph(2) + nx.average_shortest_path_length(G, weight="weight", method="SPAM") + + +class TestAverageShortestPathLengthNumpy: + @classmethod + def setup_class(cls): + global np + import pytest + + np = pytest.importorskip("numpy") + + def test_specified_methods_numpy(self): + G = nx.Graph() + nx.add_cycle(G, range(7), weight=2) + ans = nx.average_shortest_path_length( + G, weight="weight", method="floyd-warshall-numpy" + ) + np.testing.assert_almost_equal(ans, 4) + + G = nx.Graph() + nx.add_path(G, range(5), weight=2) + ans = nx.average_shortest_path_length( + G, weight="weight", method="floyd-warshall-numpy" + ) + np.testing.assert_almost_equal(ans, 4) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_unweighted.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_unweighted.py new file mode 100644 index 0000000000000000000000000000000000000000..e2d999518a5573db03493bd572441c3faa706d6b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_unweighted.py @@ -0,0 +1,149 @@ +import pytest + +import networkx as nx + + +def validate_grid_path(r, c, s, t, p): + assert isinstance(p, list) + assert p[0] == s + assert p[-1] == t + s = ((s - 1) // c, (s - 1) % c) + t = ((t - 1) // c, (t - 1) % c) + assert len(p) == abs(t[0] - s[0]) + abs(t[1] - s[1]) + 1 + p = [((u - 1) // c, (u - 1) % c) for u in p] + for u in p: + assert 0 <= u[0] < r + assert 0 <= u[1] < c + for u, v in zip(p[:-1], p[1:]): + assert (abs(v[0] - u[0]), abs(v[1] - u[1])) in [(0, 1), (1, 0)] + + +class TestUnweightedPath: + @classmethod + def setup_class(cls): + from networkx import convert_node_labels_to_integers as cnlti + + cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + + def test_bidirectional_shortest_path(self): + assert nx.bidirectional_shortest_path(self.cycle, 0, 3) == [0, 1, 2, 3] + assert nx.bidirectional_shortest_path(self.cycle, 0, 4) == [0, 6, 5, 4] + validate_grid_path( + 4, 4, 1, 12, nx.bidirectional_shortest_path(self.grid, 1, 12) + ) + assert nx.bidirectional_shortest_path(self.directed_cycle, 0, 3) == [0, 1, 2, 3] + # test source = target + assert nx.bidirectional_shortest_path(self.cycle, 3, 3) == [3] + + @pytest.mark.parametrize( + ("src", "tgt"), + ( + (8, 3), # source not in graph + (3, 8), # target not in graph + (8, 10), # neither source nor target in graph + (8, 8), # src == tgt, neither in graph - tests order of input checks + ), + ) + def test_bidirectional_shortest_path_src_tgt_not_in_graph(self, src, tgt): + with pytest.raises( + nx.NodeNotFound, + match=f"Either source {src} or target {tgt} is not in G", + ): + nx.bidirectional_shortest_path(self.cycle, src, tgt) + + def test_shortest_path_length(self): + assert nx.shortest_path_length(self.cycle, 0, 3) == 3 + assert nx.shortest_path_length(self.grid, 1, 12) == 5 + assert nx.shortest_path_length(self.directed_cycle, 0, 4) == 4 + # now with weights + assert nx.shortest_path_length(self.cycle, 0, 3, weight=True) == 3 + assert nx.shortest_path_length(self.grid, 1, 12, weight=True) == 5 + assert nx.shortest_path_length(self.directed_cycle, 0, 4, weight=True) == 4 + + def test_single_source_shortest_path(self): + p = nx.single_source_shortest_path(self.directed_cycle, 3) + assert p[0] == [3, 4, 5, 6, 0] + p = nx.single_source_shortest_path(self.cycle, 0) + assert p[3] == [0, 1, 2, 3] + p = nx.single_source_shortest_path(self.cycle, 0, cutoff=0) + assert p == {0: [0]} + + def test_single_source_shortest_path_length(self): + pl = nx.single_source_shortest_path_length + lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert dict(pl(self.cycle, 0)) == lengths + lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6} + assert dict(pl(self.directed_cycle, 0)) == lengths + + def test_single_target_shortest_path(self): + p = nx.single_target_shortest_path(self.directed_cycle, 0) + assert p[3] == [3, 4, 5, 6, 0] + p = nx.single_target_shortest_path(self.cycle, 0) + assert p[3] == [3, 2, 1, 0] + p = nx.single_target_shortest_path(self.cycle, 0, cutoff=0) + assert p == {0: [0]} + # test missing targets + target = 8 + with pytest.raises(nx.NodeNotFound, match=f"Target {target} not in G"): + nx.single_target_shortest_path(self.cycle, target) + + def test_single_target_shortest_path_length(self): + pl = nx.single_target_shortest_path_length + lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert dict(pl(self.cycle, 0)) == lengths + lengths = {0: 0, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1} + assert dict(pl(self.directed_cycle, 0)) == lengths + # test missing targets + target = 8 + with pytest.raises(nx.NodeNotFound, match=f"Target {target} is not in G"): + nx.single_target_shortest_path_length(self.cycle, target) + + def test_all_pairs_shortest_path(self): + p = dict(nx.all_pairs_shortest_path(self.cycle)) + assert p[0][3] == [0, 1, 2, 3] + p = dict(nx.all_pairs_shortest_path(self.grid)) + validate_grid_path(4, 4, 1, 12, p[1][12]) + + def test_all_pairs_shortest_path_length(self): + l = dict(nx.all_pairs_shortest_path_length(self.cycle)) + assert l[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + l = dict(nx.all_pairs_shortest_path_length(self.grid)) + assert l[1][16] == 6 + + def test_predecessor_path(self): + G = nx.path_graph(4) + assert nx.predecessor(G, 0) == {0: [], 1: [0], 2: [1], 3: [2]} + assert nx.predecessor(G, 0, 3) == [2] + + def test_predecessor_cycle(self): + G = nx.cycle_graph(4) + pred = nx.predecessor(G, 0) + assert pred[0] == [] + assert pred[1] == [0] + assert pred[2] in [[1, 3], [3, 1]] + assert pred[3] == [0] + + def test_predecessor_cutoff(self): + G = nx.path_graph(4) + p = nx.predecessor(G, 0, 3) + assert 4 not in p + + def test_predecessor_target(self): + G = nx.path_graph(4) + p = nx.predecessor(G, 0, 3) + assert p == [2] + p = nx.predecessor(G, 0, 3, cutoff=2) + assert p == [] + p, s = nx.predecessor(G, 0, 3, return_seen=True) + assert p == [2] + assert s == 3 + p, s = nx.predecessor(G, 0, 3, cutoff=2, return_seen=True) + assert p == [] + assert s == -1 + + def test_predecessor_missing_source(self): + source = 8 + with pytest.raises(nx.NodeNotFound, match=f"Source {source} not in G"): + nx.predecessor(self.cycle, source) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_weighted.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_weighted.py new file mode 100644 index 0000000000000000000000000000000000000000..dc88572d3571f7d94015b12d9ab870aee316516f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/tests/test_weighted.py @@ -0,0 +1,972 @@ +import pytest + +import networkx as nx +from networkx.utils import pairwise + + +def validate_path(G, s, t, soln_len, path, weight="weight"): + assert path[0] == s + assert path[-1] == t + + if callable(weight): + weight_f = weight + else: + if G.is_multigraph(): + + def weight_f(u, v, d): + return min(e.get(weight, 1) for e in d.values()) + + else: + + def weight_f(u, v, d): + return d.get(weight, 1) + + computed = sum(weight_f(u, v, G[u][v]) for u, v in pairwise(path)) + assert soln_len == computed + + +def validate_length_path(G, s, t, soln_len, length, path, weight="weight"): + assert soln_len == length + validate_path(G, s, t, length, path, weight=weight) + + +class WeightedTestBase: + """Base class for test classes that test functions for computing + shortest paths in weighted graphs. + + """ + + def setup_method(self): + """Creates some graphs for use in the unit tests.""" + cnlti = nx.convert_node_labels_to_integers + self.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + self.cycle = nx.cycle_graph(7) + self.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + self.XG = nx.DiGraph() + self.XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + self.MXG = nx.MultiDiGraph(self.XG) + self.MXG.add_edge("s", "u", weight=15) + self.XG2 = nx.DiGraph() + self.XG2.add_weighted_edges_from( + [ + [1, 4, 1], + [4, 5, 1], + [5, 6, 1], + [6, 3, 1], + [1, 3, 50], + [1, 2, 100], + [2, 3, 100], + ] + ) + + self.XG3 = nx.Graph() + self.XG3.add_weighted_edges_from( + [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]] + ) + + self.XG4 = nx.Graph() + self.XG4.add_weighted_edges_from( + [ + [0, 1, 2], + [1, 2, 2], + [2, 3, 1], + [3, 4, 1], + [4, 5, 1], + [5, 6, 1], + [6, 7, 1], + [7, 0, 1], + ] + ) + self.MXG4 = nx.MultiGraph(self.XG4) + self.MXG4.add_edge(0, 1, weight=3) + self.G = nx.DiGraph() # no weights + self.G.add_edges_from( + [ + ("s", "u"), + ("s", "x"), + ("u", "v"), + ("u", "x"), + ("v", "y"), + ("x", "u"), + ("x", "v"), + ("x", "y"), + ("y", "s"), + ("y", "v"), + ] + ) + + +class TestWeightedPath(WeightedTestBase): + def test_dijkstra(self): + (D, P) = nx.single_source_dijkstra(self.XG, "s") + validate_path(self.XG, "s", "v", 9, P["v"]) + assert D["v"] == 9 + + validate_path( + self.XG, "s", "v", 9, nx.single_source_dijkstra_path(self.XG, "s")["v"] + ) + assert dict(nx.single_source_dijkstra_path_length(self.XG, "s"))["v"] == 9 + + validate_path( + self.XG, "s", "v", 9, nx.single_source_dijkstra(self.XG, "s")[1]["v"] + ) + validate_path( + self.MXG, "s", "v", 9, nx.single_source_dijkstra_path(self.MXG, "s")["v"] + ) + + GG = self.XG.to_undirected() + # make sure we get lower weight + # to_undirected might choose either edge with weight 2 or weight 3 + GG["u"]["x"]["weight"] = 2 + (D, P) = nx.single_source_dijkstra(GG, "s") + validate_path(GG, "s", "v", 8, P["v"]) + assert D["v"] == 8 # uses lower weight of 2 on u<->x edge + validate_path(GG, "s", "v", 8, nx.dijkstra_path(GG, "s", "v")) + assert nx.dijkstra_path_length(GG, "s", "v") == 8 + + validate_path(self.XG2, 1, 3, 4, nx.dijkstra_path(self.XG2, 1, 3)) + validate_path(self.XG3, 0, 3, 15, nx.dijkstra_path(self.XG3, 0, 3)) + assert nx.dijkstra_path_length(self.XG3, 0, 3) == 15 + validate_path(self.XG4, 0, 2, 4, nx.dijkstra_path(self.XG4, 0, 2)) + assert nx.dijkstra_path_length(self.XG4, 0, 2) == 4 + validate_path(self.MXG4, 0, 2, 4, nx.dijkstra_path(self.MXG4, 0, 2)) + validate_path( + self.G, "s", "v", 2, nx.single_source_dijkstra(self.G, "s", "v")[1] + ) + validate_path( + self.G, "s", "v", 2, nx.single_source_dijkstra(self.G, "s")[1]["v"] + ) + + validate_path(self.G, "s", "v", 2, nx.dijkstra_path(self.G, "s", "v")) + assert nx.dijkstra_path_length(self.G, "s", "v") == 2 + + # NetworkXError: node s not reachable from moon + pytest.raises(nx.NetworkXNoPath, nx.dijkstra_path, self.G, "s", "moon") + pytest.raises(nx.NetworkXNoPath, nx.dijkstra_path_length, self.G, "s", "moon") + + validate_path(self.cycle, 0, 3, 3, nx.dijkstra_path(self.cycle, 0, 3)) + validate_path(self.cycle, 0, 4, 3, nx.dijkstra_path(self.cycle, 0, 4)) + + assert nx.single_source_dijkstra(self.cycle, 0, 0) == (0, [0]) + + def test_bidirectional_dijkstra(self): + validate_length_path( + self.XG, "s", "v", 9, *nx.bidirectional_dijkstra(self.XG, "s", "v") + ) + validate_length_path( + self.G, "s", "v", 2, *nx.bidirectional_dijkstra(self.G, "s", "v") + ) + validate_length_path( + self.cycle, 0, 3, 3, *nx.bidirectional_dijkstra(self.cycle, 0, 3) + ) + validate_length_path( + self.cycle, 0, 4, 3, *nx.bidirectional_dijkstra(self.cycle, 0, 4) + ) + validate_length_path( + self.XG3, 0, 3, 15, *nx.bidirectional_dijkstra(self.XG3, 0, 3) + ) + validate_length_path( + self.XG4, 0, 2, 4, *nx.bidirectional_dijkstra(self.XG4, 0, 2) + ) + + # need more tests here + P = nx.single_source_dijkstra_path(self.XG, "s")["v"] + validate_path( + self.XG, + "s", + "v", + sum(self.XG[u][v]["weight"] for u, v in zip(P[:-1], P[1:])), + nx.dijkstra_path(self.XG, "s", "v"), + ) + + # check absent source + G = nx.path_graph(2) + pytest.raises(nx.NodeNotFound, nx.bidirectional_dijkstra, G, 3, 0) + + def test_weight_functions(self): + def heuristic(*z): + return sum(val**2 for val in z) + + def getpath(pred, v, s): + return [v] if v == s else getpath(pred, pred[v], s) + [v] + + def goldberg_radzik(g, s, t, weight="weight"): + pred, dist = nx.goldberg_radzik(g, s, weight=weight) + dist = dist[t] + return dist, getpath(pred, t, s) + + def astar(g, s, t, weight="weight"): + path = nx.astar_path(g, s, t, heuristic, weight=weight) + dist = nx.astar_path_length(g, s, t, heuristic, weight=weight) + return dist, path + + def vlp(G, s, t, l, F, w): + res = F(G, s, t, weight=w) + validate_length_path(G, s, t, l, *res, weight=w) + + G = self.cycle + s = 6 + t = 4 + path = [6] + list(range(t + 1)) + + def weight(u, v, _): + return 1 + v**2 + + length = sum(weight(u, v, None) for u, v in pairwise(path)) + vlp(G, s, t, length, nx.bidirectional_dijkstra, weight) + vlp(G, s, t, length, nx.single_source_dijkstra, weight) + vlp(G, s, t, length, nx.single_source_bellman_ford, weight) + vlp(G, s, t, length, goldberg_radzik, weight) + vlp(G, s, t, length, astar, weight) + + def weight(u, v, _): + return 2 ** (u * v) + + length = sum(weight(u, v, None) for u, v in pairwise(path)) + vlp(G, s, t, length, nx.bidirectional_dijkstra, weight) + vlp(G, s, t, length, nx.single_source_dijkstra, weight) + vlp(G, s, t, length, nx.single_source_bellman_ford, weight) + vlp(G, s, t, length, goldberg_radzik, weight) + vlp(G, s, t, length, astar, weight) + + def test_bidirectional_dijkstra_no_path(self): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5, 6]) + path = nx.bidirectional_dijkstra(G, 1, 6) + + @pytest.mark.parametrize( + "fn", + ( + nx.dijkstra_path, + nx.dijkstra_path_length, + nx.single_source_dijkstra_path, + nx.single_source_dijkstra_path_length, + nx.single_source_dijkstra, + nx.dijkstra_predecessor_and_distance, + ), + ) + def test_absent_source(self, fn): + G = nx.path_graph(2) + with pytest.raises(nx.NodeNotFound): + fn(G, 3, 0) + # Test when source == target, which is handled specially by some functions + with pytest.raises(nx.NodeNotFound): + fn(G, 3, 3) + + def test_dijkstra_predecessor1(self): + G = nx.path_graph(4) + assert nx.dijkstra_predecessor_and_distance(G, 0) == ( + {0: [], 1: [0], 2: [1], 3: [2]}, + {0: 0, 1: 1, 2: 2, 3: 3}, + ) + + def test_dijkstra_predecessor2(self): + # 4-cycle + G = nx.Graph([(0, 1), (1, 2), (2, 3), (3, 0)]) + pred, dist = nx.dijkstra_predecessor_and_distance(G, (0)) + assert pred[0] == [] + assert pred[1] == [0] + assert pred[2] in [[1, 3], [3, 1]] + assert pred[3] == [0] + assert dist == {0: 0, 1: 1, 2: 2, 3: 1} + + def test_dijkstra_predecessor3(self): + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + (P, D) = nx.dijkstra_predecessor_and_distance(XG, "s") + assert P["v"] == ["u"] + assert D["v"] == 9 + (P, D) = nx.dijkstra_predecessor_and_distance(XG, "s", cutoff=8) + assert "v" not in D + + def test_single_source_dijkstra_path_length(self): + pl = nx.single_source_dijkstra_path_length + assert dict(pl(self.MXG4, 0))[2] == 4 + spl = pl(self.MXG4, 0, cutoff=2) + assert 2 not in spl + + def test_bidirectional_dijkstra_multigraph(self): + G = nx.MultiGraph() + G.add_edge("a", "b", weight=10) + G.add_edge("a", "b", weight=100) + dp = nx.bidirectional_dijkstra(G, "a", "b") + assert dp == (10, ["a", "b"]) + + def test_dijkstra_pred_distance_multigraph(self): + G = nx.MultiGraph() + G.add_edge("a", "b", key="short", foo=5, weight=100) + G.add_edge("a", "b", key="long", bar=1, weight=110) + p, d = nx.dijkstra_predecessor_and_distance(G, "a") + assert p == {"a": [], "b": ["a"]} + assert d == {"a": 0, "b": 100} + + def test_negative_edge_cycle(self): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + assert not nx.negative_edge_cycle(G) + G.add_edge(8, 9, weight=-7) + G.add_edge(9, 8, weight=3) + graph_size = len(G) + assert nx.negative_edge_cycle(G) + assert graph_size == len(G) + pytest.raises(ValueError, nx.single_source_dijkstra_path_length, G, 8) + pytest.raises(ValueError, nx.single_source_dijkstra, G, 8) + pytest.raises(ValueError, nx.dijkstra_predecessor_and_distance, G, 8) + G.add_edge(9, 10) + pytest.raises(ValueError, nx.bidirectional_dijkstra, G, 8, 10) + G = nx.MultiDiGraph() + G.add_edge(2, 2, weight=-1) + assert nx.negative_edge_cycle(G) + + def test_negative_edge_cycle_empty(self): + G = nx.DiGraph() + assert not nx.negative_edge_cycle(G) + + def test_negative_edge_cycle_custom_weight_key(self): + d = nx.DiGraph() + d.add_edge("a", "b", w=-2) + d.add_edge("b", "a", w=-1) + assert nx.negative_edge_cycle(d, weight="w") + + def test_weight_function(self): + """Tests that a callable weight is interpreted as a weight + function instead of an edge attribute. + + """ + # Create a triangle in which the edge from node 0 to node 2 has + # a large weight and the other two edges have a small weight. + G = nx.complete_graph(3) + G.adj[0][2]["weight"] = 10 + G.adj[0][1]["weight"] = 1 + G.adj[1][2]["weight"] = 1 + + # The weight function will take the multiplicative inverse of + # the weights on the edges. This way, weights that were large + # before now become small and vice versa. + + def weight(u, v, d): + return 1 / d["weight"] + + # The shortest path from 0 to 2 using the actual weights on the + # edges should be [0, 1, 2]. + distance, path = nx.single_source_dijkstra(G, 0, 2) + assert distance == 2 + assert path == [0, 1, 2] + # However, with the above weight function, the shortest path + # should be [0, 2], since that has a very small weight. + distance, path = nx.single_source_dijkstra(G, 0, 2, weight=weight) + assert distance == 1 / 10 + assert path == [0, 2] + + def test_all_pairs_dijkstra_path(self): + cycle = nx.cycle_graph(7) + p = dict(nx.all_pairs_dijkstra_path(cycle)) + assert p[0][3] == [0, 1, 2, 3] + + cycle[1][2]["weight"] = 10 + p = dict(nx.all_pairs_dijkstra_path(cycle)) + assert p[0][3] == [0, 6, 5, 4, 3] + + def test_all_pairs_dijkstra_path_length(self): + cycle = nx.cycle_graph(7) + pl = dict(nx.all_pairs_dijkstra_path_length(cycle)) + assert pl[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + + cycle[1][2]["weight"] = 10 + pl = dict(nx.all_pairs_dijkstra_path_length(cycle)) + assert pl[0] == {0: 0, 1: 1, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1} + + def test_all_pairs_dijkstra(self): + cycle = nx.cycle_graph(7) + out = dict(nx.all_pairs_dijkstra(cycle)) + assert out[0][0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1} + assert out[0][1][3] == [0, 1, 2, 3] + + cycle[1][2]["weight"] = 10 + out = dict(nx.all_pairs_dijkstra(cycle)) + assert out[0][0] == {0: 0, 1: 1, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1} + assert out[0][1][3] == [0, 6, 5, 4, 3] + + +class TestDijkstraPathLength: + """Unit tests for the :func:`networkx.dijkstra_path_length` + function. + + """ + + def test_weight_function(self): + """Tests for computing the length of the shortest path using + Dijkstra's algorithm with a user-defined weight function. + + """ + # Create a triangle in which the edge from node 0 to node 2 has + # a large weight and the other two edges have a small weight. + G = nx.complete_graph(3) + G.adj[0][2]["weight"] = 10 + G.adj[0][1]["weight"] = 1 + G.adj[1][2]["weight"] = 1 + + # The weight function will take the multiplicative inverse of + # the weights on the edges. This way, weights that were large + # before now become small and vice versa. + + def weight(u, v, d): + return 1 / d["weight"] + + # The shortest path from 0 to 2 using the actual weights on the + # edges should be [0, 1, 2]. However, with the above weight + # function, the shortest path should be [0, 2], since that has a + # very small weight. + length = nx.dijkstra_path_length(G, 0, 2, weight=weight) + assert length == 1 / 10 + + +class TestMultiSourceDijkstra: + """Unit tests for the multi-source dialect of Dijkstra's shortest + path algorithms. + + """ + + def test_no_sources(self): + with pytest.raises(ValueError): + nx.multi_source_dijkstra(nx.Graph(), {}) + + def test_path_no_sources(self): + with pytest.raises(ValueError): + nx.multi_source_dijkstra_path(nx.Graph(), {}) + + def test_path_length_no_sources(self): + with pytest.raises(ValueError): + nx.multi_source_dijkstra_path_length(nx.Graph(), {}) + + @pytest.mark.parametrize( + "fn", + ( + nx.multi_source_dijkstra_path, + nx.multi_source_dijkstra_path_length, + nx.multi_source_dijkstra, + ), + ) + def test_absent_source(self, fn): + G = nx.path_graph(2) + with pytest.raises(nx.NodeNotFound): + fn(G, [3], 0) + with pytest.raises(nx.NodeNotFound): + fn(G, [3], 3) + + def test_two_sources(self): + edges = [(0, 1, 1), (1, 2, 1), (2, 3, 10), (3, 4, 1)] + G = nx.Graph() + G.add_weighted_edges_from(edges) + sources = {0, 4} + distances, paths = nx.multi_source_dijkstra(G, sources) + expected_distances = {0: 0, 1: 1, 2: 2, 3: 1, 4: 0} + expected_paths = {0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [4, 3], 4: [4]} + assert distances == expected_distances + assert paths == expected_paths + + def test_simple_paths(self): + G = nx.path_graph(4) + lengths = nx.multi_source_dijkstra_path_length(G, [0]) + assert lengths == {n: n for n in G} + paths = nx.multi_source_dijkstra_path(G, [0]) + assert paths == {n: list(range(n + 1)) for n in G} + + +class TestBellmanFordAndGoldbergRadzik(WeightedTestBase): + def test_single_node_graph(self): + G = nx.DiGraph() + G.add_node(0) + assert nx.single_source_bellman_ford_path(G, 0) == {0: [0]} + assert nx.single_source_bellman_ford_path_length(G, 0) == {0: 0} + assert nx.single_source_bellman_ford(G, 0) == ({0: 0}, {0: [0]}) + assert nx.bellman_ford_predecessor_and_distance(G, 0) == ({0: []}, {0: 0}) + assert nx.goldberg_radzik(G, 0) == ({0: None}, {0: 0}) + + def test_absent_source_bellman_ford(self): + # the check is in _bellman_ford; this provides regression testing + # against later changes to "client" Bellman-Ford functions + G = nx.path_graph(2) + for fn in ( + nx.bellman_ford_predecessor_and_distance, + nx.bellman_ford_path, + nx.bellman_ford_path_length, + nx.single_source_bellman_ford_path, + nx.single_source_bellman_ford_path_length, + nx.single_source_bellman_ford, + ): + pytest.raises(nx.NodeNotFound, fn, G, 3, 0) + pytest.raises(nx.NodeNotFound, fn, G, 3, 3) + + def test_absent_source_goldberg_radzik(self): + with pytest.raises(nx.NodeNotFound): + G = nx.path_graph(2) + nx.goldberg_radzik(G, 3, 0) + + def test_negative_cycle_heuristic(self): + G = nx.DiGraph() + G.add_edge(0, 1, weight=-1) + G.add_edge(1, 2, weight=-1) + G.add_edge(2, 3, weight=-1) + G.add_edge(3, 0, weight=3) + assert not nx.negative_edge_cycle(G, heuristic=True) + G.add_edge(2, 0, weight=1.999) + assert nx.negative_edge_cycle(G, heuristic=True) + G.edges[2, 0]["weight"] = 2 + assert not nx.negative_edge_cycle(G, heuristic=True) + + def test_negative_cycle_consistency(self): + import random + + unif = random.uniform + for random_seed in range(2): # range(20): + random.seed(random_seed) + for density in [0.1, 0.9]: # .3, .7, .9]: + for N in [1, 10, 20]: # range(1, 60 - int(30 * density)): + for max_cost in [1, 90]: # [1, 10, 40, 90]: + G = nx.binomial_graph(N, density, seed=4, directed=True) + edges = ((u, v, unif(-1, max_cost)) for u, v in G.edges) + G.add_weighted_edges_from(edges) + + no_heuristic = nx.negative_edge_cycle(G, heuristic=False) + with_heuristic = nx.negative_edge_cycle(G, heuristic=True) + assert no_heuristic == with_heuristic + + def test_negative_cycle(self): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + G.add_edge(1, 2, weight=-7) + for i in range(5): + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, i + ) + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, i + ) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, i) + pytest.raises( + nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, i + ) + pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, i) + G = nx.cycle_graph(5) # undirected Graph + G.add_edge(1, 2, weight=-3) + for i in range(5): + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, i + ) + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, i + ) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, i) + pytest.raises( + nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, i + ) + pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, i) + G = nx.DiGraph([(1, 1, {"weight": -1})]) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, 1) + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, 1 + ) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, 1) + pytest.raises( + nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1 + ) + pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1) + G = nx.MultiDiGraph([(1, 1, {"weight": -1})]) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, 1) + pytest.raises( + nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, 1 + ) + pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, 1) + pytest.raises( + nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1 + ) + pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1) + + def test_zero_cycle(self): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + G.add_edge(2, 3, weight=-4) + # check that zero cycle doesn't raise + nx.goldberg_radzik(G, 1) + nx.bellman_ford_predecessor_and_distance(G, 1) + + G.add_edge(2, 3, weight=-4.0001) + # check that negative cycle does raise + pytest.raises( + nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1 + ) + pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1) + + def test_find_negative_cycle_longer_cycle(self): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + nx.add_cycle(G, [3, 5, 6, 7, 8, 9]) + G.add_edge(1, 2, weight=-30) + assert nx.find_negative_cycle(G, 1) == [0, 1, 2, 3, 4, 0] + assert nx.find_negative_cycle(G, 7) == [2, 3, 4, 0, 1, 2] + + def test_find_negative_cycle_no_cycle(self): + G = nx.path_graph(5, create_using=nx.DiGraph()) + pytest.raises(nx.NetworkXError, nx.find_negative_cycle, G, 3) + + def test_find_negative_cycle_single_edge(self): + G = nx.Graph() + G.add_edge(0, 1, weight=-1) + assert nx.find_negative_cycle(G, 1) == [1, 0, 1] + + def test_negative_weight(self): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + G.add_edge(1, 2, weight=-3) + assert nx.single_source_bellman_ford_path(G, 0) == { + 0: [0], + 1: [0, 1], + 2: [0, 1, 2], + 3: [0, 1, 2, 3], + 4: [0, 1, 2, 3, 4], + } + assert nx.single_source_bellman_ford_path_length(G, 0) == { + 0: 0, + 1: 1, + 2: -2, + 3: -1, + 4: 0, + } + assert nx.single_source_bellman_ford(G, 0) == ( + {0: 0, 1: 1, 2: -2, 3: -1, 4: 0}, + {0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3], 4: [0, 1, 2, 3, 4]}, + ) + assert nx.bellman_ford_predecessor_and_distance(G, 0) == ( + {0: [], 1: [0], 2: [1], 3: [2], 4: [3]}, + {0: 0, 1: 1, 2: -2, 3: -1, 4: 0}, + ) + assert nx.goldberg_radzik(G, 0) == ( + {0: None, 1: 0, 2: 1, 3: 2, 4: 3}, + {0: 0, 1: 1, 2: -2, 3: -1, 4: 0}, + ) + + def test_not_connected(self): + G = nx.complete_graph(6) + G.add_edge(10, 11) + G.add_edge(10, 12) + assert nx.single_source_bellman_ford_path(G, 0) == { + 0: [0], + 1: [0, 1], + 2: [0, 2], + 3: [0, 3], + 4: [0, 4], + 5: [0, 5], + } + assert nx.single_source_bellman_ford_path_length(G, 0) == { + 0: 0, + 1: 1, + 2: 1, + 3: 1, + 4: 1, + 5: 1, + } + assert nx.single_source_bellman_ford(G, 0) == ( + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + {0: [0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [0, 5]}, + ) + assert nx.bellman_ford_predecessor_and_distance(G, 0) == ( + {0: [], 1: [0], 2: [0], 3: [0], 4: [0], 5: [0]}, + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + ) + assert nx.goldberg_radzik(G, 0) == ( + {0: None, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0}, + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + ) + + # not connected, with a component not containing the source that + # contains a negative cycle. + G = nx.complete_graph(6) + G.add_edges_from( + [ + ("A", "B", {"load": 3}), + ("B", "C", {"load": -10}), + ("C", "A", {"load": 2}), + ] + ) + assert nx.single_source_bellman_ford_path(G, 0, weight="load") == { + 0: [0], + 1: [0, 1], + 2: [0, 2], + 3: [0, 3], + 4: [0, 4], + 5: [0, 5], + } + assert nx.single_source_bellman_ford_path_length(G, 0, weight="load") == { + 0: 0, + 1: 1, + 2: 1, + 3: 1, + 4: 1, + 5: 1, + } + assert nx.single_source_bellman_ford(G, 0, weight="load") == ( + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + {0: [0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [0, 5]}, + ) + assert nx.bellman_ford_predecessor_and_distance(G, 0, weight="load") == ( + {0: [], 1: [0], 2: [0], 3: [0], 4: [0], 5: [0]}, + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + ) + assert nx.goldberg_radzik(G, 0, weight="load") == ( + {0: None, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0}, + {0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1}, + ) + + def test_multigraph(self): + assert nx.bellman_ford_path(self.MXG, "s", "v") == ["s", "x", "u", "v"] + assert nx.bellman_ford_path_length(self.MXG, "s", "v") == 9 + assert nx.single_source_bellman_ford_path(self.MXG, "s")["v"] == [ + "s", + "x", + "u", + "v", + ] + assert nx.single_source_bellman_ford_path_length(self.MXG, "s")["v"] == 9 + D, P = nx.single_source_bellman_ford(self.MXG, "s", target="v") + assert D == 9 + assert P == ["s", "x", "u", "v"] + P, D = nx.bellman_ford_predecessor_and_distance(self.MXG, "s") + assert P["v"] == ["u"] + assert D["v"] == 9 + P, D = nx.goldberg_radzik(self.MXG, "s") + assert P["v"] == "u" + assert D["v"] == 9 + assert nx.bellman_ford_path(self.MXG4, 0, 2) == [0, 1, 2] + assert nx.bellman_ford_path_length(self.MXG4, 0, 2) == 4 + assert nx.single_source_bellman_ford_path(self.MXG4, 0)[2] == [0, 1, 2] + assert nx.single_source_bellman_ford_path_length(self.MXG4, 0)[2] == 4 + D, P = nx.single_source_bellman_ford(self.MXG4, 0, target=2) + assert D == 4 + assert P == [0, 1, 2] + P, D = nx.bellman_ford_predecessor_and_distance(self.MXG4, 0) + assert P[2] == [1] + assert D[2] == 4 + P, D = nx.goldberg_radzik(self.MXG4, 0) + assert P[2] == 1 + assert D[2] == 4 + + def test_others(self): + assert nx.bellman_ford_path(self.XG, "s", "v") == ["s", "x", "u", "v"] + assert nx.bellman_ford_path_length(self.XG, "s", "v") == 9 + assert nx.single_source_bellman_ford_path(self.XG, "s")["v"] == [ + "s", + "x", + "u", + "v", + ] + assert nx.single_source_bellman_ford_path_length(self.XG, "s")["v"] == 9 + D, P = nx.single_source_bellman_ford(self.XG, "s", target="v") + assert D == 9 + assert P == ["s", "x", "u", "v"] + (P, D) = nx.bellman_ford_predecessor_and_distance(self.XG, "s") + assert P["v"] == ["u"] + assert D["v"] == 9 + (P, D) = nx.goldberg_radzik(self.XG, "s") + assert P["v"] == "u" + assert D["v"] == 9 + + def test_path_graph(self): + G = nx.path_graph(4) + assert nx.single_source_bellman_ford_path(G, 0) == { + 0: [0], + 1: [0, 1], + 2: [0, 1, 2], + 3: [0, 1, 2, 3], + } + assert nx.single_source_bellman_ford_path_length(G, 0) == { + 0: 0, + 1: 1, + 2: 2, + 3: 3, + } + assert nx.single_source_bellman_ford(G, 0) == ( + {0: 0, 1: 1, 2: 2, 3: 3}, + {0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3]}, + ) + assert nx.bellman_ford_predecessor_and_distance(G, 0) == ( + {0: [], 1: [0], 2: [1], 3: [2]}, + {0: 0, 1: 1, 2: 2, 3: 3}, + ) + assert nx.goldberg_radzik(G, 0) == ( + {0: None, 1: 0, 2: 1, 3: 2}, + {0: 0, 1: 1, 2: 2, 3: 3}, + ) + assert nx.single_source_bellman_ford_path(G, 3) == { + 0: [3, 2, 1, 0], + 1: [3, 2, 1], + 2: [3, 2], + 3: [3], + } + assert nx.single_source_bellman_ford_path_length(G, 3) == { + 0: 3, + 1: 2, + 2: 1, + 3: 0, + } + assert nx.single_source_bellman_ford(G, 3) == ( + {0: 3, 1: 2, 2: 1, 3: 0}, + {0: [3, 2, 1, 0], 1: [3, 2, 1], 2: [3, 2], 3: [3]}, + ) + assert nx.bellman_ford_predecessor_and_distance(G, 3) == ( + {0: [1], 1: [2], 2: [3], 3: []}, + {0: 3, 1: 2, 2: 1, 3: 0}, + ) + assert nx.goldberg_radzik(G, 3) == ( + {0: 1, 1: 2, 2: 3, 3: None}, + {0: 3, 1: 2, 2: 1, 3: 0}, + ) + + def test_4_cycle(self): + # 4-cycle + G = nx.Graph([(0, 1), (1, 2), (2, 3), (3, 0)]) + dist, path = nx.single_source_bellman_ford(G, 0) + assert dist == {0: 0, 1: 1, 2: 2, 3: 1} + assert path[0] == [0] + assert path[1] == [0, 1] + assert path[2] in [[0, 1, 2], [0, 3, 2]] + assert path[3] == [0, 3] + + pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0) + assert pred[0] == [] + assert pred[1] == [0] + assert pred[2] in [[1, 3], [3, 1]] + assert pred[3] == [0] + assert dist == {0: 0, 1: 1, 2: 2, 3: 1} + + pred, dist = nx.goldberg_radzik(G, 0) + assert pred[0] is None + assert pred[1] == 0 + assert pred[2] in [1, 3] + assert pred[3] == 0 + assert dist == {0: 0, 1: 1, 2: 2, 3: 1} + + def test_negative_weight_bf_path(self): + G = nx.DiGraph() + G.add_nodes_from("abcd") + G.add_edge("a", "d", weight=0) + G.add_edge("a", "b", weight=1) + G.add_edge("b", "c", weight=-3) + G.add_edge("c", "d", weight=1) + + assert nx.bellman_ford_path(G, "a", "d") == ["a", "b", "c", "d"] + assert nx.bellman_ford_path_length(G, "a", "d") == -1 + + def test_zero_cycle_smoke(self): + D = nx.DiGraph() + D.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 1, -2)]) + + nx.bellman_ford_path(D, 1, 3) + nx.dijkstra_path(D, 1, 3) + nx.bidirectional_dijkstra(D, 1, 3) + # FIXME nx.goldberg_radzik(D, 1) + + +class TestJohnsonAlgorithm(WeightedTestBase): + def test_single_node_graph(self): + G = nx.DiGraph() + G.add_node(0) + assert nx.johnson(G) == {0: {0: [0]}} + + def test_negative_cycle(self): + G = nx.DiGraph() + G.add_weighted_edges_from( + [ + ("0", "3", 3), + ("0", "1", -5), + ("1", "0", -5), + ("0", "2", 2), + ("1", "2", 4), + ("2", "3", 1), + ] + ) + pytest.raises(nx.NetworkXUnbounded, nx.johnson, G) + G = nx.Graph() + G.add_weighted_edges_from( + [ + ("0", "3", 3), + ("0", "1", -5), + ("1", "0", -5), + ("0", "2", 2), + ("1", "2", 4), + ("2", "3", 1), + ] + ) + pytest.raises(nx.NetworkXUnbounded, nx.johnson, G) + + def test_negative_weights(self): + G = nx.DiGraph() + G.add_weighted_edges_from( + [("0", "3", 3), ("0", "1", -5), ("0", "2", 2), ("1", "2", 4), ("2", "3", 1)] + ) + paths = nx.johnson(G) + assert paths == { + "1": {"1": ["1"], "3": ["1", "2", "3"], "2": ["1", "2"]}, + "0": { + "1": ["0", "1"], + "0": ["0"], + "3": ["0", "1", "2", "3"], + "2": ["0", "1", "2"], + }, + "3": {"3": ["3"]}, + "2": {"3": ["2", "3"], "2": ["2"]}, + } + + def test_unweighted_graph(self): + G = nx.Graph() + G.add_edges_from([(1, 0), (2, 1)]) + H = G.copy() + nx.set_edge_attributes(H, values=1, name="weight") + assert nx.johnson(G) == nx.johnson(H) + + def test_partially_weighted_graph_with_negative_edges(self): + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 0), (1, 0)]) + G[1][0]["weight"] = -2 + G[0][1]["weight"] = 3 + G[1][2]["weight"] = -4 + + H = G.copy() + H[2][0]["weight"] = 1 + + I = G.copy() + I[2][0]["weight"] = 8 + + assert nx.johnson(G) == nx.johnson(H) + assert nx.johnson(G) != nx.johnson(I) + + def test_graphs(self): + validate_path(self.XG, "s", "v", 9, nx.johnson(self.XG)["s"]["v"]) + validate_path(self.MXG, "s", "v", 9, nx.johnson(self.MXG)["s"]["v"]) + validate_path(self.XG2, 1, 3, 4, nx.johnson(self.XG2)[1][3]) + validate_path(self.XG3, 0, 3, 15, nx.johnson(self.XG3)[0][3]) + validate_path(self.XG4, 0, 2, 4, nx.johnson(self.XG4)[0][2]) + validate_path(self.MXG4, 0, 2, 4, nx.johnson(self.MXG4)[0][2]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/unweighted.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/unweighted.py new file mode 100644 index 0000000000000000000000000000000000000000..1503ba7478446ae1b8fb28c2722883946712cfd8 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/unweighted.py @@ -0,0 +1,570 @@ +""" +Shortest path algorithms for unweighted graphs. +""" +import warnings + +import networkx as nx + +__all__ = [ + "bidirectional_shortest_path", + "single_source_shortest_path", + "single_source_shortest_path_length", + "single_target_shortest_path", + "single_target_shortest_path_length", + "all_pairs_shortest_path", + "all_pairs_shortest_path_length", + "predecessor", +] + + +@nx._dispatch +def single_source_shortest_path_length(G, source, cutoff=None): + """Compute the shortest path lengths from source to all reachable nodes. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + lengths : dict + Dict keyed by node to shortest path length to source. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_shortest_path_length(G, 0) + >>> length[4] + 4 + >>> for node in length: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + See Also + -------- + shortest_path_length + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} is not in G") + if cutoff is None: + cutoff = float("inf") + nextlevel = [source] + return dict(_single_shortest_path_length(G._adj, nextlevel, cutoff)) + + +def _single_shortest_path_length(adj, firstlevel, cutoff): + """Yields (node, level) in a breadth first search + + Shortest Path Length helper function + Parameters + ---------- + adj : dict + Adjacency dict or view + firstlevel : list + starting nodes, e.g. [source] or [target] + cutoff : int or float + level at which we stop the process + """ + seen = set(firstlevel) + nextlevel = firstlevel + level = 0 + n = len(adj) + for v in nextlevel: + yield (v, level) + while nextlevel and cutoff > level: + level += 1 + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in adj[v]: + if w not in seen: + seen.add(w) + nextlevel.append(w) + yield (w, level) + if len(seen) == n: + return + + +@nx._dispatch +def single_target_shortest_path_length(G, target, cutoff=None): + """Compute the shortest path lengths to target from all reachable nodes. + + Parameters + ---------- + G : NetworkX graph + + target : node + Target node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + lengths : iterator + (source, shortest path length) iterator + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> length = dict(nx.single_target_shortest_path_length(G, 4)) + >>> length[0] + 4 + >>> for node in range(5): + ... print(f"{node}: {length[node]}") + 0: 4 + 1: 3 + 2: 2 + 3: 1 + 4: 0 + + See Also + -------- + single_source_shortest_path_length, shortest_path_length + """ + if target not in G: + raise nx.NodeNotFound(f"Target {target} is not in G") + + msg = "single_target_shortest_path_length will return a dict starting in v3.3" + warnings.warn(msg, DeprecationWarning) + + if cutoff is None: + cutoff = float("inf") + # handle either directed or undirected + adj = G._pred if G.is_directed() else G._adj + nextlevel = [target] + # for version 3.3 we will return a dict like this: + # return dict(_single_shortest_path_length(adj, nextlevel, cutoff)) + return _single_shortest_path_length(adj, nextlevel, cutoff) + + +@nx._dispatch +def all_pairs_shortest_path_length(G, cutoff=None): + """Computes the shortest path lengths between all nodes in `G`. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer, optional + Depth at which to stop the search. Only paths of length at most + `cutoff` are returned. + + Returns + ------- + lengths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Notes + ----- + The iterator returned only has reachable node pairs. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_shortest_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + """ + length = single_source_shortest_path_length + # TODO This can be trivially parallelized. + for n in G: + yield (n, length(G, n, cutoff=cutoff)) + + +@nx._dispatch +def bidirectional_shortest_path(G, source, target): + """Returns a list of nodes in a shortest path between source and target. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + Returns + ------- + path: list + List of nodes in a path from source to target. + + Raises + ------ + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2, 3, 0, 4, 5, 6, 7, 4]) + >>> nx.bidirectional_shortest_path(G, 2, 6) + [2, 1, 0, 4, 5, 6] + + See Also + -------- + shortest_path + + Notes + ----- + This algorithm is used by shortest_path(G, source, target). + """ + + if source not in G or target not in G: + msg = f"Either source {source} or target {target} is not in G" + raise nx.NodeNotFound(msg) + + # call helper to do the real work + results = _bidirectional_pred_succ(G, source, target) + pred, succ, w = results + + # build path from pred+w+succ + path = [] + # from source to w + while w is not None: + path.append(w) + w = pred[w] + path.reverse() + # from w to target + w = succ[path[-1]] + while w is not None: + path.append(w) + w = succ[w] + + return path + + +def _bidirectional_pred_succ(G, source, target): + """Bidirectional shortest path helper. + + Returns (pred, succ, w) where + pred is a dictionary of predecessors from w to the source, and + succ is a dictionary of successors from w to the target. + """ + # does BFS from both source and target and meets in the middle + if target == source: + return ({target: None}, {source: None}, source) + + # handle either directed or undirected + if G.is_directed(): + Gpred = G.pred + Gsucc = G.succ + else: + Gpred = G.adj + Gsucc = G.adj + + # predecessor and successors in search + pred = {source: None} + succ = {target: None} + + # initialize fringes, start with forward + forward_fringe = [source] + reverse_fringe = [target] + + while forward_fringe and reverse_fringe: + if len(forward_fringe) <= len(reverse_fringe): + this_level = forward_fringe + forward_fringe = [] + for v in this_level: + for w in Gsucc[v]: + if w not in pred: + forward_fringe.append(w) + pred[w] = v + if w in succ: # path found + return pred, succ, w + else: + this_level = reverse_fringe + reverse_fringe = [] + for v in this_level: + for w in Gpred[v]: + if w not in succ: + succ[w] = v + reverse_fringe.append(w) + if w in pred: # found path + return pred, succ, w + + raise nx.NetworkXNoPath(f"No path between {source} and {target}.") + + +@nx._dispatch +def single_source_shortest_path(G, source, cutoff=None): + """Compute shortest path between source + and all other nodes reachable from source. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + paths : dictionary + Dictionary, keyed by target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_shortest_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + The shortest path is not necessarily unique. So there can be multiple + paths between the source and each target node, all of which have the + same 'shortest' length. For each target node, this function returns + only one of those paths. + + See Also + -------- + shortest_path + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} not in G") + + def join(p1, p2): + return p1 + p2 + + if cutoff is None: + cutoff = float("inf") + nextlevel = {source: 1} # list of nodes to check at next level + paths = {source: [source]} # paths dictionary (paths to key from source) + return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join)) + + +def _single_shortest_path(adj, firstlevel, paths, cutoff, join): + """Returns shortest paths + + Shortest Path helper function + Parameters + ---------- + adj : dict + Adjacency dict or view + firstlevel : dict + starting nodes, e.g. {source: 1} or {target: 1} + paths : dict + paths for starting nodes, e.g. {source: [source]} + cutoff : int or float + level at which we stop the process + join : function + function to construct a path from two partial paths. Requires two + list inputs `p1` and `p2`, and returns a list. Usually returns + `p1 + p2` (forward from source) or `p2 + p1` (backward from target) + """ + level = 0 # the current level + nextlevel = firstlevel + while nextlevel and cutoff > level: + thislevel = nextlevel + nextlevel = {} + for v in thislevel: + for w in adj[v]: + if w not in paths: + paths[w] = join(paths[v], [w]) + nextlevel[w] = 1 + level += 1 + return paths + + +@nx._dispatch +def single_target_shortest_path(G, target, cutoff=None): + """Compute shortest path to target from all nodes that reach target. + + Parameters + ---------- + G : NetworkX graph + + target : node label + Target node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + paths : dictionary + Dictionary, keyed by target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> path = nx.single_target_shortest_path(G, 4) + >>> path[0] + [0, 1, 2, 3, 4] + + Notes + ----- + The shortest path is not necessarily unique. So there can be multiple + paths between the source and each target node, all of which have the + same 'shortest' length. For each target node, this function returns + only one of those paths. + + See Also + -------- + shortest_path, single_source_shortest_path + """ + if target not in G: + raise nx.NodeNotFound(f"Target {target} not in G") + + def join(p1, p2): + return p2 + p1 + + # handle undirected graphs + adj = G.pred if G.is_directed() else G.adj + if cutoff is None: + cutoff = float("inf") + nextlevel = {target: 1} # list of nodes to check at next level + paths = {target: [target]} # paths dictionary (paths to key from source) + return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join)) + + +@nx._dispatch +def all_pairs_shortest_path(G, cutoff=None): + """Compute shortest paths between all nodes. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer, optional + Depth at which to stop the search. Only paths of length at most + `cutoff` are returned. + + Returns + ------- + paths : iterator + Dictionary, keyed by source and target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_shortest_path(G)) + >>> print(path[0][4]) + [0, 1, 2, 3, 4] + + Notes + ----- + There may be multiple shortest paths with the same length between + two nodes. For each pair, this function returns only one of those paths. + + See Also + -------- + floyd_warshall + all_pairs_all_shortest_paths + + """ + # TODO This can be trivially parallelized. + for n in G: + yield (n, single_source_shortest_path(G, n, cutoff=cutoff)) + + +@nx._dispatch +def predecessor(G, source, target=None, cutoff=None, return_seen=None): + """Returns dict of predecessors for the path from source to all nodes in G. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path. If provided only predecessors between + source and target are returned + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + return_seen : bool, optional (default=None) + Whether to return a dictionary, keyed by node, of the level (number of + hops) to reach the node (as seen during breadth-first-search). + + Returns + ------- + pred : dictionary + Dictionary, keyed by node, of predecessors in the shortest path. + + + (pred, seen): tuple of dictionaries + If `return_seen` argument is set to `True`, then a tuple of dictionaries + is returned. The first element is the dictionary, keyed by node, of + predecessors in the shortest path. The second element is the dictionary, + keyed by node, of the level (number of hops) to reach the node (as seen + during breadth-first-search). + + Examples + -------- + >>> G = nx.path_graph(4) + >>> list(G) + [0, 1, 2, 3] + >>> nx.predecessor(G, 0) + {0: [], 1: [0], 2: [1], 3: [2]} + >>> nx.predecessor(G, 0, return_seen=True) + ({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3}) + + + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} not in G") + + level = 0 # the current level + nextlevel = [source] # list of nodes to check at next level + seen = {source: level} # level (number of hops) when seen in BFS + pred = {source: []} # predecessor dictionary + while nextlevel: + level = level + 1 + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in G[v]: + if w not in seen: + pred[w] = [v] + seen[w] = level + nextlevel.append(w) + elif seen[w] == level: # add v to predecessor list if it + pred[w].append(v) # is at the correct level + if cutoff and cutoff <= level: + break + + if target is not None: + if return_seen: + if target not in pred: + return ([], -1) # No predecessor + return (pred[target], seen[target]) + else: + if target not in pred: + return [] # No predecessor + return pred[target] + else: + if return_seen: + return (pred, seen) + else: + return pred diff --git a/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/weighted.py b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/weighted.py new file mode 100644 index 0000000000000000000000000000000000000000..bbbb03d9eee83543133af4c7a31df143a46429f3 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/shortest_paths/weighted.py @@ -0,0 +1,2514 @@ +""" +Shortest path algorithms for weighted graphs. +""" + +from collections import deque +from heapq import heappop, heappush +from itertools import count + +import networkx as nx +from networkx.algorithms.shortest_paths.generic import _build_paths_from_predecessors + +__all__ = [ + "dijkstra_path", + "dijkstra_path_length", + "bidirectional_dijkstra", + "single_source_dijkstra", + "single_source_dijkstra_path", + "single_source_dijkstra_path_length", + "multi_source_dijkstra", + "multi_source_dijkstra_path", + "multi_source_dijkstra_path_length", + "all_pairs_dijkstra", + "all_pairs_dijkstra_path", + "all_pairs_dijkstra_path_length", + "dijkstra_predecessor_and_distance", + "bellman_ford_path", + "bellman_ford_path_length", + "single_source_bellman_ford", + "single_source_bellman_ford_path", + "single_source_bellman_ford_path_length", + "all_pairs_bellman_ford_path", + "all_pairs_bellman_ford_path_length", + "bellman_ford_predecessor_and_distance", + "negative_edge_cycle", + "find_negative_cycle", + "goldberg_radzik", + "johnson", +] + + +def _weight_function(G, weight): + """Returns a function that returns the weight of an edge. + + The returned function is specifically suitable for input to + functions :func:`_dijkstra` and :func:`_bellman_ford_relaxation`. + + Parameters + ---------- + G : NetworkX graph. + + weight : string or function + If it is callable, `weight` itself is returned. If it is a string, + it is assumed to be the name of the edge attribute that represents + the weight of an edge. In that case, a function is returned that + gets the edge weight according to the specified edge attribute. + + Returns + ------- + function + This function returns a callable that accepts exactly three inputs: + a node, an node adjacent to the first one, and the edge attribute + dictionary for the eedge joining those nodes. That function returns + a number representing the weight of an edge. + + If `G` is a multigraph, and `weight` is not callable, the + minimum edge weight over all parallel edges is returned. If any edge + does not have an attribute with key `weight`, it is assumed to + have weight one. + + """ + if callable(weight): + return weight + # If the weight keyword argument is not callable, we assume it is a + # string representing the edge attribute containing the weight of + # the edge. + if G.is_multigraph(): + return lambda u, v, d: min(attr.get(weight, 1) for attr in d.values()) + return lambda u, v, data: data.get(weight, 1) + + +@nx._dispatch(edge_attrs="weight") +def dijkstra_path(G, source, target, weight="weight"): + """Returns the shortest weighted path from source to target in G. + + Uses Dijkstra's Method to compute the shortest weighted path + between two nodes in a graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node + + target : node + Ending node + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + path : list + List of nodes in a shortest path. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> print(nx.dijkstra_path(G, 0, 4)) + [0, 1, 2, 3, 4] + + Find edges of shortest path in Multigraph + + >>> G = nx.MultiDiGraph() + >>> G.add_weighted_edges_from([(1, 2, 0.75), (1, 2, 0.5), (2, 3, 0.5), (1, 3, 1.5)]) + >>> nodes = nx.dijkstra_path(G, 1, 3) + >>> edges = nx.utils.pairwise(nodes) + >>> list((u, v, min(G[u][v], key=lambda k: G[u][v][k].get('weight', 1))) for u, v in edges) + [(1, 2, 1), (2, 3, 0)] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + The weight function can be used to include node weights. + + >>> def func(u, v, d): + ... node_u_wt = G.nodes[u].get("node_weight", 1) + ... node_v_wt = G.nodes[v].get("node_weight", 1) + ... edge_wt = d.get("weight", 1) + ... return node_u_wt / 2 + node_v_wt / 2 + edge_wt + + In this example we take the average of start and end node + weights of an edge and add it to the weight of the edge. + + The function :func:`single_source_dijkstra` computes both + path and length-of-path if you need both, use that. + + See Also + -------- + bidirectional_dijkstra + bellman_ford_path + single_source_dijkstra + """ + (length, path) = single_source_dijkstra(G, source, target=target, weight=weight) + return path + + +@nx._dispatch(edge_attrs="weight") +def dijkstra_path_length(G, source, target, weight="weight"): + """Returns the shortest weighted path length in G from source to target. + + Uses Dijkstra's Method to compute the shortest weighted path length + between two nodes in a graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : number + Shortest path length. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.dijkstra_path_length(G, 0, 4) + 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + The function :func:`single_source_dijkstra` computes both + path and length-of-path if you need both, use that. + + See Also + -------- + bidirectional_dijkstra + bellman_ford_path_length + single_source_dijkstra + + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} not found in graph") + if source == target: + return 0 + weight = _weight_function(G, weight) + length = _dijkstra(G, source, weight, target=target) + try: + return length[target] + except KeyError as err: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") from err + + +@nx._dispatch(edge_attrs="weight") +def single_source_dijkstra_path(G, source, cutoff=None, weight="weight"): + """Find shortest weighted paths in G from a source node. + + Compute shortest path between source and all other reachable + nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : dictionary + Dictionary of shortest path lengths keyed by target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_dijkstra_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + return multi_source_dijkstra_path(G, {source}, cutoff=cutoff, weight=weight) + + +@nx._dispatch(edge_attrs="weight") +def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"): + """Find shortest weighted path lengths in G from a source node. + + Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : dict + Dict keyed by node to shortest path length from source. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_dijkstra_path_length(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford_path_length + + """ + return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight) + + +@nx._dispatch(edge_attrs="weight") +def single_source_dijkstra(G, source, target=None, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths from a source node. + + Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Uses Dijkstra's algorithm to compute shortest paths and lengths + between a source and all other reachable nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list. + If target is None, paths and lengths to all nodes are computed. + The return value is a tuple of two dictionaries keyed by target nodes. + The first dictionary stores distance to each target node. + The second stores the path to each target node. + If target is not None, returns a tuple (distance, path), where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.single_source_dijkstra(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + >>> path[4] + [0, 1, 2, 3, 4] + >>> length, path = nx.single_source_dijkstra(G, 0, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Based on the Python cookbook recipe (119466) at + https://code.activestate.com/recipes/119466/ + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + See Also + -------- + single_source_dijkstra_path + single_source_dijkstra_path_length + single_source_bellman_ford + """ + return multi_source_dijkstra( + G, {source}, cutoff=cutoff, target=target, weight=weight + ) + + +@nx._dispatch(edge_attrs="weight") +def multi_source_dijkstra_path(G, sources, cutoff=None, weight="weight"): + """Find shortest weighted paths in G from a given set of source + nodes. + + Compute shortest path between any of the source nodes and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : dictionary + Dictionary of shortest paths keyed by target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.multi_source_dijkstra_path(G, {0, 4}) + >>> path[1] + [0, 1] + >>> path[3] + [4, 3] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra, multi_source_bellman_ford + + """ + length, path = multi_source_dijkstra(G, sources, cutoff=cutoff, weight=weight) + return path + + +@nx._dispatch(edge_attrs="weight") +def multi_source_dijkstra_path_length(G, sources, cutoff=None, weight="weight"): + """Find shortest weighted path lengths in G from a given set of + source nodes. + + Compute the shortest path length between any of the source nodes and + all other reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : dict + Dict keyed by node to shortest path length to nearest source. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.multi_source_dijkstra_path_length(G, {0, 4}) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 1 + 4: 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra + + """ + if not sources: + raise ValueError("sources must not be empty") + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Node {s} not found in graph") + weight = _weight_function(G, weight) + return _dijkstra_multisource(G, sources, weight, cutoff=cutoff) + + +@nx._dispatch(edge_attrs="weight") +def multi_source_dijkstra(G, sources, target=None, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths from a given set of + source nodes. + + Uses Dijkstra's algorithm to compute the shortest paths and lengths + between one of the source nodes and the given `target`, or all other + reachable nodes if not specified, for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + target : node label, optional + Ending node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list + If target is None, returns a tuple of two dictionaries keyed by node. + The first dictionary stores distance from one of the source nodes. + The second stores the path from one of the sources to that node. + If target is not None, returns a tuple of (distance, path) where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.multi_source_dijkstra(G, {0, 4}) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 1 + 4: 0 + >>> path[1] + [0, 1] + >>> path[3] + [4, 3] + + >>> length, path = nx.multi_source_dijkstra(G, {0, 4}, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Based on the Python cookbook recipe (119466) at + https://code.activestate.com/recipes/119466/ + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra_path + multi_source_dijkstra_path_length + + """ + if not sources: + raise ValueError("sources must not be empty") + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Node {s} not found in graph") + if target in sources: + return (0, [target]) + weight = _weight_function(G, weight) + paths = {source: [source] for source in sources} # dictionary of paths + dist = _dijkstra_multisource( + G, sources, weight, paths=paths, cutoff=cutoff, target=target + ) + if target is None: + return (dist, paths) + try: + return (dist[target], paths[target]) + except KeyError as err: + raise nx.NetworkXNoPath(f"No path to {target}.") from err + + +def _dijkstra(G, source, weight, pred=None, paths=None, cutoff=None, target=None): + """Uses Dijkstra's algorithm to find shortest weighted paths from a + single source. + + This is a convenience function for :func:`_dijkstra_multisource` + with all the arguments the same, except the keyword argument + `sources` set to ``[source]``. + + """ + return _dijkstra_multisource( + G, [source], weight, pred=pred, paths=paths, cutoff=cutoff, target=target + ) + + +def _dijkstra_multisource( + G, sources, weight, pred=None, paths=None, cutoff=None, target=None +): + """Uses Dijkstra's algorithm to find shortest weighted paths + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty iterable of nodes + Starting nodes for paths. If this is just an iterable containing + a single node, then all paths computed by this function will + start from that node. If there are two or more nodes in this + iterable, the computed paths may begin from any one of the start + nodes. + + weight: function + Function with (u, v, data) input that returns that edge's weight + or None to indicate a hidden edge + + pred: dict of lists, optional(default=None) + dict to store a list of predecessors keyed by that node + If None, predecessors are not stored. + + paths: dict, optional (default=None) + dict to store the path list from source to each node, keyed by node. + If None, paths are not stored. + + target : node label, optional + Ending node for path. Search is halted when target is found. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + Returns + ------- + distance : dictionary + A mapping from node to shortest distance to that node from one + of the source nodes. + + Raises + ------ + NodeNotFound + If any of `sources` is not in `G`. + + Notes + ----- + The optional predecessor and path dictionaries can be accessed by + the caller through the original pred and paths objects passed + as arguments. No need to explicitly return pred or paths. + + """ + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + + push = heappush + pop = heappop + dist = {} # dictionary of final distances + seen = {} + # fringe is heapq with 3-tuples (distance,c,node) + # use the count c to avoid comparing nodes (may not be able to) + c = count() + fringe = [] + for source in sources: + seen[source] = 0 + push(fringe, (0, next(c), source)) + while fringe: + (d, _, v) = pop(fringe) + if v in dist: + continue # already searched this node. + dist[v] = d + if v == target: + break + for u, e in G_succ[v].items(): + cost = weight(v, u, e) + if cost is None: + continue + vu_dist = dist[v] + cost + if cutoff is not None: + if vu_dist > cutoff: + continue + if u in dist: + u_dist = dist[u] + if vu_dist < u_dist: + raise ValueError("Contradictory paths found:", "negative weights?") + elif pred is not None and vu_dist == u_dist: + pred[u].append(v) + elif u not in seen or vu_dist < seen[u]: + seen[u] = vu_dist + push(fringe, (vu_dist, next(c), u)) + if paths is not None: + paths[u] = paths[v] + [u] + if pred is not None: + pred[u] = [v] + elif vu_dist == seen[u]: + if pred is not None: + pred[u].append(v) + + # The optional predecessor and path dictionaries can be accessed + # by the caller via the pred and paths objects passed as arguments. + return dist + + +@nx._dispatch(edge_attrs="weight") +def dijkstra_predecessor_and_distance(G, source, cutoff=None, weight="weight"): + """Compute weighted shortest path length and predecessors. + + Uses Dijkstra's Method to obtain the shortest weighted paths + and return dictionaries of predecessors for each node and + distance for each node from the `source`. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + pred, distance : dictionaries + Returns two dictionaries representing a list of predecessors + of a node and the distance to each node. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The list of predecessors contains more than one element only when + there are more than one shortest paths to the key node. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0, 1) + >>> sorted(pred.items()) + [(0, []), (1, [0])] + >>> sorted(dist.items()) + [(0, 0), (1, 1)] + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + pred = {source: []} # dictionary of predecessors + return (pred, _dijkstra(G, source, weight, pred=pred, cutoff=cutoff)) + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_dijkstra(G, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths between all nodes. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edge[u][v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Yields + ------ + (node, (distance, path)) : (node obj, (dict, dict)) + Each source node has two associated dicts. The first holds distance + keyed by target and the second holds paths keyed by target. + (See single_source_dijkstra for the source/target node terminology.) + If desired you can apply `dict()` to this function to create a dict + keyed by source node to the two dicts. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> len_path = dict(nx.all_pairs_dijkstra(G)) + >>> len_path[3][0][1] + 2 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"3 - {node}: {len_path[3][0][node]}") + 3 - 0: 3 + 3 - 1: 2 + 3 - 2: 1 + 3 - 3: 0 + 3 - 4: 1 + >>> len_path[3][1][1] + [3, 2, 1] + >>> for n, (dist, path) in nx.all_pairs_dijkstra(G): + ... print(path[1]) + [0, 1] + [1] + [2, 1] + [3, 2, 1] + [4, 3, 2, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The yielded dicts only have keys for reachable nodes. + """ + for n in G: + dist, path = single_source_dijkstra(G, n, cutoff=cutoff, weight=weight) + yield (n, (dist, path)) + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_dijkstra_path_length(G, cutoff=None, weight="weight"): + """Compute shortest path lengths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_dijkstra_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionary returned only has keys for reachable node pairs. + """ + length = single_source_dijkstra_path_length + for n in G: + yield (n, length(G, n, cutoff=cutoff, weight=weight)) + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_dijkstra_path(G, cutoff=None, weight="weight"): + """Compute shortest paths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_dijkstra_path(G)) + >>> path[0][4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + floyd_warshall, all_pairs_bellman_ford_path + + """ + path = single_source_dijkstra_path + # TODO This can be trivially parallelized. + for n in G: + yield (n, path(G, n, cutoff=cutoff, weight=weight)) + + +@nx._dispatch(edge_attrs="weight") +def bellman_ford_predecessor_and_distance( + G, source, target=None, weight="weight", heuristic=False +): + """Compute shortest path lengths and predecessors on shortest paths + in weighted graphs. + + The algorithm has a running time of $O(mn)$ where $n$ is the number of + nodes and $m$ is the number of edges. It is slower than Dijkstra but + can handle negative edge weights. + + If a negative cycle is detected, you can use :func:`find_negative_cycle` + to return the cycle and examine it. Shortest paths are not defined when + a negative cycle exists because once reached, the path can cycle forever + to build up arbitrarily low weights. + + Parameters + ---------- + G : NetworkX graph + The algorithm works for all types of graphs, including directed + graphs and multigraphs. + + source: node label + Starting node for path + + target : node label, optional + Ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + pred, dist : dictionaries + Returns two dictionaries keyed by node to predecessor in the + path and to the distance from the source respectively. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0, 1) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> G[1][2]["weight"] = -7 + >>> nx.bellman_ford_predecessor_and_distance(G, 0) + Traceback (most recent call last): + ... + networkx.exception.NetworkXUnbounded: Negative cycle detected. + + See Also + -------- + find_negative_cycle + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionaries returned only have keys for nodes reachable from + the source. + + In the case where the (di)graph is not connected, if a component + not containing the source contains a negative (di)cycle, it + will not be detected. + + In NetworkX v2.1 and prior, the source node had predecessor `[None]`. + In NetworkX v2.2 this changed to the source node having predecessor `[]` + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + if G.is_multigraph(): + if any( + weight(u, v, {k: d}) < 0 + for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True) + ): + raise nx.NetworkXUnbounded("Negative cycle detected.") + else: + if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)): + raise nx.NetworkXUnbounded("Negative cycle detected.") + + dist = {source: 0} + pred = {source: []} + + if len(G) == 1: + return pred, dist + + weight = _weight_function(G, weight) + + dist = _bellman_ford( + G, [source], weight, pred=pred, dist=dist, target=target, heuristic=heuristic + ) + return (pred, dist) + + +def _bellman_ford( + G, + source, + weight, + pred=None, + paths=None, + dist=None, + target=None, + heuristic=True, +): + """Calls relaxation loop for Bellman–Ford algorithm and builds paths + + This is an implementation of the SPFA variant. + See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm + + Parameters + ---------- + G : NetworkX graph + + source: list + List of source nodes. The shortest path from any of the source + nodes will be found if multiple sources are provided. + + weight : function + The weight of an edge is the value returned by the function. The + function must accept exactly three positional arguments: the two + endpoints of an edge and the dictionary of edge attributes for + that edge. The function must return a number. + + pred: dict of lists, optional (default=None) + dict to store a list of predecessors keyed by that node + If None, predecessors are not stored + + paths: dict, optional (default=None) + dict to store the path list from source to each node, keyed by node + If None, paths are not stored + + dist: dict, optional (default=None) + dict to store distance from source to the keyed node + If None, returned dist dict contents default to 0 for every node in the + source list + + target: node label, optional + Ending node for path. Path lengths to other destinations may (and + probably will) be incorrect. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + dist : dict + Returns a dict keyed by node to the distance from the source. + Dicts for paths and pred are in the mutated input dicts by those names. + + Raises + ------ + NodeNotFound + If any of `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle + """ + if pred is None: + pred = {v: [] for v in source} + + if dist is None: + dist = {v: 0 for v in source} + + negative_cycle_found = _inner_bellman_ford( + G, + source, + weight, + pred, + dist, + heuristic, + ) + if negative_cycle_found is not None: + raise nx.NetworkXUnbounded("Negative cycle detected.") + + if paths is not None: + sources = set(source) + dsts = [target] if target is not None else pred + for dst in dsts: + gen = _build_paths_from_predecessors(sources, dst, pred) + paths[dst] = next(gen) + + return dist + + +def _inner_bellman_ford( + G, + sources, + weight, + pred, + dist=None, + heuristic=True, +): + """Inner Relaxation loop for Bellman–Ford algorithm. + + This is an implementation of the SPFA variant. + See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm + + Parameters + ---------- + G : NetworkX graph + + source: list + List of source nodes. The shortest path from any of the source + nodes will be found if multiple sources are provided. + + weight : function + The weight of an edge is the value returned by the function. The + function must accept exactly three positional arguments: the two + endpoints of an edge and the dictionary of edge attributes for + that edge. The function must return a number. + + pred: dict of lists + dict to store a list of predecessors keyed by that node + + dist: dict, optional (default=None) + dict to store distance from source to the keyed node + If None, returned dist dict contents default to 0 for every node in the + source list + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + node or None + Return a node `v` where processing discovered a negative cycle. + If no negative cycle found, return None. + + Raises + ------ + NodeNotFound + If any of `source` is not in `G`. + """ + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Source {s} not in G") + + if pred is None: + pred = {v: [] for v in sources} + + if dist is None: + dist = {v: 0 for v in sources} + + # Heuristic Storage setup. Note: use None because nodes cannot be None + nonexistent_edge = (None, None) + pred_edge = {v: None for v in sources} + recent_update = {v: nonexistent_edge for v in sources} + + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + inf = float("inf") + n = len(G) + + count = {} + q = deque(sources) + in_q = set(sources) + while q: + u = q.popleft() + in_q.remove(u) + + # Skip relaxations if any of the predecessors of u is in the queue. + if all(pred_u not in in_q for pred_u in pred[u]): + dist_u = dist[u] + for v, e in G_succ[u].items(): + dist_v = dist_u + weight(u, v, e) + + if dist_v < dist.get(v, inf): + # In this conditional branch we are updating the path with v. + # If it happens that some earlier update also added node v + # that implies the existence of a negative cycle since + # after the update node v would lie on the update path twice. + # The update path is stored up to one of the source nodes, + # therefore u is always in the dict recent_update + if heuristic: + if v in recent_update[u]: + # Negative cycle found! + pred[v].append(u) + return v + + # Transfer the recent update info from u to v if the + # same source node is the head of the update path. + # If the source node is responsible for the cost update, + # then clear the history and use it instead. + if v in pred_edge and pred_edge[v] == u: + recent_update[v] = recent_update[u] + else: + recent_update[v] = (u, v) + + if v not in in_q: + q.append(v) + in_q.add(v) + count_v = count.get(v, 0) + 1 + if count_v == n: + # Negative cycle found! + return v + + count[v] = count_v + dist[v] = dist_v + pred[v] = [u] + pred_edge[v] = u + + elif dist.get(v) is not None and dist_v == dist.get(v): + pred[v].append(u) + + # successfully found shortest_path. No negative cycles found. + return None + + +@nx._dispatch(edge_attrs="weight") +def bellman_ford_path(G, source, target, weight="weight"): + """Returns the shortest path from source to target in a weighted graph G. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node + + target : node + Ending node + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + path : list + List of nodes in a shortest path. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.bellman_ford_path(G, 0, 4) + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + dijkstra_path, bellman_ford_path_length + """ + length, path = single_source_bellman_ford(G, source, target=target, weight=weight) + return path + + +@nx._dispatch(edge_attrs="weight") +def bellman_ford_path_length(G, source, target, weight="weight"): + """Returns the shortest path length from source to target + in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + length : number + Shortest path length. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.bellman_ford_path_length(G, 0, 4) + 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + dijkstra_path_length, bellman_ford_path + """ + if source == target: + if source not in G: + raise nx.NodeNotFound(f"Node {source} not found in graph") + return 0 + + weight = _weight_function(G, weight) + + length = _bellman_ford(G, [source], weight, target=target) + + try: + return length[target] + except KeyError as err: + raise nx.NetworkXNoPath(f"node {target} not reachable from {source}") from err + + +@nx._dispatch(edge_attrs="weight") +def single_source_bellman_ford_path(G, source, weight="weight"): + """Compute shortest path between source and all other reachable + nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + paths : dictionary + Dictionary of shortest path lengths keyed by target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_bellman_ford_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + (length, path) = single_source_bellman_ford(G, source, weight=weight) + return path + + +@nx._dispatch(edge_attrs="weight") +def single_source_bellman_ford_path_length(G, source, weight="weight"): + """Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + length : dictionary + Dictionary of shortest path length keyed by target + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_bellman_ford_path_length(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + weight = _weight_function(G, weight) + return _bellman_ford(G, [source], weight) + + +@nx._dispatch(edge_attrs="weight") +def single_source_bellman_ford(G, source, target=None, weight="weight"): + """Compute shortest paths and lengths in a weighted graph G. + + Uses Bellman-Ford algorithm for shortest paths. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list + If target is None, returns a tuple of two dictionaries keyed by node. + The first dictionary stores distance from one of the source nodes. + The second stores the path from one of the sources to that node. + If target is not None, returns a tuple of (distance, path) where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.single_source_bellman_ford(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + >>> path[4] + [0, 1, 2, 3, 4] + >>> length, path = nx.single_source_bellman_ford(G, 0, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra + single_source_bellman_ford_path + single_source_bellman_ford_path_length + """ + if source == target: + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + return (0, [source]) + + weight = _weight_function(G, weight) + + paths = {source: [source]} # dictionary of paths + dist = _bellman_ford(G, [source], weight, paths=paths, target=target) + if target is None: + return (dist, paths) + try: + return (dist[target], paths[target]) + except KeyError as err: + msg = f"Node {target} not reachable from {source}" + raise nx.NetworkXNoPath(msg) from err + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_bellman_ford_path_length(G, weight="weight"): + """Compute shortest path lengths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_bellman_ford_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionary returned only has keys for reachable node pairs. + """ + length = single_source_bellman_ford_path_length + for n in G: + yield (n, dict(length(G, n, weight=weight))) + + +@nx._dispatch(edge_attrs="weight") +def all_pairs_bellman_ford_path(G, weight="weight"): + """Compute shortest paths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + paths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_bellman_ford_path(G)) + >>> path[0][4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + floyd_warshall, all_pairs_dijkstra_path + + """ + path = single_source_bellman_ford_path + # TODO This can be trivially parallelized. + for n in G: + yield (n, path(G, n, weight=weight)) + + +@nx._dispatch(edge_attrs="weight") +def goldberg_radzik(G, source, weight="weight"): + """Compute shortest path lengths and predecessors on shortest paths + in weighted graphs. + + The algorithm has a running time of $O(mn)$ where $n$ is the number of + nodes and $m$ is the number of edges. It is slower than Dijkstra but + can handle negative edge weights. + + Parameters + ---------- + G : NetworkX graph + The algorithm works for all types of graphs, including directed + graphs and multigraphs. + + source: node label + Starting node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + pred, dist : dictionaries + Returns two dictionaries keyed by node to predecessor in the + path and to the distance from the source respectively. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle. + + As of NetworkX v3.2, a zero weight cycle is no longer + incorrectly reported as a negative weight cycle. + + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.goldberg_radzik(G, 0) + >>> sorted(pred.items()) + [(0, None), (1, 0), (2, 1), (3, 2), (4, 3)] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> G[1][2]["weight"] = -7 + >>> nx.goldberg_radzik(G, 0) + Traceback (most recent call last): + ... + networkx.exception.NetworkXUnbounded: Negative cycle detected. + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionaries returned only have keys for nodes reachable from + the source. + + In the case where the (di)graph is not connected, if a component + not containing the source contains a negative (di)cycle, it + will not be detected. + + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + if G.is_multigraph(): + if any( + weight(u, v, {k: d}) < 0 + for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True) + ): + raise nx.NetworkXUnbounded("Negative cycle detected.") + else: + if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)): + raise nx.NetworkXUnbounded("Negative cycle detected.") + + if len(G) == 1: + return {source: None}, {source: 0} + + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + + inf = float("inf") + d = {u: inf for u in G} + d[source] = 0 + pred = {source: None} + + def topo_sort(relabeled): + """Topologically sort nodes relabeled in the previous round and detect + negative cycles. + """ + # List of nodes to scan in this round. Denoted by A in Goldberg and + # Radzik's paper. + to_scan = [] + # In the DFS in the loop below, neg_count records for each node the + # number of edges of negative reduced costs on the path from a DFS root + # to the node in the DFS forest. The reduced cost of an edge (u, v) is + # defined as d[u] + weight[u][v] - d[v]. + # + # neg_count also doubles as the DFS visit marker array. + neg_count = {} + for u in relabeled: + # Skip visited nodes. + if u in neg_count: + continue + d_u = d[u] + # Skip nodes without out-edges of negative reduced costs. + if all(d_u + weight(u, v, e) >= d[v] for v, e in G_succ[u].items()): + continue + # Nonrecursive DFS that inserts nodes reachable from u via edges of + # nonpositive reduced costs into to_scan in (reverse) topological + # order. + stack = [(u, iter(G_succ[u].items()))] + in_stack = {u} + neg_count[u] = 0 + while stack: + u, it = stack[-1] + try: + v, e = next(it) + except StopIteration: + to_scan.append(u) + stack.pop() + in_stack.remove(u) + continue + t = d[u] + weight(u, v, e) + d_v = d[v] + if t < d_v: + is_neg = t < d_v + d[v] = t + pred[v] = u + if v not in neg_count: + neg_count[v] = neg_count[u] + int(is_neg) + stack.append((v, iter(G_succ[v].items()))) + in_stack.add(v) + elif v in in_stack and neg_count[u] + int(is_neg) > neg_count[v]: + # (u, v) is a back edge, and the cycle formed by the + # path v to u and (u, v) contains at least one edge of + # negative reduced cost. The cycle must be of negative + # cost. + raise nx.NetworkXUnbounded("Negative cycle detected.") + to_scan.reverse() + return to_scan + + def relax(to_scan): + """Relax out-edges of relabeled nodes.""" + relabeled = set() + # Scan nodes in to_scan in topological order and relax incident + # out-edges. Add the relabled nodes to labeled. + for u in to_scan: + d_u = d[u] + for v, e in G_succ[u].items(): + w_e = weight(u, v, e) + if d_u + w_e < d[v]: + d[v] = d_u + w_e + pred[v] = u + relabeled.add(v) + return relabeled + + # Set of nodes relabled in the last round of scan operations. Denoted by B + # in Goldberg and Radzik's paper. + relabeled = {source} + + while relabeled: + to_scan = topo_sort(relabeled) + relabeled = relax(to_scan) + + d = {u: d[u] for u in pred} + return pred, d + + +@nx._dispatch(edge_attrs="weight") +def negative_edge_cycle(G, weight="weight", heuristic=True): + """Returns True if there exists a negative edge cycle anywhere in G. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a negligible cost. In case of graphs with a negative cycle, + the performance of detection increases by at least an order of magnitude. + + Returns + ------- + negative_cycle : bool + True if a negative edge cycle exists, otherwise False. + + Examples + -------- + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> print(nx.negative_edge_cycle(G)) + False + >>> G[1][2]["weight"] = -7 + >>> print(nx.negative_edge_cycle(G)) + True + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + This algorithm uses bellman_ford_predecessor_and_distance() but finds + negative cycles on any component by first adding a new node connected to + every node, and starting bellman_ford_predecessor_and_distance on that + node. It then removes that extra node. + """ + if G.size() == 0: + return False + + # find unused node to use temporarily + newnode = -1 + while newnode in G: + newnode -= 1 + # connect it to all nodes + G.add_edges_from([(newnode, n) for n in G]) + + try: + bellman_ford_predecessor_and_distance( + G, newnode, weight=weight, heuristic=heuristic + ) + except nx.NetworkXUnbounded: + return True + finally: + G.remove_node(newnode) + return False + + +@nx._dispatch(edge_attrs="weight") +def find_negative_cycle(G, source, weight="weight"): + """Returns a cycle with negative total weight if it exists. + + Bellman-Ford is used to find shortest_paths. That algorithm + stops if there exists a negative cycle. This algorithm + picks up from there and returns the found negative cycle. + + The cycle consists of a list of nodes in the cycle order. The last + node equals the first to make it a cycle. + You can look up the edge weights in the original graph. In the case + of multigraphs the relevant edge is the minimal weight edge between + the nodes in the 2-tuple. + + If the graph has no negative cycle, a NetworkXError is raised. + + Parameters + ---------- + G : NetworkX graph + + source: node label + The search for the negative cycle will start from this node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from([(0, 1, 2), (1, 2, 2), (2, 0, 1), (1, 4, 2), (4, 0, -5)]) + >>> nx.find_negative_cycle(G, 0) + [4, 0, 1, 4] + + Returns + ------- + cycle : list + A list of nodes in the order of the cycle found. The last node + equals the first to indicate a cycle. + + Raises + ------ + NetworkXError + If no negative cycle is found. + """ + weight = _weight_function(G, weight) + pred = {source: []} + + v = _inner_bellman_ford(G, [source], weight, pred=pred) + if v is None: + raise nx.NetworkXError("No negative cycles detected.") + + # negative cycle detected... find it + neg_cycle = [] + stack = [(v, list(pred[v]))] + seen = {v} + while stack: + node, preds = stack[-1] + if v in preds: + # found the cycle + neg_cycle.extend([node, v]) + neg_cycle = list(reversed(neg_cycle)) + return neg_cycle + + if preds: + nbr = preds.pop() + if nbr not in seen: + stack.append((nbr, list(pred[nbr]))) + neg_cycle.append(node) + seen.add(nbr) + else: + stack.pop() + if neg_cycle: + neg_cycle.pop() + else: + if v in G[v] and weight(G, v, v) < 0: + return [v, v] + # should not reach here + raise nx.NetworkXError("Negative cycle is detected but not found") + # should not get here... + msg = "negative cycle detected but not identified" + raise nx.NetworkXUnbounded(msg) + + +@nx._dispatch(edge_attrs="weight") +def bidirectional_dijkstra(G, source, target, weight="weight"): + r"""Dijkstra's algorithm for shortest paths using bidirectional search. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node. + + target : node + Ending node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length, path : number and list + length is the distance from source to target. + path is a list of nodes on a path from source to target. + + Raises + ------ + NodeNotFound + If either `source` or `target` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.bidirectional_dijkstra(G, 0, 4) + >>> print(length) + 4 + >>> print(path) + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + In practice bidirectional Dijkstra is much more than twice as fast as + ordinary Dijkstra. + + Ordinary Dijkstra expands nodes in a sphere-like manner from the + source. The radius of this sphere will eventually be the length + of the shortest path. Bidirectional Dijkstra will expand nodes + from both the source and the target, making two spheres of half + this radius. Volume of the first sphere is `\pi*r*r` while the + others are `2*\pi*r/2*r/2`, making up half the volume. + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + See Also + -------- + shortest_path + shortest_path_length + """ + if source not in G or target not in G: + msg = f"Either source {source} or target {target} is not in G" + raise nx.NodeNotFound(msg) + + if source == target: + return (0, [source]) + + weight = _weight_function(G, weight) + push = heappush + pop = heappop + # Init: [Forward, Backward] + dists = [{}, {}] # dictionary of final distances + paths = [{source: [source]}, {target: [target]}] # dictionary of paths + fringe = [[], []] # heap of (distance, node) for choosing node to expand + seen = [{source: 0}, {target: 0}] # dict of distances to seen nodes + c = count() + # initialize fringe heap + push(fringe[0], (0, next(c), source)) + push(fringe[1], (0, next(c), target)) + # neighs for extracting correct neighbor information + if G.is_directed(): + neighs = [G._succ, G._pred] + else: + neighs = [G._adj, G._adj] + # variables to hold shortest discovered path + # finaldist = 1e30000 + finalpath = [] + dir = 1 + while fringe[0] and fringe[1]: + # choose direction + # dir == 0 is forward direction and dir == 1 is back + dir = 1 - dir + # extract closest to expand + (dist, _, v) = pop(fringe[dir]) + if v in dists[dir]: + # Shortest path to v has already been found + continue + # update distance + dists[dir][v] = dist # equal to seen[dir][v] + if v in dists[1 - dir]: + # if we have scanned v in both directions we are done + # we have now discovered the shortest path + return (finaldist, finalpath) + + for w, d in neighs[dir][v].items(): + # weight(v, w, d) for forward and weight(w, v, d) for back direction + cost = weight(v, w, d) if dir == 0 else weight(w, v, d) + if cost is None: + continue + vwLength = dists[dir][v] + cost + if w in dists[dir]: + if vwLength < dists[dir][w]: + raise ValueError("Contradictory paths found: negative weights?") + elif w not in seen[dir] or vwLength < seen[dir][w]: + # relaxing + seen[dir][w] = vwLength + push(fringe[dir], (vwLength, next(c), w)) + paths[dir][w] = paths[dir][v] + [w] + if w in seen[0] and w in seen[1]: + # see if this path is better than the already + # discovered shortest path + totaldist = seen[0][w] + seen[1][w] + if finalpath == [] or finaldist > totaldist: + finaldist = totaldist + revpath = paths[1][w][:] + revpath.reverse() + finalpath = paths[0][w] + revpath[1:] + raise nx.NetworkXNoPath(f"No path between {source} and {target}.") + + +@nx._dispatch(edge_attrs="weight") +def johnson(G, weight="weight"): + r"""Uses Johnson's Algorithm to compute shortest paths. + + Johnson's Algorithm finds a shortest path between each pair of + nodes in a weighted graph even if negative weights are present. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance : dictionary + Dictionary, keyed by source and target, of shortest paths. + + Examples + -------- + >>> graph = nx.DiGraph() + >>> graph.add_weighted_edges_from( + ... [("0", "3", 3), ("0", "1", -5), ("0", "2", 2), ("1", "2", 4), ("2", "3", 1)] + ... ) + >>> paths = nx.johnson(graph, weight="weight") + >>> paths["0"]["2"] + ['0', '1', '2'] + + Notes + ----- + Johnson's algorithm is suitable even for graphs with negative weights. It + works by using the Bellman–Ford algorithm to compute a transformation of + the input graph that removes all negative weights, allowing Dijkstra's + algorithm to be used on the transformed graph. + + The time complexity of this algorithm is $O(n^2 \log n + n m)$, + where $n$ is the number of nodes and $m$ the number of edges in the + graph. For dense graphs, this may be faster than the Floyd–Warshall + algorithm. + + See Also + -------- + floyd_warshall_predecessor_and_distance + floyd_warshall_numpy + all_pairs_shortest_path + all_pairs_shortest_path_length + all_pairs_dijkstra_path + bellman_ford_predecessor_and_distance + all_pairs_bellman_ford_path + all_pairs_bellman_ford_path_length + + """ + dist = {v: 0 for v in G} + pred = {v: [] for v in G} + weight = _weight_function(G, weight) + + # Calculate distance of shortest paths + dist_bellman = _bellman_ford(G, list(G), weight, pred=pred, dist=dist) + + # Update the weight function to take into account the Bellman--Ford + # relaxation distances. + def new_weight(u, v, d): + return weight(u, v, d) + dist_bellman[u] - dist_bellman[v] + + def dist_path(v): + paths = {v: [v]} + _dijkstra(G, v, new_weight, paths=paths) + return paths + + return {v: dist_path(v) for v in G} diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c6f2e076904bca769186c80cbd60613c271763cb Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_asteroidal.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_asteroidal.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7baca7fba8873c337b180778e91135487f4fd5cf Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_asteroidal.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_boundary.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_boundary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a84119a94c078d02e51626b8fd32d86a2ebc74b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_boundary.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_bridges.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_bridges.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33ca48d1c6e20783363a631820d50bf58af00e6d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_bridges.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chains.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chains.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c472b6b38f03ed0aa761fadc8478c7db80ba9ff Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chains.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chordal.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chordal.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..429fd768a7e91fa959fc4402cff5c01b05b655bb Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_chordal.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_clique.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_clique.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c56a699d40882547bf78ffa4e81f8bca9ff2c704 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_clique.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cluster.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cluster.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..574d7b457a481c5b75ac75cd0262c243013359e4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cluster.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_communicability.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_communicability.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f6fe49e0ecfd122a6d3f56b496eb69c571e61de Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_communicability.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_core.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_core.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4001522d2f11c974dbf79c6f3232f0015f15acd1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_core.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_covering.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_covering.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bfb7a933ef817fbe5577902dfe6027b7046d13e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_covering.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cuts.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cuts.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6edeef18817d42d5746f950da601719b2d0fa576 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cuts.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cycles.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cycles.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6870de86dfd4971d90b452499b66f32d00810da2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_cycles.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_d_separation.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_d_separation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c0fafd0b3d4129b96845e04411e7b13d41477a2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_d_separation.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dag.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dag.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c6939acecdea193c671c14431aa5cee8139a75c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dag.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_measures.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_measures.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..709b6297aa17c4982af53a4cf7e2b55b4079b19a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_measures.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_regular.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_regular.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52c322303d2e4a894b205667c3e40904b19b0de0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_distance_regular.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominance.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominance.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..854ab6e231e408c5475aa3f1742b44090066a4cd Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominance.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominating.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominating.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8fe96a78f4dde08aa946f359e52cab817d14607 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_dominating.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_efficiency.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_efficiency.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6785258afe6b16656549b226b1bad939f754b56b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_efficiency.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_euler.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_euler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e594b571aaeee8aff0c76596ccbef80e1084e81 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_euler.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graph_hashing.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graph_hashing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..60d595402780050274dfd946ae35d584b62f1f38 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graph_hashing.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graphical.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graphical.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d931bf4953a6f774c84e245f073b2514ec9f1b15 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_graphical.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hierarchy.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hierarchy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9291ce1fa77347edc28476d4273d5a6297a255aa Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hierarchy.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hybrid.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hybrid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..70545c6fbf28cecb29a59d8e2f400797788b3782 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_hybrid.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_isolate.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_isolate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6066b57bb0be09921b92b06a86e6b744eb88a804 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_isolate.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_link_prediction.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_link_prediction.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e541deaecb072ad89093a9c18b3241517f01d9b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_link_prediction.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_lowest_common_ancestors.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_lowest_common_ancestors.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e85049931c8ef14b0d1cefac66ecd8ce1f2caa2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_lowest_common_ancestors.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_matching.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_matching.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..327dc8b99cdeb590fb9fb35855b44b38ef3d5233 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_matching.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_max_weight_clique.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_max_weight_clique.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2728aa89307d6106bd76dc8744be0d242b4d4e69 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_max_weight_clique.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_mis.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_mis.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d42b603e7d9726c976e13c208a3378d9263c98f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_mis.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_moral.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_moral.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4cba12a9ca98db8a512476441e5f37a43cbfb472 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_moral.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_node_classification.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_node_classification.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46b3c7162a8f5d604e9280feef0036a07d4db746 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_node_classification.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_non_randomness.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_non_randomness.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a2ce6ce9d637e42e6556d216df6353b00295245 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_non_randomness.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planar_drawing.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planar_drawing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16580aae5273489371190b28d76c87d3d6568d21 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planar_drawing.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planarity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planarity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..720b11015f69bcc05bc7f97a7395b47f86acd111 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_planarity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_polynomials.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_polynomials.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3e8f6f2efbdbf06c380f1615982098f1d3ed74b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_polynomials.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_reciprocity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_reciprocity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3450e4bd684510ddb46d1cb87ce6ee319965e8dc Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_reciprocity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_regular.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_regular.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9db4f24e68e6a298d2456537fbcdfb13a9c5a220 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_regular.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_richclub.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_richclub.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e52d6f0f8a32a16b599c89750b70e1dd1e827304 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_richclub.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_similarity.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_similarity.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a4a5faf9d31077c5fc2e3a8ac2d72c328980f90 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_similarity.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_simple_paths.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_simple_paths.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de939103668463cff36aa2fab6d25dfdf1fa4721 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_simple_paths.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smallworld.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smallworld.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..274b95602fa95f77808f8e4b786f6b4685e7595a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smallworld.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smetric.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smetric.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0952db56df9487744b2cfa42aeea3198cf5dd16 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_smetric.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_sparsifiers.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_sparsifiers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb895d08729d4fc42f077c9a5c7f9732b073fb99 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_sparsifiers.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_structuralholes.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_structuralholes.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ae8ec8250f5c87483ea0ee60c283b4251179e07 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_structuralholes.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_summarization.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_summarization.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b6b0876baa3c501573ab3a3569a413f589f8884 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_summarization.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_swap.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_swap.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f09023be60804890e6f50bdf5f5a60622b8fc356 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_swap.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_threshold.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_threshold.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..573c06326fca5d24c596168f6ba100e07c4dff40 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_threshold.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_time_dependent.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_time_dependent.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0557d3c37f80ce6e8070b112d1b7e9345920d705 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_time_dependent.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_tournament.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_tournament.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3bbf1fa40735b21d472f1ae045060bc9a8ab087b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_tournament.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_triads.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_triads.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8f889a4a6f8e3a3460a1ff4df628d2a8bf86570 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_triads.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_vitality.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_vitality.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b36e6a8be187d70c8764d6b3f6c653022faf60d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_vitality.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_voronoi.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_voronoi.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d3fa63743736b205e83a514ec34ba8f2b201c9a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_voronoi.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_walks.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_walks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e8ac1985f71f7f985d99314cdb60e3b43f0f25f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_walks.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_wiener.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_wiener.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab671cf8aae944404094f16aeae90581ac38fad4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tests/__pycache__/test_wiener.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_asteroidal.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_asteroidal.py new file mode 100644 index 0000000000000000000000000000000000000000..67131b2d05026317b496d06e6b382836c8c26367 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_asteroidal.py @@ -0,0 +1,23 @@ +import networkx as nx + + +def test_is_at_free(): + is_at_free = nx.asteroidal.is_at_free + + cycle = nx.cycle_graph(6) + assert not is_at_free(cycle) + + path = nx.path_graph(6) + assert is_at_free(path) + + small_graph = nx.complete_graph(2) + assert is_at_free(small_graph) + + petersen = nx.petersen_graph() + assert not is_at_free(petersen) + + clique = nx.complete_graph(6) + assert is_at_free(clique) + + line_clique = nx.line_graph(clique) + assert not is_at_free(line_clique) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_boundary.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_boundary.py new file mode 100644 index 0000000000000000000000000000000000000000..856be465556941fe6f2bfc2c8bab6d4b508cf999 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_boundary.py @@ -0,0 +1,154 @@ +"""Unit tests for the :mod:`networkx.algorithms.boundary` module.""" + +from itertools import combinations + +import pytest + +import networkx as nx +from networkx import convert_node_labels_to_integers as cnlti +from networkx.utils import edges_equal + + +class TestNodeBoundary: + """Unit tests for the :func:`~networkx.node_boundary` function.""" + + def test_null_graph(self): + """Tests that the null graph has empty node boundaries.""" + null = nx.null_graph() + assert nx.node_boundary(null, []) == set() + assert nx.node_boundary(null, [], []) == set() + assert nx.node_boundary(null, [1, 2, 3]) == set() + assert nx.node_boundary(null, [1, 2, 3], [4, 5, 6]) == set() + assert nx.node_boundary(null, [1, 2, 3], [3, 4, 5]) == set() + + def test_path_graph(self): + P10 = cnlti(nx.path_graph(10), first_label=1) + assert nx.node_boundary(P10, []) == set() + assert nx.node_boundary(P10, [], []) == set() + assert nx.node_boundary(P10, [1, 2, 3]) == {4} + assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7} + assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8} + assert nx.node_boundary(P10, [8, 9, 10]) == {7} + assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set() + + def test_complete_graph(self): + K10 = cnlti(nx.complete_graph(10), first_label=1) + assert nx.node_boundary(K10, []) == set() + assert nx.node_boundary(K10, [], []) == set() + assert nx.node_boundary(K10, [1, 2, 3]) == {4, 5, 6, 7, 8, 9, 10} + assert nx.node_boundary(K10, [4, 5, 6]) == {1, 2, 3, 7, 8, 9, 10} + assert nx.node_boundary(K10, [3, 4, 5, 6, 7]) == {1, 2, 8, 9, 10} + assert nx.node_boundary(K10, [4, 5, 6], []) == set() + assert nx.node_boundary(K10, K10) == set() + assert nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]) == {4, 5} + + def test_petersen(self): + """Check boundaries in the petersen graph + + cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0>> list(cycles("abc")) + [('a', 'b', 'c'), ('b', 'c', 'a'), ('c', 'a', 'b')] + + """ + n = len(seq) + cycled_seq = cycle(seq) + for x in seq: + yield tuple(islice(cycled_seq, n)) + next(cycled_seq) + + +def cyclic_equals(seq1, seq2): + """Decide whether two sequences are equal up to cyclic permutations. + + For example:: + + >>> cyclic_equals("xyz", "zxy") + True + >>> cyclic_equals("xyz", "zyx") + False + + """ + # Cast seq2 to a tuple since `cycles()` yields tuples. + seq2 = tuple(seq2) + return any(x == tuple(seq2) for x in cycles(seq1)) + + +class TestChainDecomposition: + """Unit tests for the chain decomposition function.""" + + def assertContainsChain(self, chain, expected): + # A cycle could be expressed in two different orientations, one + # forward and one backward, so we need to check for cyclic + # equality in both orientations. + reversed_chain = list(reversed([tuple(reversed(e)) for e in chain])) + for candidate in expected: + if cyclic_equals(chain, candidate): + break + if cyclic_equals(reversed_chain, candidate): + break + else: + self.fail("chain not found") + + def test_decomposition(self): + edges = [ + # DFS tree edges. + (1, 2), + (2, 3), + (3, 4), + (3, 5), + (5, 6), + (6, 7), + (7, 8), + (5, 9), + (9, 10), + # Nontree edges. + (1, 3), + (1, 4), + (2, 5), + (5, 10), + (6, 8), + ] + G = nx.Graph(edges) + expected = [ + [(1, 3), (3, 2), (2, 1)], + [(1, 4), (4, 3)], + [(2, 5), (5, 3)], + [(5, 10), (10, 9), (9, 5)], + [(6, 8), (8, 7), (7, 6)], + ] + chains = list(nx.chain_decomposition(G, root=1)) + assert len(chains) == len(expected) + + # This chain decomposition isn't unique + # for chain in chains: + # print(chain) + # self.assertContainsChain(chain, expected) + + def test_barbell_graph(self): + # The (3, 0) barbell graph has two triangles joined by a single edge. + G = nx.barbell_graph(3, 0) + chains = list(nx.chain_decomposition(G, root=0)) + expected = [[(0, 1), (1, 2), (2, 0)], [(3, 4), (4, 5), (5, 3)]] + assert len(chains) == len(expected) + for chain in chains: + self.assertContainsChain(chain, expected) + + def test_disconnected_graph(self): + """Test for a graph with multiple connected components.""" + G = nx.barbell_graph(3, 0) + H = nx.barbell_graph(3, 0) + mapping = dict(zip(range(6), "abcdef")) + nx.relabel_nodes(H, mapping, copy=False) + G = nx.union(G, H) + chains = list(nx.chain_decomposition(G)) + expected = [ + [(0, 1), (1, 2), (2, 0)], + [(3, 4), (4, 5), (5, 3)], + [("a", "b"), ("b", "c"), ("c", "a")], + [("d", "e"), ("e", "f"), ("f", "d")], + ] + assert len(chains) == len(expected) + for chain in chains: + self.assertContainsChain(chain, expected) + + def test_disconnected_graph_root_node(self): + """Test for a single component of a disconnected graph.""" + G = nx.barbell_graph(3, 0) + H = nx.barbell_graph(3, 0) + mapping = dict(zip(range(6), "abcdef")) + nx.relabel_nodes(H, mapping, copy=False) + G = nx.union(G, H) + chains = list(nx.chain_decomposition(G, root="a")) + expected = [ + [("a", "b"), ("b", "c"), ("c", "a")], + [("d", "e"), ("e", "f"), ("f", "d")], + ] + assert len(chains) == len(expected) + for chain in chains: + self.assertContainsChain(chain, expected) + + def test_chain_decomposition_root_not_in_G(self): + """Test chain decomposition when root is not in graph""" + G = nx.Graph() + G.add_nodes_from([1, 2, 3]) + with pytest.raises(nx.NodeNotFound): + nx.has_bridges(G, root=6) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_chordal.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_chordal.py new file mode 100644 index 0000000000000000000000000000000000000000..148b22f2632d722522483b556f11285a8e823126 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_chordal.py @@ -0,0 +1,129 @@ +import pytest + +import networkx as nx + + +class TestMCS: + @classmethod + def setup_class(cls): + # simple graph + connected_chordal_G = nx.Graph() + connected_chordal_G.add_edges_from( + [ + (1, 2), + (1, 3), + (2, 3), + (2, 4), + (3, 4), + (3, 5), + (3, 6), + (4, 5), + (4, 6), + (5, 6), + ] + ) + cls.connected_chordal_G = connected_chordal_G + + chordal_G = nx.Graph() + chordal_G.add_edges_from( + [ + (1, 2), + (1, 3), + (2, 3), + (2, 4), + (3, 4), + (3, 5), + (3, 6), + (4, 5), + (4, 6), + (5, 6), + (7, 8), + ] + ) + chordal_G.add_node(9) + cls.chordal_G = chordal_G + + non_chordal_G = nx.Graph() + non_chordal_G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)]) + cls.non_chordal_G = non_chordal_G + + self_loop_G = nx.Graph() + self_loop_G.add_edges_from([(1, 1)]) + cls.self_loop_G = self_loop_G + + @pytest.mark.parametrize("G", (nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph())) + def test_is_chordal_not_implemented(self, G): + with pytest.raises(nx.NetworkXNotImplemented): + nx.is_chordal(G) + + def test_is_chordal(self): + assert not nx.is_chordal(self.non_chordal_G) + assert nx.is_chordal(self.chordal_G) + assert nx.is_chordal(self.connected_chordal_G) + assert nx.is_chordal(nx.Graph()) + assert nx.is_chordal(nx.complete_graph(3)) + assert nx.is_chordal(nx.cycle_graph(3)) + assert not nx.is_chordal(nx.cycle_graph(5)) + assert nx.is_chordal(self.self_loop_G) + + def test_induced_nodes(self): + G = nx.generators.classic.path_graph(10) + Induced_nodes = nx.find_induced_nodes(G, 1, 9, 2) + assert Induced_nodes == {1, 2, 3, 4, 5, 6, 7, 8, 9} + pytest.raises( + nx.NetworkXTreewidthBoundExceeded, nx.find_induced_nodes, G, 1, 9, 1 + ) + Induced_nodes = nx.find_induced_nodes(self.chordal_G, 1, 6) + assert Induced_nodes == {1, 2, 4, 6} + pytest.raises(nx.NetworkXError, nx.find_induced_nodes, self.non_chordal_G, 1, 5) + + def test_graph_treewidth(self): + with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"): + nx.chordal_graph_treewidth(self.non_chordal_G) + + def test_chordal_find_cliques(self): + cliques = { + frozenset([9]), + frozenset([7, 8]), + frozenset([1, 2, 3]), + frozenset([2, 3, 4]), + frozenset([3, 4, 5, 6]), + } + assert set(nx.chordal_graph_cliques(self.chordal_G)) == cliques + with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"): + set(nx.chordal_graph_cliques(self.non_chordal_G)) + with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"): + set(nx.chordal_graph_cliques(self.self_loop_G)) + + def test_chordal_find_cliques_path(self): + G = nx.path_graph(10) + cliqueset = nx.chordal_graph_cliques(G) + for u, v in G.edges(): + assert frozenset([u, v]) in cliqueset or frozenset([v, u]) in cliqueset + + def test_chordal_find_cliquesCC(self): + cliques = {frozenset([1, 2, 3]), frozenset([2, 3, 4]), frozenset([3, 4, 5, 6])} + cgc = nx.chordal_graph_cliques + assert set(cgc(self.connected_chordal_G)) == cliques + + def test_complete_to_chordal_graph(self): + fgrg = nx.fast_gnp_random_graph + test_graphs = [ + nx.barbell_graph(6, 2), + nx.cycle_graph(15), + nx.wheel_graph(20), + nx.grid_graph([10, 4]), + nx.ladder_graph(15), + nx.star_graph(5), + nx.bull_graph(), + fgrg(20, 0.3, seed=1), + ] + for G in test_graphs: + H, a = nx.complete_to_chordal_graph(G) + assert nx.is_chordal(H) + assert len(a) == H.number_of_nodes() + if nx.is_chordal(G): + assert G.number_of_edges() == H.number_of_edges() + assert set(a.values()) == {0} + else: + assert len(set(a.values())) == H.number_of_nodes() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_clique.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_clique.py new file mode 100644 index 0000000000000000000000000000000000000000..3bee210982888a142f07a043bbde24bdad80fae9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_clique.py @@ -0,0 +1,291 @@ +import pytest + +import networkx as nx +from networkx import convert_node_labels_to_integers as cnlti + + +class TestCliques: + def setup_method(self): + z = [3, 4, 3, 4, 2, 4, 2, 1, 1, 1, 1] + self.G = cnlti(nx.generators.havel_hakimi_graph(z), first_label=1) + self.cl = list(nx.find_cliques(self.G)) + H = nx.complete_graph(6) + H = nx.relabel_nodes(H, {i: i + 1 for i in range(6)}) + H.remove_edges_from([(2, 6), (2, 5), (2, 4), (1, 3), (5, 3)]) + self.H = H + + def test_find_cliques1(self): + cl = list(nx.find_cliques(self.G)) + rcl = nx.find_cliques_recursive(self.G) + expected = [[2, 6, 1, 3], [2, 6, 4], [5, 4, 7], [8, 9], [10, 11]] + assert sorted(map(sorted, cl)) == sorted(map(sorted, rcl)) + assert sorted(map(sorted, cl)) == sorted(map(sorted, expected)) + + def test_selfloops(self): + self.G.add_edge(1, 1) + cl = list(nx.find_cliques(self.G)) + rcl = list(nx.find_cliques_recursive(self.G)) + assert set(map(frozenset, cl)) == set(map(frozenset, rcl)) + answer = [{2, 6, 1, 3}, {2, 6, 4}, {5, 4, 7}, {8, 9}, {10, 11}] + assert len(answer) == len(cl) + assert all(set(c) in answer for c in cl) + + def test_find_cliques2(self): + hcl = list(nx.find_cliques(self.H)) + assert sorted(map(sorted, hcl)) == [[1, 2], [1, 4, 5, 6], [2, 3], [3, 4, 6]] + + def test_find_cliques3(self): + # all cliques are [[2, 6, 1, 3], [2, 6, 4], [5, 4, 7], [8, 9], [10, 11]] + + cl = list(nx.find_cliques(self.G, [2])) + rcl = nx.find_cliques_recursive(self.G, [2]) + expected = [[2, 6, 1, 3], [2, 6, 4]] + assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected)) + assert sorted(map(sorted, cl)) == sorted(map(sorted, expected)) + + cl = list(nx.find_cliques(self.G, [2, 3])) + rcl = nx.find_cliques_recursive(self.G, [2, 3]) + expected = [[2, 6, 1, 3]] + assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected)) + assert sorted(map(sorted, cl)) == sorted(map(sorted, expected)) + + cl = list(nx.find_cliques(self.G, [2, 6, 4])) + rcl = nx.find_cliques_recursive(self.G, [2, 6, 4]) + expected = [[2, 6, 4]] + assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected)) + assert sorted(map(sorted, cl)) == sorted(map(sorted, expected)) + + cl = list(nx.find_cliques(self.G, [2, 6, 4])) + rcl = nx.find_cliques_recursive(self.G, [2, 6, 4]) + expected = [[2, 6, 4]] + assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected)) + assert sorted(map(sorted, cl)) == sorted(map(sorted, expected)) + + with pytest.raises(ValueError): + list(nx.find_cliques(self.G, [2, 6, 4, 1])) + + with pytest.raises(ValueError): + list(nx.find_cliques_recursive(self.G, [2, 6, 4, 1])) + + def test_number_of_cliques(self): + G = self.G + assert nx.number_of_cliques(G, 1) == 1 + assert list(nx.number_of_cliques(G, [1]).values()) == [1] + assert list(nx.number_of_cliques(G, [1, 2]).values()) == [1, 2] + assert nx.number_of_cliques(G, [1, 2]) == {1: 1, 2: 2} + assert nx.number_of_cliques(G, 2) == 2 + assert nx.number_of_cliques(G) == { + 1: 1, + 2: 2, + 3: 1, + 4: 2, + 5: 1, + 6: 2, + 7: 1, + 8: 1, + 9: 1, + 10: 1, + 11: 1, + } + assert nx.number_of_cliques(G, nodes=list(G)) == { + 1: 1, + 2: 2, + 3: 1, + 4: 2, + 5: 1, + 6: 2, + 7: 1, + 8: 1, + 9: 1, + 10: 1, + 11: 1, + } + assert nx.number_of_cliques(G, nodes=[2, 3, 4]) == {2: 2, 3: 1, 4: 2} + assert nx.number_of_cliques(G, cliques=self.cl) == { + 1: 1, + 2: 2, + 3: 1, + 4: 2, + 5: 1, + 6: 2, + 7: 1, + 8: 1, + 9: 1, + 10: 1, + 11: 1, + } + assert nx.number_of_cliques(G, list(G), cliques=self.cl) == { + 1: 1, + 2: 2, + 3: 1, + 4: 2, + 5: 1, + 6: 2, + 7: 1, + 8: 1, + 9: 1, + 10: 1, + 11: 1, + } + + def test_node_clique_number(self): + G = self.G + assert nx.node_clique_number(G, 1) == 4 + assert list(nx.node_clique_number(G, [1]).values()) == [4] + assert list(nx.node_clique_number(G, [1, 2]).values()) == [4, 4] + assert nx.node_clique_number(G, [1, 2]) == {1: 4, 2: 4} + assert nx.node_clique_number(G, 1) == 4 + assert nx.node_clique_number(G) == { + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 4, + 7: 3, + 8: 2, + 9: 2, + 10: 2, + 11: 2, + } + assert nx.node_clique_number(G, cliques=self.cl) == { + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 4, + 7: 3, + 8: 2, + 9: 2, + 10: 2, + 11: 2, + } + assert nx.node_clique_number(G, [1, 2], cliques=self.cl) == {1: 4, 2: 4} + assert nx.node_clique_number(G, 1, cliques=self.cl) == 4 + + def test_make_clique_bipartite(self): + G = self.G + B = nx.make_clique_bipartite(G) + assert sorted(B) == [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] + # Project onto the nodes of the original graph. + H = nx.projected_graph(B, range(1, 12)) + assert H.adj == G.adj + # Project onto the nodes representing the cliques. + H1 = nx.projected_graph(B, range(-5, 0)) + # Relabel the negative numbers as positive ones. + H1 = nx.relabel_nodes(H1, {-v: v for v in range(1, 6)}) + assert sorted(H1) == [1, 2, 3, 4, 5] + + def test_make_max_clique_graph(self): + """Tests that the maximal clique graph is the same as the bipartite + clique graph after being projected onto the nodes representing the + cliques. + + """ + G = self.G + B = nx.make_clique_bipartite(G) + # Project onto the nodes representing the cliques. + H1 = nx.projected_graph(B, range(-5, 0)) + # Relabel the negative numbers as nonnegative ones, starting at + # 0. + H1 = nx.relabel_nodes(H1, {-v: v - 1 for v in range(1, 6)}) + H2 = nx.make_max_clique_graph(G) + assert H1.adj == H2.adj + + def test_directed(self): + with pytest.raises(nx.NetworkXNotImplemented): + next(nx.find_cliques(nx.DiGraph())) + + def test_find_cliques_trivial(self): + G = nx.Graph() + assert sorted(nx.find_cliques(G)) == [] + assert sorted(nx.find_cliques_recursive(G)) == [] + + def test_make_max_clique_graph_create_using(self): + G = nx.Graph([(1, 2), (3, 1), (4, 1), (5, 6)]) + E = nx.Graph([(0, 1), (0, 2), (1, 2)]) + E.add_node(3) + assert nx.is_isomorphic(nx.make_max_clique_graph(G, create_using=nx.Graph), E) + + +class TestEnumerateAllCliques: + def test_paper_figure_4(self): + # Same graph as given in Fig. 4 of paper enumerate_all_cliques is + # based on. + # http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129 + G = nx.Graph() + edges_fig_4 = [ + ("a", "b"), + ("a", "c"), + ("a", "d"), + ("a", "e"), + ("b", "c"), + ("b", "d"), + ("b", "e"), + ("c", "d"), + ("c", "e"), + ("d", "e"), + ("f", "b"), + ("f", "c"), + ("f", "g"), + ("g", "f"), + ("g", "c"), + ("g", "d"), + ("g", "e"), + ] + G.add_edges_from(edges_fig_4) + + cliques = list(nx.enumerate_all_cliques(G)) + clique_sizes = list(map(len, cliques)) + assert sorted(clique_sizes) == clique_sizes + + expected_cliques = [ + ["a"], + ["b"], + ["c"], + ["d"], + ["e"], + ["f"], + ["g"], + ["a", "b"], + ["a", "b", "d"], + ["a", "b", "d", "e"], + ["a", "b", "e"], + ["a", "c"], + ["a", "c", "d"], + ["a", "c", "d", "e"], + ["a", "c", "e"], + ["a", "d"], + ["a", "d", "e"], + ["a", "e"], + ["b", "c"], + ["b", "c", "d"], + ["b", "c", "d", "e"], + ["b", "c", "e"], + ["b", "c", "f"], + ["b", "d"], + ["b", "d", "e"], + ["b", "e"], + ["b", "f"], + ["c", "d"], + ["c", "d", "e"], + ["c", "d", "e", "g"], + ["c", "d", "g"], + ["c", "e"], + ["c", "e", "g"], + ["c", "f"], + ["c", "f", "g"], + ["c", "g"], + ["d", "e"], + ["d", "e", "g"], + ["d", "g"], + ["e", "g"], + ["f", "g"], + ["a", "b", "c"], + ["a", "b", "c", "d"], + ["a", "b", "c", "d", "e"], + ["a", "b", "c", "e"], + ] + + assert sorted(map(sorted, cliques)) == sorted(map(sorted, expected_cliques)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cluster.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cluster.py new file mode 100644 index 0000000000000000000000000000000000000000..d69f036ff6cc87e179af5fde6ce7ee21b6c193c4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cluster.py @@ -0,0 +1,543 @@ +import pytest + +import networkx as nx + + +class TestTriangles: + def test_empty(self): + G = nx.Graph() + assert list(nx.triangles(G).values()) == [] + + def test_path(self): + G = nx.path_graph(10) + assert list(nx.triangles(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + assert nx.triangles(G) == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + + def test_cubical(self): + G = nx.cubical_graph() + assert list(nx.triangles(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0] + assert nx.triangles(G, 1) == 0 + assert list(nx.triangles(G, [1, 2]).values()) == [0, 0] + assert nx.triangles(G, 1) == 0 + assert nx.triangles(G, [1, 2]) == {1: 0, 2: 0} + + def test_k5(self): + G = nx.complete_graph(5) + assert list(nx.triangles(G).values()) == [6, 6, 6, 6, 6] + assert sum(nx.triangles(G).values()) / 3 == 10 + assert nx.triangles(G, 1) == 6 + G.remove_edge(1, 2) + assert list(nx.triangles(G).values()) == [5, 3, 3, 5, 5] + assert nx.triangles(G, 1) == 3 + G.add_edge(3, 3) # ignore self-edges + assert list(nx.triangles(G).values()) == [5, 3, 3, 5, 5] + assert nx.triangles(G, 3) == 5 + + +class TestDirectedClustering: + def test_clustering(self): + G = nx.DiGraph() + assert list(nx.clustering(G).values()) == [] + assert nx.clustering(G) == {} + + def test_path(self): + G = nx.path_graph(10, create_using=nx.DiGraph()) + assert list(nx.clustering(G).values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.clustering(G) == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + assert nx.clustering(G, 0) == 0 + + def test_k5(self): + G = nx.complete_graph(5, create_using=nx.DiGraph()) + assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1] + assert nx.average_clustering(G) == 1 + G.remove_edge(1, 2) + assert list(nx.clustering(G).values()) == [ + 11 / 12, + 1, + 1, + 11 / 12, + 11 / 12, + ] + assert nx.clustering(G, [1, 4]) == {1: 1, 4: 11 / 12} + G.remove_edge(2, 1) + assert list(nx.clustering(G).values()) == [ + 5 / 6, + 1, + 1, + 5 / 6, + 5 / 6, + ] + assert nx.clustering(G, [1, 4]) == {1: 1, 4: 0.83333333333333337} + assert nx.clustering(G, 4) == 5 / 6 + + def test_triangle_and_edge(self): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(0, 4) + assert nx.clustering(G)[0] == 1 / 6 + + +class TestDirectedWeightedClustering: + @classmethod + def setup_class(cls): + global np + np = pytest.importorskip("numpy") + + def test_clustering(self): + G = nx.DiGraph() + assert list(nx.clustering(G, weight="weight").values()) == [] + assert nx.clustering(G) == {} + + def test_path(self): + G = nx.path_graph(10, create_using=nx.DiGraph()) + assert list(nx.clustering(G, weight="weight").values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.clustering(G, weight="weight") == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + + def test_k5(self): + G = nx.complete_graph(5, create_using=nx.DiGraph()) + assert list(nx.clustering(G, weight="weight").values()) == [1, 1, 1, 1, 1] + assert nx.average_clustering(G, weight="weight") == 1 + G.remove_edge(1, 2) + assert list(nx.clustering(G, weight="weight").values()) == [ + 11 / 12, + 1, + 1, + 11 / 12, + 11 / 12, + ] + assert nx.clustering(G, [1, 4], weight="weight") == {1: 1, 4: 11 / 12} + G.remove_edge(2, 1) + assert list(nx.clustering(G, weight="weight").values()) == [ + 5 / 6, + 1, + 1, + 5 / 6, + 5 / 6, + ] + assert nx.clustering(G, [1, 4], weight="weight") == { + 1: 1, + 4: 0.83333333333333337, + } + + def test_triangle_and_edge(self): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(0, 4, weight=2) + assert nx.clustering(G)[0] == 1 / 6 + # Relaxed comparisons to allow graphblas-algorithms to pass tests + np.testing.assert_allclose(nx.clustering(G, weight="weight")[0], 1 / 12) + np.testing.assert_allclose(nx.clustering(G, 0, weight="weight"), 1 / 12) + + +class TestWeightedClustering: + @classmethod + def setup_class(cls): + global np + np = pytest.importorskip("numpy") + + def test_clustering(self): + G = nx.Graph() + assert list(nx.clustering(G, weight="weight").values()) == [] + assert nx.clustering(G) == {} + + def test_path(self): + G = nx.path_graph(10) + assert list(nx.clustering(G, weight="weight").values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.clustering(G, weight="weight") == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + + def test_cubical(self): + G = nx.cubical_graph() + assert list(nx.clustering(G, weight="weight").values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.clustering(G, 1) == 0 + assert list(nx.clustering(G, [1, 2], weight="weight").values()) == [0, 0] + assert nx.clustering(G, 1, weight="weight") == 0 + assert nx.clustering(G, [1, 2], weight="weight") == {1: 0, 2: 0} + + def test_k5(self): + G = nx.complete_graph(5) + assert list(nx.clustering(G, weight="weight").values()) == [1, 1, 1, 1, 1] + assert nx.average_clustering(G, weight="weight") == 1 + G.remove_edge(1, 2) + assert list(nx.clustering(G, weight="weight").values()) == [ + 5 / 6, + 1, + 1, + 5 / 6, + 5 / 6, + ] + assert nx.clustering(G, [1, 4], weight="weight") == { + 1: 1, + 4: 0.83333333333333337, + } + + def test_triangle_and_edge(self): + G = nx.cycle_graph(3) + G.add_edge(0, 4, weight=2) + assert nx.clustering(G)[0] == 1 / 3 + np.testing.assert_allclose(nx.clustering(G, weight="weight")[0], 1 / 6) + np.testing.assert_allclose(nx.clustering(G, 0, weight="weight"), 1 / 6) + + def test_triangle_and_signed_edge(self): + G = nx.cycle_graph(3) + G.add_edge(0, 1, weight=-1) + G.add_edge(3, 0, weight=0) + assert nx.clustering(G)[0] == 1 / 3 + assert nx.clustering(G, weight="weight")[0] == -1 / 3 + + +class TestClustering: + @classmethod + def setup_class(cls): + pytest.importorskip("numpy") + + def test_clustering(self): + G = nx.Graph() + assert list(nx.clustering(G).values()) == [] + assert nx.clustering(G) == {} + + def test_path(self): + G = nx.path_graph(10) + assert list(nx.clustering(G).values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.clustering(G) == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + + def test_cubical(self): + G = nx.cubical_graph() + assert list(nx.clustering(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0] + assert nx.clustering(G, 1) == 0 + assert list(nx.clustering(G, [1, 2]).values()) == [0, 0] + assert nx.clustering(G, 1) == 0 + assert nx.clustering(G, [1, 2]) == {1: 0, 2: 0} + + def test_k5(self): + G = nx.complete_graph(5) + assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1] + assert nx.average_clustering(G) == 1 + G.remove_edge(1, 2) + assert list(nx.clustering(G).values()) == [ + 5 / 6, + 1, + 1, + 5 / 6, + 5 / 6, + ] + assert nx.clustering(G, [1, 4]) == {1: 1, 4: 0.83333333333333337} + + def test_k5_signed(self): + G = nx.complete_graph(5) + assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1] + assert nx.average_clustering(G) == 1 + G.remove_edge(1, 2) + G.add_edge(0, 1, weight=-1) + assert list(nx.clustering(G, weight="weight").values()) == [ + 1 / 6, + -1 / 3, + 1, + 3 / 6, + 3 / 6, + ] + + +class TestTransitivity: + def test_transitivity(self): + G = nx.Graph() + assert nx.transitivity(G) == 0 + + def test_path(self): + G = nx.path_graph(10) + assert nx.transitivity(G) == 0 + + def test_cubical(self): + G = nx.cubical_graph() + assert nx.transitivity(G) == 0 + + def test_k5(self): + G = nx.complete_graph(5) + assert nx.transitivity(G) == 1 + G.remove_edge(1, 2) + assert nx.transitivity(G) == 0.875 + + +class TestSquareClustering: + def test_clustering(self): + G = nx.Graph() + assert list(nx.square_clustering(G).values()) == [] + assert nx.square_clustering(G) == {} + + def test_path(self): + G = nx.path_graph(10) + assert list(nx.square_clustering(G).values()) == [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + assert nx.square_clustering(G) == { + 0: 0, + 1: 0, + 2: 0, + 3: 0, + 4: 0, + 5: 0, + 6: 0, + 7: 0, + 8: 0, + 9: 0, + } + + def test_cubical(self): + G = nx.cubical_graph() + assert list(nx.square_clustering(G).values()) == [ + 1 / 3, + 1 / 3, + 1 / 3, + 1 / 3, + 1 / 3, + 1 / 3, + 1 / 3, + 1 / 3, + ] + assert list(nx.square_clustering(G, [1, 2]).values()) == [1 / 3, 1 / 3] + assert nx.square_clustering(G, [1])[1] == 1 / 3 + assert nx.square_clustering(G, 1) == 1 / 3 + assert nx.square_clustering(G, [1, 2]) == {1: 1 / 3, 2: 1 / 3} + + def test_k5(self): + G = nx.complete_graph(5) + assert list(nx.square_clustering(G).values()) == [1, 1, 1, 1, 1] + + def test_bipartite_k5(self): + G = nx.complete_bipartite_graph(5, 5) + assert list(nx.square_clustering(G).values()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + + def test_lind_square_clustering(self): + """Test C4 for figure 1 Lind et al (2005)""" + G = nx.Graph( + [ + (1, 2), + (1, 3), + (1, 6), + (1, 7), + (2, 4), + (2, 5), + (3, 4), + (3, 5), + (6, 7), + (7, 8), + (6, 8), + (7, 9), + (7, 10), + (6, 11), + (6, 12), + (2, 13), + (2, 14), + (3, 15), + (3, 16), + ] + ) + G1 = G.subgraph([1, 2, 3, 4, 5, 13, 14, 15, 16]) + G2 = G.subgraph([1, 6, 7, 8, 9, 10, 11, 12]) + assert nx.square_clustering(G, [1])[1] == 3 / 43 + assert nx.square_clustering(G1, [1])[1] == 2 / 6 + assert nx.square_clustering(G2, [1])[1] == 1 / 5 + + def test_peng_square_clustering(self): + """Test eq2 for figure 1 Peng et al (2008)""" + G = nx.Graph([(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (3, 6)]) + assert nx.square_clustering(G, [1])[1] == 1 / 3 + + +class TestAverageClustering: + @classmethod + def setup_class(cls): + pytest.importorskip("numpy") + + def test_empty(self): + G = nx.Graph() + with pytest.raises(ZeroDivisionError): + nx.average_clustering(G) + + def test_average_clustering(self): + G = nx.cycle_graph(3) + G.add_edge(2, 3) + assert nx.average_clustering(G) == (1 + 1 + 1 / 3) / 4 + assert nx.average_clustering(G, count_zeros=True) == (1 + 1 + 1 / 3) / 4 + assert nx.average_clustering(G, count_zeros=False) == (1 + 1 + 1 / 3) / 3 + assert nx.average_clustering(G, [1, 2, 3]) == (1 + 1 / 3) / 3 + assert nx.average_clustering(G, [1, 2, 3], count_zeros=True) == (1 + 1 / 3) / 3 + assert nx.average_clustering(G, [1, 2, 3], count_zeros=False) == (1 + 1 / 3) / 2 + + def test_average_clustering_signed(self): + G = nx.cycle_graph(3) + G.add_edge(2, 3) + G.add_edge(0, 1, weight=-1) + assert nx.average_clustering(G, weight="weight") == (-1 - 1 - 1 / 3) / 4 + assert ( + nx.average_clustering(G, weight="weight", count_zeros=True) + == (-1 - 1 - 1 / 3) / 4 + ) + assert ( + nx.average_clustering(G, weight="weight", count_zeros=False) + == (-1 - 1 - 1 / 3) / 3 + ) + + +class TestDirectedAverageClustering: + @classmethod + def setup_class(cls): + pytest.importorskip("numpy") + + def test_empty(self): + G = nx.DiGraph() + with pytest.raises(ZeroDivisionError): + nx.average_clustering(G) + + def test_average_clustering(self): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(2, 3) + assert nx.average_clustering(G) == (1 + 1 + 1 / 3) / 8 + assert nx.average_clustering(G, count_zeros=True) == (1 + 1 + 1 / 3) / 8 + assert nx.average_clustering(G, count_zeros=False) == (1 + 1 + 1 / 3) / 6 + assert nx.average_clustering(G, [1, 2, 3]) == (1 + 1 / 3) / 6 + assert nx.average_clustering(G, [1, 2, 3], count_zeros=True) == (1 + 1 / 3) / 6 + assert nx.average_clustering(G, [1, 2, 3], count_zeros=False) == (1 + 1 / 3) / 4 + + +class TestGeneralizedDegree: + def test_generalized_degree(self): + G = nx.Graph() + assert nx.generalized_degree(G) == {} + + def test_path(self): + G = nx.path_graph(5) + assert nx.generalized_degree(G, 0) == {0: 1} + assert nx.generalized_degree(G, 1) == {0: 2} + + def test_cubical(self): + G = nx.cubical_graph() + assert nx.generalized_degree(G, 0) == {0: 3} + + def test_k5(self): + G = nx.complete_graph(5) + assert nx.generalized_degree(G, 0) == {3: 4} + G.remove_edge(0, 1) + assert nx.generalized_degree(G, 0) == {2: 3} + assert nx.generalized_degree(G, [1, 2]) == {1: {2: 3}, 2: {2: 2, 3: 2}} + assert nx.generalized_degree(G) == { + 0: {2: 3}, + 1: {2: 3}, + 2: {2: 2, 3: 2}, + 3: {2: 2, 3: 2}, + 4: {2: 2, 3: 2}, + } diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_communicability.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_communicability.py new file mode 100644 index 0000000000000000000000000000000000000000..0f447094548415c089710b9b62ac4d73a27efeb5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_communicability.py @@ -0,0 +1,80 @@ +from collections import defaultdict + +import pytest + +pytest.importorskip("numpy") +pytest.importorskip("scipy") + +import networkx as nx +from networkx.algorithms.communicability_alg import communicability, communicability_exp + + +class TestCommunicability: + def test_communicability(self): + answer = { + 0: {0: 1.5430806348152435, 1: 1.1752011936438012}, + 1: {0: 1.1752011936438012, 1: 1.5430806348152435}, + } + # answer={(0, 0): 1.5430806348152435, + # (0, 1): 1.1752011936438012, + # (1, 0): 1.1752011936438012, + # (1, 1): 1.5430806348152435} + + result = communicability(nx.path_graph(2)) + for k1, val in result.items(): + for k2 in val: + assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7) + + def test_communicability2(self): + answer_orig = { + ("1", "1"): 1.6445956054135658, + ("1", "Albert"): 0.7430186221096251, + ("1", "Aric"): 0.7430186221096251, + ("1", "Dan"): 1.6208126320442937, + ("1", "Franck"): 0.42639707170035257, + ("Albert", "1"): 0.7430186221096251, + ("Albert", "Albert"): 2.4368257358712189, + ("Albert", "Aric"): 1.4368257358712191, + ("Albert", "Dan"): 2.0472097037446453, + ("Albert", "Franck"): 1.8340111678944691, + ("Aric", "1"): 0.7430186221096251, + ("Aric", "Albert"): 1.4368257358712191, + ("Aric", "Aric"): 2.4368257358712193, + ("Aric", "Dan"): 2.0472097037446457, + ("Aric", "Franck"): 1.8340111678944691, + ("Dan", "1"): 1.6208126320442937, + ("Dan", "Albert"): 2.0472097037446453, + ("Dan", "Aric"): 2.0472097037446457, + ("Dan", "Dan"): 3.1306328496328168, + ("Dan", "Franck"): 1.4860372442192515, + ("Franck", "1"): 0.42639707170035257, + ("Franck", "Albert"): 1.8340111678944691, + ("Franck", "Aric"): 1.8340111678944691, + ("Franck", "Dan"): 1.4860372442192515, + ("Franck", "Franck"): 2.3876142275231915, + } + + answer = defaultdict(dict) + for (k1, k2), v in answer_orig.items(): + answer[k1][k2] = v + + G1 = nx.Graph( + [ + ("Franck", "Aric"), + ("Aric", "Dan"), + ("Dan", "Albert"), + ("Albert", "Franck"), + ("Dan", "1"), + ("Franck", "Albert"), + ] + ) + + result = communicability(G1) + for k1, val in result.items(): + for k2 in val: + assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7) + + result = communicability_exp(G1) + for k1, val in result.items(): + for k2 in val: + assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_core.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_core.py new file mode 100644 index 0000000000000000000000000000000000000000..535af31b680209a9b57895246c2eb2ae268c9d55 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_core.py @@ -0,0 +1,185 @@ +import pytest + +import networkx as nx +from networkx.utils import nodes_equal + + +class TestCore: + @classmethod + def setup_class(cls): + # G is the example graph in Figure 1 from Batagelj and + # Zaversnik's paper titled An O(m) Algorithm for Cores + # Decomposition of Networks, 2003, + # http://arXiv.org/abs/cs/0310049. With nodes labeled as + # shown, the 3-core is given by nodes 1-8, the 2-core by nodes + # 9-16, the 1-core by nodes 17-20 and node 21 is in the + # 0-core. + t1 = nx.convert_node_labels_to_integers(nx.tetrahedral_graph(), 1) + t2 = nx.convert_node_labels_to_integers(t1, 5) + G = nx.union(t1, t2) + G.add_edges_from( + [ + (3, 7), + (2, 11), + (11, 5), + (11, 12), + (5, 12), + (12, 19), + (12, 18), + (3, 9), + (7, 9), + (7, 10), + (9, 10), + (9, 20), + (17, 13), + (13, 14), + (14, 15), + (15, 16), + (16, 13), + ] + ) + G.add_node(21) + cls.G = G + + # Create the graph H resulting from the degree sequence + # [0, 1, 2, 2, 2, 2, 3] when using the Havel-Hakimi algorithm. + + degseq = [0, 1, 2, 2, 2, 2, 3] + H = nx.havel_hakimi_graph(degseq) + mapping = {6: 0, 0: 1, 4: 3, 5: 6, 3: 4, 1: 2, 2: 5} + cls.H = nx.relabel_nodes(H, mapping) + + def test_trivial(self): + """Empty graph""" + G = nx.Graph() + assert nx.core_number(G) == {} + + def test_core_number(self): + core = nx.core_number(self.G) + nodes_by_core = [sorted(n for n in core if core[n] == val) for val in range(4)] + assert nodes_equal(nodes_by_core[0], [21]) + assert nodes_equal(nodes_by_core[1], [17, 18, 19, 20]) + assert nodes_equal(nodes_by_core[2], [9, 10, 11, 12, 13, 14, 15, 16]) + assert nodes_equal(nodes_by_core[3], [1, 2, 3, 4, 5, 6, 7, 8]) + + def test_core_number2(self): + core = nx.core_number(self.H) + nodes_by_core = [sorted(n for n in core if core[n] == val) for val in range(3)] + assert nodes_equal(nodes_by_core[0], [0]) + assert nodes_equal(nodes_by_core[1], [1, 3]) + assert nodes_equal(nodes_by_core[2], [2, 4, 5, 6]) + + def test_core_number_self_loop(self): + G = nx.cycle_graph(3) + G.add_edge(0, 0) + with pytest.raises(nx.NetworkXError, match="Input graph has self loops"): + nx.core_number(G) + + def test_directed_core_number(self): + """core number had a bug for directed graphs found in issue #1959""" + # small example where too timid edge removal can make cn[2] = 3 + G = nx.DiGraph() + edges = [(1, 2), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)] + G.add_edges_from(edges) + assert nx.core_number(G) == {1: 2, 2: 2, 3: 2, 4: 2} + # small example where too aggressive edge removal can make cn[2] = 2 + more_edges = [(1, 5), (3, 5), (4, 5), (3, 6), (4, 6), (5, 6)] + G.add_edges_from(more_edges) + assert nx.core_number(G) == {1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3} + + def test_main_core(self): + main_core_subgraph = nx.k_core(self.H) + assert sorted(main_core_subgraph.nodes()) == [2, 4, 5, 6] + + def test_k_core(self): + # k=0 + k_core_subgraph = nx.k_core(self.H, k=0) + assert sorted(k_core_subgraph.nodes()) == sorted(self.H.nodes()) + # k=1 + k_core_subgraph = nx.k_core(self.H, k=1) + assert sorted(k_core_subgraph.nodes()) == [1, 2, 3, 4, 5, 6] + # k = 2 + k_core_subgraph = nx.k_core(self.H, k=2) + assert sorted(k_core_subgraph.nodes()) == [2, 4, 5, 6] + + def test_main_crust(self): + main_crust_subgraph = nx.k_crust(self.H) + assert sorted(main_crust_subgraph.nodes()) == [0, 1, 3] + + def test_k_crust(self): + # k = 0 + k_crust_subgraph = nx.k_crust(self.H, k=2) + assert sorted(k_crust_subgraph.nodes()) == sorted(self.H.nodes()) + # k=1 + k_crust_subgraph = nx.k_crust(self.H, k=1) + assert sorted(k_crust_subgraph.nodes()) == [0, 1, 3] + # k=2 + k_crust_subgraph = nx.k_crust(self.H, k=0) + assert sorted(k_crust_subgraph.nodes()) == [0] + + def test_main_shell(self): + main_shell_subgraph = nx.k_shell(self.H) + assert sorted(main_shell_subgraph.nodes()) == [2, 4, 5, 6] + + def test_k_shell(self): + # k=0 + k_shell_subgraph = nx.k_shell(self.H, k=2) + assert sorted(k_shell_subgraph.nodes()) == [2, 4, 5, 6] + # k=1 + k_shell_subgraph = nx.k_shell(self.H, k=1) + assert sorted(k_shell_subgraph.nodes()) == [1, 3] + # k=2 + k_shell_subgraph = nx.k_shell(self.H, k=0) + assert sorted(k_shell_subgraph.nodes()) == [0] + + def test_k_corona(self): + # k=0 + k_corona_subgraph = nx.k_corona(self.H, k=2) + assert sorted(k_corona_subgraph.nodes()) == [2, 4, 5, 6] + # k=1 + k_corona_subgraph = nx.k_corona(self.H, k=1) + assert sorted(k_corona_subgraph.nodes()) == [1] + # k=2 + k_corona_subgraph = nx.k_corona(self.H, k=0) + assert sorted(k_corona_subgraph.nodes()) == [0] + + def test_k_truss(self): + # k=-1 + k_truss_subgraph = nx.k_truss(self.G, -1) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21)) + # k=0 + k_truss_subgraph = nx.k_truss(self.G, 0) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21)) + # k=1 + k_truss_subgraph = nx.k_truss(self.G, 1) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21)) + # k=2 + k_truss_subgraph = nx.k_truss(self.G, 2) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21)) + # k=3 + k_truss_subgraph = nx.k_truss(self.G, 3) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 13)) + + k_truss_subgraph = nx.k_truss(self.G, 4) + assert sorted(k_truss_subgraph.nodes()) == list(range(1, 9)) + + k_truss_subgraph = nx.k_truss(self.G, 5) + assert sorted(k_truss_subgraph.nodes()) == [] + + def test_onion_layers(self): + layers = nx.onion_layers(self.G) + nodes_by_layer = [ + sorted(n for n in layers if layers[n] == val) for val in range(1, 7) + ] + assert nodes_equal(nodes_by_layer[0], [21]) + assert nodes_equal(nodes_by_layer[1], [17, 18, 19, 20]) + assert nodes_equal(nodes_by_layer[2], [10, 12, 13, 14, 15, 16]) + assert nodes_equal(nodes_by_layer[3], [9, 11]) + assert nodes_equal(nodes_by_layer[4], [1, 2, 4, 5, 6, 8]) + assert nodes_equal(nodes_by_layer[5], [3, 7]) + + def test_onion_self_loop(self): + G = nx.cycle_graph(3) + G.add_edge(0, 0) + with pytest.raises(nx.NetworkXError, match="Input graph contains self loops"): + nx.onion_layers(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_covering.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_covering.py new file mode 100644 index 0000000000000000000000000000000000000000..b2f97a866b0e09c199c2edb9f40f20986caa8fbc --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_covering.py @@ -0,0 +1,85 @@ +import pytest + +import networkx as nx + + +class TestMinEdgeCover: + """Tests for :func:`networkx.algorithms.min_edge_cover`""" + + def test_empty_graph(self): + G = nx.Graph() + assert nx.min_edge_cover(G) == set() + + def test_graph_with_loop(self): + G = nx.Graph() + G.add_edge(0, 0) + assert nx.min_edge_cover(G) == {(0, 0)} + + def test_graph_with_isolated_v(self): + G = nx.Graph() + G.add_node(1) + with pytest.raises( + nx.NetworkXException, + match="Graph has a node with no edge incident on it, so no edge cover exists.", + ): + nx.min_edge_cover(G) + + def test_graph_single_edge(self): + G = nx.Graph([(0, 1)]) + assert nx.min_edge_cover(G) in ({(0, 1)}, {(1, 0)}) + + def test_graph_two_edge_path(self): + G = nx.path_graph(3) + min_cover = nx.min_edge_cover(G) + assert len(min_cover) == 2 + for u, v in G.edges: + assert (u, v) in min_cover or (v, u) in min_cover + + def test_bipartite_explicit(self): + G = nx.Graph() + G.add_nodes_from([1, 2, 3, 4], bipartite=0) + G.add_nodes_from(["a", "b", "c"], bipartite=1) + G.add_edges_from([(1, "a"), (1, "b"), (2, "b"), (2, "c"), (3, "c"), (4, "a")]) + # Use bipartite method by prescribing the algorithm + min_cover = nx.min_edge_cover( + G, nx.algorithms.bipartite.matching.eppstein_matching + ) + assert nx.is_edge_cover(G, min_cover) + assert len(min_cover) == 8 + # Use the default method which is not specialized for bipartite + min_cover2 = nx.min_edge_cover(G) + assert nx.is_edge_cover(G, min_cover2) + assert len(min_cover2) == 4 + + def test_complete_graph_even(self): + G = nx.complete_graph(10) + min_cover = nx.min_edge_cover(G) + assert nx.is_edge_cover(G, min_cover) + assert len(min_cover) == 5 + + def test_complete_graph_odd(self): + G = nx.complete_graph(11) + min_cover = nx.min_edge_cover(G) + assert nx.is_edge_cover(G, min_cover) + assert len(min_cover) == 6 + + +class TestIsEdgeCover: + """Tests for :func:`networkx.algorithms.is_edge_cover`""" + + def test_empty_graph(self): + G = nx.Graph() + assert nx.is_edge_cover(G, set()) + + def test_graph_with_loop(self): + G = nx.Graph() + G.add_edge(1, 1) + assert nx.is_edge_cover(G, {(1, 1)}) + + def test_graph_single_edge(self): + G = nx.Graph() + G.add_edge(0, 1) + assert nx.is_edge_cover(G, {(0, 0), (1, 1)}) + assert nx.is_edge_cover(G, {(0, 1), (1, 0)}) + assert nx.is_edge_cover(G, {(0, 1)}) + assert not nx.is_edge_cover(G, {(0, 0)}) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cuts.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cuts.py new file mode 100644 index 0000000000000000000000000000000000000000..6d8656e330e205c61d9f469560697a3875a0555b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cuts.py @@ -0,0 +1,172 @@ +"""Unit tests for the :mod:`networkx.algorithms.cuts` module.""" + + +import networkx as nx + + +class TestCutSize: + """Unit tests for the :func:`~networkx.cut_size` function.""" + + def test_symmetric(self): + """Tests that the cut size is symmetric.""" + G = nx.barbell_graph(3, 0) + S = {0, 1, 4} + T = {2, 3, 5} + assert nx.cut_size(G, S, T) == 4 + assert nx.cut_size(G, T, S) == 4 + + def test_single_edge(self): + """Tests for a cut of a single edge.""" + G = nx.barbell_graph(3, 0) + S = {0, 1, 2} + T = {3, 4, 5} + assert nx.cut_size(G, S, T) == 1 + assert nx.cut_size(G, T, S) == 1 + + def test_directed(self): + """Tests that each directed edge is counted once in the cut.""" + G = nx.barbell_graph(3, 0).to_directed() + S = {0, 1, 2} + T = {3, 4, 5} + assert nx.cut_size(G, S, T) == 2 + assert nx.cut_size(G, T, S) == 2 + + def test_directed_symmetric(self): + """Tests that a cut in a directed graph is symmetric.""" + G = nx.barbell_graph(3, 0).to_directed() + S = {0, 1, 4} + T = {2, 3, 5} + assert nx.cut_size(G, S, T) == 8 + assert nx.cut_size(G, T, S) == 8 + + def test_multigraph(self): + """Tests that parallel edges are each counted for a cut.""" + G = nx.MultiGraph(["ab", "ab"]) + assert nx.cut_size(G, {"a"}, {"b"}) == 2 + + +class TestVolume: + """Unit tests for the :func:`~networkx.volume` function.""" + + def test_graph(self): + G = nx.cycle_graph(4) + assert nx.volume(G, {0, 1}) == 4 + + def test_digraph(self): + G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0)]) + assert nx.volume(G, {0, 1}) == 2 + + def test_multigraph(self): + edges = list(nx.cycle_graph(4).edges()) + G = nx.MultiGraph(edges * 2) + assert nx.volume(G, {0, 1}) == 8 + + def test_multidigraph(self): + edges = [(0, 1), (1, 2), (2, 3), (3, 0)] + G = nx.MultiDiGraph(edges * 2) + assert nx.volume(G, {0, 1}) == 4 + + def test_barbell(self): + G = nx.barbell_graph(3, 0) + assert nx.volume(G, {0, 1, 2}) == 7 + assert nx.volume(G, {3, 4, 5}) == 7 + + +class TestNormalizedCutSize: + """Unit tests for the :func:`~networkx.normalized_cut_size` function.""" + + def test_graph(self): + G = nx.path_graph(4) + S = {1, 2} + T = set(G) - S + size = nx.normalized_cut_size(G, S, T) + # The cut looks like this: o-{-o--o-}-o + expected = 2 * ((1 / 4) + (1 / 2)) + assert expected == size + # Test with no input T + assert expected == nx.normalized_cut_size(G, S) + + def test_directed(self): + G = nx.DiGraph([(0, 1), (1, 2), (2, 3)]) + S = {1, 2} + T = set(G) - S + size = nx.normalized_cut_size(G, S, T) + # The cut looks like this: o-{->o-->o-}->o + expected = 2 * ((1 / 2) + (1 / 1)) + assert expected == size + # Test with no input T + assert expected == nx.normalized_cut_size(G, S) + + +class TestConductance: + """Unit tests for the :func:`~networkx.conductance` function.""" + + def test_graph(self): + G = nx.barbell_graph(5, 0) + # Consider the singleton sets containing the "bridge" nodes. + # There is only one cut edge, and each set has volume five. + S = {4} + T = {5} + conductance = nx.conductance(G, S, T) + expected = 1 / 5 + assert expected == conductance + # Test with no input T + G2 = nx.barbell_graph(3, 0) + # There is only one cut edge, and each set has volume seven. + S2 = {0, 1, 2} + assert nx.conductance(G2, S2) == 1 / 7 + + +class TestEdgeExpansion: + """Unit tests for the :func:`~networkx.edge_expansion` function.""" + + def test_graph(self): + G = nx.barbell_graph(5, 0) + S = set(range(5)) + T = set(G) - S + expansion = nx.edge_expansion(G, S, T) + expected = 1 / 5 + assert expected == expansion + # Test with no input T + assert expected == nx.edge_expansion(G, S) + + +class TestNodeExpansion: + """Unit tests for the :func:`~networkx.node_expansion` function.""" + + def test_graph(self): + G = nx.path_graph(8) + S = {3, 4, 5} + expansion = nx.node_expansion(G, S) + # The neighborhood of S has cardinality five, and S has + # cardinality three. + expected = 5 / 3 + assert expected == expansion + + +class TestBoundaryExpansion: + """Unit tests for the :func:`~networkx.boundary_expansion` function.""" + + def test_graph(self): + G = nx.complete_graph(10) + S = set(range(4)) + expansion = nx.boundary_expansion(G, S) + # The node boundary of S has cardinality six, and S has + # cardinality three. + expected = 6 / 4 + assert expected == expansion + + +class TestMixingExpansion: + """Unit tests for the :func:`~networkx.mixing_expansion` function.""" + + def test_graph(self): + G = nx.barbell_graph(5, 0) + S = set(range(5)) + T = set(G) - S + expansion = nx.mixing_expansion(G, S, T) + # There is one cut edge, and the total number of edges in the + # graph is twice the total number of edges in a clique of size + # five, plus one more for the bridge. + expected = 1 / (2 * (5 * 4 + 1)) + assert expected == expansion diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cycles.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cycles.py new file mode 100644 index 0000000000000000000000000000000000000000..230f513519bc751c61c7570207f886b770079627 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_cycles.py @@ -0,0 +1,971 @@ +from itertools import chain, islice, tee +from math import inf +from random import shuffle + +import pytest + +import networkx as nx +from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE + + +def check_independent(basis): + if len(basis) == 0: + return + try: + import numpy as np + except ImportError: + return + + H = nx.Graph() + for b in basis: + nx.add_cycle(H, b) + inc = nx.incidence_matrix(H, oriented=True) + rank = np.linalg.matrix_rank(inc.toarray(), tol=None, hermitian=False) + assert inc.shape[1] - rank == len(basis) + + +class TestCycles: + @classmethod + def setup_class(cls): + G = nx.Graph() + nx.add_cycle(G, [0, 1, 2, 3]) + nx.add_cycle(G, [0, 3, 4, 5]) + nx.add_cycle(G, [0, 1, 6, 7, 8]) + G.add_edge(8, 9) + cls.G = G + + def is_cyclic_permutation(self, a, b): + n = len(a) + if len(b) != n: + return False + l = a + a + return any(l[i : i + n] == b for i in range(n)) + + def test_cycle_basis(self): + G = self.G + cy = nx.cycle_basis(G, 0) + sort_cy = sorted(sorted(c) for c in cy) + assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] + cy = nx.cycle_basis(G, 1) + sort_cy = sorted(sorted(c) for c in cy) + assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] + cy = nx.cycle_basis(G, 9) + sort_cy = sorted(sorted(c) for c in cy) + assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] + # test disconnected graphs + nx.add_cycle(G, "ABC") + cy = nx.cycle_basis(G, 9) + sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])] + assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]] + + def test_cycle_basis2(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + cy = nx.cycle_basis(G, 0) + + def test_cycle_basis3(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.MultiGraph() + cy = nx.cycle_basis(G, 0) + + def test_cycle_basis_ordered(self): + # see gh-6654 replace sets with (ordered) dicts + G = nx.cycle_graph(5) + G.update(nx.cycle_graph(range(3, 8))) + cbG = nx.cycle_basis(G) + + perm = {1: 0, 0: 1} # switch 0 and 1 + H = nx.relabel_nodes(G, perm) + cbH = [[perm.get(n, n) for n in cyc] for cyc in nx.cycle_basis(H)] + assert cbG == cbH + + def test_cycle_basis_self_loop(self): + """Tests the function for graphs with self loops""" + G = nx.Graph() + nx.add_cycle(G, [0, 1, 2, 3]) + nx.add_cycle(G, [0, 0, 6, 2]) + cy = nx.cycle_basis(G) + sort_cy = sorted(sorted(c) for c in cy) + assert sort_cy == [[0], [0, 1, 2], [0, 2, 3], [0, 2, 6]] + + def test_simple_cycles(self): + edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)] + G = nx.DiGraph(edges) + cc = sorted(nx.simple_cycles(G)) + ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]] + assert len(cc) == len(ca) + for c in cc: + assert any(self.is_cyclic_permutation(c, rc) for rc in ca) + + def test_unsortable(self): + # this test ensures that graphs whose nodes without an intrinsic + # ordering do not cause issues + G = nx.DiGraph() + nx.add_cycle(G, ["a", 1]) + c = list(nx.simple_cycles(G)) + assert len(c) == 1 + + def test_simple_cycles_small(self): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3]) + c = sorted(nx.simple_cycles(G)) + assert len(c) == 1 + assert self.is_cyclic_permutation(c[0], [1, 2, 3]) + nx.add_cycle(G, [10, 20, 30]) + cc = sorted(nx.simple_cycles(G)) + assert len(cc) == 2 + ca = [[1, 2, 3], [10, 20, 30]] + for c in cc: + assert any(self.is_cyclic_permutation(c, rc) for rc in ca) + + def test_simple_cycles_empty(self): + G = nx.DiGraph() + assert list(nx.simple_cycles(G)) == [] + + def worst_case_graph(self, k): + # see figure 1 in Johnson's paper + # this graph has exactly 3k simple cycles + G = nx.DiGraph() + for n in range(2, k + 2): + G.add_edge(1, n) + G.add_edge(n, k + 2) + G.add_edge(2 * k + 1, 1) + for n in range(k + 2, 2 * k + 2): + G.add_edge(n, 2 * k + 2) + G.add_edge(n, n + 1) + G.add_edge(2 * k + 3, k + 2) + for n in range(2 * k + 3, 3 * k + 3): + G.add_edge(2 * k + 2, n) + G.add_edge(n, 3 * k + 3) + G.add_edge(3 * k + 3, 2 * k + 2) + return G + + def test_worst_case_graph(self): + # see figure 1 in Johnson's paper + for k in range(3, 10): + G = self.worst_case_graph(k) + l = len(list(nx.simple_cycles(G))) + assert l == 3 * k + + def test_recursive_simple_and_not(self): + for k in range(2, 10): + G = self.worst_case_graph(k) + cc = sorted(nx.simple_cycles(G)) + rcc = sorted(nx.recursive_simple_cycles(G)) + assert len(cc) == len(rcc) + for c in cc: + assert any(self.is_cyclic_permutation(c, r) for r in rcc) + for rc in rcc: + assert any(self.is_cyclic_permutation(rc, c) for c in cc) + + def test_simple_graph_with_reported_bug(self): + G = nx.DiGraph() + edges = [ + (0, 2), + (0, 3), + (1, 0), + (1, 3), + (2, 1), + (2, 4), + (3, 2), + (3, 4), + (4, 0), + (4, 1), + (4, 5), + (5, 0), + (5, 1), + (5, 2), + (5, 3), + ] + G.add_edges_from(edges) + cc = sorted(nx.simple_cycles(G)) + assert len(cc) == 26 + rcc = sorted(nx.recursive_simple_cycles(G)) + assert len(cc) == len(rcc) + for c in cc: + assert any(self.is_cyclic_permutation(c, rc) for rc in rcc) + for rc in rcc: + assert any(self.is_cyclic_permutation(rc, c) for c in cc) + + +def pairwise(iterable): + a, b = tee(iterable) + next(b, None) + return zip(a, b) + + +def cycle_edges(c): + return pairwise(chain(c, islice(c, 1))) + + +def directed_cycle_edgeset(c): + return frozenset(cycle_edges(c)) + + +def undirected_cycle_edgeset(c): + if len(c) == 1: + return frozenset(cycle_edges(c)) + return frozenset(map(frozenset, cycle_edges(c))) + + +def multigraph_cycle_edgeset(c): + if len(c) <= 2: + return frozenset(cycle_edges(c)) + else: + return frozenset(map(frozenset, cycle_edges(c))) + + +class TestCycleEnumeration: + @staticmethod + def K(n): + return nx.complete_graph(n) + + @staticmethod + def D(n): + return nx.complete_graph(n).to_directed() + + @staticmethod + def edgeset_function(g): + if g.is_directed(): + return directed_cycle_edgeset + elif g.is_multigraph(): + return multigraph_cycle_edgeset + else: + return undirected_cycle_edgeset + + def check_cycle(self, g, c, es, cache, source, original_c, length_bound, chordless): + if length_bound is not None and len(c) > length_bound: + raise RuntimeError( + f"computed cycle {original_c} exceeds length bound {length_bound}" + ) + if source == "computed": + if es in cache: + raise RuntimeError( + f"computed cycle {original_c} has already been found!" + ) + else: + cache[es] = tuple(original_c) + else: + if es in cache: + cache.pop(es) + else: + raise RuntimeError(f"expected cycle {original_c} was not computed") + + if not all(g.has_edge(*e) for e in es): + raise RuntimeError( + f"{source} claimed cycle {original_c} is not a cycle of g" + ) + if chordless and len(g.subgraph(c).edges) > len(c): + raise RuntimeError(f"{source} cycle {original_c} is not chordless") + + def check_cycle_algorithm( + self, + g, + expected_cycles, + length_bound=None, + chordless=False, + algorithm=None, + ): + if algorithm is None: + algorithm = nx.chordless_cycles if chordless else nx.simple_cycles + + # note: we shuffle the labels of g to rule out accidentally-correct + # behavior which occurred during the development of chordless cycle + # enumeration algorithms + + relabel = list(range(len(g))) + shuffle(relabel) + label = dict(zip(g, relabel)) + unlabel = dict(zip(relabel, g)) + h = nx.relabel_nodes(g, label, copy=True) + + edgeset = self.edgeset_function(h) + + params = {} + if length_bound is not None: + params["length_bound"] = length_bound + + cycle_cache = {} + for c in algorithm(h, **params): + original_c = [unlabel[x] for x in c] + es = edgeset(c) + self.check_cycle( + h, c, es, cycle_cache, "computed", original_c, length_bound, chordless + ) + + if isinstance(expected_cycles, int): + if len(cycle_cache) != expected_cycles: + raise RuntimeError( + f"expected {expected_cycles} cycles, got {len(cycle_cache)}" + ) + return + for original_c in expected_cycles: + c = [label[x] for x in original_c] + es = edgeset(c) + self.check_cycle( + h, c, es, cycle_cache, "expected", original_c, length_bound, chordless + ) + + if len(cycle_cache): + for c in cycle_cache.values(): + raise RuntimeError( + f"computed cycle {c} is valid but not in the expected cycle set!" + ) + + def check_cycle_enumeration_integer_sequence( + self, + g_family, + cycle_counts, + length_bound=None, + chordless=False, + algorithm=None, + ): + for g, num_cycles in zip(g_family, cycle_counts): + self.check_cycle_algorithm( + g, + num_cycles, + length_bound=length_bound, + chordless=chordless, + algorithm=algorithm, + ) + + def test_directed_chordless_cycle_digons(self): + g = nx.DiGraph() + nx.add_cycle(g, range(5)) + nx.add_cycle(g, range(5)[::-1]) + g.add_edge(0, 0) + expected_cycles = [(0,), (1, 2), (2, 3), (3, 4)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=2) + + expected_cycles = [c for c in expected_cycles if len(c) < 2] + self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=1) + + def test_directed_chordless_cycle_undirected(self): + g = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (5, 1), (0, 2)]) + expected_cycles = [(0, 2, 3, 4, 5), (1, 2, 3, 4, 5)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + g = nx.DiGraph() + nx.add_cycle(g, range(5)) + nx.add_cycle(g, range(4, 9)) + g.add_edge(7, 3) + expected_cycles = [(0, 1, 2, 3, 4), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + g.add_edge(3, 7) + expected_cycles = [(0, 1, 2, 3, 4), (3, 7), (4, 5, 6, 7, 8)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + expected_cycles = [(3, 7)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=4) + + g.remove_edge(7, 3) + expected_cycles = [(0, 1, 2, 3, 4), (4, 5, 6, 7, 8)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + g = nx.DiGraph((i, j) for i in range(10) for j in range(i)) + expected_cycles = [] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + def test_chordless_cycles_directed(self): + G = nx.DiGraph() + nx.add_cycle(G, range(5)) + nx.add_cycle(G, range(4, 12)) + expected = [[*range(5)], [*range(4, 12)]] + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + G.add_edge(7, 3) + expected.append([*range(3, 8)]) + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + G.add_edge(3, 7) + expected[-1] = [7, 3] + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + expected.pop() + G.remove_edge(7, 3) + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + def test_directed_chordless_cycle_diclique(self): + g_family = [self.D(n) for n in range(10)] + expected_cycles = [(n * n - n) // 2 for n in range(10)] + self.check_cycle_enumeration_integer_sequence( + g_family, expected_cycles, chordless=True + ) + + expected_cycles = [(n * n - n) // 2 for n in range(10)] + self.check_cycle_enumeration_integer_sequence( + g_family, expected_cycles, length_bound=2 + ) + + def test_directed_chordless_loop_blockade(self): + g = nx.DiGraph((i, i) for i in range(10)) + nx.add_cycle(g, range(10)) + expected_cycles = [(i,) for i in range(10)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + self.check_cycle_algorithm(g, expected_cycles, length_bound=1) + + g = nx.MultiDiGraph(g) + g.add_edges_from((i, i) for i in range(0, 10, 2)) + expected_cycles = [(i,) for i in range(1, 10, 2)] + self.check_cycle_algorithm(g, expected_cycles, chordless=True) + + def test_simple_cycles_notable_clique_sequences(self): + # A000292: Number of labeled graphs on n+3 nodes that are triangles. + g_family = [self.K(n) for n in range(2, 12)] + expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, length_bound=3 + ) + + def triangles(g, **kwargs): + yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 3) + + # directed complete graphs have twice as many triangles thanks to reversal + g_family = [self.D(n) for n in range(2, 12)] + expected = [2 * e for e in expected] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, length_bound=3, algorithm=triangles + ) + + def four_cycles(g, **kwargs): + yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 4) + + # A050534: the number of 4-cycles in the complete graph K_{n+1} + expected = [0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990] + g_family = [self.K(n) for n in range(1, 12)] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, length_bound=4, algorithm=four_cycles + ) + + # directed complete graphs have twice as many 4-cycles thanks to reversal + expected = [2 * e for e in expected] + g_family = [self.D(n) for n in range(1, 15)] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, length_bound=4, algorithm=four_cycles + ) + + # A006231: the number of elementary circuits in a complete directed graph with n nodes + expected = [0, 1, 5, 20, 84, 409, 2365] + g_family = [self.D(n) for n in range(1, 8)] + self.check_cycle_enumeration_integer_sequence(g_family, expected) + + # A002807: Number of cycles in the complete graph on n nodes K_{n}. + expected = [0, 0, 0, 1, 7, 37, 197, 1172] + g_family = [self.K(n) for n in range(8)] + self.check_cycle_enumeration_integer_sequence(g_family, expected) + + def test_directed_chordless_cycle_parallel_multiedges(self): + g = nx.MultiGraph() + + nx.add_cycle(g, range(5)) + expected = [[*range(5)]] + self.check_cycle_algorithm(g, expected, chordless=True) + + nx.add_cycle(g, range(5)) + expected = [*cycle_edges(range(5))] + self.check_cycle_algorithm(g, expected, chordless=True) + + nx.add_cycle(g, range(5)) + expected = [] + self.check_cycle_algorithm(g, expected, chordless=True) + + g = nx.MultiDiGraph() + + nx.add_cycle(g, range(5)) + expected = [[*range(5)]] + self.check_cycle_algorithm(g, expected, chordless=True) + + nx.add_cycle(g, range(5)) + self.check_cycle_algorithm(g, [], chordless=True) + + nx.add_cycle(g, range(5)) + self.check_cycle_algorithm(g, [], chordless=True) + + g = nx.MultiDiGraph() + + nx.add_cycle(g, range(5)) + nx.add_cycle(g, range(5)[::-1]) + expected = [*cycle_edges(range(5))] + self.check_cycle_algorithm(g, expected, chordless=True) + + nx.add_cycle(g, range(5)) + self.check_cycle_algorithm(g, [], chordless=True) + + def test_chordless_cycles_graph(self): + G = nx.Graph() + nx.add_cycle(G, range(5)) + nx.add_cycle(G, range(4, 12)) + expected = [[*range(5)], [*range(4, 12)]] + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + G.add_edge(7, 3) + expected.append([*range(3, 8)]) + expected.append([4, 3, 7, 8, 9, 10, 11]) + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True + ) + + def test_chordless_cycles_giant_hamiltonian(self): + # ... o - e - o - e - o ... # o = odd, e = even + # ... ---/ \-----/ \--- ... # <-- "long" edges + # + # each long edge belongs to exactly one triangle, and one giant cycle + # of length n/2. The remaining edges each belong to a triangle + + n = 1000 + assert n % 2 == 0 + G = nx.Graph() + for v in range(n): + if not v % 2: + G.add_edge(v, (v + 2) % n) + G.add_edge(v, (v + 1) % n) + + expected = [[*range(0, n, 2)]] + [ + [x % n for x in range(i, i + 3)] for i in range(0, n, 2) + ] + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True + ) + + # ... o -> e -> o -> e -> o ... # o = odd, e = even + # ... <---/ \---<---/ \---< ... # <-- "long" edges + # + # this time, we orient the short and long edges in opposition + # the cycle structure of this graph is the same, but we need to reverse + # the long one in our representation. Also, we need to drop the size + # because our partitioning algorithm uses strongly connected components + # instead of separating graphs by their strong articulation points + + n = 100 + assert n % 2 == 0 + G = nx.DiGraph() + for v in range(n): + G.add_edge(v, (v + 1) % n) + if not v % 2: + G.add_edge((v + 2) % n, v) + + expected = [[*range(n - 2, -2, -2)]] + [ + [x % n for x in range(i, i + 3)] for i in range(0, n, 2) + ] + self.check_cycle_algorithm(G, expected, chordless=True) + self.check_cycle_algorithm( + G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True + ) + + def test_simple_cycles_acyclic_tournament(self): + n = 10 + G = nx.DiGraph((x, y) for x in range(n) for y in range(x)) + self.check_cycle_algorithm(G, []) + self.check_cycle_algorithm(G, [], chordless=True) + + for k in range(n + 1): + self.check_cycle_algorithm(G, [], length_bound=k) + self.check_cycle_algorithm(G, [], length_bound=k, chordless=True) + + def test_simple_cycles_graph(self): + testG = nx.cycle_graph(8) + cyc1 = tuple(range(8)) + self.check_cycle_algorithm(testG, [cyc1]) + + testG.add_edge(4, -1) + nx.add_path(testG, [3, -2, -3, -4]) + self.check_cycle_algorithm(testG, [cyc1]) + + testG.update(nx.cycle_graph(range(8, 16))) + cyc2 = tuple(range(8, 16)) + self.check_cycle_algorithm(testG, [cyc1, cyc2]) + + testG.update(nx.cycle_graph(range(4, 12))) + cyc3 = tuple(range(4, 12)) + expected = { + (0, 1, 2, 3, 4, 5, 6, 7), # cyc1 + (8, 9, 10, 11, 12, 13, 14, 15), # cyc2 + (4, 5, 6, 7, 8, 9, 10, 11), # cyc3 + (4, 5, 6, 7, 8, 15, 14, 13, 12, 11), # cyc2 + cyc3 + (0, 1, 2, 3, 4, 11, 10, 9, 8, 7), # cyc1 + cyc3 + (0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 8, 7), # cyc1 + cyc2 + cyc3 + } + self.check_cycle_algorithm(testG, expected) + assert len(expected) == (2**3 - 1) - 1 # 1 disjoint comb: cyc1 + cyc2 + + # Basis size = 5 (2 loops overlapping gives 5 small loops + # E + # / \ Note: A-F = 10-15 + # 1-2-3-4-5 + # / | | \ cyc1=012DAB -- left + # 0 D F 6 cyc2=234E -- top + # \ | | / cyc3=45678F -- right + # B-A-9-8-7 cyc4=89AC -- bottom + # \ / cyc5=234F89AD -- middle + # C + # + # combinations of 5 basis elements: 2^5 - 1 (one includes no cycles) + # + # disjoint combs: (11 total) not simple cycles + # Any pair not including cyc5 => choose(4, 2) = 6 + # Any triple not including cyc5 => choose(4, 3) = 4 + # Any quad not including cyc5 => choose(4, 4) = 1 + # + # we expect 31 - 11 = 20 simple cycles + # + testG = nx.cycle_graph(12) + testG.update(nx.cycle_graph([12, 10, 13, 2, 14, 4, 15, 8]).edges) + expected = (2**5 - 1) - 11 # 11 disjoint combinations + self.check_cycle_algorithm(testG, expected) + + def test_simple_cycles_bounded(self): + # iteratively construct a cluster of nested cycles running in the same direction + # there should be one cycle of every length + d = nx.DiGraph() + expected = [] + for n in range(10): + nx.add_cycle(d, range(n)) + expected.append(n) + for k, e in enumerate(expected): + self.check_cycle_algorithm(d, e, length_bound=k) + + # iteratively construct a path of undirected cycles, connected at articulation + # points. there should be one cycle of every length except 2: no digons + g = nx.Graph() + top = 0 + expected = [] + for n in range(10): + expected.append(n if n < 2 else n - 1) + if n == 2: + # no digons in undirected graphs + continue + nx.add_cycle(g, range(top, top + n)) + top += n + for k, e in enumerate(expected): + self.check_cycle_algorithm(g, e, length_bound=k) + + def test_simple_cycles_bound_corner_cases(self): + G = nx.cycle_graph(4) + DG = nx.cycle_graph(4, create_using=nx.DiGraph) + assert list(nx.simple_cycles(G, length_bound=0)) == [] + assert list(nx.simple_cycles(DG, length_bound=0)) == [] + assert list(nx.chordless_cycles(G, length_bound=0)) == [] + assert list(nx.chordless_cycles(DG, length_bound=0)) == [] + + def test_simple_cycles_bound_error(self): + with pytest.raises(ValueError): + G = nx.DiGraph() + for c in nx.simple_cycles(G, -1): + assert False + + with pytest.raises(ValueError): + G = nx.Graph() + for c in nx.simple_cycles(G, -1): + assert False + + with pytest.raises(ValueError): + G = nx.Graph() + for c in nx.chordless_cycles(G, -1): + assert False + + with pytest.raises(ValueError): + G = nx.DiGraph() + for c in nx.chordless_cycles(G, -1): + assert False + + def test_chordless_cycles_clique(self): + g_family = [self.K(n) for n in range(2, 15)] + expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, chordless=True + ) + + # directed cliques have as many digons as undirected graphs have edges + expected = [(n * n - n) // 2 for n in range(15)] + g_family = [self.D(n) for n in range(15)] + self.check_cycle_enumeration_integer_sequence( + g_family, expected, chordless=True + ) + + +# These tests might fail with hash randomization since they depend on +# edge_dfs. For more information, see the comments in: +# networkx/algorithms/traversal/tests/test_edgedfs.py + + +class TestFindCycle: + @classmethod + def setup_class(cls): + cls.nodes = [0, 1, 2, 3] + cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] + + def test_graph_nocycle(self): + G = nx.Graph(self.edges) + pytest.raises(nx.exception.NetworkXNoCycle, nx.find_cycle, G, self.nodes) + + def test_graph_cycle(self): + G = nx.Graph(self.edges) + G.add_edge(2, 0) + x = list(nx.find_cycle(G, self.nodes)) + x_ = [(0, 1), (1, 2), (2, 0)] + assert x == x_ + + def test_graph_orientation_none(self): + G = nx.Graph(self.edges) + G.add_edge(2, 0) + x = list(nx.find_cycle(G, self.nodes, orientation=None)) + x_ = [(0, 1), (1, 2), (2, 0)] + assert x == x_ + + def test_graph_orientation_original(self): + G = nx.Graph(self.edges) + G.add_edge(2, 0) + x = list(nx.find_cycle(G, self.nodes, orientation="original")) + x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)] + assert x == x_ + + def test_digraph(self): + G = nx.DiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes)) + x_ = [(0, 1), (1, 0)] + assert x == x_ + + def test_digraph_orientation_none(self): + G = nx.DiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes, orientation=None)) + x_ = [(0, 1), (1, 0)] + assert x == x_ + + def test_digraph_orientation_original(self): + G = nx.DiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes, orientation="original")) + x_ = [(0, 1, FORWARD), (1, 0, FORWARD)] + assert x == x_ + + def test_multigraph(self): + G = nx.MultiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes)) + x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2) + # Hash randomization...could be any edge. + assert x[0] == x_[0] + assert x[1][:2] == x_[1][:2] + + def test_multidigraph(self): + G = nx.MultiDiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes)) + x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1) + assert x[0] == x_[0] + assert x[1][:2] == x_[1][:2] + + def test_digraph_ignore(self): + G = nx.DiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes, orientation="ignore")) + x_ = [(0, 1, FORWARD), (1, 0, FORWARD)] + assert x == x_ + + def test_digraph_reverse(self): + G = nx.DiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes, orientation="reverse")) + x_ = [(1, 0, REVERSE), (0, 1, REVERSE)] + assert x == x_ + + def test_multidigraph_ignore(self): + G = nx.MultiDiGraph(self.edges) + x = list(nx.find_cycle(G, self.nodes, orientation="ignore")) + x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1) + assert x[0] == x_[0] + assert x[1][:2] == x_[1][:2] + assert x[1][3] == x_[1][3] + + def test_multidigraph_ignore2(self): + # Loop traversed an edge while ignoring its orientation. + G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)]) + x = list(nx.find_cycle(G, [0, 1, 2], orientation="ignore")) + x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)] + assert x == x_ + + def test_multidigraph_original(self): + # Node 2 doesn't need to be searched again from visited from 4. + # The goal here is to cover the case when 2 to be researched from 4, + # when 4 is visited from the first time (so we must make sure that 4 + # is not visited from 2, and hence, we respect the edge orientation). + G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)]) + pytest.raises( + nx.exception.NetworkXNoCycle, + nx.find_cycle, + G, + [0, 1, 2, 3, 4], + orientation="original", + ) + + def test_dag(self): + G = nx.DiGraph([(0, 1), (0, 2), (1, 2)]) + pytest.raises( + nx.exception.NetworkXNoCycle, nx.find_cycle, G, orientation="original" + ) + x = list(nx.find_cycle(G, orientation="ignore")) + assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)] + + def test_prev_explored(self): + # https://github.com/networkx/networkx/issues/2323 + + G = nx.DiGraph() + G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)]) + pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0) + x = list(nx.find_cycle(G, 1)) + x_ = [(1, 2), (2, 1)] + assert x == x_ + + x = list(nx.find_cycle(G, 2)) + x_ = [(2, 1), (1, 2)] + assert x == x_ + + x = list(nx.find_cycle(G)) + x_ = [(1, 2), (2, 1)] + assert x == x_ + + def test_no_cycle(self): + # https://github.com/networkx/networkx/issues/2439 + + G = nx.DiGraph() + G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)]) + pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0) + pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G) + + +def assert_basis_equal(a, b): + assert sorted(a) == sorted(b) + + +class TestMinimumCycleBasis: + @classmethod + def setup_class(cls): + T = nx.Graph() + nx.add_cycle(T, [1, 2, 3, 4], weight=1) + T.add_edge(2, 4, weight=5) + cls.diamond_graph = T + + def test_unweighted_diamond(self): + mcb = nx.minimum_cycle_basis(self.diamond_graph) + assert_basis_equal(mcb, [[2, 4, 1], [3, 4, 2]]) + + def test_weighted_diamond(self): + mcb = nx.minimum_cycle_basis(self.diamond_graph, weight="weight") + assert_basis_equal(mcb, [[2, 4, 1], [4, 3, 2, 1]]) + + def test_dimensionality(self): + # checks |MCB|=|E|-|V|+|NC| + ntrial = 10 + for seed in range(1234, 1234 + ntrial): + rg = nx.erdos_renyi_graph(10, 0.3, seed=seed) + nnodes = rg.number_of_nodes() + nedges = rg.number_of_edges() + ncomp = nx.number_connected_components(rg) + + mcb = nx.minimum_cycle_basis(rg) + assert len(mcb) == nedges - nnodes + ncomp + check_independent(mcb) + + def test_complete_graph(self): + cg = nx.complete_graph(5) + mcb = nx.minimum_cycle_basis(cg) + assert all(len(cycle) == 3 for cycle in mcb) + check_independent(mcb) + + def test_tree_graph(self): + tg = nx.balanced_tree(3, 3) + assert not nx.minimum_cycle_basis(tg) + + def test_petersen_graph(self): + G = nx.petersen_graph() + mcb = list(nx.minimum_cycle_basis(G)) + expected = [ + [4, 9, 7, 5, 0], + [1, 2, 3, 4, 0], + [1, 6, 8, 5, 0], + [4, 3, 8, 5, 0], + [1, 6, 9, 4, 0], + [1, 2, 7, 5, 0], + ] + assert len(mcb) == len(expected) + assert all(c in expected for c in mcb) + + # check that order of the nodes is a path + for c in mcb: + assert all(G.has_edge(u, v) for u, v in nx.utils.pairwise(c, cyclic=True)) + # check independence of the basis + check_independent(mcb) + + def test_gh6787_variable_weighted_complete_graph(self): + N = 8 + cg = nx.complete_graph(N) + cg.add_weighted_edges_from([(u, v, 9) for u, v in cg.edges]) + cg.add_weighted_edges_from([(u, v, 1) for u, v in nx.cycle_graph(N).edges]) + mcb = nx.minimum_cycle_basis(cg, weight="weight") + check_independent(mcb) + + def test_gh6787_and_edge_attribute_names(self): + G = nx.cycle_graph(4) + G.add_weighted_edges_from([(0, 2, 10), (1, 3, 10)], weight="dist") + expected = [[1, 3, 0], [3, 2, 1, 0], [1, 2, 0]] + mcb = list(nx.minimum_cycle_basis(G, weight="dist")) + assert len(mcb) == len(expected) + assert all(c in expected for c in mcb) + + # test not using a weight with weight attributes + expected = [[1, 3, 0], [1, 2, 0], [3, 2, 0]] + mcb = list(nx.minimum_cycle_basis(G)) + assert len(mcb) == len(expected) + assert all(c in expected for c in mcb) + + +class TestGirth: + @pytest.mark.parametrize( + ("G", "expected"), + ( + (nx.chvatal_graph(), 4), + (nx.tutte_graph(), 4), + (nx.petersen_graph(), 5), + (nx.heawood_graph(), 6), + (nx.pappus_graph(), 6), + (nx.random_tree(10, seed=42), inf), + (nx.empty_graph(10), inf), + (nx.Graph(chain(cycle_edges(range(5)), cycle_edges(range(6, 10)))), 4), + ( + nx.Graph( + [ + (0, 6), + (0, 8), + (0, 9), + (1, 8), + (2, 8), + (2, 9), + (4, 9), + (5, 9), + (6, 8), + (6, 9), + (7, 8), + ] + ), + 3, + ), + ), + ) + def test_girth(self, G, expected): + assert nx.girth(G) == expected diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_d_separation.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_d_separation.py new file mode 100644 index 0000000000000000000000000000000000000000..a94d4dd4cfb0a3edb9e664e5bb1bc37412966475 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_d_separation.py @@ -0,0 +1,228 @@ +from itertools import combinations + +import pytest + +import networkx as nx + + +def path_graph(): + """Return a path graph of length three.""" + G = nx.path_graph(3, create_using=nx.DiGraph) + G.graph["name"] = "path" + nx.freeze(G) + return G + + +def fork_graph(): + """Return a three node fork graph.""" + G = nx.DiGraph(name="fork") + G.add_edges_from([(0, 1), (0, 2)]) + nx.freeze(G) + return G + + +def collider_graph(): + """Return a collider/v-structure graph with three nodes.""" + G = nx.DiGraph(name="collider") + G.add_edges_from([(0, 2), (1, 2)]) + nx.freeze(G) + return G + + +def naive_bayes_graph(): + """Return a simply Naive Bayes PGM graph.""" + G = nx.DiGraph(name="naive_bayes") + G.add_edges_from([(0, 1), (0, 2), (0, 3), (0, 4)]) + nx.freeze(G) + return G + + +def asia_graph(): + """Return the 'Asia' PGM graph.""" + G = nx.DiGraph(name="asia") + G.add_edges_from( + [ + ("asia", "tuberculosis"), + ("smoking", "cancer"), + ("smoking", "bronchitis"), + ("tuberculosis", "either"), + ("cancer", "either"), + ("either", "xray"), + ("either", "dyspnea"), + ("bronchitis", "dyspnea"), + ] + ) + nx.freeze(G) + return G + + +@pytest.fixture(name="path_graph") +def path_graph_fixture(): + return path_graph() + + +@pytest.fixture(name="fork_graph") +def fork_graph_fixture(): + return fork_graph() + + +@pytest.fixture(name="collider_graph") +def collider_graph_fixture(): + return collider_graph() + + +@pytest.fixture(name="naive_bayes_graph") +def naive_bayes_graph_fixture(): + return naive_bayes_graph() + + +@pytest.fixture(name="asia_graph") +def asia_graph_fixture(): + return asia_graph() + + +@pytest.mark.parametrize( + "graph", + [path_graph(), fork_graph(), collider_graph(), naive_bayes_graph(), asia_graph()], +) +def test_markov_condition(graph): + """Test that the Markov condition holds for each PGM graph.""" + for node in graph.nodes: + parents = set(graph.predecessors(node)) + non_descendants = graph.nodes - nx.descendants(graph, node) - {node} - parents + assert nx.d_separated(graph, {node}, non_descendants, parents) + + +def test_path_graph_dsep(path_graph): + """Example-based test of d-separation for path_graph.""" + assert nx.d_separated(path_graph, {0}, {2}, {1}) + assert not nx.d_separated(path_graph, {0}, {2}, {}) + + +def test_fork_graph_dsep(fork_graph): + """Example-based test of d-separation for fork_graph.""" + assert nx.d_separated(fork_graph, {1}, {2}, {0}) + assert not nx.d_separated(fork_graph, {1}, {2}, {}) + + +def test_collider_graph_dsep(collider_graph): + """Example-based test of d-separation for collider_graph.""" + assert nx.d_separated(collider_graph, {0}, {1}, {}) + assert not nx.d_separated(collider_graph, {0}, {1}, {2}) + + +def test_naive_bayes_dsep(naive_bayes_graph): + """Example-based test of d-separation for naive_bayes_graph.""" + for u, v in combinations(range(1, 5), 2): + assert nx.d_separated(naive_bayes_graph, {u}, {v}, {0}) + assert not nx.d_separated(naive_bayes_graph, {u}, {v}, {}) + + +def test_asia_graph_dsep(asia_graph): + """Example-based test of d-separation for asia_graph.""" + assert nx.d_separated( + asia_graph, {"asia", "smoking"}, {"dyspnea", "xray"}, {"bronchitis", "either"} + ) + assert nx.d_separated( + asia_graph, {"tuberculosis", "cancer"}, {"bronchitis"}, {"smoking", "xray"} + ) + + +def test_undirected_graphs_are_not_supported(): + """ + Test that undirected graphs are not supported. + + d-separation and its related algorithms do not apply in + the case of undirected graphs. + """ + g = nx.path_graph(3, nx.Graph) + with pytest.raises(nx.NetworkXNotImplemented): + nx.d_separated(g, {0}, {1}, {2}) + with pytest.raises(nx.NetworkXNotImplemented): + nx.is_minimal_d_separator(g, {0}, {1}, {2}) + with pytest.raises(nx.NetworkXNotImplemented): + nx.minimal_d_separator(g, {0}, {1}) + + +def test_cyclic_graphs_raise_error(): + """ + Test that cycle graphs should cause erroring. + + This is because PGMs assume a directed acyclic graph. + """ + g = nx.cycle_graph(3, nx.DiGraph) + with pytest.raises(nx.NetworkXError): + nx.d_separated(g, {0}, {1}, {2}) + with pytest.raises(nx.NetworkXError): + nx.minimal_d_separator(g, 0, 1) + with pytest.raises(nx.NetworkXError): + nx.is_minimal_d_separator(g, 0, 1, {2}) + + +def test_invalid_nodes_raise_error(asia_graph): + """ + Test that graphs that have invalid nodes passed in raise errors. + """ + with pytest.raises(nx.NodeNotFound): + nx.d_separated(asia_graph, {0}, {1}, {2}) + with pytest.raises(nx.NodeNotFound): + nx.is_minimal_d_separator(asia_graph, 0, 1, {2}) + with pytest.raises(nx.NodeNotFound): + nx.minimal_d_separator(asia_graph, 0, 1) + + +def test_minimal_d_separator(): + # Case 1: + # create a graph A -> B <- C + # B -> D -> E; + # B -> F; + # G -> E; + edge_list = [("A", "B"), ("C", "B"), ("B", "D"), ("D", "E"), ("B", "F"), ("G", "E")] + G = nx.DiGraph(edge_list) + assert not nx.d_separated(G, {"B"}, {"E"}, set()) + + # minimal set of the corresponding graph + # for B and E should be (D,) + Zmin = nx.minimal_d_separator(G, "B", "E") + + # the minimal separating set should pass the test for minimality + assert nx.is_minimal_d_separator(G, "B", "E", Zmin) + assert Zmin == {"D"} + + # Case 2: + # create a graph A -> B -> C + # B -> D -> C; + edge_list = [("A", "B"), ("B", "C"), ("B", "D"), ("D", "C")] + G = nx.DiGraph(edge_list) + assert not nx.d_separated(G, {"A"}, {"C"}, set()) + Zmin = nx.minimal_d_separator(G, "A", "C") + + # the minimal separating set should pass the test for minimality + assert nx.is_minimal_d_separator(G, "A", "C", Zmin) + assert Zmin == {"B"} + + Znotmin = Zmin.union({"D"}) + assert not nx.is_minimal_d_separator(G, "A", "C", Znotmin) + + +def test_minimal_d_separator_checks_dsep(): + """Test that is_minimal_d_separator checks for d-separation as well.""" + g = nx.DiGraph() + g.add_edges_from( + [ + ("A", "B"), + ("A", "E"), + ("B", "C"), + ("B", "D"), + ("D", "C"), + ("D", "F"), + ("E", "D"), + ("E", "F"), + ] + ) + + assert not nx.d_separated(g, {"C"}, {"F"}, {"D"}) + + # since {'D'} and {} are not d-separators, we return false + assert not nx.is_minimal_d_separator(g, "C", "F", {"D"}) + assert not nx.is_minimal_d_separator(g, "C", "F", {}) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dag.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dag.py new file mode 100644 index 0000000000000000000000000000000000000000..540c0c55e4d6bf840b347c7b2107c6303562e567 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dag.py @@ -0,0 +1,771 @@ +from collections import deque +from itertools import combinations, permutations + +import pytest + +import networkx as nx +from networkx.utils import edges_equal, pairwise + + +# Recipe from the itertools documentation. +def _consume(iterator): + "Consume the iterator entirely." + # Feed the entire iterator into a zero-length deque. + deque(iterator, maxlen=0) + + +class TestDagLongestPath: + """Unit tests computing the longest path in a directed acyclic graph.""" + + def test_empty(self): + G = nx.DiGraph() + assert nx.dag_longest_path(G) == [] + + def test_unweighted1(self): + edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (3, 7)] + G = nx.DiGraph(edges) + assert nx.dag_longest_path(G) == [1, 2, 3, 5, 6] + + def test_unweighted2(self): + edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.DiGraph(edges) + assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5] + + def test_weighted(self): + G = nx.DiGraph() + edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)] + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path(G) == [2, 3, 5] + + def test_undirected_not_implemented(self): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path, G) + + def test_unorderable_nodes(self): + """Tests that computing the longest path does not depend on + nodes being orderable. + + For more information, see issue #1989. + + """ + # Create the directed path graph on four nodes in a diamond shape, + # with nodes represented as (unorderable) Python objects. + nodes = [object() for n in range(4)] + G = nx.DiGraph() + G.add_edge(nodes[0], nodes[1]) + G.add_edge(nodes[0], nodes[2]) + G.add_edge(nodes[2], nodes[3]) + G.add_edge(nodes[1], nodes[3]) + + # this will raise NotImplementedError when nodes need to be ordered + nx.dag_longest_path(G) + + def test_multigraph_unweighted(self): + edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.MultiDiGraph(edges) + assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5] + + def test_multigraph_weighted(self): + G = nx.MultiDiGraph() + edges = [ + (1, 2, 2), + (2, 3, 2), + (1, 3, 1), + (1, 3, 5), + (1, 3, 2), + ] + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path(G) == [1, 3] + + def test_multigraph_weighted_default_weight(self): + G = nx.MultiDiGraph([(1, 2), (2, 3)]) # Unweighted edges + G.add_weighted_edges_from([(1, 3, 1), (1, 3, 5), (1, 3, 2)]) + + # Default value for default weight is 1 + assert nx.dag_longest_path(G) == [1, 3] + assert nx.dag_longest_path(G, default_weight=3) == [1, 2, 3] + + +class TestDagLongestPathLength: + """Unit tests for computing the length of a longest path in a + directed acyclic graph. + + """ + + def test_unweighted(self): + edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)] + G = nx.DiGraph(edges) + assert nx.dag_longest_path_length(G) == 4 + + edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.DiGraph(edges) + assert nx.dag_longest_path_length(G) == 4 + + # test degenerate graphs + G = nx.DiGraph() + G.add_node(1) + assert nx.dag_longest_path_length(G) == 0 + + def test_undirected_not_implemented(self): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path_length, G) + + def test_weighted(self): + edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)] + G = nx.DiGraph() + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path_length(G) == 5 + + def test_multigraph_unweighted(self): + edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.MultiDiGraph(edges) + assert nx.dag_longest_path_length(G) == 4 + + def test_multigraph_weighted(self): + G = nx.MultiDiGraph() + edges = [ + (1, 2, 2), + (2, 3, 2), + (1, 3, 1), + (1, 3, 5), + (1, 3, 2), + ] + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path_length(G) == 5 + + +class TestDAG: + @classmethod + def setup_class(cls): + pass + + def test_topological_sort1(self): + DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)]) + + for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: + assert tuple(algorithm(DG)) == (1, 2, 3) + + DG.add_edge(3, 2) + + for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: + pytest.raises(nx.NetworkXUnfeasible, _consume, algorithm(DG)) + + DG.remove_edge(2, 3) + + for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: + assert tuple(algorithm(DG)) == (1, 3, 2) + + DG.remove_edge(3, 2) + + assert tuple(nx.topological_sort(DG)) in {(1, 2, 3), (1, 3, 2)} + assert tuple(nx.lexicographical_topological_sort(DG)) == (1, 2, 3) + + def test_is_directed_acyclic_graph(self): + G = nx.generators.complete_graph(2) + assert not nx.is_directed_acyclic_graph(G) + assert not nx.is_directed_acyclic_graph(G.to_directed()) + assert not nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)])) + assert nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)])) + + def test_topological_sort2(self): + DG = nx.DiGraph( + { + 1: [2], + 2: [3], + 3: [4], + 4: [5], + 5: [1], + 11: [12], + 12: [13], + 13: [14], + 14: [15], + } + ) + pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG)) + + assert not nx.is_directed_acyclic_graph(DG) + + DG.remove_edge(1, 2) + _consume(nx.topological_sort(DG)) + assert nx.is_directed_acyclic_graph(DG) + + def test_topological_sort3(self): + DG = nx.DiGraph() + DG.add_edges_from([(1, i) for i in range(2, 5)]) + DG.add_edges_from([(2, i) for i in range(5, 9)]) + DG.add_edges_from([(6, i) for i in range(9, 12)]) + DG.add_edges_from([(4, i) for i in range(12, 15)]) + + def validate(order): + assert isinstance(order, list) + assert set(order) == set(DG) + for u, v in combinations(order, 2): + assert not nx.has_path(DG, v, u) + + validate(list(nx.topological_sort(DG))) + + DG.add_edge(14, 1) + pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG)) + + def test_topological_sort4(self): + G = nx.Graph() + G.add_edge(1, 2) + # Only directed graphs can be topologically sorted. + pytest.raises(nx.NetworkXError, _consume, nx.topological_sort(G)) + + def test_topological_sort5(self): + G = nx.DiGraph() + G.add_edge(0, 1) + assert list(nx.topological_sort(G)) == [0, 1] + + def test_topological_sort6(self): + for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: + + def runtime_error(): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + first = True + for x in algorithm(DG): + if first: + first = False + DG.add_edge(5 - x, 5) + + def unfeasible_error(): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + first = True + for x in algorithm(DG): + if first: + first = False + DG.remove_node(4) + + def runtime_error2(): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + first = True + for x in algorithm(DG): + if first: + first = False + DG.remove_node(2) + + pytest.raises(RuntimeError, runtime_error) + pytest.raises(RuntimeError, runtime_error2) + pytest.raises(nx.NetworkXUnfeasible, unfeasible_error) + + def test_all_topological_sorts_1(self): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5)]) + assert list(nx.all_topological_sorts(DG)) == [[1, 2, 3, 4, 5]] + + def test_all_topological_sorts_2(self): + DG = nx.DiGraph([(1, 3), (2, 1), (2, 4), (4, 3), (4, 5)]) + assert sorted(nx.all_topological_sorts(DG)) == [ + [2, 1, 4, 3, 5], + [2, 1, 4, 5, 3], + [2, 4, 1, 3, 5], + [2, 4, 1, 5, 3], + [2, 4, 5, 1, 3], + ] + + def test_all_topological_sorts_3(self): + def unfeasible(): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2), (4, 5)]) + # convert to list to execute generator + list(nx.all_topological_sorts(DG)) + + def not_implemented(): + G = nx.Graph([(1, 2), (2, 3)]) + # convert to list to execute generator + list(nx.all_topological_sorts(G)) + + def not_implemented_2(): + G = nx.MultiGraph([(1, 2), (1, 2), (2, 3)]) + list(nx.all_topological_sorts(G)) + + pytest.raises(nx.NetworkXUnfeasible, unfeasible) + pytest.raises(nx.NetworkXNotImplemented, not_implemented) + pytest.raises(nx.NetworkXNotImplemented, not_implemented_2) + + def test_all_topological_sorts_4(self): + DG = nx.DiGraph() + for i in range(7): + DG.add_node(i) + assert sorted(map(list, permutations(DG.nodes))) == sorted( + nx.all_topological_sorts(DG) + ) + + def test_all_topological_sorts_multigraph_1(self): + DG = nx.MultiDiGraph([(1, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 5), (3, 5)]) + assert sorted(nx.all_topological_sorts(DG)) == sorted( + [[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]] + ) + + def test_all_topological_sorts_multigraph_2(self): + N = 9 + edges = [] + for i in range(1, N): + edges.extend([(i, i + 1)] * i) + DG = nx.MultiDiGraph(edges) + assert list(nx.all_topological_sorts(DG)) == [list(range(1, N + 1))] + + def test_ancestors(self): + G = nx.DiGraph() + ancestors = nx.algorithms.dag.ancestors + G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) + assert ancestors(G, 6) == {1, 2, 4, 5} + assert ancestors(G, 3) == {1, 4} + assert ancestors(G, 1) == set() + pytest.raises(nx.NetworkXError, ancestors, G, 8) + + def test_descendants(self): + G = nx.DiGraph() + descendants = nx.algorithms.dag.descendants + G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) + assert descendants(G, 1) == {2, 3, 6} + assert descendants(G, 4) == {2, 3, 5, 6} + assert descendants(G, 3) == set() + pytest.raises(nx.NetworkXError, descendants, G, 8) + + def test_transitive_closure(self): + G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + assert edges_equal(nx.transitive_closure(G).edges(), solution) + G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] + assert edges_equal(nx.transitive_closure(G).edges(), solution) + G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) + solution = [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln) + + G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) + + G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) + + G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) + + # test if edge data is copied + G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)]) + H = nx.transitive_closure(G) + for u, v in G.edges(): + assert G.get_edge_data(u, v) == H.get_edge_data(u, v) + + k = 10 + G = nx.DiGraph((i, i + 1, {"f": "b", "weight": i}) for i in range(k)) + H = nx.transitive_closure(G) + for u, v in G.edges(): + assert G.get_edge_data(u, v) == H.get_edge_data(u, v) + + G = nx.Graph() + with pytest.raises(nx.NetworkXError): + nx.transitive_closure(G, reflexive="wrong input") + + def test_reflexive_transitive_closure(self): + G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(nx.transitive_closure(G).edges(), solution) + assert edges_equal(nx.transitive_closure(G, False).edges(), solution) + assert edges_equal(nx.transitive_closure(G, True).edges(), soln) + assert edges_equal(nx.transitive_closure(G, None).edges(), solution) + + G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(nx.transitive_closure(G).edges(), solution) + assert edges_equal(nx.transitive_closure(G, False).edges(), solution) + assert edges_equal(nx.transitive_closure(G, True).edges(), soln) + assert edges_equal(nx.transitive_closure(G, None).edges(), solution) + + G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) + solution = sorted([(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)]) + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln) + assert edges_equal(sorted(nx.transitive_closure(G, False).edges()), soln) + assert edges_equal(sorted(nx.transitive_closure(G, None).edges()), solution) + assert edges_equal(sorted(nx.transitive_closure(G, True).edges()), soln) + + G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(nx.transitive_closure(G).edges(), solution) + assert edges_equal(nx.transitive_closure(G, False).edges(), solution) + assert edges_equal(nx.transitive_closure(G, True).edges(), soln) + assert edges_equal(nx.transitive_closure(G, None).edges(), solution) + + G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(nx.transitive_closure(G).edges(), solution) + assert edges_equal(nx.transitive_closure(G, False).edges(), solution) + assert edges_equal(nx.transitive_closure(G, True).edges(), soln) + assert edges_equal(nx.transitive_closure(G, None).edges(), solution) + + G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + soln = sorted(solution + [(n, n) for n in G]) + assert edges_equal(nx.transitive_closure(G).edges(), solution) + assert edges_equal(nx.transitive_closure(G, False).edges(), solution) + assert edges_equal(nx.transitive_closure(G, True).edges(), soln) + assert edges_equal(nx.transitive_closure(G, None).edges(), solution) + + def test_transitive_closure_dag(self): + G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + transitive_closure = nx.algorithms.dag.transitive_closure_dag + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + assert edges_equal(transitive_closure(G).edges(), solution) + G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) + solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] + assert edges_equal(transitive_closure(G).edges(), solution) + G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + pytest.raises(nx.NetworkXNotImplemented, transitive_closure, G) + + # test if edge data is copied + G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)]) + H = transitive_closure(G) + for u, v in G.edges(): + assert G.get_edge_data(u, v) == H.get_edge_data(u, v) + + k = 10 + G = nx.DiGraph((i, i + 1, {"foo": "bar", "weight": i}) for i in range(k)) + H = transitive_closure(G) + for u, v in G.edges(): + assert G.get_edge_data(u, v) == H.get_edge_data(u, v) + + def test_transitive_reduction(self): + G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]) + transitive_reduction = nx.algorithms.dag.transitive_reduction + solution = [(1, 2), (2, 3), (3, 4)] + assert edges_equal(transitive_reduction(G).edges(), solution) + G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]) + transitive_reduction = nx.algorithms.dag.transitive_reduction + solution = [(1, 2), (2, 3), (2, 4)] + assert edges_equal(transitive_reduction(G).edges(), solution) + G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + pytest.raises(nx.NetworkXNotImplemented, transitive_reduction, G) + + def _check_antichains(self, solution, result): + sol = [frozenset(a) for a in solution] + res = [frozenset(a) for a in result] + assert set(sol) == set(res) + + def test_antichains(self): + antichains = nx.algorithms.dag.antichains + G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + solution = [[], [4], [3], [2], [1]] + self._check_antichains(list(antichains(G)), solution) + G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)]) + solution = [ + [], + [4], + [7], + [7, 4], + [6], + [6, 4], + [6, 7], + [6, 7, 4], + [5], + [5, 4], + [3], + [3, 4], + [2], + [1], + ] + self._check_antichains(list(antichains(G)), solution) + G = nx.DiGraph([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6)]) + solution = [ + [], + [6], + [5], + [4], + [4, 6], + [4, 5], + [3], + [2], + [2, 6], + [2, 5], + [2, 4], + [2, 4, 6], + [2, 4, 5], + [2, 3], + [1], + ] + self._check_antichains(list(antichains(G)), solution) + G = nx.DiGraph({0: [1, 2], 1: [4], 2: [3], 3: [4]}) + solution = [[], [4], [3], [2], [1], [1, 3], [1, 2], [0]] + self._check_antichains(list(antichains(G)), solution) + G = nx.DiGraph() + self._check_antichains(list(antichains(G)), [[]]) + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2]) + solution = [[], [0], [1], [1, 0], [2], [2, 0], [2, 1], [2, 1, 0]] + self._check_antichains(list(antichains(G)), solution) + + def f(x): + return list(antichains(x)) + + G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + pytest.raises(nx.NetworkXNotImplemented, f, G) + G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) + pytest.raises(nx.NetworkXUnfeasible, f, G) + + def test_lexicographical_topological_sort(self): + G = nx.DiGraph([(1, 2), (2, 3), (1, 4), (1, 5), (2, 6)]) + assert list(nx.lexicographical_topological_sort(G)) == [1, 2, 3, 4, 5, 6] + assert list(nx.lexicographical_topological_sort(G, key=lambda x: x)) == [ + 1, + 2, + 3, + 4, + 5, + 6, + ] + assert list(nx.lexicographical_topological_sort(G, key=lambda x: -x)) == [ + 1, + 5, + 4, + 2, + 6, + 3, + ] + + def test_lexicographical_topological_sort2(self): + """ + Check the case of two or more nodes with same key value. + Want to avoid exception raised due to comparing nodes directly. + See Issue #3493 + """ + + class Test_Node: + def __init__(self, n): + self.label = n + self.priority = 1 + + def __repr__(self): + return f"Node({self.label})" + + def sorting_key(node): + return node.priority + + test_nodes = [Test_Node(n) for n in range(4)] + G = nx.DiGraph() + edges = [(0, 1), (0, 2), (0, 3), (2, 3)] + G.add_edges_from((test_nodes[a], test_nodes[b]) for a, b in edges) + + sorting = list(nx.lexicographical_topological_sort(G, key=sorting_key)) + assert sorting == test_nodes + + +def test_topological_generations(): + G = nx.DiGraph( + {1: [2, 3], 2: [4, 5], 3: [7], 4: [], 5: [6, 7], 6: [], 7: []} + ).reverse() + # order within each generation is inconsequential + generations = [sorted(gen) for gen in nx.topological_generations(G)] + expected = [[4, 6, 7], [3, 5], [2], [1]] + assert generations == expected + + MG = nx.MultiDiGraph(G.edges) + MG.add_edge(2, 1) + generations = [sorted(gen) for gen in nx.topological_generations(MG)] + assert generations == expected + + +def test_topological_generations_empty(): + G = nx.DiGraph() + assert list(nx.topological_generations(G)) == [] + + +def test_topological_generations_cycle(): + G = nx.DiGraph([[2, 1], [3, 1], [1, 2]]) + with pytest.raises(nx.NetworkXUnfeasible): + list(nx.topological_generations(G)) + + +def test_is_aperiodic_cycle(): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + assert not nx.is_aperiodic(G) + + +def test_is_aperiodic_cycle2(): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + nx.add_cycle(G, [3, 4, 5, 6, 7]) + assert nx.is_aperiodic(G) + + +def test_is_aperiodic_cycle3(): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + nx.add_cycle(G, [3, 4, 5, 6]) + assert not nx.is_aperiodic(G) + + +def test_is_aperiodic_cycle4(): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + G.add_edge(1, 3) + assert nx.is_aperiodic(G) + + +def test_is_aperiodic_selfloop(): + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + G.add_edge(1, 1) + assert nx.is_aperiodic(G) + + +def test_is_aperiodic_raise(): + G = nx.Graph() + pytest.raises(nx.NetworkXError, nx.is_aperiodic, G) + + +def test_is_aperiodic_bipartite(): + # Bipartite graph + G = nx.DiGraph(nx.davis_southern_women_graph()) + assert not nx.is_aperiodic(G) + + +def test_is_aperiodic_rary_tree(): + G = nx.full_rary_tree(3, 27, create_using=nx.DiGraph()) + assert not nx.is_aperiodic(G) + + +def test_is_aperiodic_disconnected(): + # disconnected graph + G = nx.DiGraph() + nx.add_cycle(G, [1, 2, 3, 4]) + nx.add_cycle(G, [5, 6, 7, 8]) + assert not nx.is_aperiodic(G) + G.add_edge(1, 3) + G.add_edge(5, 7) + assert nx.is_aperiodic(G) + + +def test_is_aperiodic_disconnected2(): + G = nx.DiGraph() + nx.add_cycle(G, [0, 1, 2]) + G.add_edge(3, 3) + assert not nx.is_aperiodic(G) + + +class TestDagToBranching: + """Unit tests for the :func:`networkx.dag_to_branching` function.""" + + def test_single_root(self): + """Tests that a directed acyclic graph with a single degree + zero node produces an arborescence. + + """ + G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)]) + B = nx.dag_to_branching(G) + expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4)]) + assert nx.is_arborescence(B) + assert nx.is_isomorphic(B, expected) + + def test_multiple_roots(self): + """Tests that a directed acyclic graph with multiple degree zero + nodes creates an arborescence with multiple (weakly) connected + components. + + """ + G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3), (5, 2)]) + B = nx.dag_to_branching(G) + expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4), (5, 6), (6, 7)]) + assert nx.is_branching(B) + assert not nx.is_arborescence(B) + assert nx.is_isomorphic(B, expected) + + # # Attributes are not copied by this function. If they were, this would + # # be a good test to uncomment. + # def test_copy_attributes(self): + # """Tests that node attributes are copied in the branching.""" + # G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)]) + # for v in G: + # G.node[v]['label'] = str(v) + # B = nx.dag_to_branching(G) + # # Determine the root node of the branching. + # root = next(v for v, d in B.in_degree() if d == 0) + # assert_equal(B.node[root]['label'], '0') + # children = B[root] + # # Get the left and right children, nodes 1 and 2, respectively. + # left, right = sorted(children, key=lambda v: B.node[v]['label']) + # assert_equal(B.node[left]['label'], '1') + # assert_equal(B.node[right]['label'], '2') + # # Get the left grandchild. + # children = B[left] + # assert_equal(len(children), 1) + # left_grandchild = arbitrary_element(children) + # assert_equal(B.node[left_grandchild]['label'], '3') + # # Get the right grandchild. + # children = B[right] + # assert_equal(len(children), 1) + # right_grandchild = arbitrary_element(children) + # assert_equal(B.node[right_grandchild]['label'], '3') + + def test_already_arborescence(self): + """Tests that a directed acyclic graph that is already an + arborescence produces an isomorphic arborescence as output. + + """ + A = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) + B = nx.dag_to_branching(A) + assert nx.is_isomorphic(A, B) + + def test_already_branching(self): + """Tests that a directed acyclic graph that is already a + branching produces an isomorphic branching as output. + + """ + T1 = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) + T2 = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) + G = nx.disjoint_union(T1, T2) + B = nx.dag_to_branching(G) + assert nx.is_isomorphic(G, B) + + def test_not_acyclic(self): + """Tests that a non-acyclic graph causes an exception.""" + with pytest.raises(nx.HasACycle): + G = nx.DiGraph(pairwise("abc", cyclic=True)) + nx.dag_to_branching(G) + + def test_undirected(self): + with pytest.raises(nx.NetworkXNotImplemented): + nx.dag_to_branching(nx.Graph()) + + def test_multigraph(self): + with pytest.raises(nx.NetworkXNotImplemented): + nx.dag_to_branching(nx.MultiGraph()) + + def test_multidigraph(self): + with pytest.raises(nx.NetworkXNotImplemented): + nx.dag_to_branching(nx.MultiDiGraph()) + + +def test_ancestors_descendants_undirected(): + """Regression test to ensure ancestors and descendants work as expected on + undirected graphs.""" + G = nx.path_graph(5) + nx.ancestors(G, 2) == nx.descendants(G, 2) == {0, 1, 3, 4} + + +def test_compute_v_structures_raise(): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.compute_v_structures, G) + + +def test_compute_v_structures(): + edges = [(0, 1), (0, 2), (3, 2)] + G = nx.DiGraph(edges) + + v_structs = set(nx.compute_v_structures(G)) + assert len(v_structs) == 1 + assert (0, 2, 3) in v_structs + + edges = [("A", "B"), ("C", "B"), ("B", "D"), ("D", "E"), ("G", "E")] + G = nx.DiGraph(edges) + v_structs = set(nx.compute_v_structures(G)) + assert len(v_structs) == 2 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_measures.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_measures.py new file mode 100644 index 0000000000000000000000000000000000000000..d4b5cf2f1193b0c9b8f898b90096d32142bf1105 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_measures.py @@ -0,0 +1,668 @@ +from random import Random + +import pytest + +import networkx as nx +from networkx import convert_node_labels_to_integers as cnlti +from networkx.algorithms.distance_measures import _extrema_bounding + + +def test__extrema_bounding_invalid_compute_kwarg(): + G = nx.path_graph(3) + with pytest.raises(ValueError, match="compute must be one of"): + _extrema_bounding(G, compute="spam") + + +class TestDistance: + def setup_method(self): + G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + self.G = G + + def test_eccentricity(self): + assert nx.eccentricity(self.G, 1) == 6 + e = nx.eccentricity(self.G) + assert e[1] == 6 + + sp = dict(nx.shortest_path_length(self.G)) + e = nx.eccentricity(self.G, sp=sp) + assert e[1] == 6 + + e = nx.eccentricity(self.G, v=1) + assert e == 6 + + # This behavior changed in version 1.8 (ticket #739) + e = nx.eccentricity(self.G, v=[1, 1]) + assert e[1] == 6 + e = nx.eccentricity(self.G, v=[1, 2]) + assert e[1] == 6 + + # test against graph with one node + G = nx.path_graph(1) + e = nx.eccentricity(G) + assert e[0] == 0 + e = nx.eccentricity(G, v=0) + assert e == 0 + pytest.raises(nx.NetworkXError, nx.eccentricity, G, 1) + + # test against empty graph + G = nx.empty_graph() + e = nx.eccentricity(G) + assert e == {} + + def test_diameter(self): + assert nx.diameter(self.G) == 6 + + def test_radius(self): + assert nx.radius(self.G) == 4 + + def test_periphery(self): + assert set(nx.periphery(self.G)) == {1, 4, 13, 16} + + def test_center(self): + assert set(nx.center(self.G)) == {6, 7, 10, 11} + + def test_bound_diameter(self): + assert nx.diameter(self.G, usebounds=True) == 6 + + def test_bound_radius(self): + assert nx.radius(self.G, usebounds=True) == 4 + + def test_bound_periphery(self): + result = {1, 4, 13, 16} + assert set(nx.periphery(self.G, usebounds=True)) == result + + def test_bound_center(self): + result = {6, 7, 10, 11} + assert set(nx.center(self.G, usebounds=True)) == result + + def test_radius_exception(self): + G = nx.Graph() + G.add_edge(1, 2) + G.add_edge(3, 4) + pytest.raises(nx.NetworkXError, nx.diameter, G) + + def test_eccentricity_infinite(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph([(1, 2), (3, 4)]) + e = nx.eccentricity(G) + + def test_eccentricity_undirected_not_connected(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph([(1, 2), (3, 4)]) + e = nx.eccentricity(G, sp=1) + + def test_eccentricity_directed_weakly_connected(self): + with pytest.raises(nx.NetworkXError): + DG = nx.DiGraph([(1, 2), (1, 3)]) + nx.eccentricity(DG) + + +class TestWeightedDistance: + def setup_method(self): + G = nx.Graph() + G.add_edge(0, 1, weight=0.6, cost=0.6, high_cost=6) + G.add_edge(0, 2, weight=0.2, cost=0.2, high_cost=2) + G.add_edge(2, 3, weight=0.1, cost=0.1, high_cost=1) + G.add_edge(2, 4, weight=0.7, cost=0.7, high_cost=7) + G.add_edge(2, 5, weight=0.9, cost=0.9, high_cost=9) + G.add_edge(1, 5, weight=0.3, cost=0.3, high_cost=3) + self.G = G + self.weight_fn = lambda v, u, e: 2 + + def test_eccentricity_weight_None(self): + assert nx.eccentricity(self.G, 1, weight=None) == 3 + e = nx.eccentricity(self.G, weight=None) + assert e[1] == 3 + + e = nx.eccentricity(self.G, v=1, weight=None) + assert e == 3 + + # This behavior changed in version 1.8 (ticket #739) + e = nx.eccentricity(self.G, v=[1, 1], weight=None) + assert e[1] == 3 + e = nx.eccentricity(self.G, v=[1, 2], weight=None) + assert e[1] == 3 + + def test_eccentricity_weight_attr(self): + assert nx.eccentricity(self.G, 1, weight="weight") == 1.5 + e = nx.eccentricity(self.G, weight="weight") + assert ( + e + == nx.eccentricity(self.G, weight="cost") + != nx.eccentricity(self.G, weight="high_cost") + ) + assert e[1] == 1.5 + + e = nx.eccentricity(self.G, v=1, weight="weight") + assert e == 1.5 + + # This behavior changed in version 1.8 (ticket #739) + e = nx.eccentricity(self.G, v=[1, 1], weight="weight") + assert e[1] == 1.5 + e = nx.eccentricity(self.G, v=[1, 2], weight="weight") + assert e[1] == 1.5 + + def test_eccentricity_weight_fn(self): + assert nx.eccentricity(self.G, 1, weight=self.weight_fn) == 6 + e = nx.eccentricity(self.G, weight=self.weight_fn) + assert e[1] == 6 + + e = nx.eccentricity(self.G, v=1, weight=self.weight_fn) + assert e == 6 + + # This behavior changed in version 1.8 (ticket #739) + e = nx.eccentricity(self.G, v=[1, 1], weight=self.weight_fn) + assert e[1] == 6 + e = nx.eccentricity(self.G, v=[1, 2], weight=self.weight_fn) + assert e[1] == 6 + + def test_diameter_weight_None(self): + assert nx.diameter(self.G, weight=None) == 3 + + def test_diameter_weight_attr(self): + assert ( + nx.diameter(self.G, weight="weight") + == nx.diameter(self.G, weight="cost") + == 1.6 + != nx.diameter(self.G, weight="high_cost") + ) + + def test_diameter_weight_fn(self): + assert nx.diameter(self.G, weight=self.weight_fn) == 6 + + def test_radius_weight_None(self): + assert pytest.approx(nx.radius(self.G, weight=None)) == 2 + + def test_radius_weight_attr(self): + assert ( + pytest.approx(nx.radius(self.G, weight="weight")) + == pytest.approx(nx.radius(self.G, weight="cost")) + == 0.9 + != nx.radius(self.G, weight="high_cost") + ) + + def test_radius_weight_fn(self): + assert nx.radius(self.G, weight=self.weight_fn) == 4 + + def test_periphery_weight_None(self): + for v in set(nx.periphery(self.G, weight=None)): + assert nx.eccentricity(self.G, v, weight=None) == nx.diameter( + self.G, weight=None + ) + + def test_periphery_weight_attr(self): + periphery = set(nx.periphery(self.G, weight="weight")) + assert ( + periphery + == set(nx.periphery(self.G, weight="cost")) + == set(nx.periphery(self.G, weight="high_cost")) + ) + for v in periphery: + assert ( + nx.eccentricity(self.G, v, weight="high_cost") + != nx.eccentricity(self.G, v, weight="weight") + == nx.eccentricity(self.G, v, weight="cost") + == nx.diameter(self.G, weight="weight") + == nx.diameter(self.G, weight="cost") + != nx.diameter(self.G, weight="high_cost") + ) + assert nx.eccentricity(self.G, v, weight="high_cost") == nx.diameter( + self.G, weight="high_cost" + ) + + def test_periphery_weight_fn(self): + for v in set(nx.periphery(self.G, weight=self.weight_fn)): + assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.diameter( + self.G, weight=self.weight_fn + ) + + def test_center_weight_None(self): + for v in set(nx.center(self.G, weight=None)): + assert pytest.approx(nx.eccentricity(self.G, v, weight=None)) == nx.radius( + self.G, weight=None + ) + + def test_center_weight_attr(self): + center = set(nx.center(self.G, weight="weight")) + assert ( + center + == set(nx.center(self.G, weight="cost")) + != set(nx.center(self.G, weight="high_cost")) + ) + for v in center: + assert ( + nx.eccentricity(self.G, v, weight="high_cost") + != pytest.approx(nx.eccentricity(self.G, v, weight="weight")) + == pytest.approx(nx.eccentricity(self.G, v, weight="cost")) + == nx.radius(self.G, weight="weight") + == nx.radius(self.G, weight="cost") + != nx.radius(self.G, weight="high_cost") + ) + assert nx.eccentricity(self.G, v, weight="high_cost") == nx.radius( + self.G, weight="high_cost" + ) + + def test_center_weight_fn(self): + for v in set(nx.center(self.G, weight=self.weight_fn)): + assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.radius( + self.G, weight=self.weight_fn + ) + + def test_bound_diameter_weight_None(self): + assert nx.diameter(self.G, usebounds=True, weight=None) == 3 + + def test_bound_diameter_weight_attr(self): + assert ( + nx.diameter(self.G, usebounds=True, weight="high_cost") + != nx.diameter(self.G, usebounds=True, weight="weight") + == nx.diameter(self.G, usebounds=True, weight="cost") + == 1.6 + != nx.diameter(self.G, usebounds=True, weight="high_cost") + ) + assert nx.diameter(self.G, usebounds=True, weight="high_cost") == nx.diameter( + self.G, usebounds=True, weight="high_cost" + ) + + def test_bound_diameter_weight_fn(self): + assert nx.diameter(self.G, usebounds=True, weight=self.weight_fn) == 6 + + def test_bound_radius_weight_None(self): + assert pytest.approx(nx.radius(self.G, usebounds=True, weight=None)) == 2 + + def test_bound_radius_weight_attr(self): + assert ( + nx.radius(self.G, usebounds=True, weight="high_cost") + != pytest.approx(nx.radius(self.G, usebounds=True, weight="weight")) + == pytest.approx(nx.radius(self.G, usebounds=True, weight="cost")) + == 0.9 + != nx.radius(self.G, usebounds=True, weight="high_cost") + ) + assert nx.radius(self.G, usebounds=True, weight="high_cost") == nx.radius( + self.G, usebounds=True, weight="high_cost" + ) + + def test_bound_radius_weight_fn(self): + assert nx.radius(self.G, usebounds=True, weight=self.weight_fn) == 4 + + def test_bound_periphery_weight_None(self): + result = {1, 3, 4} + assert set(nx.periphery(self.G, usebounds=True, weight=None)) == result + + def test_bound_periphery_weight_attr(self): + result = {4, 5} + assert ( + set(nx.periphery(self.G, usebounds=True, weight="weight")) + == set(nx.periphery(self.G, usebounds=True, weight="cost")) + == result + ) + + def test_bound_periphery_weight_fn(self): + result = {1, 3, 4} + assert ( + set(nx.periphery(self.G, usebounds=True, weight=self.weight_fn)) == result + ) + + def test_bound_center_weight_None(self): + result = {0, 2, 5} + assert set(nx.center(self.G, usebounds=True, weight=None)) == result + + def test_bound_center_weight_attr(self): + result = {0} + assert ( + set(nx.center(self.G, usebounds=True, weight="weight")) + == set(nx.center(self.G, usebounds=True, weight="cost")) + == result + ) + + def test_bound_center_weight_fn(self): + result = {0, 2, 5} + assert set(nx.center(self.G, usebounds=True, weight=self.weight_fn)) == result + + +class TestResistanceDistance: + @classmethod + def setup_class(cls): + global np + np = pytest.importorskip("numpy") + + def setup_method(self): + G = nx.Graph() + G.add_edge(1, 2, weight=2) + G.add_edge(2, 3, weight=4) + G.add_edge(3, 4, weight=1) + G.add_edge(1, 4, weight=3) + self.G = G + + def test_resistance_distance_directed_graph(self): + G = nx.DiGraph() + with pytest.raises(nx.NetworkXNotImplemented): + nx.resistance_distance(G) + + def test_resistance_distance_empty(self): + G = nx.Graph() + with pytest.raises(nx.NetworkXError): + nx.resistance_distance(G) + + def test_resistance_distance_not_connected(self): + with pytest.raises(nx.NetworkXError): + self.G.add_node(5) + nx.resistance_distance(self.G, 1, 5) + + def test_resistance_distance_nodeA_not_in_graph(self): + with pytest.raises(nx.NetworkXError): + nx.resistance_distance(self.G, 9, 1) + + def test_resistance_distance_nodeB_not_in_graph(self): + with pytest.raises(nx.NetworkXError): + nx.resistance_distance(self.G, 1, 9) + + def test_resistance_distance(self): + rd = nx.resistance_distance(self.G, 1, 3, "weight", True) + test_data = 1 / (1 / (2 + 4) + 1 / (1 + 3)) + assert round(rd, 5) == round(test_data, 5) + + def test_resistance_distance_noinv(self): + rd = nx.resistance_distance(self.G, 1, 3, "weight", False) + test_data = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1 + 1 / 3)) + assert round(rd, 5) == round(test_data, 5) + + def test_resistance_distance_no_weight(self): + rd = nx.resistance_distance(self.G, 1, 3) + assert round(rd, 5) == 1 + + def test_resistance_distance_neg_weight(self): + self.G[2][3]["weight"] = -4 + rd = nx.resistance_distance(self.G, 1, 3, "weight", True) + test_data = 1 / (1 / (2 + -4) + 1 / (1 + 3)) + assert round(rd, 5) == round(test_data, 5) + + def test_multigraph(self): + G = nx.MultiGraph() + G.add_edge(1, 2, weight=2) + G.add_edge(2, 3, weight=4) + G.add_edge(3, 4, weight=1) + G.add_edge(1, 4, weight=3) + rd = nx.resistance_distance(G, 1, 3, "weight", True) + assert np.isclose(rd, 1 / (1 / (2 + 4) + 1 / (1 + 3))) + + def test_resistance_distance_div0(self): + with pytest.raises(ZeroDivisionError): + self.G[1][2]["weight"] = 0 + nx.resistance_distance(self.G, 1, 3, "weight") + + def test_resistance_distance_same_node(self): + assert nx.resistance_distance(self.G, 1, 1) == 0 + + def test_resistance_distance_only_nodeA(self): + rd = nx.resistance_distance(self.G, nodeA=1) + test_data = {} + test_data[1] = 0 + test_data[2] = 0.75 + test_data[3] = 1 + test_data[4] = 0.75 + assert type(rd) == dict + assert sorted(rd.keys()) == sorted(test_data.keys()) + for key in rd: + assert np.isclose(rd[key], test_data[key]) + + def test_resistance_distance_only_nodeB(self): + rd = nx.resistance_distance(self.G, nodeB=1) + test_data = {} + test_data[1] = 0 + test_data[2] = 0.75 + test_data[3] = 1 + test_data[4] = 0.75 + assert type(rd) == dict + assert sorted(rd.keys()) == sorted(test_data.keys()) + for key in rd: + assert np.isclose(rd[key], test_data[key]) + + def test_resistance_distance_all(self): + rd = nx.resistance_distance(self.G) + assert type(rd) == dict + assert round(rd[1][3], 5) == 1 + + +class TestBarycenter: + """Test :func:`networkx.algorithms.distance_measures.barycenter`.""" + + def barycenter_as_subgraph(self, g, **kwargs): + """Return the subgraph induced on the barycenter of g""" + b = nx.barycenter(g, **kwargs) + assert isinstance(b, list) + assert set(b) <= set(g) + return g.subgraph(b) + + def test_must_be_connected(self): + pytest.raises(nx.NetworkXNoPath, nx.barycenter, nx.empty_graph(5)) + + def test_sp_kwarg(self): + # Complete graph K_5. Normally it works... + K_5 = nx.complete_graph(5) + sp = dict(nx.shortest_path_length(K_5)) + assert nx.barycenter(K_5, sp=sp) == list(K_5) + + # ...but not with the weight argument + for u, v, data in K_5.edges.data(): + data["weight"] = 1 + pytest.raises(ValueError, nx.barycenter, K_5, sp=sp, weight="weight") + + # ...and a corrupted sp can make it seem like K_5 is disconnected + del sp[0][1] + pytest.raises(nx.NetworkXNoPath, nx.barycenter, K_5, sp=sp) + + def test_trees(self): + """The barycenter of a tree is a single vertex or an edge. + + See [West01]_, p. 78. + """ + prng = Random(0xDEADBEEF) + for i in range(50): + RT = nx.random_labeled_tree(prng.randint(1, 75), seed=prng) + b = self.barycenter_as_subgraph(RT) + if len(b) == 2: + assert b.size() == 1 + else: + assert len(b) == 1 + assert b.size() == 0 + + def test_this_one_specific_tree(self): + """Test the tree pictured at the bottom of [West01]_, p. 78.""" + g = nx.Graph( + { + "a": ["b"], + "b": ["a", "x"], + "x": ["b", "y"], + "y": ["x", "z"], + "z": ["y", 0, 1, 2, 3, 4], + 0: ["z"], + 1: ["z"], + 2: ["z"], + 3: ["z"], + 4: ["z"], + } + ) + b = self.barycenter_as_subgraph(g, attr="barycentricity") + assert list(b) == ["z"] + assert not b.edges + expected_barycentricity = { + 0: 23, + 1: 23, + 2: 23, + 3: 23, + 4: 23, + "a": 35, + "b": 27, + "x": 21, + "y": 17, + "z": 15, + } + for node, barycentricity in expected_barycentricity.items(): + assert g.nodes[node]["barycentricity"] == barycentricity + + # Doubling weights should do nothing but double the barycentricities + for edge in g.edges: + g.edges[edge]["weight"] = 2 + b = self.barycenter_as_subgraph(g, weight="weight", attr="barycentricity2") + assert list(b) == ["z"] + assert not b.edges + for node, barycentricity in expected_barycentricity.items(): + assert g.nodes[node]["barycentricity2"] == barycentricity * 2 + + +class TestKemenyConstant: + @classmethod + def setup_class(cls): + global np + np = pytest.importorskip("numpy") + + def setup_method(self): + G = nx.Graph() + w12 = 2 + w13 = 3 + w23 = 4 + G.add_edge(1, 2, weight=w12) + G.add_edge(1, 3, weight=w13) + G.add_edge(2, 3, weight=w23) + self.G = G + + def test_kemeny_constant_directed(self): + G = nx.DiGraph() + G.add_edge(1, 2) + G.add_edge(1, 3) + G.add_edge(2, 3) + with pytest.raises(nx.NetworkXNotImplemented): + nx.kemeny_constant(G) + + def test_kemeny_constant_not_connected(self): + self.G.add_node(5) + with pytest.raises(nx.NetworkXError): + nx.kemeny_constant(self.G) + + def test_kemeny_constant_no_nodes(self): + G = nx.Graph() + with pytest.raises(nx.NetworkXError): + nx.kemeny_constant(G) + + def test_kemeny_constant_negative_weight(self): + G = nx.Graph() + w12 = 2 + w13 = 3 + w23 = -10 + G.add_edge(1, 2, weight=w12) + G.add_edge(1, 3, weight=w13) + G.add_edge(2, 3, weight=w23) + with pytest.raises(nx.NetworkXError): + nx.kemeny_constant(G, weight="weight") + + def test_kemeny_constant(self): + K = nx.kemeny_constant(self.G, weight="weight") + w12 = 2 + w13 = 3 + w23 = 4 + test_data = ( + 3 + / 2 + * (w12 + w13) + * (w12 + w23) + * (w13 + w23) + / ( + w12**2 * (w13 + w23) + + w13**2 * (w12 + w23) + + w23**2 * (w12 + w13) + + 3 * w12 * w13 * w23 + ) + ) + assert np.isclose(K, test_data) + + def test_kemeny_constant_no_weight(self): + K = nx.kemeny_constant(self.G) + assert np.isclose(K, 4 / 3) + + def test_kemeny_constant_multigraph(self): + G = nx.MultiGraph() + w12_1 = 2 + w12_2 = 1 + w13 = 3 + w23 = 4 + G.add_edge(1, 2, weight=w12_1) + G.add_edge(1, 2, weight=w12_2) + G.add_edge(1, 3, weight=w13) + G.add_edge(2, 3, weight=w23) + K = nx.kemeny_constant(G, weight="weight") + w12 = w12_1 + w12_2 + test_data = ( + 3 + / 2 + * (w12 + w13) + * (w12 + w23) + * (w13 + w23) + / ( + w12**2 * (w13 + w23) + + w13**2 * (w12 + w23) + + w23**2 * (w12 + w13) + + 3 * w12 * w13 * w23 + ) + ) + assert np.isclose(K, test_data) + + def test_kemeny_constant_weight0(self): + G = nx.Graph() + w12 = 0 + w13 = 3 + w23 = 4 + G.add_edge(1, 2, weight=w12) + G.add_edge(1, 3, weight=w13) + G.add_edge(2, 3, weight=w23) + K = nx.kemeny_constant(G, weight="weight") + test_data = ( + 3 + / 2 + * (w12 + w13) + * (w12 + w23) + * (w13 + w23) + / ( + w12**2 * (w13 + w23) + + w13**2 * (w12 + w23) + + w23**2 * (w12 + w13) + + 3 * w12 * w13 * w23 + ) + ) + assert np.isclose(K, test_data) + + def test_kemeny_constant_selfloop(self): + G = nx.Graph() + w11 = 1 + w12 = 2 + w13 = 3 + w23 = 4 + G.add_edge(1, 1, weight=w11) + G.add_edge(1, 2, weight=w12) + G.add_edge(1, 3, weight=w13) + G.add_edge(2, 3, weight=w23) + K = nx.kemeny_constant(G, weight="weight") + test_data = ( + (2 * w11 + 3 * w12 + 3 * w13) + * (w12 + w23) + * (w13 + w23) + / ( + (w12 * w13 + w12 * w23 + w13 * w23) + * (w11 + 2 * w12 + 2 * w13 + 2 * w23) + ) + ) + assert np.isclose(K, test_data) + + def test_kemeny_constant_complete_bipartite_graph(self): + # Theorem 1 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912 + n1 = 5 + n2 = 4 + G = nx.complete_bipartite_graph(n1, n2) + K = nx.kemeny_constant(G) + assert np.isclose(K, n1 + n2 - 3 / 2) + + def test_kemeny_constant_path_graph(self): + # Theorem 2 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912 + n = 10 + G = nx.path_graph(n) + K = nx.kemeny_constant(G) + assert np.isclose(K, n**2 / 3 - 2 * n / 3 + 1 / 2) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_regular.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_regular.py new file mode 100644 index 0000000000000000000000000000000000000000..d336b1882147f7fdae2bbfb81071164f97afa207 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_distance_regular.py @@ -0,0 +1,66 @@ +import networkx as nx +from networkx import is_strongly_regular + + +class TestDistanceRegular: + def test_is_distance_regular(self): + assert nx.is_distance_regular(nx.icosahedral_graph()) + assert nx.is_distance_regular(nx.petersen_graph()) + assert nx.is_distance_regular(nx.cubical_graph()) + assert nx.is_distance_regular(nx.complete_bipartite_graph(3, 3)) + assert nx.is_distance_regular(nx.tetrahedral_graph()) + assert nx.is_distance_regular(nx.dodecahedral_graph()) + assert nx.is_distance_regular(nx.pappus_graph()) + assert nx.is_distance_regular(nx.heawood_graph()) + assert nx.is_distance_regular(nx.cycle_graph(3)) + # no distance regular + assert not nx.is_distance_regular(nx.path_graph(4)) + + def test_not_connected(self): + G = nx.cycle_graph(4) + nx.add_cycle(G, [5, 6, 7]) + assert not nx.is_distance_regular(G) + + def test_global_parameters(self): + b, c = nx.intersection_array(nx.cycle_graph(5)) + g = nx.global_parameters(b, c) + assert list(g) == [(0, 0, 2), (1, 0, 1), (1, 1, 0)] + b, c = nx.intersection_array(nx.cycle_graph(3)) + g = nx.global_parameters(b, c) + assert list(g) == [(0, 0, 2), (1, 1, 0)] + + def test_intersection_array(self): + b, c = nx.intersection_array(nx.cycle_graph(5)) + assert b == [2, 1] + assert c == [1, 1] + b, c = nx.intersection_array(nx.dodecahedral_graph()) + assert b == [3, 2, 1, 1, 1] + assert c == [1, 1, 1, 2, 3] + b, c = nx.intersection_array(nx.icosahedral_graph()) + assert b == [5, 2, 1] + assert c == [1, 2, 5] + + +class TestStronglyRegular: + """Unit tests for the :func:`~networkx.is_strongly_regular` + function. + + """ + + def test_cycle_graph(self): + """Tests that the cycle graph on five vertices is strongly + regular. + + """ + G = nx.cycle_graph(5) + assert is_strongly_regular(G) + + def test_petersen_graph(self): + """Tests that the Petersen graph is strongly regular.""" + G = nx.petersen_graph() + assert is_strongly_regular(G) + + def test_path_graph(self): + """Tests that the path graph is not strongly regular.""" + G = nx.path_graph(4) + assert not is_strongly_regular(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominance.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominance.py new file mode 100644 index 0000000000000000000000000000000000000000..f026e4b0a481ab6ad3f104926297ffab33bf1fa9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominance.py @@ -0,0 +1,285 @@ +import pytest + +import networkx as nx + + +class TestImmediateDominators: + def test_exceptions(self): + G = nx.Graph() + G.add_node(0) + pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0) + G = nx.MultiGraph(G) + pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0) + G = nx.DiGraph([[0, 0]]) + pytest.raises(nx.NetworkXError, nx.immediate_dominators, G, 1) + + def test_singleton(self): + G = nx.DiGraph() + G.add_node(0) + assert nx.immediate_dominators(G, 0) == {0: 0} + G.add_edge(0, 0) + assert nx.immediate_dominators(G, 0) == {0: 0} + + def test_path(self): + n = 5 + G = nx.path_graph(n, create_using=nx.DiGraph()) + assert nx.immediate_dominators(G, 0) == {i: max(i - 1, 0) for i in range(n)} + + def test_cycle(self): + n = 5 + G = nx.cycle_graph(n, create_using=nx.DiGraph()) + assert nx.immediate_dominators(G, 0) == {i: max(i - 1, 0) for i in range(n)} + + def test_unreachable(self): + n = 5 + assert n > 1 + G = nx.path_graph(n, create_using=nx.DiGraph()) + assert nx.immediate_dominators(G, n // 2) == { + i: max(i - 1, n // 2) for i in range(n // 2, n) + } + + def test_irreducible1(self): + # Graph taken from Figure 2 of + # K. D. Cooper, T. J. Harvey, and K. Kennedy. + # A simple, fast dominance algorithm. + # Software Practice & Experience, 4:110, 2001. + edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)] + G = nx.DiGraph(edges) + assert nx.immediate_dominators(G, 5) == {i: 5 for i in range(1, 6)} + + def test_irreducible2(self): + # Graph taken from Figure 4 of + # K. D. Cooper, T. J. Harvey, and K. Kennedy. + # A simple, fast dominance algorithm. + # Software Practice & Experience, 4:110, 2001. + edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1), (6, 4), (6, 5)] + G = nx.DiGraph(edges) + result = nx.immediate_dominators(G, 6) + assert result == {i: 6 for i in range(1, 7)} + + def test_domrel_png(self): + # Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png + edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)] + G = nx.DiGraph(edges) + result = nx.immediate_dominators(G, 1) + assert result == {1: 1, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2} + # Test postdominance. + result = nx.immediate_dominators(G.reverse(copy=False), 6) + assert result == {1: 2, 2: 6, 3: 5, 4: 5, 5: 2, 6: 6} + + def test_boost_example(self): + # Graph taken from Figure 1 of + # http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm + edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6), (5, 7), (6, 4)] + G = nx.DiGraph(edges) + result = nx.immediate_dominators(G, 0) + assert result == {0: 0, 1: 0, 2: 1, 3: 1, 4: 3, 5: 4, 6: 4, 7: 1} + # Test postdominance. + result = nx.immediate_dominators(G.reverse(copy=False), 7) + assert result == {0: 1, 1: 7, 2: 7, 3: 4, 4: 5, 5: 7, 6: 4, 7: 7} + + +class TestDominanceFrontiers: + def test_exceptions(self): + G = nx.Graph() + G.add_node(0) + pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0) + G = nx.MultiGraph(G) + pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0) + G = nx.DiGraph([[0, 0]]) + pytest.raises(nx.NetworkXError, nx.dominance_frontiers, G, 1) + + def test_singleton(self): + G = nx.DiGraph() + G.add_node(0) + assert nx.dominance_frontiers(G, 0) == {0: set()} + G.add_edge(0, 0) + assert nx.dominance_frontiers(G, 0) == {0: set()} + + def test_path(self): + n = 5 + G = nx.path_graph(n, create_using=nx.DiGraph()) + assert nx.dominance_frontiers(G, 0) == {i: set() for i in range(n)} + + def test_cycle(self): + n = 5 + G = nx.cycle_graph(n, create_using=nx.DiGraph()) + assert nx.dominance_frontiers(G, 0) == {i: set() for i in range(n)} + + def test_unreachable(self): + n = 5 + assert n > 1 + G = nx.path_graph(n, create_using=nx.DiGraph()) + assert nx.dominance_frontiers(G, n // 2) == {i: set() for i in range(n // 2, n)} + + def test_irreducible1(self): + # Graph taken from Figure 2 of + # K. D. Cooper, T. J. Harvey, and K. Kennedy. + # A simple, fast dominance algorithm. + # Software Practice & Experience, 4:110, 2001. + edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)] + G = nx.DiGraph(edges) + assert dict(nx.dominance_frontiers(G, 5).items()) == { + 1: {2}, + 2: {1}, + 3: {2}, + 4: {1}, + 5: set(), + } + + def test_irreducible2(self): + # Graph taken from Figure 4 of + # K. D. Cooper, T. J. Harvey, and K. Kennedy. + # A simple, fast dominance algorithm. + # Software Practice & Experience, 4:110, 2001. + edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1), (6, 4), (6, 5)] + G = nx.DiGraph(edges) + assert nx.dominance_frontiers(G, 6) == { + 1: {2}, + 2: {1, 3}, + 3: {2}, + 4: {2, 3}, + 5: {1}, + 6: set(), + } + + def test_domrel_png(self): + # Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png + edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)] + G = nx.DiGraph(edges) + assert nx.dominance_frontiers(G, 1) == { + 1: set(), + 2: {2}, + 3: {5}, + 4: {5}, + 5: {2}, + 6: set(), + } + # Test postdominance. + result = nx.dominance_frontiers(G.reverse(copy=False), 6) + assert result == {1: set(), 2: {2}, 3: {2}, 4: {2}, 5: {2}, 6: set()} + + def test_boost_example(self): + # Graph taken from Figure 1 of + # http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm + edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6), (5, 7), (6, 4)] + G = nx.DiGraph(edges) + assert nx.dominance_frontiers(G, 0) == { + 0: set(), + 1: set(), + 2: {7}, + 3: {7}, + 4: {4, 7}, + 5: {7}, + 6: {4}, + 7: set(), + } + # Test postdominance. + result = nx.dominance_frontiers(G.reverse(copy=False), 7) + expected = { + 0: set(), + 1: set(), + 2: {1}, + 3: {1}, + 4: {1, 4}, + 5: {1}, + 6: {4}, + 7: set(), + } + assert result == expected + + def test_discard_issue(self): + # https://github.com/networkx/networkx/issues/2071 + g = nx.DiGraph() + g.add_edges_from( + [ + ("b0", "b1"), + ("b1", "b2"), + ("b2", "b3"), + ("b3", "b1"), + ("b1", "b5"), + ("b5", "b6"), + ("b5", "b8"), + ("b6", "b7"), + ("b8", "b7"), + ("b7", "b3"), + ("b3", "b4"), + ] + ) + df = nx.dominance_frontiers(g, "b0") + assert df == { + "b4": set(), + "b5": {"b3"}, + "b6": {"b7"}, + "b7": {"b3"}, + "b0": set(), + "b1": {"b1"}, + "b2": {"b3"}, + "b3": {"b1"}, + "b8": {"b7"}, + } + + def test_loop(self): + g = nx.DiGraph() + g.add_edges_from([("a", "b"), ("b", "c"), ("b", "a")]) + df = nx.dominance_frontiers(g, "a") + assert df == {"a": set(), "b": set(), "c": set()} + + def test_missing_immediate_doms(self): + # see https://github.com/networkx/networkx/issues/2070 + g = nx.DiGraph() + edges = [ + ("entry_1", "b1"), + ("b1", "b2"), + ("b2", "b3"), + ("b3", "exit"), + ("entry_2", "b3"), + ] + + # entry_1 + # | + # b1 + # | + # b2 entry_2 + # | / + # b3 + # | + # exit + + g.add_edges_from(edges) + # formerly raised KeyError on entry_2 when parsing b3 + # because entry_2 does not have immediate doms (no path) + nx.dominance_frontiers(g, "entry_1") + + def test_loops_larger(self): + # from + # http://ecee.colorado.edu/~waite/Darmstadt/motion.html + g = nx.DiGraph() + edges = [ + ("entry", "exit"), + ("entry", "1"), + ("1", "2"), + ("2", "3"), + ("3", "4"), + ("4", "5"), + ("5", "6"), + ("6", "exit"), + ("6", "2"), + ("5", "3"), + ("4", "4"), + ] + + g.add_edges_from(edges) + df = nx.dominance_frontiers(g, "entry") + answer = { + "entry": set(), + "1": {"exit"}, + "2": {"exit", "2"}, + "3": {"exit", "3", "2"}, + "4": {"exit", "4", "3", "2"}, + "5": {"exit", "3", "2"}, + "6": {"exit", "2"}, + "exit": set(), + } + for n in df: + assert set(df[n]) == set(answer[n]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominating.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominating.py new file mode 100644 index 0000000000000000000000000000000000000000..b945c7386374d7076ee08db67631cc7d845e6762 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_dominating.py @@ -0,0 +1,46 @@ +import pytest + +import networkx as nx + + +def test_dominating_set(): + G = nx.gnp_random_graph(100, 0.1) + D = nx.dominating_set(G) + assert nx.is_dominating_set(G, D) + D = nx.dominating_set(G, start_with=0) + assert nx.is_dominating_set(G, D) + + +def test_complete(): + """In complete graphs each node is a dominating set. + Thus the dominating set has to be of cardinality 1. + """ + K4 = nx.complete_graph(4) + assert len(nx.dominating_set(K4)) == 1 + K5 = nx.complete_graph(5) + assert len(nx.dominating_set(K5)) == 1 + + +def test_raise_dominating_set(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + D = nx.dominating_set(G, start_with=10) + + +def test_is_dominating_set(): + G = nx.path_graph(4) + d = {1, 3} + assert nx.is_dominating_set(G, d) + d = {0, 2} + assert nx.is_dominating_set(G, d) + d = {1} + assert not nx.is_dominating_set(G, d) + + +def test_wikipedia_is_dominating_set(): + """Example from https://en.wikipedia.org/wiki/Dominating_set""" + G = nx.cycle_graph(4) + G.add_edges_from([(0, 4), (1, 4), (2, 5)]) + assert nx.is_dominating_set(G, {4, 3, 5}) + assert nx.is_dominating_set(G, {0, 2}) + assert nx.is_dominating_set(G, {1, 2}) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_efficiency.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_efficiency.py new file mode 100644 index 0000000000000000000000000000000000000000..9a2e7d0463b3a0abeb8395df4ab870456faa64b7 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_efficiency.py @@ -0,0 +1,58 @@ +"""Unit tests for the :mod:`networkx.algorithms.efficiency` module.""" + +import networkx as nx + + +class TestEfficiency: + def setup_method(self): + # G1 is a disconnected graph + self.G1 = nx.Graph() + self.G1.add_nodes_from([1, 2, 3]) + # G2 is a cycle graph + self.G2 = nx.cycle_graph(4) + # G3 is the triangle graph with one additional edge + self.G3 = nx.lollipop_graph(3, 1) + + def test_efficiency_disconnected_nodes(self): + """ + When nodes are disconnected, efficiency is 0 + """ + assert nx.efficiency(self.G1, 1, 2) == 0 + + def test_local_efficiency_disconnected_graph(self): + """ + In a disconnected graph the efficiency is 0 + """ + assert nx.local_efficiency(self.G1) == 0 + + def test_efficiency(self): + assert nx.efficiency(self.G2, 0, 1) == 1 + assert nx.efficiency(self.G2, 0, 2) == 1 / 2 + + def test_global_efficiency(self): + assert nx.global_efficiency(self.G2) == 5 / 6 + + def test_global_efficiency_complete_graph(self): + """ + Tests that the average global efficiency of the complete graph is one. + """ + for n in range(2, 10): + G = nx.complete_graph(n) + assert nx.global_efficiency(G) == 1 + + def test_local_efficiency_complete_graph(self): + """ + Test that the local efficiency for a complete graph with at least 3 + nodes should be one. For a graph with only 2 nodes, the induced + subgraph has no edges. + """ + for n in range(3, 10): + G = nx.complete_graph(n) + assert nx.local_efficiency(G) == 1 + + def test_using_ego_graph(self): + """ + Test that the ego graph is used when computing local efficiency. + For more information, see GitHub issue #2710. + """ + assert nx.local_efficiency(self.G3) == 7 / 12 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_euler.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_euler.py new file mode 100644 index 0000000000000000000000000000000000000000..08eaf7fccc668da8534ab233a86b139937ec23aa --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_euler.py @@ -0,0 +1,307 @@ +import collections + +import pytest + +import networkx as nx + + +class TestIsEulerian: + def test_is_eulerian(self): + assert nx.is_eulerian(nx.complete_graph(5)) + assert nx.is_eulerian(nx.complete_graph(7)) + assert nx.is_eulerian(nx.hypercube_graph(4)) + assert nx.is_eulerian(nx.hypercube_graph(6)) + + assert not nx.is_eulerian(nx.complete_graph(4)) + assert not nx.is_eulerian(nx.complete_graph(6)) + assert not nx.is_eulerian(nx.hypercube_graph(3)) + assert not nx.is_eulerian(nx.hypercube_graph(5)) + + assert not nx.is_eulerian(nx.petersen_graph()) + assert not nx.is_eulerian(nx.path_graph(4)) + + def test_is_eulerian2(self): + # not connected + G = nx.Graph() + G.add_nodes_from([1, 2, 3]) + assert not nx.is_eulerian(G) + # not strongly connected + G = nx.DiGraph() + G.add_nodes_from([1, 2, 3]) + assert not nx.is_eulerian(G) + G = nx.MultiDiGraph() + G.add_edge(1, 2) + G.add_edge(2, 3) + G.add_edge(2, 3) + G.add_edge(3, 1) + assert not nx.is_eulerian(G) + + +class TestEulerianCircuit: + def test_eulerian_circuit_cycle(self): + G = nx.cycle_graph(4) + + edges = list(nx.eulerian_circuit(G, source=0)) + nodes = [u for u, v in edges] + assert nodes == [0, 3, 2, 1] + assert edges == [(0, 3), (3, 2), (2, 1), (1, 0)] + + edges = list(nx.eulerian_circuit(G, source=1)) + nodes = [u for u, v in edges] + assert nodes == [1, 2, 3, 0] + assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)] + + G = nx.complete_graph(3) + + edges = list(nx.eulerian_circuit(G, source=0)) + nodes = [u for u, v in edges] + assert nodes == [0, 2, 1] + assert edges == [(0, 2), (2, 1), (1, 0)] + + edges = list(nx.eulerian_circuit(G, source=1)) + nodes = [u for u, v in edges] + assert nodes == [1, 2, 0] + assert edges == [(1, 2), (2, 0), (0, 1)] + + def test_eulerian_circuit_digraph(self): + G = nx.DiGraph() + nx.add_cycle(G, [0, 1, 2, 3]) + + edges = list(nx.eulerian_circuit(G, source=0)) + nodes = [u for u, v in edges] + assert nodes == [0, 1, 2, 3] + assert edges == [(0, 1), (1, 2), (2, 3), (3, 0)] + + edges = list(nx.eulerian_circuit(G, source=1)) + nodes = [u for u, v in edges] + assert nodes == [1, 2, 3, 0] + assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)] + + def test_multigraph(self): + G = nx.MultiGraph() + nx.add_cycle(G, [0, 1, 2, 3]) + G.add_edge(1, 2) + G.add_edge(1, 2) + edges = list(nx.eulerian_circuit(G, source=0)) + nodes = [u for u, v in edges] + assert nodes == [0, 3, 2, 1, 2, 1] + assert edges == [(0, 3), (3, 2), (2, 1), (1, 2), (2, 1), (1, 0)] + + def test_multigraph_with_keys(self): + G = nx.MultiGraph() + nx.add_cycle(G, [0, 1, 2, 3]) + G.add_edge(1, 2) + G.add_edge(1, 2) + edges = list(nx.eulerian_circuit(G, source=0, keys=True)) + nodes = [u for u, v, k in edges] + assert nodes == [0, 3, 2, 1, 2, 1] + assert edges[:2] == [(0, 3, 0), (3, 2, 0)] + assert collections.Counter(edges[2:5]) == collections.Counter( + [(2, 1, 0), (1, 2, 1), (2, 1, 2)] + ) + assert edges[5:] == [(1, 0, 0)] + + def test_not_eulerian(self): + with pytest.raises(nx.NetworkXError): + f = list(nx.eulerian_circuit(nx.complete_graph(4))) + + +class TestIsSemiEulerian: + def test_is_semieulerian(self): + # Test graphs with Eulerian paths but no cycles return True. + assert nx.is_semieulerian(nx.path_graph(4)) + G = nx.path_graph(6, create_using=nx.DiGraph) + assert nx.is_semieulerian(G) + + # Test graphs with Eulerian cycles return False. + assert not nx.is_semieulerian(nx.complete_graph(5)) + assert not nx.is_semieulerian(nx.complete_graph(7)) + assert not nx.is_semieulerian(nx.hypercube_graph(4)) + assert not nx.is_semieulerian(nx.hypercube_graph(6)) + + +class TestHasEulerianPath: + def test_has_eulerian_path_cyclic(self): + # Test graphs with Eulerian cycles return True. + assert nx.has_eulerian_path(nx.complete_graph(5)) + assert nx.has_eulerian_path(nx.complete_graph(7)) + assert nx.has_eulerian_path(nx.hypercube_graph(4)) + assert nx.has_eulerian_path(nx.hypercube_graph(6)) + + def test_has_eulerian_path_non_cyclic(self): + # Test graphs with Eulerian paths but no cycles return True. + assert nx.has_eulerian_path(nx.path_graph(4)) + G = nx.path_graph(6, create_using=nx.DiGraph) + assert nx.has_eulerian_path(G) + + def test_has_eulerian_path_directed_graph(self): + # Test directed graphs and returns False + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (0, 2)]) + assert not nx.has_eulerian_path(G) + + # Test directed graphs without isolated node returns True + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 0)]) + assert nx.has_eulerian_path(G) + + # Test directed graphs with isolated node returns False + G.add_node(3) + assert not nx.has_eulerian_path(G) + + @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) + def test_has_eulerian_path_not_weakly_connected(self, G): + G.add_edges_from([(0, 1), (2, 3), (3, 2)]) + assert not nx.has_eulerian_path(G) + + @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) + def test_has_eulerian_path_unbalancedins_more_than_one(self, G): + G.add_edges_from([(0, 1), (2, 3)]) + assert not nx.has_eulerian_path(G) + + +class TestFindPathStart: + def testfind_path_start(self): + find_path_start = nx.algorithms.euler._find_path_start + # Test digraphs return correct starting node. + G = nx.path_graph(6, create_using=nx.DiGraph) + assert find_path_start(G) == 0 + edges = [(0, 1), (1, 2), (2, 0), (4, 0)] + assert find_path_start(nx.DiGraph(edges)) == 4 + + # Test graph with no Eulerian path return None. + edges = [(0, 1), (1, 2), (2, 3), (2, 4)] + assert find_path_start(nx.DiGraph(edges)) is None + + +class TestEulerianPath: + def test_eulerian_path(self): + x = [(4, 0), (0, 1), (1, 2), (2, 0)] + for e1, e2 in zip(x, nx.eulerian_path(nx.DiGraph(x))): + assert e1 == e2 + + def test_eulerian_path_straight_link(self): + G = nx.DiGraph() + result = [(1, 2), (2, 3), (3, 4), (4, 5)] + G.add_edges_from(result) + assert result == list(nx.eulerian_path(G)) + assert result == list(nx.eulerian_path(G, source=1)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=3)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=4)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=5)) + + def test_eulerian_path_multigraph(self): + G = nx.MultiDiGraph() + result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4), (4, 3)] + G.add_edges_from(result) + assert result == list(nx.eulerian_path(G)) + assert result == list(nx.eulerian_path(G, source=2)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=3)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=4)) + + def test_eulerian_path_eulerian_circuit(self): + G = nx.DiGraph() + result = [(1, 2), (2, 3), (3, 4), (4, 1)] + result2 = [(2, 3), (3, 4), (4, 1), (1, 2)] + result3 = [(3, 4), (4, 1), (1, 2), (2, 3)] + G.add_edges_from(result) + assert result == list(nx.eulerian_path(G)) + assert result == list(nx.eulerian_path(G, source=1)) + assert result2 == list(nx.eulerian_path(G, source=2)) + assert result3 == list(nx.eulerian_path(G, source=3)) + + def test_eulerian_path_undirected(self): + G = nx.Graph() + result = [(1, 2), (2, 3), (3, 4), (4, 5)] + result2 = [(5, 4), (4, 3), (3, 2), (2, 1)] + G.add_edges_from(result) + assert list(nx.eulerian_path(G)) in (result, result2) + assert result == list(nx.eulerian_path(G, source=1)) + assert result2 == list(nx.eulerian_path(G, source=5)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=3)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=2)) + + def test_eulerian_path_multigraph_undirected(self): + G = nx.MultiGraph() + result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4)] + G.add_edges_from(result) + assert result == list(nx.eulerian_path(G)) + assert result == list(nx.eulerian_path(G, source=2)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=3)) + with pytest.raises(nx.NetworkXError): + list(nx.eulerian_path(G, source=1)) + + @pytest.mark.parametrize( + ("graph_type", "result"), + ( + (nx.MultiGraph, [(0, 1, 0), (1, 0, 1)]), + (nx.MultiDiGraph, [(0, 1, 0), (1, 0, 0)]), + ), + ) + def test_eulerian_with_keys(self, graph_type, result): + G = graph_type([(0, 1), (1, 0)]) + answer = nx.eulerian_path(G, keys=True) + assert list(answer) == result + + +class TestEulerize: + def test_disconnected(self): + with pytest.raises(nx.NetworkXError): + G = nx.from_edgelist([(0, 1), (2, 3)]) + nx.eulerize(G) + + def test_null_graph(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.eulerize(nx.Graph()) + + def test_null_multigraph(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.eulerize(nx.MultiGraph()) + + def test_on_empty_graph(self): + with pytest.raises(nx.NetworkXError): + nx.eulerize(nx.empty_graph(3)) + + def test_on_eulerian(self): + G = nx.cycle_graph(3) + H = nx.eulerize(G) + assert nx.is_isomorphic(G, H) + + def test_on_eulerian_multigraph(self): + G = nx.MultiGraph(nx.cycle_graph(3)) + G.add_edge(0, 1) + H = nx.eulerize(G) + assert nx.is_eulerian(H) + + def test_on_complete_graph(self): + G = nx.complete_graph(4) + assert nx.is_eulerian(nx.eulerize(G)) + assert nx.is_eulerian(nx.eulerize(nx.MultiGraph(G))) + + def test_on_non_eulerian_graph(self): + G = nx.cycle_graph(18) + G.add_edge(0, 18) + G.add_edge(18, 19) + G.add_edge(17, 19) + G.add_edge(4, 20) + G.add_edge(20, 21) + G.add_edge(21, 22) + G.add_edge(22, 23) + G.add_edge(23, 24) + G.add_edge(24, 25) + G.add_edge(25, 26) + G.add_edge(26, 27) + G.add_edge(27, 28) + G.add_edge(28, 13) + assert not nx.is_eulerian(G) + G = nx.eulerize(G) + assert nx.is_eulerian(G) + assert nx.number_of_edges(G) == 39 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graph_hashing.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graph_hashing.py new file mode 100644 index 0000000000000000000000000000000000000000..cffa8bb22c186bd05ee2bf67b066263997f9fb69 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graph_hashing.py @@ -0,0 +1,657 @@ +import pytest + +import networkx as nx +from networkx.generators import directed + +# Unit tests for the :func:`~networkx.weisfeiler_lehman_graph_hash` function + + +def test_empty_graph_hash(): + """ + empty graphs should give hashes regardless of other params + """ + G1 = nx.empty_graph() + G2 = nx.empty_graph() + + h1 = nx.weisfeiler_lehman_graph_hash(G1) + h2 = nx.weisfeiler_lehman_graph_hash(G2) + h3 = nx.weisfeiler_lehman_graph_hash(G2, edge_attr="edge_attr1") + h4 = nx.weisfeiler_lehman_graph_hash(G2, node_attr="node_attr1") + h5 = nx.weisfeiler_lehman_graph_hash( + G2, edge_attr="edge_attr1", node_attr="node_attr1" + ) + h6 = nx.weisfeiler_lehman_graph_hash(G2, iterations=10) + + assert h1 == h2 + assert h1 == h3 + assert h1 == h4 + assert h1 == h5 + assert h1 == h6 + + +def test_directed(): + """ + A directed graph with no bi-directional edges should yield different a graph hash + to the same graph taken as undirected if there are no hash collisions. + """ + r = 10 + for i in range(r): + G_directed = nx.gn_graph(10 + r, seed=100 + i) + G_undirected = nx.to_undirected(G_directed) + + h_directed = nx.weisfeiler_lehman_graph_hash(G_directed) + h_undirected = nx.weisfeiler_lehman_graph_hash(G_undirected) + + assert h_directed != h_undirected + + +def test_reversed(): + """ + A directed graph with no bi-directional edges should yield different a graph hash + to the same graph taken with edge directions reversed if there are no hash collisions. + Here we test a cycle graph which is the minimal counterexample + """ + G = nx.cycle_graph(5, create_using=nx.DiGraph) + nx.set_node_attributes(G, {n: str(n) for n in G.nodes()}, name="label") + + G_reversed = G.reverse() + + h = nx.weisfeiler_lehman_graph_hash(G, node_attr="label") + h_reversed = nx.weisfeiler_lehman_graph_hash(G_reversed, node_attr="label") + + assert h != h_reversed + + +def test_isomorphic(): + """ + graph hashes should be invariant to node-relabeling (when the output is reindexed + by the same mapping) + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=200 + i) + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g1_hash = nx.weisfeiler_lehman_graph_hash(G1) + g2_hash = nx.weisfeiler_lehman_graph_hash(G2) + + assert g1_hash == g2_hash + + +def test_isomorphic_edge_attr(): + """ + Isomorphic graphs with differing edge attributes should yield different graph + hashes if the 'edge_attr' argument is supplied and populated in the graph, + and there are no hash collisions. + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=300 + i) + + for a, b in G1.edges: + G1[a][b]["edge_attr1"] = f"{a}-{b}-1" + G1[a][b]["edge_attr2"] = f"{a}-{b}-2" + + g1_hash_with_edge_attr1 = nx.weisfeiler_lehman_graph_hash( + G1, edge_attr="edge_attr1" + ) + g1_hash_with_edge_attr2 = nx.weisfeiler_lehman_graph_hash( + G1, edge_attr="edge_attr2" + ) + g1_hash_no_edge_attr = nx.weisfeiler_lehman_graph_hash(G1, edge_attr=None) + + assert g1_hash_with_edge_attr1 != g1_hash_no_edge_attr + assert g1_hash_with_edge_attr2 != g1_hash_no_edge_attr + assert g1_hash_with_edge_attr1 != g1_hash_with_edge_attr2 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_with_edge_attr1 = nx.weisfeiler_lehman_graph_hash( + G2, edge_attr="edge_attr1" + ) + g2_hash_with_edge_attr2 = nx.weisfeiler_lehman_graph_hash( + G2, edge_attr="edge_attr2" + ) + + assert g1_hash_with_edge_attr1 == g2_hash_with_edge_attr1 + assert g1_hash_with_edge_attr2 == g2_hash_with_edge_attr2 + + +def test_missing_edge_attr(): + """ + If the 'edge_attr' argument is supplied but is missing from an edge in the graph, + we should raise a KeyError + """ + G = nx.Graph() + G.add_edges_from([(1, 2, {"edge_attr1": "a"}), (1, 3, {})]) + pytest.raises(KeyError, nx.weisfeiler_lehman_graph_hash, G, edge_attr="edge_attr1") + + +def test_isomorphic_node_attr(): + """ + Isomorphic graphs with differing node attributes should yield different graph + hashes if the 'node_attr' argument is supplied and populated in the graph, and + there are no hash collisions. + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=400 + i) + + for u in G1.nodes(): + G1.nodes[u]["node_attr1"] = f"{u}-1" + G1.nodes[u]["node_attr2"] = f"{u}-2" + + g1_hash_with_node_attr1 = nx.weisfeiler_lehman_graph_hash( + G1, node_attr="node_attr1" + ) + g1_hash_with_node_attr2 = nx.weisfeiler_lehman_graph_hash( + G1, node_attr="node_attr2" + ) + g1_hash_no_node_attr = nx.weisfeiler_lehman_graph_hash(G1, node_attr=None) + + assert g1_hash_with_node_attr1 != g1_hash_no_node_attr + assert g1_hash_with_node_attr2 != g1_hash_no_node_attr + assert g1_hash_with_node_attr1 != g1_hash_with_node_attr2 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_with_node_attr1 = nx.weisfeiler_lehman_graph_hash( + G2, node_attr="node_attr1" + ) + g2_hash_with_node_attr2 = nx.weisfeiler_lehman_graph_hash( + G2, node_attr="node_attr2" + ) + + assert g1_hash_with_node_attr1 == g2_hash_with_node_attr1 + assert g1_hash_with_node_attr2 == g2_hash_with_node_attr2 + + +def test_missing_node_attr(): + """ + If the 'node_attr' argument is supplied but is missing from a node in the graph, + we should raise a KeyError + """ + G = nx.Graph() + G.add_nodes_from([(1, {"node_attr1": "a"}), (2, {})]) + G.add_edges_from([(1, 2), (2, 3), (3, 1), (1, 4)]) + pytest.raises(KeyError, nx.weisfeiler_lehman_graph_hash, G, node_attr="node_attr1") + + +def test_isomorphic_edge_attr_and_node_attr(): + """ + Isomorphic graphs with differing node attributes should yield different graph + hashes if the 'node_attr' and 'edge_attr' argument is supplied and populated in + the graph, and there are no hash collisions. + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=500 + i) + + for u in G1.nodes(): + G1.nodes[u]["node_attr1"] = f"{u}-1" + G1.nodes[u]["node_attr2"] = f"{u}-2" + + for a, b in G1.edges: + G1[a][b]["edge_attr1"] = f"{a}-{b}-1" + G1[a][b]["edge_attr2"] = f"{a}-{b}-2" + + g1_hash_edge1_node1 = nx.weisfeiler_lehman_graph_hash( + G1, edge_attr="edge_attr1", node_attr="node_attr1" + ) + g1_hash_edge2_node2 = nx.weisfeiler_lehman_graph_hash( + G1, edge_attr="edge_attr2", node_attr="node_attr2" + ) + g1_hash_edge1_node2 = nx.weisfeiler_lehman_graph_hash( + G1, edge_attr="edge_attr1", node_attr="node_attr2" + ) + g1_hash_no_attr = nx.weisfeiler_lehman_graph_hash(G1) + + assert g1_hash_edge1_node1 != g1_hash_no_attr + assert g1_hash_edge2_node2 != g1_hash_no_attr + assert g1_hash_edge1_node1 != g1_hash_edge2_node2 + assert g1_hash_edge1_node2 != g1_hash_edge2_node2 + assert g1_hash_edge1_node2 != g1_hash_edge1_node1 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_edge1_node1 = nx.weisfeiler_lehman_graph_hash( + G2, edge_attr="edge_attr1", node_attr="node_attr1" + ) + g2_hash_edge2_node2 = nx.weisfeiler_lehman_graph_hash( + G2, edge_attr="edge_attr2", node_attr="node_attr2" + ) + + assert g1_hash_edge1_node1 == g2_hash_edge1_node1 + assert g1_hash_edge2_node2 == g2_hash_edge2_node2 + + +def test_digest_size(): + """ + The hash string lengths should be as expected for a variety of graphs and + digest sizes + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=1000 + i) + + h16 = nx.weisfeiler_lehman_graph_hash(G) + h32 = nx.weisfeiler_lehman_graph_hash(G, digest_size=32) + + assert h16 != h32 + assert len(h16) == 16 * 2 + assert len(h32) == 32 * 2 + + +# Unit tests for the :func:`~networkx.weisfeiler_lehman_hash_subgraphs` function + + +def is_subiteration(a, b): + """ + returns True if that each hash sequence in 'a' is a prefix for + the corresponding sequence indexed by the same node in 'b'. + """ + return all(b[node][: len(hashes)] == hashes for node, hashes in a.items()) + + +def hexdigest_sizes_correct(a, digest_size): + """ + returns True if all hex digest sizes are the expected length in a node:subgraph-hashes + dictionary. Hex digest string length == 2 * bytes digest length since each pair of hex + digits encodes 1 byte (https://docs.python.org/3/library/hashlib.html) + """ + hexdigest_size = digest_size * 2 + list_digest_sizes_correct = lambda l: all(len(x) == hexdigest_size for x in l) + return all(list_digest_sizes_correct(hashes) for hashes in a.values()) + + +def test_empty_graph_subgraph_hash(): + """ " + empty graphs should give empty dict subgraph hashes regardless of other params + """ + G = nx.empty_graph() + + subgraph_hashes1 = nx.weisfeiler_lehman_subgraph_hashes(G) + subgraph_hashes2 = nx.weisfeiler_lehman_subgraph_hashes(G, edge_attr="edge_attr") + subgraph_hashes3 = nx.weisfeiler_lehman_subgraph_hashes(G, node_attr="edge_attr") + subgraph_hashes4 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=2) + subgraph_hashes5 = nx.weisfeiler_lehman_subgraph_hashes(G, digest_size=64) + + assert subgraph_hashes1 == {} + assert subgraph_hashes2 == {} + assert subgraph_hashes3 == {} + assert subgraph_hashes4 == {} + assert subgraph_hashes5 == {} + + +def test_directed_subgraph_hash(): + """ + A directed graph with no bi-directional edges should yield different subgraph hashes + to the same graph taken as undirected, if all hashes don't collide. + """ + r = 10 + for i in range(r): + G_directed = nx.gn_graph(10 + r, seed=100 + i) + G_undirected = nx.to_undirected(G_directed) + + directed_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G_directed) + undirected_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G_undirected) + + assert directed_subgraph_hashes != undirected_subgraph_hashes + + +def test_reversed_subgraph_hash(): + """ + A directed graph with no bi-directional edges should yield different subgraph hashes + to the same graph taken with edge directions reversed if there are no hash collisions. + Here we test a cycle graph which is the minimal counterexample + """ + G = nx.cycle_graph(5, create_using=nx.DiGraph) + nx.set_node_attributes(G, {n: str(n) for n in G.nodes()}, name="label") + + G_reversed = G.reverse() + + h = nx.weisfeiler_lehman_subgraph_hashes(G, node_attr="label") + h_reversed = nx.weisfeiler_lehman_subgraph_hashes(G_reversed, node_attr="label") + + assert h != h_reversed + + +def test_isomorphic_subgraph_hash(): + """ + the subgraph hashes should be invariant to node-relabeling when the output is reindexed + by the same mapping and all hashes don't collide. + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=200 + i) + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g1_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G1) + g2_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G2) + + assert g1_subgraph_hashes == {-1 * k: v for k, v in g2_subgraph_hashes.items()} + + +def test_isomorphic_edge_attr_subgraph_hash(): + """ + Isomorphic graphs with differing edge attributes should yield different subgraph + hashes if the 'edge_attr' argument is supplied and populated in the graph, and + all hashes don't collide. + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=300 + i) + + for a, b in G1.edges: + G1[a][b]["edge_attr1"] = f"{a}-{b}-1" + G1[a][b]["edge_attr2"] = f"{a}-{b}-2" + + g1_hash_with_edge_attr1 = nx.weisfeiler_lehman_subgraph_hashes( + G1, edge_attr="edge_attr1" + ) + g1_hash_with_edge_attr2 = nx.weisfeiler_lehman_subgraph_hashes( + G1, edge_attr="edge_attr2" + ) + g1_hash_no_edge_attr = nx.weisfeiler_lehman_subgraph_hashes(G1, edge_attr=None) + + assert g1_hash_with_edge_attr1 != g1_hash_no_edge_attr + assert g1_hash_with_edge_attr2 != g1_hash_no_edge_attr + assert g1_hash_with_edge_attr1 != g1_hash_with_edge_attr2 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_with_edge_attr1 = nx.weisfeiler_lehman_subgraph_hashes( + G2, edge_attr="edge_attr1" + ) + g2_hash_with_edge_attr2 = nx.weisfeiler_lehman_subgraph_hashes( + G2, edge_attr="edge_attr2" + ) + + assert g1_hash_with_edge_attr1 == { + -1 * k: v for k, v in g2_hash_with_edge_attr1.items() + } + assert g1_hash_with_edge_attr2 == { + -1 * k: v for k, v in g2_hash_with_edge_attr2.items() + } + + +def test_missing_edge_attr_subgraph_hash(): + """ + If the 'edge_attr' argument is supplied but is missing from an edge in the graph, + we should raise a KeyError + """ + G = nx.Graph() + G.add_edges_from([(1, 2, {"edge_attr1": "a"}), (1, 3, {})]) + pytest.raises( + KeyError, nx.weisfeiler_lehman_subgraph_hashes, G, edge_attr="edge_attr1" + ) + + +def test_isomorphic_node_attr_subgraph_hash(): + """ + Isomorphic graphs with differing node attributes should yield different subgraph + hashes if the 'node_attr' argument is supplied and populated in the graph, and + all hashes don't collide. + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=400 + i) + + for u in G1.nodes(): + G1.nodes[u]["node_attr1"] = f"{u}-1" + G1.nodes[u]["node_attr2"] = f"{u}-2" + + g1_hash_with_node_attr1 = nx.weisfeiler_lehman_subgraph_hashes( + G1, node_attr="node_attr1" + ) + g1_hash_with_node_attr2 = nx.weisfeiler_lehman_subgraph_hashes( + G1, node_attr="node_attr2" + ) + g1_hash_no_node_attr = nx.weisfeiler_lehman_subgraph_hashes(G1, node_attr=None) + + assert g1_hash_with_node_attr1 != g1_hash_no_node_attr + assert g1_hash_with_node_attr2 != g1_hash_no_node_attr + assert g1_hash_with_node_attr1 != g1_hash_with_node_attr2 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_with_node_attr1 = nx.weisfeiler_lehman_subgraph_hashes( + G2, node_attr="node_attr1" + ) + g2_hash_with_node_attr2 = nx.weisfeiler_lehman_subgraph_hashes( + G2, node_attr="node_attr2" + ) + + assert g1_hash_with_node_attr1 == { + -1 * k: v for k, v in g2_hash_with_node_attr1.items() + } + assert g1_hash_with_node_attr2 == { + -1 * k: v for k, v in g2_hash_with_node_attr2.items() + } + + +def test_missing_node_attr_subgraph_hash(): + """ + If the 'node_attr' argument is supplied but is missing from a node in the graph, + we should raise a KeyError + """ + G = nx.Graph() + G.add_nodes_from([(1, {"node_attr1": "a"}), (2, {})]) + G.add_edges_from([(1, 2), (2, 3), (3, 1), (1, 4)]) + pytest.raises( + KeyError, nx.weisfeiler_lehman_subgraph_hashes, G, node_attr="node_attr1" + ) + + +def test_isomorphic_edge_attr_and_node_attr_subgraph_hash(): + """ + Isomorphic graphs with differing node attributes should yield different subgraph + hashes if the 'node_attr' and 'edge_attr' argument is supplied and populated in + the graph, and all hashes don't collide + The output should still be invariant to node-relabeling + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G1 = nx.erdos_renyi_graph(n, p * i, seed=500 + i) + + for u in G1.nodes(): + G1.nodes[u]["node_attr1"] = f"{u}-1" + G1.nodes[u]["node_attr2"] = f"{u}-2" + + for a, b in G1.edges: + G1[a][b]["edge_attr1"] = f"{a}-{b}-1" + G1[a][b]["edge_attr2"] = f"{a}-{b}-2" + + g1_hash_edge1_node1 = nx.weisfeiler_lehman_subgraph_hashes( + G1, edge_attr="edge_attr1", node_attr="node_attr1" + ) + g1_hash_edge2_node2 = nx.weisfeiler_lehman_subgraph_hashes( + G1, edge_attr="edge_attr2", node_attr="node_attr2" + ) + g1_hash_edge1_node2 = nx.weisfeiler_lehman_subgraph_hashes( + G1, edge_attr="edge_attr1", node_attr="node_attr2" + ) + g1_hash_no_attr = nx.weisfeiler_lehman_subgraph_hashes(G1) + + assert g1_hash_edge1_node1 != g1_hash_no_attr + assert g1_hash_edge2_node2 != g1_hash_no_attr + assert g1_hash_edge1_node1 != g1_hash_edge2_node2 + assert g1_hash_edge1_node2 != g1_hash_edge2_node2 + assert g1_hash_edge1_node2 != g1_hash_edge1_node1 + + G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()}) + + g2_hash_edge1_node1 = nx.weisfeiler_lehman_subgraph_hashes( + G2, edge_attr="edge_attr1", node_attr="node_attr1" + ) + g2_hash_edge2_node2 = nx.weisfeiler_lehman_subgraph_hashes( + G2, edge_attr="edge_attr2", node_attr="node_attr2" + ) + + assert g1_hash_edge1_node1 == { + -1 * k: v for k, v in g2_hash_edge1_node1.items() + } + assert g1_hash_edge2_node2 == { + -1 * k: v for k, v in g2_hash_edge2_node2.items() + } + + +def test_iteration_depth(): + """ + All nodes should have the correct number of subgraph hashes in the output when + using degree as initial node labels + Subsequent iteration depths for the same graph should be additive for each node + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=600 + i) + + depth3 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=3) + depth4 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=4) + depth5 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=5) + + assert all(len(hashes) == 3 for hashes in depth3.values()) + assert all(len(hashes) == 4 for hashes in depth4.values()) + assert all(len(hashes) == 5 for hashes in depth5.values()) + + assert is_subiteration(depth3, depth4) + assert is_subiteration(depth4, depth5) + assert is_subiteration(depth3, depth5) + + +def test_iteration_depth_edge_attr(): + """ + All nodes should have the correct number of subgraph hashes in the output when + setting initial node labels empty and using an edge attribute when aggregating + neighborhoods. + Subsequent iteration depths for the same graph should be additive for each node + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=700 + i) + + for a, b in G.edges: + G[a][b]["edge_attr1"] = f"{a}-{b}-1" + + depth3 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", iterations=3 + ) + depth4 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", iterations=4 + ) + depth5 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", iterations=5 + ) + + assert all(len(hashes) == 3 for hashes in depth3.values()) + assert all(len(hashes) == 4 for hashes in depth4.values()) + assert all(len(hashes) == 5 for hashes in depth5.values()) + + assert is_subiteration(depth3, depth4) + assert is_subiteration(depth4, depth5) + assert is_subiteration(depth3, depth5) + + +def test_iteration_depth_node_attr(): + """ + All nodes should have the correct number of subgraph hashes in the output when + setting initial node labels to an attribute. + Subsequent iteration depths for the same graph should be additive for each node + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=800 + i) + + for u in G.nodes(): + G.nodes[u]["node_attr1"] = f"{u}-1" + + depth3 = nx.weisfeiler_lehman_subgraph_hashes( + G, node_attr="node_attr1", iterations=3 + ) + depth4 = nx.weisfeiler_lehman_subgraph_hashes( + G, node_attr="node_attr1", iterations=4 + ) + depth5 = nx.weisfeiler_lehman_subgraph_hashes( + G, node_attr="node_attr1", iterations=5 + ) + + assert all(len(hashes) == 3 for hashes in depth3.values()) + assert all(len(hashes) == 4 for hashes in depth4.values()) + assert all(len(hashes) == 5 for hashes in depth5.values()) + + assert is_subiteration(depth3, depth4) + assert is_subiteration(depth4, depth5) + assert is_subiteration(depth3, depth5) + + +def test_iteration_depth_node_edge_attr(): + """ + All nodes should have the correct number of subgraph hashes in the output when + setting initial node labels to an attribute and also using an edge attribute when + aggregating neighborhoods. + Subsequent iteration depths for the same graph should be additive for each node + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=900 + i) + + for u in G.nodes(): + G.nodes[u]["node_attr1"] = f"{u}-1" + + for a, b in G.edges: + G[a][b]["edge_attr1"] = f"{a}-{b}-1" + + depth3 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=3 + ) + depth4 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=4 + ) + depth5 = nx.weisfeiler_lehman_subgraph_hashes( + G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=5 + ) + + assert all(len(hashes) == 3 for hashes in depth3.values()) + assert all(len(hashes) == 4 for hashes in depth4.values()) + assert all(len(hashes) == 5 for hashes in depth5.values()) + + assert is_subiteration(depth3, depth4) + assert is_subiteration(depth4, depth5) + assert is_subiteration(depth3, depth5) + + +def test_digest_size_subgraph_hash(): + """ + The hash string lengths should be as expected for a variety of graphs and + digest sizes + """ + n, r = 100, 10 + p = 1.0 / r + for i in range(1, r + 1): + G = nx.erdos_renyi_graph(n, p * i, seed=1000 + i) + + digest_size16_hashes = nx.weisfeiler_lehman_subgraph_hashes(G) + digest_size32_hashes = nx.weisfeiler_lehman_subgraph_hashes(G, digest_size=32) + + assert digest_size16_hashes != digest_size32_hashes + + assert hexdigest_sizes_correct(digest_size16_hashes, 16) + assert hexdigest_sizes_correct(digest_size32_hashes, 32) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graphical.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graphical.py new file mode 100644 index 0000000000000000000000000000000000000000..99f766f799d8573e80d905482f4b685a2d16bcc0 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_graphical.py @@ -0,0 +1,163 @@ +import pytest + +import networkx as nx + + +def test_valid_degree_sequence1(): + n = 100 + p = 0.3 + for i in range(10): + G = nx.erdos_renyi_graph(n, p) + deg = (d for n, d in G.degree()) + assert nx.is_graphical(deg, method="eg") + assert nx.is_graphical(deg, method="hh") + + +def test_valid_degree_sequence2(): + n = 100 + for i in range(10): + G = nx.barabasi_albert_graph(n, 1) + deg = (d for n, d in G.degree()) + assert nx.is_graphical(deg, method="eg") + assert nx.is_graphical(deg, method="hh") + + +def test_string_input(): + pytest.raises(nx.NetworkXException, nx.is_graphical, [], "foo") + pytest.raises(nx.NetworkXException, nx.is_graphical, ["red"], "hh") + pytest.raises(nx.NetworkXException, nx.is_graphical, ["red"], "eg") + + +def test_non_integer_input(): + pytest.raises(nx.NetworkXException, nx.is_graphical, [72.5], "eg") + pytest.raises(nx.NetworkXException, nx.is_graphical, [72.5], "hh") + + +def test_negative_input(): + assert not nx.is_graphical([-1], "hh") + assert not nx.is_graphical([-1], "eg") + + +class TestAtlas: + @classmethod + def setup_class(cls): + global atlas + from networkx.generators import atlas + + cls.GAG = atlas.graph_atlas_g() + + def test_atlas(self): + for graph in self.GAG: + deg = (d for n, d in graph.degree()) + assert nx.is_graphical(deg, method="eg") + assert nx.is_graphical(deg, method="hh") + + +def test_small_graph_true(): + z = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1] + assert nx.is_graphical(z, method="hh") + assert nx.is_graphical(z, method="eg") + z = [10, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2] + assert nx.is_graphical(z, method="hh") + assert nx.is_graphical(z, method="eg") + z = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4] + assert nx.is_graphical(z, method="hh") + assert nx.is_graphical(z, method="eg") + + +def test_small_graph_false(): + z = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1] + assert not nx.is_graphical(z, method="hh") + assert not nx.is_graphical(z, method="eg") + z = [6, 5, 4, 4, 2, 1, 1, 1] + assert not nx.is_graphical(z, method="hh") + assert not nx.is_graphical(z, method="eg") + z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4] + assert not nx.is_graphical(z, method="hh") + assert not nx.is_graphical(z, method="eg") + + +def test_directed_degree_sequence(): + # Test a range of valid directed degree sequences + n, r = 100, 10 + p = 1.0 / r + for i in range(r): + G = nx.erdos_renyi_graph(n, p * (i + 1), None, True) + din = (d for n, d in G.in_degree()) + dout = (d for n, d in G.out_degree()) + assert nx.is_digraphical(din, dout) + + +def test_small_directed_sequences(): + dout = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1] + din = [3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1] + assert nx.is_digraphical(din, dout) + # Test nongraphical directed sequence + dout = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1] + din = [103, 102, 102, 102, 102, 102, 102, 102, 102, 102] + assert not nx.is_digraphical(din, dout) + # Test digraphical small sequence + dout = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4] + din = [2, 2, 2, 2, 2, 2, 2, 2, 1, 1] + assert nx.is_digraphical(din, dout) + # Test nonmatching sum + din = [2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1] + assert not nx.is_digraphical(din, dout) + # Test for negative integer in sequence + din = [2, 2, 2, -2, 2, 2, 2, 2, 1, 1, 4] + assert not nx.is_digraphical(din, dout) + # Test for noninteger + din = dout = [1, 1, 1.1, 1] + assert not nx.is_digraphical(din, dout) + din = dout = [1, 1, "rer", 1] + assert not nx.is_digraphical(din, dout) + + +def test_multi_sequence(): + # Test nongraphical multi sequence + seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1] + assert not nx.is_multigraphical(seq) + # Test small graphical multi sequence + seq = [6, 5, 4, 4, 2, 1, 1, 1] + assert nx.is_multigraphical(seq) + # Test for negative integer in sequence + seq = [6, 5, 4, -4, 2, 1, 1, 1] + assert not nx.is_multigraphical(seq) + # Test for sequence with odd sum + seq = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4] + assert not nx.is_multigraphical(seq) + # Test for noninteger + seq = [1, 1, 1.1, 1] + assert not nx.is_multigraphical(seq) + seq = [1, 1, "rer", 1] + assert not nx.is_multigraphical(seq) + + +def test_pseudo_sequence(): + # Test small valid pseudo sequence + seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1] + assert nx.is_pseudographical(seq) + # Test for sequence with odd sum + seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1] + assert not nx.is_pseudographical(seq) + # Test for negative integer in sequence + seq = [1000, 3, 3, 3, 3, 2, 2, -2, 1, 1] + assert not nx.is_pseudographical(seq) + # Test for noninteger + seq = [1, 1, 1.1, 1] + assert not nx.is_pseudographical(seq) + seq = [1, 1, "rer", 1] + assert not nx.is_pseudographical(seq) + + +def test_numpy_degree_sequence(): + np = pytest.importorskip("numpy") + ds = np.array([1, 2, 2, 2, 1], dtype=np.int64) + assert nx.is_graphical(ds, "eg") + assert nx.is_graphical(ds, "hh") + ds = np.array([1, 2, 2, 2, 1], dtype=np.float64) + assert nx.is_graphical(ds, "eg") + assert nx.is_graphical(ds, "hh") + ds = np.array([1.1, 2, 2, 2, 1], dtype=np.float64) + pytest.raises(nx.NetworkXException, nx.is_graphical, ds, "eg") + pytest.raises(nx.NetworkXException, nx.is_graphical, ds, "hh") diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hierarchy.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hierarchy.py new file mode 100644 index 0000000000000000000000000000000000000000..227c89c222005544f8559ade55502c1f7a7003d5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hierarchy.py @@ -0,0 +1,39 @@ +import pytest + +import networkx as nx + + +def test_hierarchy_exception(): + G = nx.cycle_graph(5) + pytest.raises(nx.NetworkXError, nx.flow_hierarchy, G) + + +def test_hierarchy_cycle(): + G = nx.cycle_graph(5, create_using=nx.DiGraph()) + assert nx.flow_hierarchy(G) == 0.0 + + +def test_hierarchy_tree(): + G = nx.full_rary_tree(2, 16, create_using=nx.DiGraph()) + assert nx.flow_hierarchy(G) == 1.0 + + +def test_hierarchy_1(): + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 1), (3, 4), (0, 4)]) + assert nx.flow_hierarchy(G) == 0.5 + + +def test_hierarchy_weight(): + G = nx.DiGraph() + G.add_edges_from( + [ + (0, 1, {"weight": 0.3}), + (1, 2, {"weight": 0.1}), + (2, 3, {"weight": 0.1}), + (3, 1, {"weight": 0.1}), + (3, 4, {"weight": 0.3}), + (0, 4, {"weight": 0.3}), + ] + ) + assert nx.flow_hierarchy(G, weight="weight") == 0.75 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hybrid.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hybrid.py new file mode 100644 index 0000000000000000000000000000000000000000..6af0016498549caed58772e304c93113a8b693d9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_hybrid.py @@ -0,0 +1,24 @@ +import networkx as nx + + +def test_2d_grid_graph(): + # FC article claims 2d grid graph of size n is (3,3)-connected + # and (5,9)-connected, but I don't think it is (5,9)-connected + G = nx.grid_2d_graph(8, 8, periodic=True) + assert nx.is_kl_connected(G, 3, 3) + assert not nx.is_kl_connected(G, 5, 9) + (H, graphOK) = nx.kl_connected_subgraph(G, 5, 9, same_as_graph=True) + assert not graphOK + + +def test_small_graph(): + G = nx.Graph() + G.add_edge(1, 2) + G.add_edge(1, 3) + G.add_edge(2, 3) + assert nx.is_kl_connected(G, 2, 2) + H = nx.kl_connected_subgraph(G, 2, 2) + (H, graphOK) = nx.kl_connected_subgraph( + G, 2, 2, low_memory=True, same_as_graph=True + ) + assert graphOK diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_isolate.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_isolate.py new file mode 100644 index 0000000000000000000000000000000000000000..d29b306d2b13c2457905c41218e5c60793b309ba --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_isolate.py @@ -0,0 +1,26 @@ +"""Unit tests for the :mod:`networkx.algorithms.isolates` module.""" + +import networkx as nx + + +def test_is_isolate(): + G = nx.Graph() + G.add_edge(0, 1) + G.add_node(2) + assert not nx.is_isolate(G, 0) + assert not nx.is_isolate(G, 1) + assert nx.is_isolate(G, 2) + + +def test_isolates(): + G = nx.Graph() + G.add_edge(0, 1) + G.add_nodes_from([2, 3]) + assert sorted(nx.isolates(G)) == [2, 3] + + +def test_number_of_isolates(): + G = nx.Graph() + G.add_edge(0, 1) + G.add_nodes_from([2, 3]) + assert nx.number_of_isolates(G) == 2 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_link_prediction.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_link_prediction.py new file mode 100644 index 0000000000000000000000000000000000000000..7fc04d20672ef13058779f55be48ddac1b1a048d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_link_prediction.py @@ -0,0 +1,582 @@ +import math +from functools import partial + +import pytest + +import networkx as nx + + +def _test_func(G, ebunch, expected, predict_func, **kwargs): + result = predict_func(G, ebunch, **kwargs) + exp_dict = {tuple(sorted([u, v])): score for u, v, score in expected} + res_dict = {tuple(sorted([u, v])): score for u, v, score in result} + + assert len(exp_dict) == len(res_dict) + for p in exp_dict: + assert exp_dict[p] == pytest.approx(res_dict[p], abs=1e-7) + + +class TestResourceAllocationIndex: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.resource_allocation_index) + cls.test = partial(_test_func, predict_func=cls.func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, [(0, 1)], [(0, 1, 0.75)]) + + def test_P3(self): + G = nx.path_graph(3) + self.test(G, [(0, 2)], [(0, 2, 0.5)]) + + def test_S4(self): + G = nx.star_graph(4) + self.test(G, [(1, 2)], [(1, 2, 0.25)]) + + def test_notimplemented(self): + assert pytest.raises( + nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiDiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(4) + self.test(G, [(0, 0)], [(0, 0, 1)]) + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)]) + + +class TestJaccardCoefficient: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.jaccard_coefficient) + cls.test = partial(_test_func, predict_func=cls.func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, [(0, 1)], [(0, 1, 0.6)]) + + def test_P4(self): + G = nx.path_graph(4) + self.test(G, [(0, 2)], [(0, 2, 0.5)]) + + def test_notimplemented(self): + assert pytest.raises( + nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiDiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (2, 3)]) + self.test(G, [(0, 2)], [(0, 2, 0)]) + + def test_isolated_nodes(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)]) + + +class TestAdamicAdarIndex: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.adamic_adar_index) + cls.test = partial(_test_func, predict_func=cls.func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, [(0, 1)], [(0, 1, 3 / math.log(4))]) + + def test_P3(self): + G = nx.path_graph(3) + self.test(G, [(0, 2)], [(0, 2, 1 / math.log(2))]) + + def test_S4(self): + G = nx.star_graph(4) + self.test(G, [(1, 2)], [(1, 2, 1 / math.log(4))]) + + def test_notimplemented(self): + assert pytest.raises( + nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiDiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(4) + self.test(G, [(0, 0)], [(0, 0, 3 / math.log(3))]) + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + self.test( + G, None, [(0, 3, 1 / math.log(2)), (1, 2, 1 / math.log(2)), (1, 3, 0)] + ) + + +class TestCommonNeighborCentrality: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.common_neighbor_centrality) + cls.test = partial(_test_func, predict_func=cls.func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, [(0, 1)], [(0, 1, 3.0)], alpha=1) + self.test(G, [(0, 1)], [(0, 1, 5.0)], alpha=0) + + def test_P3(self): + G = nx.path_graph(3) + self.test(G, [(0, 2)], [(0, 2, 1.25)], alpha=0.5) + + def test_S4(self): + G = nx.star_graph(4) + self.test(G, [(1, 2)], [(1, 2, 1.75)], alpha=0.5) + + @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)) + def test_notimplemented(self, graph_type): + assert pytest.raises( + nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)] + ) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(4) + assert pytest.raises(nx.NetworkXAlgorithmError, self.test, G, [(0, 0)], []) + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + self.test(G, None, [(0, 3, 1.5), (1, 2, 1.5), (1, 3, 2 / 3)], alpha=0.5) + + +class TestPreferentialAttachment: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.preferential_attachment) + cls.test = partial(_test_func, predict_func=cls.func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, [(0, 1)], [(0, 1, 16)]) + + def test_P3(self): + G = nx.path_graph(3) + self.test(G, [(0, 1)], [(0, 1, 2)]) + + def test_S4(self): + G = nx.star_graph(4) + self.test(G, [(0, 2)], [(0, 2, 4)]) + + def test_notimplemented(self): + assert pytest.raises( + nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + assert pytest.raises( + nx.NetworkXNotImplemented, + self.func, + nx.MultiDiGraph([(0, 1), (1, 2)]), + [(0, 2)], + ) + + def test_zero_degrees(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + self.test(G, None, [(0, 3, 2), (1, 2, 2), (1, 3, 1)]) + + +class TestCNSoundarajanHopcroft: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.cn_soundarajan_hopcroft) + cls.test = partial(_test_func, predict_func=cls.func, community="community") + + def test_K5(self): + G = nx.complete_graph(5) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 1 + self.test(G, [(0, 1)], [(0, 1, 5)]) + + def test_P3(self): + G = nx.path_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 2)], [(0, 2, 1)]) + + def test_S4(self): + G = nx.star_graph(4) + G.nodes[0]["community"] = 1 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 1 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 2)], [(1, 2, 2)]) + + def test_notimplemented(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiDiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 0)], [(0, 0, 4)]) + + def test_different_community(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 1 + self.test(G, [(0, 3)], [(0, 3, 2)]) + + def test_no_community_information(self): + G = nx.complete_graph(5) + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) + + def test_insufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[3]["community"] = 0 + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) + + def test_sufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 4)], [(1, 4, 4)]) + + def test_custom_community_attribute_name(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["cmty"] = 0 + G.nodes[1]["cmty"] = 0 + G.nodes[2]["cmty"] = 0 + G.nodes[3]["cmty"] = 1 + self.test(G, [(0, 3)], [(0, 3, 2)], community="cmty") + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + self.test(G, None, [(0, 3, 2), (1, 2, 1), (1, 3, 0)]) + + +class TestRAIndexSoundarajanHopcroft: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.ra_index_soundarajan_hopcroft) + cls.test = partial(_test_func, predict_func=cls.func, community="community") + + def test_K5(self): + G = nx.complete_graph(5) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 1 + self.test(G, [(0, 1)], [(0, 1, 0.5)]) + + def test_P3(self): + G = nx.path_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 2)], [(0, 2, 0)]) + + def test_S4(self): + G = nx.star_graph(4) + G.nodes[0]["community"] = 1 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 1 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 2)], [(1, 2, 0.25)]) + + def test_notimplemented(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiDiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 0)], [(0, 0, 1)]) + + def test_different_community(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 1 + self.test(G, [(0, 3)], [(0, 3, 0)]) + + def test_no_community_information(self): + G = nx.complete_graph(5) + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) + + def test_insufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[3]["community"] = 0 + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) + + def test_sufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 4)], [(1, 4, 1)]) + + def test_custom_community_attribute_name(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["cmty"] = 0 + G.nodes[1]["cmty"] = 0 + G.nodes[2]["cmty"] = 0 + G.nodes[3]["cmty"] = 1 + self.test(G, [(0, 3)], [(0, 3, 0)], community="cmty") + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + self.test(G, None, [(0, 3, 0.5), (1, 2, 0), (1, 3, 0)]) + + +class TestWithinInterCluster: + @classmethod + def setup_class(cls): + cls.delta = 0.001 + cls.func = staticmethod(nx.within_inter_cluster) + cls.test = partial( + _test_func, predict_func=cls.func, delta=cls.delta, community="community" + ) + + def test_K5(self): + G = nx.complete_graph(5) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 1 + self.test(G, [(0, 1)], [(0, 1, 2 / (1 + self.delta))]) + + def test_P3(self): + G = nx.path_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 2)], [(0, 2, 0)]) + + def test_S4(self): + G = nx.star_graph(4) + G.nodes[0]["community"] = 1 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 1 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 2)], [(1, 2, 1 / self.delta)]) + + def test_notimplemented(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + G = nx.MultiDiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) + + def test_no_common_neighbor(self): + G = nx.Graph() + G.add_nodes_from([0, 1]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + self.test(G, [(0, 1)], [(0, 1, 0)]) + + def test_equal_nodes(self): + G = nx.complete_graph(3) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + self.test(G, [(0, 0)], [(0, 0, 2 / self.delta)]) + + def test_different_community(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 1 + self.test(G, [(0, 3)], [(0, 3, 0)]) + + def test_no_inter_cluster_common_neighbor(self): + G = nx.complete_graph(4) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)]) + + def test_no_community_information(self): + G = nx.complete_graph(5) + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) + + def test_insufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 0 + G.nodes[3]["community"] = 0 + assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) + + def test_sufficient_community_information(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) + G.nodes[1]["community"] = 0 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + G.nodes[4]["community"] = 0 + self.test(G, [(1, 4)], [(1, 4, 2 / self.delta)]) + + def test_invalid_delta(self): + G = nx.complete_graph(3) + G.add_nodes_from([0, 1, 2], community=0) + assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], 0) + assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], -0.5) + + def test_custom_community_attribute_name(self): + G = nx.complete_graph(4) + G.nodes[0]["cmty"] = 0 + G.nodes[1]["cmty"] = 0 + G.nodes[2]["cmty"] = 0 + G.nodes[3]["cmty"] = 0 + self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)], community="cmty") + + def test_all_nonexistent_edges(self): + G = nx.Graph() + G.add_edges_from([(0, 1), (0, 2), (2, 3)]) + G.nodes[0]["community"] = 0 + G.nodes[1]["community"] = 1 + G.nodes[2]["community"] = 0 + G.nodes[3]["community"] = 0 + self.test(G, None, [(0, 3, 1 / self.delta), (1, 2, 0), (1, 3, 0)]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_lowest_common_ancestors.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_lowest_common_ancestors.py new file mode 100644 index 0000000000000000000000000000000000000000..66d75220327cb27c8b378505aea2780ea96021af --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_lowest_common_ancestors.py @@ -0,0 +1,427 @@ +from itertools import chain, combinations, product + +import pytest + +import networkx as nx + +tree_all_pairs_lca = nx.tree_all_pairs_lowest_common_ancestor +all_pairs_lca = nx.all_pairs_lowest_common_ancestor + + +def get_pair(dictionary, n1, n2): + if (n1, n2) in dictionary: + return dictionary[n1, n2] + else: + return dictionary[n2, n1] + + +class TestTreeLCA: + @classmethod + def setup_class(cls): + cls.DG = nx.DiGraph() + edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)] + cls.DG.add_edges_from(edges) + cls.ans = dict(tree_all_pairs_lca(cls.DG, 0)) + gold = {(n, n): n for n in cls.DG} + gold.update({(0, i): 0 for i in range(1, 7)}) + gold.update( + { + (1, 2): 0, + (1, 3): 1, + (1, 4): 1, + (1, 5): 0, + (1, 6): 0, + (2, 3): 0, + (2, 4): 0, + (2, 5): 2, + (2, 6): 2, + (3, 4): 1, + (3, 5): 0, + (3, 6): 0, + (4, 5): 0, + (4, 6): 0, + (5, 6): 2, + } + ) + + cls.gold = gold + + @staticmethod + def assert_has_same_pairs(d1, d2): + for a, b in ((min(pair), max(pair)) for pair in chain(d1, d2)): + assert get_pair(d1, a, b) == get_pair(d2, a, b) + + def test_tree_all_pairs_lca_default_root(self): + assert dict(tree_all_pairs_lca(self.DG)) == self.ans + + def test_tree_all_pairs_lca_return_subset(self): + test_pairs = [(0, 1), (0, 1), (1, 0)] + ans = dict(tree_all_pairs_lca(self.DG, 0, test_pairs)) + assert (0, 1) in ans and (1, 0) in ans + assert len(ans) == 2 + + def test_tree_all_pairs_lca(self): + all_pairs = chain(combinations(self.DG, 2), ((node, node) for node in self.DG)) + + ans = dict(tree_all_pairs_lca(self.DG, 0, all_pairs)) + self.assert_has_same_pairs(ans, self.ans) + + def test_tree_all_pairs_gold_example(self): + ans = dict(tree_all_pairs_lca(self.DG)) + self.assert_has_same_pairs(self.gold, ans) + + def test_tree_all_pairs_lca_invalid_input(self): + empty_digraph = tree_all_pairs_lca(nx.DiGraph()) + pytest.raises(nx.NetworkXPointlessConcept, list, empty_digraph) + + bad_pairs_digraph = tree_all_pairs_lca(self.DG, pairs=[(-1, -2)]) + pytest.raises(nx.NodeNotFound, list, bad_pairs_digraph) + + def test_tree_all_pairs_lca_subtrees(self): + ans = dict(tree_all_pairs_lca(self.DG, 1)) + gold = { + pair: lca + for (pair, lca) in self.gold.items() + if all(n in (1, 3, 4) for n in pair) + } + self.assert_has_same_pairs(gold, ans) + + def test_tree_all_pairs_lca_disconnected_nodes(self): + G = nx.DiGraph() + G.add_node(1) + assert {(1, 1): 1} == dict(tree_all_pairs_lca(G)) + + G.add_node(0) + assert {(1, 1): 1} == dict(tree_all_pairs_lca(G, 1)) + assert {(0, 0): 0} == dict(tree_all_pairs_lca(G, 0)) + + pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) + + def test_tree_all_pairs_lca_error_if_input_not_tree(self): + # Cycle + G = nx.DiGraph([(1, 2), (2, 1)]) + pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) + # DAG + G = nx.DiGraph([(0, 2), (1, 2)]) + pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) + + def test_tree_all_pairs_lca_generator(self): + pairs = iter([(0, 1), (0, 1), (1, 0)]) + some_pairs = dict(tree_all_pairs_lca(self.DG, 0, pairs)) + assert (0, 1) in some_pairs and (1, 0) in some_pairs + assert len(some_pairs) == 2 + + def test_tree_all_pairs_lca_nonexisting_pairs_exception(self): + lca = tree_all_pairs_lca(self.DG, 0, [(-1, -1)]) + pytest.raises(nx.NodeNotFound, list, lca) + # check if node is None + lca = tree_all_pairs_lca(self.DG, None, [(-1, -1)]) + pytest.raises(nx.NodeNotFound, list, lca) + + def test_tree_all_pairs_lca_routine_bails_on_DAGs(self): + G = nx.DiGraph([(3, 4), (5, 4)]) + pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) + + def test_tree_all_pairs_lca_not_implemented(self): + NNI = nx.NetworkXNotImplemented + G = nx.Graph([(0, 1)]) + with pytest.raises(NNI): + next(tree_all_pairs_lca(G)) + with pytest.raises(NNI): + next(all_pairs_lca(G)) + pytest.raises(NNI, nx.lowest_common_ancestor, G, 0, 1) + G = nx.MultiGraph([(0, 1)]) + with pytest.raises(NNI): + next(tree_all_pairs_lca(G)) + with pytest.raises(NNI): + next(all_pairs_lca(G)) + pytest.raises(NNI, nx.lowest_common_ancestor, G, 0, 1) + + def test_tree_all_pairs_lca_trees_without_LCAs(self): + G = nx.DiGraph() + G.add_node(3) + ans = list(tree_all_pairs_lca(G)) + assert ans == [((3, 3), 3)] + + +class TestMultiTreeLCA(TestTreeLCA): + @classmethod + def setup_class(cls): + cls.DG = nx.MultiDiGraph() + edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)] + cls.DG.add_edges_from(edges) + cls.ans = dict(tree_all_pairs_lca(cls.DG, 0)) + # add multiedges + cls.DG.add_edges_from(edges) + + gold = {(n, n): n for n in cls.DG} + gold.update({(0, i): 0 for i in range(1, 7)}) + gold.update( + { + (1, 2): 0, + (1, 3): 1, + (1, 4): 1, + (1, 5): 0, + (1, 6): 0, + (2, 3): 0, + (2, 4): 0, + (2, 5): 2, + (2, 6): 2, + (3, 4): 1, + (3, 5): 0, + (3, 6): 0, + (4, 5): 0, + (4, 6): 0, + (5, 6): 2, + } + ) + + cls.gold = gold + + +class TestDAGLCA: + @classmethod + def setup_class(cls): + cls.DG = nx.DiGraph() + nx.add_path(cls.DG, (0, 1, 2, 3)) + nx.add_path(cls.DG, (0, 4, 3)) + nx.add_path(cls.DG, (0, 5, 6, 8, 3)) + nx.add_path(cls.DG, (5, 7, 8)) + cls.DG.add_edge(6, 2) + cls.DG.add_edge(7, 2) + + cls.root_distance = nx.shortest_path_length(cls.DG, source=0) + + cls.gold = { + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + (1, 4): 0, + (1, 5): 0, + (1, 6): 0, + (1, 7): 0, + (1, 8): 0, + (2, 2): 2, + (2, 3): 2, + (2, 4): 0, + (2, 5): 5, + (2, 6): 6, + (2, 7): 7, + (2, 8): 7, + (3, 3): 3, + (3, 4): 4, + (3, 5): 5, + (3, 6): 6, + (3, 7): 7, + (3, 8): 8, + (4, 4): 4, + (4, 5): 0, + (4, 6): 0, + (4, 7): 0, + (4, 8): 0, + (5, 5): 5, + (5, 6): 5, + (5, 7): 5, + (5, 8): 5, + (6, 6): 6, + (6, 7): 5, + (6, 8): 6, + (7, 7): 7, + (7, 8): 7, + (8, 8): 8, + } + cls.gold.update(((0, n), 0) for n in cls.DG) + + def assert_lca_dicts_same(self, d1, d2, G=None): + """Checks if d1 and d2 contain the same pairs and + have a node at the same distance from root for each. + If G is None use self.DG.""" + if G is None: + G = self.DG + root_distance = self.root_distance + else: + roots = [n for n, deg in G.in_degree if deg == 0] + assert len(roots) == 1 + root_distance = nx.shortest_path_length(G, source=roots[0]) + + for a, b in ((min(pair), max(pair)) for pair in chain(d1, d2)): + assert ( + root_distance[get_pair(d1, a, b)] == root_distance[get_pair(d2, a, b)] + ) + + def test_all_pairs_lca_gold_example(self): + self.assert_lca_dicts_same(dict(all_pairs_lca(self.DG)), self.gold) + + def test_all_pairs_lca_all_pairs_given(self): + all_pairs = list(product(self.DG.nodes(), self.DG.nodes())) + ans = all_pairs_lca(self.DG, pairs=all_pairs) + self.assert_lca_dicts_same(dict(ans), self.gold) + + def test_all_pairs_lca_generator(self): + all_pairs = product(self.DG.nodes(), self.DG.nodes()) + ans = all_pairs_lca(self.DG, pairs=all_pairs) + self.assert_lca_dicts_same(dict(ans), self.gold) + + def test_all_pairs_lca_input_graph_with_two_roots(self): + G = self.DG.copy() + G.add_edge(9, 10) + G.add_edge(9, 4) + gold = self.gold.copy() + gold[9, 9] = 9 + gold[9, 10] = 9 + gold[9, 4] = 9 + gold[9, 3] = 9 + gold[10, 4] = 9 + gold[10, 3] = 9 + gold[10, 10] = 10 + + testing = dict(all_pairs_lca(G)) + + G.add_edge(-1, 9) + G.add_edge(-1, 0) + self.assert_lca_dicts_same(testing, gold, G) + + def test_all_pairs_lca_nonexisting_pairs_exception(self): + pytest.raises(nx.NodeNotFound, all_pairs_lca, self.DG, [(-1, -1)]) + + def test_all_pairs_lca_pairs_without_lca(self): + G = self.DG.copy() + G.add_node(-1) + gen = all_pairs_lca(G, [(-1, -1), (-1, 0)]) + assert dict(gen) == {(-1, -1): -1} + + def test_all_pairs_lca_null_graph(self): + pytest.raises(nx.NetworkXPointlessConcept, all_pairs_lca, nx.DiGraph()) + + def test_all_pairs_lca_non_dags(self): + pytest.raises(nx.NetworkXError, all_pairs_lca, nx.DiGraph([(3, 4), (4, 3)])) + + def test_all_pairs_lca_nonempty_graph_without_lca(self): + G = nx.DiGraph() + G.add_node(3) + ans = list(all_pairs_lca(G)) + assert ans == [((3, 3), 3)] + + def test_all_pairs_lca_bug_gh4942(self): + G = nx.DiGraph([(0, 2), (1, 2), (2, 3)]) + ans = list(all_pairs_lca(G)) + assert len(ans) == 9 + + def test_all_pairs_lca_default_kwarg(self): + G = nx.DiGraph([(0, 1), (2, 1)]) + sentinel = object() + assert nx.lowest_common_ancestor(G, 0, 2, default=sentinel) is sentinel + + def test_all_pairs_lca_identity(self): + G = nx.DiGraph() + G.add_node(3) + assert nx.lowest_common_ancestor(G, 3, 3) == 3 + + def test_all_pairs_lca_issue_4574(self): + G = nx.DiGraph() + G.add_nodes_from(range(17)) + G.add_edges_from( + [ + (2, 0), + (1, 2), + (3, 2), + (5, 2), + (8, 2), + (11, 2), + (4, 5), + (6, 5), + (7, 8), + (10, 8), + (13, 11), + (14, 11), + (15, 11), + (9, 10), + (12, 13), + (16, 15), + ] + ) + + assert nx.lowest_common_ancestor(G, 7, 9) == None + + def test_all_pairs_lca_one_pair_gh4942(self): + G = nx.DiGraph() + # Note: order edge addition is critical to the test + G.add_edge(0, 1) + G.add_edge(2, 0) + G.add_edge(2, 3) + G.add_edge(4, 0) + G.add_edge(5, 2) + + assert nx.lowest_common_ancestor(G, 1, 3) == 2 + + +class TestMultiDiGraph_DAGLCA(TestDAGLCA): + @classmethod + def setup_class(cls): + cls.DG = nx.MultiDiGraph() + nx.add_path(cls.DG, (0, 1, 2, 3)) + # add multiedges + nx.add_path(cls.DG, (0, 1, 2, 3)) + nx.add_path(cls.DG, (0, 4, 3)) + nx.add_path(cls.DG, (0, 5, 6, 8, 3)) + nx.add_path(cls.DG, (5, 7, 8)) + cls.DG.add_edge(6, 2) + cls.DG.add_edge(7, 2) + + cls.root_distance = nx.shortest_path_length(cls.DG, source=0) + + cls.gold = { + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + (1, 4): 0, + (1, 5): 0, + (1, 6): 0, + (1, 7): 0, + (1, 8): 0, + (2, 2): 2, + (2, 3): 2, + (2, 4): 0, + (2, 5): 5, + (2, 6): 6, + (2, 7): 7, + (2, 8): 7, + (3, 3): 3, + (3, 4): 4, + (3, 5): 5, + (3, 6): 6, + (3, 7): 7, + (3, 8): 8, + (4, 4): 4, + (4, 5): 0, + (4, 6): 0, + (4, 7): 0, + (4, 8): 0, + (5, 5): 5, + (5, 6): 5, + (5, 7): 5, + (5, 8): 5, + (6, 6): 6, + (6, 7): 5, + (6, 8): 6, + (7, 7): 7, + (7, 8): 7, + (8, 8): 8, + } + cls.gold.update(((0, n), 0) for n in cls.DG) + + +def test_all_pairs_lca_self_ancestors(): + """Self-ancestors should always be the node itself, i.e. lca of (0, 0) is 0. + See gh-4458.""" + # DAG for test - note order of node/edge addition is relevant + G = nx.DiGraph() + G.add_nodes_from(range(5)) + G.add_edges_from([(1, 0), (2, 0), (3, 2), (4, 1), (4, 3)]) + + ap_lca = nx.all_pairs_lowest_common_ancestor + assert all(u == v == a for (u, v), a in ap_lca(G) if u == v) + MG = nx.MultiDiGraph(G) + assert all(u == v == a for (u, v), a in ap_lca(MG) if u == v) + MG.add_edges_from([(1, 0), (2, 0)]) + assert all(u == v == a for (u, v), a in ap_lca(MG) if u == v) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_matching.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..37853e3896c0fd6bcac1f46524a844ae2e2fb518 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_matching.py @@ -0,0 +1,605 @@ +import math +from itertools import permutations + +from pytest import raises + +import networkx as nx +from networkx.algorithms.matching import matching_dict_to_set +from networkx.utils import edges_equal + + +class TestMaxWeightMatching: + """Unit tests for the + :func:`~networkx.algorithms.matching.max_weight_matching` function. + + """ + + def test_trivial1(self): + """Empty graph""" + G = nx.Graph() + assert nx.max_weight_matching(G) == set() + assert nx.min_weight_matching(G) == set() + + def test_selfloop(self): + G = nx.Graph() + G.add_edge(0, 0, weight=100) + assert nx.max_weight_matching(G) == set() + assert nx.min_weight_matching(G) == set() + + def test_single_edge(self): + G = nx.Graph() + G.add_edge(0, 1) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({0: 1, 1: 0}) + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({0: 1, 1: 0}) + ) + + def test_two_path(self): + G = nx.Graph() + G.add_edge("one", "two", weight=10) + G.add_edge("two", "three", weight=11) + assert edges_equal( + nx.max_weight_matching(G), + matching_dict_to_set({"three": "two", "two": "three"}), + ) + assert edges_equal( + nx.min_weight_matching(G), + matching_dict_to_set({"one": "two", "two": "one"}), + ) + + def test_path(self): + G = nx.Graph() + G.add_edge(1, 2, weight=5) + G.add_edge(2, 3, weight=11) + G.add_edge(3, 4, weight=5) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({2: 3, 3: 2}) + ) + assert edges_equal( + nx.max_weight_matching(G, 1), matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3}) + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4}) + ) + assert edges_equal( + nx.min_weight_matching(G, 1), matching_dict_to_set({1: 2, 3: 4}) + ) + + def test_square(self): + G = nx.Graph() + G.add_edge(1, 4, weight=2) + G.add_edge(2, 3, weight=2) + G.add_edge(1, 2, weight=1) + G.add_edge(3, 4, weight=4) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({1: 2, 3: 4}) + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3}) + ) + + def test_edge_attribute_name(self): + G = nx.Graph() + G.add_edge("one", "two", weight=10, abcd=11) + G.add_edge("two", "three", weight=11, abcd=10) + assert edges_equal( + nx.max_weight_matching(G, weight="abcd"), + matching_dict_to_set({"one": "two", "two": "one"}), + ) + assert edges_equal( + nx.min_weight_matching(G, weight="abcd"), + matching_dict_to_set({"three": "two"}), + ) + + def test_floating_point_weights(self): + G = nx.Graph() + G.add_edge(1, 2, weight=math.pi) + G.add_edge(2, 3, weight=math.exp(1)) + G.add_edge(1, 3, weight=3.0) + G.add_edge(1, 4, weight=math.sqrt(2.0)) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1}) + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1}) + ) + + def test_negative_weights(self): + G = nx.Graph() + G.add_edge(1, 2, weight=2) + G.add_edge(1, 3, weight=-2) + G.add_edge(2, 3, weight=1) + G.add_edge(2, 4, weight=-1) + G.add_edge(3, 4, weight=-6) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1}) + ) + assert edges_equal( + nx.max_weight_matching(G, maxcardinality=True), + matching_dict_to_set({1: 3, 2: 4, 3: 1, 4: 2}), + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4}) + ) + + def test_s_blossom(self): + """Create S-blossom and use it for augmentation:""" + G = nx.Graph() + G.add_weighted_edges_from([(1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7)]) + answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + G.add_weighted_edges_from([(1, 6, 5), (4, 5, 6)]) + answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_s_t_blossom(self): + """Create S-blossom, relabel as T-blossom, use for augmentation:""" + G = nx.Graph() + G.add_weighted_edges_from( + [(1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5), (4, 5, 4), (1, 6, 3)] + ) + answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + G.add_edge(4, 5, weight=3) + G.add_edge(1, 6, weight=4) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + G.remove_edge(1, 6) + G.add_edge(3, 6, weight=4) + answer = matching_dict_to_set({1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nested_s_blossom(self): + """Create nested S-blossom, use for augmentation:""" + + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 9), + (1, 3, 9), + (2, 3, 10), + (2, 4, 8), + (3, 5, 8), + (4, 5, 10), + (5, 6, 6), + ] + ) + dict_format = {1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5} + expected = {frozenset(e) for e in matching_dict_to_set(dict_format)} + answer = {frozenset(e) for e in nx.max_weight_matching(G)} + assert answer == expected + answer = {frozenset(e) for e in nx.min_weight_matching(G)} + assert answer == expected + + def test_nested_s_blossom_relabel(self): + """Create S-blossom, relabel as S, include in nested S-blossom:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 10), + (1, 7, 10), + (2, 3, 12), + (3, 4, 20), + (3, 5, 20), + (4, 5, 25), + (5, 6, 10), + (6, 7, 10), + (7, 8, 8), + ] + ) + answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3, 5: 6, 6: 5, 7: 8, 8: 7}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nested_s_blossom_expand(self): + """Create nested S-blossom, augment, expand recursively:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 8), + (1, 3, 8), + (2, 3, 10), + (2, 4, 12), + (3, 5, 12), + (4, 5, 14), + (4, 6, 12), + (5, 7, 12), + (6, 7, 14), + (7, 8, 12), + ] + ) + answer = matching_dict_to_set({1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_s_blossom_relabel_expand(self): + """Create S-blossom, relabel as T, expand:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 23), + (1, 5, 22), + (1, 6, 15), + (2, 3, 25), + (3, 4, 22), + (4, 5, 25), + (4, 8, 14), + (5, 7, 13), + ] + ) + answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nested_s_blossom_relabel_expand(self): + """Create nested S-blossom, relabel as T, expand:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 19), + (1, 3, 20), + (1, 8, 8), + (2, 3, 25), + (2, 4, 18), + (3, 5, 18), + (4, 5, 13), + (4, 7, 7), + (5, 6, 7), + ] + ) + answer = matching_dict_to_set({1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1}) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nasty_blossom1(self): + """Create blossom, relabel as T in more than one way, expand, + augment: + """ + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 45), + (1, 5, 45), + (2, 3, 50), + (3, 4, 45), + (4, 5, 50), + (1, 6, 30), + (3, 9, 35), + (4, 8, 35), + (5, 7, 26), + (9, 10, 5), + ] + ) + ansdict = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9} + answer = matching_dict_to_set(ansdict) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nasty_blossom2(self): + """Again but slightly different:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 45), + (1, 5, 45), + (2, 3, 50), + (3, 4, 45), + (4, 5, 50), + (1, 6, 30), + (3, 9, 35), + (4, 8, 26), + (5, 7, 40), + (9, 10, 5), + ] + ) + ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9} + answer = matching_dict_to_set(ans) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nasty_blossom_least_slack(self): + """Create blossom, relabel as T, expand such that a new + least-slack S-to-free dge is produced, augment: + """ + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 45), + (1, 5, 45), + (2, 3, 50), + (3, 4, 45), + (4, 5, 50), + (1, 6, 30), + (3, 9, 35), + (4, 8, 28), + (5, 7, 26), + (9, 10, 5), + ] + ) + ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9} + answer = matching_dict_to_set(ans) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nasty_blossom_augmenting(self): + """Create nested blossom, relabel as T in more than one way""" + # expand outer blossom such that inner blossom ends up on an + # augmenting path: + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 45), + (1, 7, 45), + (2, 3, 50), + (3, 4, 45), + (4, 5, 95), + (4, 6, 94), + (5, 6, 94), + (6, 7, 50), + (1, 8, 30), + (3, 11, 35), + (5, 9, 36), + (7, 10, 26), + (11, 12, 5), + ] + ) + ans = { + 1: 8, + 2: 3, + 3: 2, + 4: 6, + 5: 9, + 6: 4, + 7: 10, + 8: 1, + 9: 5, + 10: 7, + 11: 12, + 12: 11, + } + answer = matching_dict_to_set(ans) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_nasty_blossom_expand_recursively(self): + """Create nested S-blossom, relabel as S, expand recursively:""" + G = nx.Graph() + G.add_weighted_edges_from( + [ + (1, 2, 40), + (1, 3, 40), + (2, 3, 60), + (2, 4, 55), + (3, 5, 55), + (4, 5, 50), + (1, 8, 15), + (5, 7, 30), + (7, 6, 10), + (8, 10, 10), + (4, 9, 30), + ] + ) + ans = {1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8} + answer = matching_dict_to_set(ans) + assert edges_equal(nx.max_weight_matching(G), answer) + assert edges_equal(nx.min_weight_matching(G), answer) + + def test_wrong_graph_type(self): + error = nx.NetworkXNotImplemented + raises(error, nx.max_weight_matching, nx.MultiGraph()) + raises(error, nx.max_weight_matching, nx.MultiDiGraph()) + raises(error, nx.max_weight_matching, nx.DiGraph()) + raises(error, nx.min_weight_matching, nx.DiGraph()) + + +class TestIsMatching: + """Unit tests for the + :func:`~networkx.algorithms.matching.is_matching` function. + + """ + + def test_dict(self): + G = nx.path_graph(4) + assert nx.is_matching(G, {0: 1, 1: 0, 2: 3, 3: 2}) + + def test_empty_matching(self): + G = nx.path_graph(4) + assert nx.is_matching(G, set()) + + def test_single_edge(self): + G = nx.path_graph(4) + assert nx.is_matching(G, {(1, 2)}) + + def test_edge_order(self): + G = nx.path_graph(4) + assert nx.is_matching(G, {(0, 1), (2, 3)}) + assert nx.is_matching(G, {(1, 0), (2, 3)}) + assert nx.is_matching(G, {(0, 1), (3, 2)}) + assert nx.is_matching(G, {(1, 0), (3, 2)}) + + def test_valid_matching(self): + G = nx.path_graph(4) + assert nx.is_matching(G, {(0, 1), (2, 3)}) + + def test_invalid_input(self): + error = nx.NetworkXError + G = nx.path_graph(4) + # edge to node not in G + raises(error, nx.is_matching, G, {(0, 5), (2, 3)}) + # edge not a 2-tuple + raises(error, nx.is_matching, G, {(0, 1, 2), (2, 3)}) + raises(error, nx.is_matching, G, {(0,), (2, 3)}) + + def test_selfloops(self): + error = nx.NetworkXError + G = nx.path_graph(4) + # selfloop for node not in G + raises(error, nx.is_matching, G, {(5, 5), (2, 3)}) + # selfloop edge not in G + assert not nx.is_matching(G, {(0, 0), (1, 2), (2, 3)}) + # selfloop edge in G + G.add_edge(0, 0) + assert not nx.is_matching(G, {(0, 0), (1, 2)}) + + def test_invalid_matching(self): + G = nx.path_graph(4) + assert not nx.is_matching(G, {(0, 1), (1, 2), (2, 3)}) + + def test_invalid_edge(self): + G = nx.path_graph(4) + assert not nx.is_matching(G, {(0, 3), (1, 2)}) + raises(nx.NetworkXError, nx.is_matching, G, {(0, 55)}) + + G = nx.DiGraph(G.edges) + assert nx.is_matching(G, {(0, 1)}) + assert not nx.is_matching(G, {(1, 0)}) + + +class TestIsMaximalMatching: + """Unit tests for the + :func:`~networkx.algorithms.matching.is_maximal_matching` function. + + """ + + def test_dict(self): + G = nx.path_graph(4) + assert nx.is_maximal_matching(G, {0: 1, 1: 0, 2: 3, 3: 2}) + + def test_invalid_input(self): + error = nx.NetworkXError + G = nx.path_graph(4) + # edge to node not in G + raises(error, nx.is_maximal_matching, G, {(0, 5)}) + raises(error, nx.is_maximal_matching, G, {(5, 0)}) + # edge not a 2-tuple + raises(error, nx.is_maximal_matching, G, {(0, 1, 2), (2, 3)}) + raises(error, nx.is_maximal_matching, G, {(0,), (2, 3)}) + + def test_valid(self): + G = nx.path_graph(4) + assert nx.is_maximal_matching(G, {(0, 1), (2, 3)}) + + def test_not_matching(self): + G = nx.path_graph(4) + assert not nx.is_maximal_matching(G, {(0, 1), (1, 2), (2, 3)}) + assert not nx.is_maximal_matching(G, {(0, 3)}) + G.add_edge(0, 0) + assert not nx.is_maximal_matching(G, {(0, 0)}) + + def test_not_maximal(self): + G = nx.path_graph(4) + assert not nx.is_maximal_matching(G, {(0, 1)}) + + +class TestIsPerfectMatching: + """Unit tests for the + :func:`~networkx.algorithms.matching.is_perfect_matching` function. + + """ + + def test_dict(self): + G = nx.path_graph(4) + assert nx.is_perfect_matching(G, {0: 1, 1: 0, 2: 3, 3: 2}) + + def test_valid(self): + G = nx.path_graph(4) + assert nx.is_perfect_matching(G, {(0, 1), (2, 3)}) + + def test_valid_not_path(self): + G = nx.cycle_graph(4) + G.add_edge(0, 4) + G.add_edge(1, 4) + G.add_edge(5, 2) + + assert nx.is_perfect_matching(G, {(1, 4), (0, 3), (5, 2)}) + + def test_invalid_input(self): + error = nx.NetworkXError + G = nx.path_graph(4) + # edge to node not in G + raises(error, nx.is_perfect_matching, G, {(0, 5)}) + raises(error, nx.is_perfect_matching, G, {(5, 0)}) + # edge not a 2-tuple + raises(error, nx.is_perfect_matching, G, {(0, 1, 2), (2, 3)}) + raises(error, nx.is_perfect_matching, G, {(0,), (2, 3)}) + + def test_selfloops(self): + error = nx.NetworkXError + G = nx.path_graph(4) + # selfloop for node not in G + raises(error, nx.is_perfect_matching, G, {(5, 5), (2, 3)}) + # selfloop edge not in G + assert not nx.is_perfect_matching(G, {(0, 0), (1, 2), (2, 3)}) + # selfloop edge in G + G.add_edge(0, 0) + assert not nx.is_perfect_matching(G, {(0, 0), (1, 2)}) + + def test_not_matching(self): + G = nx.path_graph(4) + assert not nx.is_perfect_matching(G, {(0, 3)}) + assert not nx.is_perfect_matching(G, {(0, 1), (1, 2), (2, 3)}) + + def test_maximal_but_not_perfect(self): + G = nx.cycle_graph(4) + G.add_edge(0, 4) + G.add_edge(1, 4) + + assert not nx.is_perfect_matching(G, {(1, 4), (0, 3)}) + + +class TestMaximalMatching: + """Unit tests for the + :func:`~networkx.algorithms.matching.maximal_matching`. + + """ + + def test_valid_matching(self): + edges = [(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (3, 6), (5, 6)] + G = nx.Graph(edges) + matching = nx.maximal_matching(G) + assert nx.is_maximal_matching(G, matching) + + def test_single_edge_matching(self): + # In the star graph, any maximal matching has just one edge. + G = nx.star_graph(5) + matching = nx.maximal_matching(G) + assert 1 == len(matching) + assert nx.is_maximal_matching(G, matching) + + def test_self_loops(self): + # Create the path graph with two self-loops. + G = nx.path_graph(3) + G.add_edges_from([(0, 0), (1, 1)]) + matching = nx.maximal_matching(G) + assert len(matching) == 1 + # The matching should never include self-loops. + assert not any(u == v for u, v in matching) + assert nx.is_maximal_matching(G, matching) + + def test_ordering(self): + """Tests that a maximal matching is computed correctly + regardless of the order in which nodes are added to the graph. + + """ + for nodes in permutations(range(3)): + G = nx.Graph() + G.add_nodes_from(nodes) + G.add_edges_from([(0, 1), (0, 2)]) + matching = nx.maximal_matching(G) + assert len(matching) == 1 + assert nx.is_maximal_matching(G, matching) + + def test_wrong_graph_type(self): + error = nx.NetworkXNotImplemented + raises(error, nx.maximal_matching, nx.MultiGraph()) + raises(error, nx.maximal_matching, nx.MultiDiGraph()) + raises(error, nx.maximal_matching, nx.DiGraph()) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_max_weight_clique.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_max_weight_clique.py new file mode 100644 index 0000000000000000000000000000000000000000..fc3900c58a80b08f01357bd4ad75a0a68c838047 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_max_weight_clique.py @@ -0,0 +1,181 @@ +"""Maximum weight clique test suite. + +""" + +import pytest + +import networkx as nx + + +class TestMaximumWeightClique: + def test_basic_cases(self): + def check_basic_case(graph_func, expected_weight, weight_accessor): + graph = graph_func() + clique, weight = nx.algorithms.max_weight_clique(graph, weight_accessor) + assert verify_clique( + graph, clique, weight, expected_weight, weight_accessor + ) + + for graph_func, (expected_weight, expected_size) in TEST_CASES.items(): + check_basic_case(graph_func, expected_weight, "weight") + check_basic_case(graph_func, expected_size, None) + + def test_key_error(self): + graph = two_node_graph() + with pytest.raises(KeyError): + nx.algorithms.max_weight_clique(graph, "nonexistent-key") + + def test_error_on_non_integer_weight(self): + graph = two_node_graph() + graph.nodes[2]["weight"] = 1.5 + with pytest.raises(ValueError): + nx.algorithms.max_weight_clique(graph) + + def test_unaffected_by_self_loops(self): + graph = two_node_graph() + graph.add_edge(1, 1) + graph.add_edge(2, 2) + clique, weight = nx.algorithms.max_weight_clique(graph, "weight") + assert verify_clique(graph, clique, weight, 30, "weight") + graph = three_node_independent_set() + graph.add_edge(1, 1) + clique, weight = nx.algorithms.max_weight_clique(graph, "weight") + assert verify_clique(graph, clique, weight, 20, "weight") + + def test_30_node_prob(self): + G = nx.Graph() + G.add_nodes_from(range(1, 31)) + for i in range(1, 31): + G.nodes[i]["weight"] = i + 1 + # fmt: off + G.add_edges_from( + [ + (1, 12), (1, 13), (1, 15), (1, 16), (1, 18), (1, 19), (1, 20), + (1, 23), (1, 26), (1, 28), (1, 29), (1, 30), (2, 3), (2, 4), + (2, 5), (2, 8), (2, 9), (2, 10), (2, 14), (2, 17), (2, 18), + (2, 21), (2, 22), (2, 23), (2, 27), (3, 9), (3, 15), (3, 21), + (3, 22), (3, 23), (3, 24), (3, 27), (3, 28), (3, 29), (4, 5), + (4, 6), (4, 8), (4, 21), (4, 22), (4, 23), (4, 26), (4, 28), + (4, 30), (5, 6), (5, 8), (5, 9), (5, 13), (5, 14), (5, 15), + (5, 16), (5, 20), (5, 21), (5, 22), (5, 25), (5, 28), (5, 29), + (6, 7), (6, 8), (6, 13), (6, 17), (6, 18), (6, 19), (6, 24), + (6, 26), (6, 27), (6, 28), (6, 29), (7, 12), (7, 14), (7, 15), + (7, 16), (7, 17), (7, 20), (7, 25), (7, 27), (7, 29), (7, 30), + (8, 10), (8, 15), (8, 16), (8, 18), (8, 20), (8, 22), (8, 24), + (8, 26), (8, 27), (8, 28), (8, 30), (9, 11), (9, 12), (9, 13), + (9, 14), (9, 15), (9, 16), (9, 19), (9, 20), (9, 21), (9, 24), + (9, 30), (10, 12), (10, 15), (10, 18), (10, 19), (10, 20), + (10, 22), (10, 23), (10, 24), (10, 26), (10, 27), (10, 29), + (10, 30), (11, 13), (11, 15), (11, 16), (11, 17), (11, 18), + (11, 19), (11, 20), (11, 22), (11, 29), (11, 30), (12, 14), + (12, 17), (12, 18), (12, 19), (12, 20), (12, 21), (12, 23), + (12, 25), (12, 26), (12, 30), (13, 20), (13, 22), (13, 23), + (13, 24), (13, 30), (14, 16), (14, 20), (14, 21), (14, 22), + (14, 23), (14, 25), (14, 26), (14, 27), (14, 29), (14, 30), + (15, 17), (15, 18), (15, 20), (15, 21), (15, 26), (15, 27), + (15, 28), (16, 17), (16, 18), (16, 19), (16, 20), (16, 21), + (16, 29), (16, 30), (17, 18), (17, 21), (17, 22), (17, 25), + (17, 27), (17, 28), (17, 30), (18, 19), (18, 20), (18, 21), + (18, 22), (18, 23), (18, 24), (19, 20), (19, 22), (19, 23), + (19, 24), (19, 25), (19, 27), (19, 30), (20, 21), (20, 23), + (20, 24), (20, 26), (20, 28), (20, 29), (21, 23), (21, 26), + (21, 27), (21, 29), (22, 24), (22, 25), (22, 26), (22, 29), + (23, 25), (23, 30), (24, 25), (24, 26), (25, 27), (25, 29), + (26, 27), (26, 28), (26, 30), (28, 29), (29, 30), + ] + ) + # fmt: on + clique, weight = nx.algorithms.max_weight_clique(G) + assert verify_clique(G, clique, weight, 111, "weight") + + +# ############################ Utility functions ############################ +def verify_clique( + graph, clique, reported_clique_weight, expected_clique_weight, weight_accessor +): + for node1 in clique: + for node2 in clique: + if node1 == node2: + continue + if not graph.has_edge(node1, node2): + return False + + if weight_accessor is None: + clique_weight = len(clique) + else: + clique_weight = sum(graph.nodes[v]["weight"] for v in clique) + + if clique_weight != expected_clique_weight: + return False + if clique_weight != reported_clique_weight: + return False + + return True + + +# ############################ Graph Generation ############################ + + +def empty_graph(): + return nx.Graph() + + +def one_node_graph(): + graph = nx.Graph() + graph.add_nodes_from([1]) + graph.nodes[1]["weight"] = 10 + return graph + + +def two_node_graph(): + graph = nx.Graph() + graph.add_nodes_from([1, 2]) + graph.add_edges_from([(1, 2)]) + graph.nodes[1]["weight"] = 10 + graph.nodes[2]["weight"] = 20 + return graph + + +def three_node_clique(): + graph = nx.Graph() + graph.add_nodes_from([1, 2, 3]) + graph.add_edges_from([(1, 2), (1, 3), (2, 3)]) + graph.nodes[1]["weight"] = 10 + graph.nodes[2]["weight"] = 20 + graph.nodes[3]["weight"] = 5 + return graph + + +def three_node_independent_set(): + graph = nx.Graph() + graph.add_nodes_from([1, 2, 3]) + graph.nodes[1]["weight"] = 10 + graph.nodes[2]["weight"] = 20 + graph.nodes[3]["weight"] = 5 + return graph + + +def disconnected(): + graph = nx.Graph() + graph.add_edges_from([(1, 2), (2, 3), (4, 5), (5, 6)]) + graph.nodes[1]["weight"] = 10 + graph.nodes[2]["weight"] = 20 + graph.nodes[3]["weight"] = 5 + graph.nodes[4]["weight"] = 100 + graph.nodes[5]["weight"] = 200 + graph.nodes[6]["weight"] = 50 + return graph + + +# -------------------------------------------------------------------------- +# Basic tests for all strategies +# For each basic graph function, specify expected weight of max weight clique +# and expected size of maximum clique +TEST_CASES = { + empty_graph: (0, 0), + one_node_graph: (10, 1), + two_node_graph: (30, 2), + three_node_clique: (35, 3), + three_node_independent_set: (20, 1), + disconnected: (300, 2), +} diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_mis.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_mis.py new file mode 100644 index 0000000000000000000000000000000000000000..379c5c07c7a050ac2ab799355070eb5e674fc621 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_mis.py @@ -0,0 +1,62 @@ +""" +Tests for maximal (not maximum) independent sets. + +""" + +import random + +import pytest + +import networkx as nx + + +def test_random_seed(): + G = nx.empty_graph(5) + assert nx.maximal_independent_set(G, seed=1) == [1, 0, 3, 2, 4] + + +@pytest.mark.parametrize("graph", [nx.complete_graph(5), nx.complete_graph(55)]) +def test_K5(graph): + """Maximal independent set for complete graphs""" + assert all(nx.maximal_independent_set(graph, [n]) == [n] for n in graph) + + +def test_exceptions(): + """Bad input should raise exception.""" + G = nx.florentine_families_graph() + pytest.raises(nx.NetworkXUnfeasible, nx.maximal_independent_set, G, ["Smith"]) + pytest.raises( + nx.NetworkXUnfeasible, nx.maximal_independent_set, G, ["Salviati", "Pazzi"] + ) + # MaximalIndependentSet is not implemented for directed graphs + pytest.raises(nx.NetworkXNotImplemented, nx.maximal_independent_set, nx.DiGraph(G)) + + +def test_florentine_family(): + G = nx.florentine_families_graph() + indep = nx.maximal_independent_set(G, ["Medici", "Bischeri"]) + assert set(indep) == { + "Medici", + "Bischeri", + "Castellani", + "Pazzi", + "Ginori", + "Lamberteschi", + } + + +def test_bipartite(): + G = nx.complete_bipartite_graph(12, 34) + indep = nx.maximal_independent_set(G, [4, 5, 9, 10]) + assert sorted(indep) == list(range(12)) + + +def test_random_graphs(): + """Generate 5 random graphs of different types and sizes and + make sure that all sets are independent and maximal.""" + for i in range(0, 50, 10): + G = nx.erdos_renyi_graph(i * 10 + 1, random.random()) + IS = nx.maximal_independent_set(G) + assert G.subgraph(IS).number_of_edges() == 0 + neighbors_of_MIS = set.union(*(set(G.neighbors(v)) for v in IS)) + assert all(v in neighbors_of_MIS for v in set(G.nodes()).difference(IS)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_moral.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_moral.py new file mode 100644 index 0000000000000000000000000000000000000000..fc98c9729a95897857013ae22333e3b8c17202fb --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_moral.py @@ -0,0 +1,15 @@ +import networkx as nx +from networkx.algorithms.moral import moral_graph + + +def test_get_moral_graph(): + graph = nx.DiGraph() + graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7]) + graph.add_edges_from([(1, 2), (3, 2), (4, 1), (4, 5), (6, 5), (7, 5)]) + H = moral_graph(graph) + assert not H.is_directed() + assert H.has_edge(1, 3) + assert H.has_edge(4, 6) + assert H.has_edge(6, 7) + assert H.has_edge(4, 7) + assert not H.has_edge(1, 5) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_node_classification.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_node_classification.py new file mode 100644 index 0000000000000000000000000000000000000000..2e1fc79d48ae830625c3528f52e805d2e0d183ad --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_node_classification.py @@ -0,0 +1,140 @@ +import pytest + +pytest.importorskip("numpy") +pytest.importorskip("scipy") + +import networkx as nx +from networkx.algorithms import node_classification + + +class TestHarmonicFunction: + def test_path_graph(self): + G = nx.path_graph(4) + label_name = "label" + G.nodes[0][label_name] = "A" + G.nodes[3][label_name] = "B" + predicted = node_classification.harmonic_function(G, label_name=label_name) + assert predicted[0] == "A" + assert predicted[1] == "A" + assert predicted[2] == "B" + assert predicted[3] == "B" + + def test_no_labels(self): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + node_classification.harmonic_function(G) + + def test_no_nodes(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + node_classification.harmonic_function(G) + + def test_no_edges(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + node_classification.harmonic_function(G) + + def test_digraph(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + G.add_edge(0, 1) + G.add_edge(1, 2) + G.add_edge(2, 3) + label_name = "label" + G.nodes[0][label_name] = "A" + G.nodes[3][label_name] = "B" + node_classification.harmonic_function(G) + + def test_one_labeled_node(self): + G = nx.path_graph(4) + label_name = "label" + G.nodes[0][label_name] = "A" + predicted = node_classification.harmonic_function(G, label_name=label_name) + assert predicted[0] == "A" + assert predicted[1] == "A" + assert predicted[2] == "A" + assert predicted[3] == "A" + + def test_nodes_all_labeled(self): + G = nx.karate_club_graph() + label_name = "club" + predicted = node_classification.harmonic_function(G, label_name=label_name) + for i in range(len(G)): + assert predicted[i] == G.nodes[i][label_name] + + def test_labeled_nodes_are_not_changed(self): + G = nx.karate_club_graph() + label_name = "club" + label_removed = {0, 1, 2, 3, 4, 5, 6, 7} + for i in label_removed: + del G.nodes[i][label_name] + predicted = node_classification.harmonic_function(G, label_name=label_name) + label_not_removed = set(range(len(G))) - label_removed + for i in label_not_removed: + assert predicted[i] == G.nodes[i][label_name] + + +class TestLocalAndGlobalConsistency: + def test_path_graph(self): + G = nx.path_graph(4) + label_name = "label" + G.nodes[0][label_name] = "A" + G.nodes[3][label_name] = "B" + predicted = node_classification.local_and_global_consistency( + G, label_name=label_name + ) + assert predicted[0] == "A" + assert predicted[1] == "A" + assert predicted[2] == "B" + assert predicted[3] == "B" + + def test_no_labels(self): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(4) + node_classification.local_and_global_consistency(G) + + def test_no_nodes(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + node_classification.local_and_global_consistency(G) + + def test_no_edges(self): + with pytest.raises(nx.NetworkXError): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + node_classification.local_and_global_consistency(G) + + def test_digraph(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + G.add_edge(0, 1) + G.add_edge(1, 2) + G.add_edge(2, 3) + label_name = "label" + G.nodes[0][label_name] = "A" + G.nodes[3][label_name] = "B" + node_classification.harmonic_function(G) + + def test_one_labeled_node(self): + G = nx.path_graph(4) + label_name = "label" + G.nodes[0][label_name] = "A" + predicted = node_classification.local_and_global_consistency( + G, label_name=label_name + ) + assert predicted[0] == "A" + assert predicted[1] == "A" + assert predicted[2] == "A" + assert predicted[3] == "A" + + def test_nodes_all_labeled(self): + G = nx.karate_club_graph() + label_name = "club" + predicted = node_classification.local_and_global_consistency( + G, alpha=0, label_name=label_name + ) + for i in range(len(G)): + assert predicted[i] == G.nodes[i][label_name] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_non_randomness.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_non_randomness.py new file mode 100644 index 0000000000000000000000000000000000000000..1f6de597e7cde7942bf8480253f737d7701b58f6 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_non_randomness.py @@ -0,0 +1,37 @@ +import pytest + +import networkx as nx + +np = pytest.importorskip("numpy") + + +@pytest.mark.parametrize( + "k, weight, expected", + [ + (None, None, 7.21), # infers 3 communities + (2, None, 11.7), + (None, "weight", 25.45), + (2, "weight", 38.8), + ], +) +def test_non_randomness(k, weight, expected): + G = nx.karate_club_graph() + np.testing.assert_almost_equal( + nx.non_randomness(G, k, weight)[0], expected, decimal=2 + ) + + +def test_non_connected(): + G = nx.Graph() + G.add_edge(1, 2) + G.add_node(3) + with pytest.raises(nx.NetworkXException): + nx.non_randomness(G) + + +def test_self_loops(): + G = nx.Graph() + G.add_edge(1, 2) + G.add_edge(1, 1) + with pytest.raises(nx.NetworkXError): + nx.non_randomness(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planar_drawing.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planar_drawing.py new file mode 100644 index 0000000000000000000000000000000000000000..c1c45ece998cd15831d904ccefb393a3dde8aeab --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planar_drawing.py @@ -0,0 +1,274 @@ +import math + +import pytest + +import networkx as nx +from networkx.algorithms.planar_drawing import triangulate_embedding + + +def test_graph1(): + embedding_data = {0: [1, 2, 3], 1: [2, 0], 2: [3, 0, 1], 3: [2, 0]} + check_embedding_data(embedding_data) + + +def test_graph2(): + embedding_data = { + 0: [8, 6], + 1: [2, 6, 9], + 2: [8, 1, 7, 9, 6, 4], + 3: [9], + 4: [2], + 5: [6, 8], + 6: [9, 1, 0, 5, 2], + 7: [9, 2], + 8: [0, 2, 5], + 9: [1, 6, 2, 7, 3], + } + check_embedding_data(embedding_data) + + +def test_circle_graph(): + embedding_data = { + 0: [1, 9], + 1: [0, 2], + 2: [1, 3], + 3: [2, 4], + 4: [3, 5], + 5: [4, 6], + 6: [5, 7], + 7: [6, 8], + 8: [7, 9], + 9: [8, 0], + } + check_embedding_data(embedding_data) + + +def test_grid_graph(): + embedding_data = { + (0, 1): [(0, 0), (1, 1), (0, 2)], + (1, 2): [(1, 1), (2, 2), (0, 2)], + (0, 0): [(0, 1), (1, 0)], + (2, 1): [(2, 0), (2, 2), (1, 1)], + (1, 1): [(2, 1), (1, 2), (0, 1), (1, 0)], + (2, 0): [(1, 0), (2, 1)], + (2, 2): [(1, 2), (2, 1)], + (1, 0): [(0, 0), (2, 0), (1, 1)], + (0, 2): [(1, 2), (0, 1)], + } + check_embedding_data(embedding_data) + + +def test_one_node_graph(): + embedding_data = {0: []} + check_embedding_data(embedding_data) + + +def test_two_node_graph(): + embedding_data = {0: [1], 1: [0]} + check_embedding_data(embedding_data) + + +def test_three_node_graph(): + embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1]} + check_embedding_data(embedding_data) + + +def test_multiple_component_graph1(): + embedding_data = {0: [], 1: []} + check_embedding_data(embedding_data) + + +def test_multiple_component_graph2(): + embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1], 3: [4, 5], 4: [3, 5], 5: [3, 4]} + check_embedding_data(embedding_data) + + +def test_invalid_half_edge(): + with pytest.raises(nx.NetworkXException): + embedding_data = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2, 4], 4: [1, 2, 3]} + embedding = nx.PlanarEmbedding() + embedding.set_data(embedding_data) + nx.combinatorial_embedding_to_pos(embedding) + + +def test_triangulate_embedding1(): + embedding = nx.PlanarEmbedding() + embedding.add_node(1) + expected_embedding = {1: []} + check_triangulation(embedding, expected_embedding) + + +def test_triangulate_embedding2(): + embedding = nx.PlanarEmbedding() + embedding.connect_components(1, 2) + expected_embedding = {1: [2], 2: [1]} + check_triangulation(embedding, expected_embedding) + + +def check_triangulation(embedding, expected_embedding): + res_embedding, _ = triangulate_embedding(embedding, True) + assert ( + res_embedding.get_data() == expected_embedding + ), "Expected embedding incorrect" + res_embedding, _ = triangulate_embedding(embedding, False) + assert ( + res_embedding.get_data() == expected_embedding + ), "Expected embedding incorrect" + + +def check_embedding_data(embedding_data): + """Checks that the planar embedding of the input is correct""" + embedding = nx.PlanarEmbedding() + embedding.set_data(embedding_data) + pos_fully = nx.combinatorial_embedding_to_pos(embedding, False) + msg = "Planar drawing does not conform to the embedding (fully " "triangulation)" + assert planar_drawing_conforms_to_embedding(embedding, pos_fully), msg + check_edge_intersections(embedding, pos_fully) + pos_internally = nx.combinatorial_embedding_to_pos(embedding, True) + msg = "Planar drawing does not conform to the embedding (internal " "triangulation)" + assert planar_drawing_conforms_to_embedding(embedding, pos_internally), msg + check_edge_intersections(embedding, pos_internally) + + +def is_close(a, b, rel_tol=1e-09, abs_tol=0.0): + # Check if float numbers are basically equal, for python >=3.5 there is + # function for that in the standard library + return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) + + +def point_in_between(a, b, p): + # checks if p is on the line between a and b + x1, y1 = a + x2, y2 = b + px, py = p + dist_1_2 = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) + dist_1_p = math.sqrt((x1 - px) ** 2 + (y1 - py) ** 2) + dist_2_p = math.sqrt((x2 - px) ** 2 + (y2 - py) ** 2) + return is_close(dist_1_p + dist_2_p, dist_1_2) + + +def check_edge_intersections(G, pos): + """Check all edges in G for intersections. + + Raises an exception if an intersection is found. + + Parameters + ---------- + G : NetworkX graph + pos : dict + Maps every node to a tuple (x, y) representing its position + + """ + for a, b in G.edges(): + for c, d in G.edges(): + # Check if end points are different + if a != c and b != d and b != c and a != d: + x1, y1 = pos[a] + x2, y2 = pos[b] + x3, y3 = pos[c] + x4, y4 = pos[d] + determinant = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) + if determinant != 0: # the lines are not parallel + # calculate intersection point, see: + # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection + px = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * ( + x3 * y4 - y3 * x4 + ) / determinant + py = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * ( + x3 * y4 - y3 * x4 + ) / determinant + + # Check if intersection lies between the points + if point_in_between(pos[a], pos[b], (px, py)) and point_in_between( + pos[c], pos[d], (px, py) + ): + msg = f"There is an intersection at {px},{py}" + raise nx.NetworkXException(msg) + + # Check overlap + msg = "A node lies on a edge connecting two other nodes" + if ( + point_in_between(pos[a], pos[b], pos[c]) + or point_in_between(pos[a], pos[b], pos[d]) + or point_in_between(pos[c], pos[d], pos[a]) + or point_in_between(pos[c], pos[d], pos[b]) + ): + raise nx.NetworkXException(msg) + # No edge intersection found + + +class Vector: + """Compare vectors by their angle without loss of precision + + All vectors in direction [0, 1] are the smallest. + The vectors grow in clockwise direction. + """ + + __slots__ = ["x", "y", "node", "quadrant"] + + def __init__(self, x, y, node): + self.x = x + self.y = y + self.node = node + if self.x >= 0 and self.y > 0: + self.quadrant = 1 + elif self.x > 0 and self.y <= 0: + self.quadrant = 2 + elif self.x <= 0 and self.y < 0: + self.quadrant = 3 + else: + self.quadrant = 4 + + def __eq__(self, other): + return self.quadrant == other.quadrant and self.x * other.y == self.y * other.x + + def __lt__(self, other): + if self.quadrant < other.quadrant: + return True + elif self.quadrant > other.quadrant: + return False + else: + return self.x * other.y < self.y * other.x + + def __ne__(self, other): + return self != other + + def __le__(self, other): + return not other < self + + def __gt__(self, other): + return other < self + + def __ge__(self, other): + return not self < other + + +def planar_drawing_conforms_to_embedding(embedding, pos): + """Checks if pos conforms to the planar embedding + + Returns true iff the neighbors are actually oriented in the orientation + specified of the embedding + """ + for v in embedding: + nbr_vectors = [] + v_pos = pos[v] + for nbr in embedding[v]: + new_vector = Vector(pos[nbr][0] - v_pos[0], pos[nbr][1] - v_pos[1], nbr) + nbr_vectors.append(new_vector) + # Sort neighbors according to their phi angle + nbr_vectors.sort() + for idx, nbr_vector in enumerate(nbr_vectors): + cw_vector = nbr_vectors[(idx + 1) % len(nbr_vectors)] + ccw_vector = nbr_vectors[idx - 1] + if ( + embedding[v][nbr_vector.node]["cw"] != cw_vector.node + or embedding[v][nbr_vector.node]["ccw"] != ccw_vector.node + ): + return False + if cw_vector.node != nbr_vector.node and cw_vector == nbr_vector: + # Lines overlap + return False + if ccw_vector.node != nbr_vector.node and ccw_vector == nbr_vector: + # Lines overlap + return False + return True diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planarity.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planarity.py new file mode 100644 index 0000000000000000000000000000000000000000..470b1d23bb806e9e1297b8cb52f5c03a569a47ff --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_planarity.py @@ -0,0 +1,442 @@ +import pytest + +import networkx as nx +from networkx.algorithms.planarity import ( + check_planarity_recursive, + get_counterexample, + get_counterexample_recursive, +) + + +class TestLRPlanarity: + """Nose Unit tests for the :mod:`networkx.algorithms.planarity` module. + + Tests three things: + 1. Check that the result is correct + (returns planar if and only if the graph is actually planar) + 2. In case a counter example is returned: Check if it is correct + 3. In case an embedding is returned: Check if its actually an embedding + """ + + @staticmethod + def check_graph(G, is_planar=None): + """Raises an exception if the lr_planarity check returns a wrong result + + Parameters + ---------- + G : NetworkX graph + is_planar : bool + The expected result of the planarity check. + If set to None only counter example or embedding are verified. + + """ + + # obtain results of planarity check + is_planar_lr, result = nx.check_planarity(G, True) + is_planar_lr_rec, result_rec = check_planarity_recursive(G, True) + + if is_planar is not None: + # set a message for the assert + if is_planar: + msg = "Wrong planarity check result. Should be planar." + else: + msg = "Wrong planarity check result. Should be non-planar." + + # check if the result is as expected + assert is_planar == is_planar_lr, msg + assert is_planar == is_planar_lr_rec, msg + + if is_planar_lr: + # check embedding + check_embedding(G, result) + check_embedding(G, result_rec) + else: + # check counter example + check_counterexample(G, result) + check_counterexample(G, result_rec) + + def test_simple_planar_graph(self): + e = [ + (1, 2), + (2, 3), + (3, 4), + (4, 6), + (6, 7), + (7, 1), + (1, 5), + (5, 2), + (2, 4), + (4, 5), + (5, 7), + ] + self.check_graph(nx.Graph(e), is_planar=True) + + def test_planar_with_selfloop(self): + e = [ + (1, 1), + (2, 2), + (3, 3), + (4, 4), + (5, 5), + (1, 2), + (1, 3), + (1, 5), + (2, 5), + (2, 4), + (3, 4), + (3, 5), + (4, 5), + ] + self.check_graph(nx.Graph(e), is_planar=True) + + def test_k3_3(self): + self.check_graph(nx.complete_bipartite_graph(3, 3), is_planar=False) + + def test_k5(self): + self.check_graph(nx.complete_graph(5), is_planar=False) + + def test_multiple_components_planar(self): + e = [(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)] + self.check_graph(nx.Graph(e), is_planar=True) + + def test_multiple_components_non_planar(self): + G = nx.complete_graph(5) + # add another planar component to the non planar component + # G stays non planar + G.add_edges_from([(6, 7), (7, 8), (8, 6)]) + self.check_graph(G, is_planar=False) + + def test_non_planar_with_selfloop(self): + G = nx.complete_graph(5) + # add self loops + for i in range(5): + G.add_edge(i, i) + self.check_graph(G, is_planar=False) + + def test_non_planar1(self): + # tests a graph that has no subgraph directly isomorph to K5 or K3_3 + e = [ + (1, 5), + (1, 6), + (1, 7), + (2, 6), + (2, 3), + (3, 5), + (3, 7), + (4, 5), + (4, 6), + (4, 7), + ] + self.check_graph(nx.Graph(e), is_planar=False) + + def test_loop(self): + # test a graph with a selfloop + e = [(1, 2), (2, 2)] + G = nx.Graph(e) + self.check_graph(G, is_planar=True) + + def test_comp(self): + # test multiple component graph + e = [(1, 2), (3, 4)] + G = nx.Graph(e) + G.remove_edge(1, 2) + self.check_graph(G, is_planar=True) + + def test_goldner_harary(self): + # test goldner-harary graph (a maximal planar graph) + e = [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (1, 7), + (1, 8), + (1, 10), + (1, 11), + (2, 3), + (2, 4), + (2, 6), + (2, 7), + (2, 9), + (2, 10), + (2, 11), + (3, 4), + (4, 5), + (4, 6), + (4, 7), + (5, 7), + (6, 7), + (7, 8), + (7, 9), + (7, 10), + (8, 10), + (9, 10), + (10, 11), + ] + G = nx.Graph(e) + self.check_graph(G, is_planar=True) + + def test_planar_multigraph(self): + G = nx.MultiGraph([(1, 2), (1, 2), (1, 2), (1, 2), (2, 3), (3, 1)]) + self.check_graph(G, is_planar=True) + + def test_non_planar_multigraph(self): + G = nx.MultiGraph(nx.complete_graph(5)) + G.add_edges_from([(1, 2)] * 5) + self.check_graph(G, is_planar=False) + + def test_planar_digraph(self): + G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (4, 1), (4, 2), (1, 4), (3, 2)]) + self.check_graph(G, is_planar=True) + + def test_non_planar_digraph(self): + G = nx.DiGraph(nx.complete_graph(5)) + G.remove_edge(1, 2) + G.remove_edge(4, 1) + self.check_graph(G, is_planar=False) + + def test_single_component(self): + # Test a graph with only a single node + G = nx.Graph() + G.add_node(1) + self.check_graph(G, is_planar=True) + + def test_graph1(self): + G = nx.Graph( + [ + (3, 10), + (2, 13), + (1, 13), + (7, 11), + (0, 8), + (8, 13), + (0, 2), + (0, 7), + (0, 10), + (1, 7), + ] + ) + self.check_graph(G, is_planar=True) + + def test_graph2(self): + G = nx.Graph( + [ + (1, 2), + (4, 13), + (0, 13), + (4, 5), + (7, 10), + (1, 7), + (0, 3), + (2, 6), + (5, 6), + (7, 13), + (4, 8), + (0, 8), + (0, 9), + (2, 13), + (6, 7), + (3, 6), + (2, 8), + ] + ) + self.check_graph(G, is_planar=False) + + def test_graph3(self): + G = nx.Graph( + [ + (0, 7), + (3, 11), + (3, 4), + (8, 9), + (4, 11), + (1, 7), + (1, 13), + (1, 11), + (3, 5), + (5, 7), + (1, 3), + (0, 4), + (5, 11), + (5, 13), + ] + ) + self.check_graph(G, is_planar=False) + + def test_counterexample_planar(self): + with pytest.raises(nx.NetworkXException): + # Try to get a counterexample of a planar graph + G = nx.Graph() + G.add_node(1) + get_counterexample(G) + + def test_counterexample_planar_recursive(self): + with pytest.raises(nx.NetworkXException): + # Try to get a counterexample of a planar graph + G = nx.Graph() + G.add_node(1) + get_counterexample_recursive(G) + + +def check_embedding(G, embedding): + """Raises an exception if the combinatorial embedding is not correct + + Parameters + ---------- + G : NetworkX graph + embedding : a dict mapping nodes to a list of edges + This specifies the ordering of the outgoing edges from a node for + a combinatorial embedding + + Notes + ----- + Checks the following things: + - The type of the embedding is correct + - The nodes and edges match the original graph + - Every half edge has its matching opposite half edge + - No intersections of edges (checked by Euler's formula) + """ + + if not isinstance(embedding, nx.PlanarEmbedding): + raise nx.NetworkXException("Bad embedding. Not of type nx.PlanarEmbedding") + + # Check structure + embedding.check_structure() + + # Check that graphs are equivalent + + assert set(G.nodes) == set( + embedding.nodes + ), "Bad embedding. Nodes don't match the original graph." + + # Check that the edges are equal + g_edges = set() + for edge in G.edges: + if edge[0] != edge[1]: + g_edges.add((edge[0], edge[1])) + g_edges.add((edge[1], edge[0])) + assert g_edges == set( + embedding.edges + ), "Bad embedding. Edges don't match the original graph." + + +def check_counterexample(G, sub_graph): + """Raises an exception if the counterexample is wrong. + + Parameters + ---------- + G : NetworkX graph + subdivision_nodes : set + A set of nodes inducing a subgraph as a counterexample + """ + # 1. Create the sub graph + sub_graph = nx.Graph(sub_graph) + + # 2. Remove self loops + for u in sub_graph: + if sub_graph.has_edge(u, u): + sub_graph.remove_edge(u, u) + + # keep track of nodes we might need to contract + contract = list(sub_graph) + + # 3. Contract Edges + while len(contract) > 0: + contract_node = contract.pop() + if contract_node not in sub_graph: + # Node was already contracted + continue + degree = sub_graph.degree[contract_node] + # Check if we can remove the node + if degree == 2: + # Get the two neighbors + neighbors = iter(sub_graph[contract_node]) + u = next(neighbors) + v = next(neighbors) + # Save nodes for later + contract.append(u) + contract.append(v) + # Contract edge + sub_graph.remove_node(contract_node) + sub_graph.add_edge(u, v) + + # 4. Check for isomorphism with K5 or K3_3 graphs + if len(sub_graph) == 5: + if not nx.is_isomorphic(nx.complete_graph(5), sub_graph): + raise nx.NetworkXException("Bad counter example.") + elif len(sub_graph) == 6: + if not nx.is_isomorphic(nx.complete_bipartite_graph(3, 3), sub_graph): + raise nx.NetworkXException("Bad counter example.") + else: + raise nx.NetworkXException("Bad counter example.") + + +class TestPlanarEmbeddingClass: + def test_get_data(self): + embedding = self.get_star_embedding(3) + data = embedding.get_data() + data_cmp = {0: [2, 1], 1: [0], 2: [0]} + assert data == data_cmp + + def test_missing_edge_orientation(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + embedding.add_edge(1, 2) + embedding.add_edge(2, 1) + # Invalid structure because the orientation of the edge was not set + embedding.check_structure() + + def test_invalid_edge_orientation(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + embedding.add_half_edge_first(1, 2) + embedding.add_half_edge_first(2, 1) + embedding.add_edge(1, 3) + embedding.check_structure() + + def test_missing_half_edge(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + embedding.add_half_edge_first(1, 2) + # Invalid structure because other half edge is missing + embedding.check_structure() + + def test_not_fulfilling_euler_formula(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + for i in range(5): + for j in range(5): + if i != j: + embedding.add_half_edge_first(i, j) + embedding.check_structure() + + def test_missing_reference(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + embedding.add_half_edge_cw(1, 2, 3) + + def test_connect_components(self): + embedding = nx.PlanarEmbedding() + embedding.connect_components(1, 2) + + def test_successful_face_traversal(self): + embedding = nx.PlanarEmbedding() + embedding.add_half_edge_first(1, 2) + embedding.add_half_edge_first(2, 1) + face = embedding.traverse_face(1, 2) + assert face == [1, 2] + + def test_unsuccessful_face_traversal(self): + with pytest.raises(nx.NetworkXException): + embedding = nx.PlanarEmbedding() + embedding.add_edge(1, 2, ccw=2, cw=3) + embedding.add_edge(2, 1, ccw=1, cw=3) + embedding.traverse_face(1, 2) + + @staticmethod + def get_star_embedding(n): + embedding = nx.PlanarEmbedding() + for i in range(1, n): + embedding.add_half_edge_first(0, i) + embedding.add_half_edge_first(i, 0) + return embedding diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_polynomials.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_polynomials.py new file mode 100644 index 0000000000000000000000000000000000000000..a81d6a69551ead74d3335fda408111a0b580bf6a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_polynomials.py @@ -0,0 +1,57 @@ +"""Unit tests for the :mod:`networkx.algorithms.polynomials` module.""" + +import pytest + +import networkx as nx + +sympy = pytest.importorskip("sympy") + + +# Mapping of input graphs to a string representation of their tutte polynomials +_test_tutte_graphs = { + nx.complete_graph(1): "1", + nx.complete_graph(4): "x**3 + 3*x**2 + 4*x*y + 2*x + y**3 + 3*y**2 + 2*y", + nx.cycle_graph(5): "x**4 + x**3 + x**2 + x + y", + nx.diamond_graph(): "x**3 + 2*x**2 + 2*x*y + x + y**2 + y", +} + +_test_chromatic_graphs = { + nx.complete_graph(1): "x", + nx.complete_graph(4): "x**4 - 6*x**3 + 11*x**2 - 6*x", + nx.cycle_graph(5): "x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x", + nx.diamond_graph(): "x**4 - 5*x**3 + 8*x**2 - 4*x", + nx.path_graph(5): "x**5 - 4*x**4 + 6*x**3 - 4*x**2 + x", +} + + +@pytest.mark.parametrize(("G", "expected"), _test_tutte_graphs.items()) +def test_tutte_polynomial(G, expected): + assert nx.tutte_polynomial(G).equals(expected) + + +@pytest.mark.parametrize("G", _test_tutte_graphs.keys()) +def test_tutte_polynomial_disjoint(G): + """Tutte polynomial factors into the Tutte polynomials of its components. + Verify this property with the disjoint union of two copies of the input graph. + """ + t_g = nx.tutte_polynomial(G) + H = nx.disjoint_union(G, G) + t_h = nx.tutte_polynomial(H) + assert sympy.simplify(t_g * t_g).equals(t_h) + + +@pytest.mark.parametrize(("G", "expected"), _test_chromatic_graphs.items()) +def test_chromatic_polynomial(G, expected): + assert nx.chromatic_polynomial(G).equals(expected) + + +@pytest.mark.parametrize("G", _test_chromatic_graphs.keys()) +def test_chromatic_polynomial_disjoint(G): + """Chromatic polynomial factors into the Chromatic polynomials of its + components. Verify this property with the disjoint union of two copies of + the input graph. + """ + x_g = nx.chromatic_polynomial(G) + H = nx.disjoint_union(G, G) + x_h = nx.chromatic_polynomial(H) + assert sympy.simplify(x_g * x_g).equals(x_h) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_reciprocity.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_reciprocity.py new file mode 100644 index 0000000000000000000000000000000000000000..e713bc4303f9bfea1199f01d8369c6bdab1a221f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_reciprocity.py @@ -0,0 +1,37 @@ +import pytest + +import networkx as nx + + +class TestReciprocity: + # test overall reciprocity by passing whole graph + def test_reciprocity_digraph(self): + DG = nx.DiGraph([(1, 2), (2, 1)]) + reciprocity = nx.reciprocity(DG) + assert reciprocity == 1.0 + + # test empty graph's overall reciprocity which will throw an error + def test_overall_reciprocity_empty_graph(self): + with pytest.raises(nx.NetworkXError): + DG = nx.DiGraph() + nx.overall_reciprocity(DG) + + # test for reciprocity for a list of nodes + def test_reciprocity_graph_nodes(self): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 2)]) + reciprocity = nx.reciprocity(DG, [1, 2]) + expected_reciprocity = {1: 0.0, 2: 0.6666666666666666} + assert reciprocity == expected_reciprocity + + # test for reciprocity for a single node + def test_reciprocity_graph_node(self): + DG = nx.DiGraph([(1, 2), (2, 3), (3, 2)]) + reciprocity = nx.reciprocity(DG, 2) + assert reciprocity == 0.6666666666666666 + + # test for reciprocity for an isolated node + def test_reciprocity_graph_isolated_nodes(self): + with pytest.raises(nx.NetworkXError): + DG = nx.DiGraph([(1, 2)]) + DG.add_node(4) + nx.reciprocity(DG, 4) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_regular.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_regular.py new file mode 100644 index 0000000000000000000000000000000000000000..0c8e4e465824310f0b950c1db972336f0bb8c9ca --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_regular.py @@ -0,0 +1,86 @@ +import pytest + +import networkx +import networkx as nx +import networkx.algorithms.regular as reg +import networkx.generators as gen + + +class TestKFactor: + def test_k_factor_trivial(self): + g = gen.cycle_graph(4) + f = reg.k_factor(g, 2) + assert g.edges == f.edges + + def test_k_factor1(self): + g = gen.grid_2d_graph(4, 4) + g_kf = reg.k_factor(g, 2) + for edge in g_kf.edges(): + assert g.has_edge(edge[0], edge[1]) + for _, degree in g_kf.degree(): + assert degree == 2 + + def test_k_factor2(self): + g = gen.complete_graph(6) + g_kf = reg.k_factor(g, 3) + for edge in g_kf.edges(): + assert g.has_edge(edge[0], edge[1]) + for _, degree in g_kf.degree(): + assert degree == 3 + + def test_k_factor3(self): + g = gen.grid_2d_graph(4, 4) + with pytest.raises(nx.NetworkXUnfeasible): + reg.k_factor(g, 3) + + def test_k_factor4(self): + g = gen.lattice.hexagonal_lattice_graph(4, 4) + # Perfect matching doesn't exist for 4,4 hexagonal lattice graph + with pytest.raises(nx.NetworkXUnfeasible): + reg.k_factor(g, 2) + + def test_k_factor5(self): + g = gen.complete_graph(6) + # small k to exercise SmallKGadget + g_kf = reg.k_factor(g, 2) + for edge in g_kf.edges(): + assert g.has_edge(edge[0], edge[1]) + for _, degree in g_kf.degree(): + assert degree == 2 + + +class TestIsRegular: + def test_is_regular1(self): + g = gen.cycle_graph(4) + assert reg.is_regular(g) + + def test_is_regular2(self): + g = gen.complete_graph(5) + assert reg.is_regular(g) + + def test_is_regular3(self): + g = gen.lollipop_graph(5, 5) + assert not reg.is_regular(g) + + def test_is_regular4(self): + g = nx.DiGraph() + g.add_edges_from([(0, 1), (1, 2), (2, 0)]) + assert reg.is_regular(g) + + +class TestIsKRegular: + def test_is_k_regular1(self): + g = gen.cycle_graph(4) + assert reg.is_k_regular(g, 2) + assert not reg.is_k_regular(g, 3) + + def test_is_k_regular2(self): + g = gen.complete_graph(5) + assert reg.is_k_regular(g, 4) + assert not reg.is_k_regular(g, 3) + assert not reg.is_k_regular(g, 6) + + def test_is_k_regular3(self): + g = gen.lollipop_graph(5, 5) + assert not reg.is_k_regular(g, 5) + assert not reg.is_k_regular(g, 6) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_richclub.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_richclub.py new file mode 100644 index 0000000000000000000000000000000000000000..5638ddbf007a6075c3b87a1118ced18a4aa2b7a6 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_richclub.py @@ -0,0 +1,97 @@ +import pytest + +import networkx as nx + + +def test_richclub(): + G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)]) + rc = nx.richclub.rich_club_coefficient(G, normalized=False) + assert rc == {0: 12.0 / 30, 1: 8.0 / 12} + + # test single value + rc0 = nx.richclub.rich_club_coefficient(G, normalized=False)[0] + assert rc0 == 12.0 / 30.0 + + +def test_richclub_seed(): + G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)]) + rcNorm = nx.richclub.rich_club_coefficient(G, Q=2, seed=1) + assert rcNorm == {0: 1.0, 1: 1.0} + + +def test_richclub_normalized(): + G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)]) + rcNorm = nx.richclub.rich_club_coefficient(G, Q=2) + assert rcNorm == {0: 1.0, 1: 1.0} + + +def test_richclub2(): + T = nx.balanced_tree(2, 10) + rc = nx.richclub.rich_club_coefficient(T, normalized=False) + assert rc == { + 0: 4092 / (2047 * 2046.0), + 1: (2044.0 / (1023 * 1022)), + 2: (2040.0 / (1022 * 1021)), + } + + +def test_richclub3(): + # tests edgecase + G = nx.karate_club_graph() + rc = nx.rich_club_coefficient(G, normalized=False) + assert rc == { + 0: 156.0 / 1122, + 1: 154.0 / 1056, + 2: 110.0 / 462, + 3: 78.0 / 240, + 4: 44.0 / 90, + 5: 22.0 / 42, + 6: 10.0 / 20, + 7: 10.0 / 20, + 8: 10.0 / 20, + 9: 6.0 / 12, + 10: 2.0 / 6, + 11: 2.0 / 6, + 12: 0.0, + 13: 0.0, + 14: 0.0, + 15: 0.0, + } + + +def test_richclub4(): + G = nx.Graph() + G.add_edges_from( + [(0, 1), (0, 2), (0, 3), (0, 4), (4, 5), (5, 9), (6, 9), (7, 9), (8, 9)] + ) + rc = nx.rich_club_coefficient(G, normalized=False) + assert rc == {0: 18 / 90.0, 1: 6 / 12.0, 2: 0.0, 3: 0.0} + + +def test_richclub_exception(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + nx.rich_club_coefficient(G) + + +def test_rich_club_exception2(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.MultiGraph() + nx.rich_club_coefficient(G) + + +def test_rich_club_selfloop(): + G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + G.add_edge(1, 1) # self loop + G.add_edge(1, 2) + with pytest.raises( + Exception, + match="rich_club_coefficient is not implemented for " "graphs with self loops.", + ): + nx.rich_club_coefficient(G) + + +# def test_richclub2_normalized(): +# T = nx.balanced_tree(2,10) +# rcNorm = nx.richclub.rich_club_coefficient(T,Q=2) +# assert_true(rcNorm[0] ==1.0 and rcNorm[1] < 0.9 and rcNorm[2] < 0.9) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_similarity.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_similarity.py new file mode 100644 index 0000000000000000000000000000000000000000..b7fcf90fa4303189fc31f095fd0595453578dbca --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_similarity.py @@ -0,0 +1,923 @@ +import pytest + +import networkx as nx +from networkx.algorithms.similarity import ( + graph_edit_distance, + optimal_edit_paths, + optimize_graph_edit_distance, +) +from networkx.generators.classic import ( + circular_ladder_graph, + cycle_graph, + path_graph, + wheel_graph, +) + + +def nmatch(n1, n2): + return n1 == n2 + + +def ematch(e1, e2): + return e1 == e2 + + +def getCanonical(): + G = nx.Graph() + G.add_node("A", label="A") + G.add_node("B", label="B") + G.add_node("C", label="C") + G.add_node("D", label="D") + G.add_edge("A", "B", label="a-b") + G.add_edge("B", "C", label="b-c") + G.add_edge("B", "D", label="b-d") + return G + + +class TestSimilarity: + @classmethod + def setup_class(cls): + global np + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + def test_graph_edit_distance_roots_and_timeout(self): + G0 = nx.star_graph(5) + G1 = G0.copy() + pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2]) + pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2, 3, 4]) + pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 3)) + pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(3, 9)) + pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 9)) + assert graph_edit_distance(G0, G1, roots=(1, 2)) == 0 + assert graph_edit_distance(G0, G1, roots=(0, 1)) == 8 + assert graph_edit_distance(G0, G1, roots=(1, 2), timeout=5) == 0 + assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=5) == 8 + assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=0.0001) is None + # test raise on 0 timeout + pytest.raises(nx.NetworkXError, graph_edit_distance, G0, G1, timeout=0) + + def test_graph_edit_distance(self): + G0 = nx.Graph() + G1 = path_graph(6) + G2 = cycle_graph(6) + G3 = wheel_graph(7) + + assert graph_edit_distance(G0, G0) == 0 + assert graph_edit_distance(G0, G1) == 11 + assert graph_edit_distance(G1, G0) == 11 + assert graph_edit_distance(G0, G2) == 12 + assert graph_edit_distance(G2, G0) == 12 + assert graph_edit_distance(G0, G3) == 19 + assert graph_edit_distance(G3, G0) == 19 + + assert graph_edit_distance(G1, G1) == 0 + assert graph_edit_distance(G1, G2) == 1 + assert graph_edit_distance(G2, G1) == 1 + assert graph_edit_distance(G1, G3) == 8 + assert graph_edit_distance(G3, G1) == 8 + + assert graph_edit_distance(G2, G2) == 0 + assert graph_edit_distance(G2, G3) == 7 + assert graph_edit_distance(G3, G2) == 7 + + assert graph_edit_distance(G3, G3) == 0 + + def test_graph_edit_distance_node_match(self): + G1 = cycle_graph(5) + G2 = cycle_graph(5) + for n, attr in G1.nodes.items(): + attr["color"] = "red" if n % 2 == 0 else "blue" + for n, attr in G2.nodes.items(): + attr["color"] = "red" if n % 2 == 1 else "blue" + assert graph_edit_distance(G1, G2) == 0 + assert ( + graph_edit_distance( + G1, G2, node_match=lambda n1, n2: n1["color"] == n2["color"] + ) + == 1 + ) + + def test_graph_edit_distance_edge_match(self): + G1 = path_graph(6) + G2 = path_graph(6) + for e, attr in G1.edges.items(): + attr["color"] = "red" if min(e) % 2 == 0 else "blue" + for e, attr in G2.edges.items(): + attr["color"] = "red" if min(e) // 3 == 0 else "blue" + assert graph_edit_distance(G1, G2) == 0 + assert ( + graph_edit_distance( + G1, G2, edge_match=lambda e1, e2: e1["color"] == e2["color"] + ) + == 2 + ) + + def test_graph_edit_distance_node_cost(self): + G1 = path_graph(6) + G2 = path_graph(6) + for n, attr in G1.nodes.items(): + attr["color"] = "red" if n % 2 == 0 else "blue" + for n, attr in G2.nodes.items(): + attr["color"] = "red" if n % 2 == 1 else "blue" + + def node_subst_cost(uattr, vattr): + if uattr["color"] == vattr["color"]: + return 1 + else: + return 10 + + def node_del_cost(attr): + if attr["color"] == "blue": + return 20 + else: + return 50 + + def node_ins_cost(attr): + if attr["color"] == "blue": + return 40 + else: + return 100 + + assert ( + graph_edit_distance( + G1, + G2, + node_subst_cost=node_subst_cost, + node_del_cost=node_del_cost, + node_ins_cost=node_ins_cost, + ) + == 6 + ) + + def test_graph_edit_distance_edge_cost(self): + G1 = path_graph(6) + G2 = path_graph(6) + for e, attr in G1.edges.items(): + attr["color"] = "red" if min(e) % 2 == 0 else "blue" + for e, attr in G2.edges.items(): + attr["color"] = "red" if min(e) // 3 == 0 else "blue" + + def edge_subst_cost(gattr, hattr): + if gattr["color"] == hattr["color"]: + return 0.01 + else: + return 0.1 + + def edge_del_cost(attr): + if attr["color"] == "blue": + return 0.2 + else: + return 0.5 + + def edge_ins_cost(attr): + if attr["color"] == "blue": + return 0.4 + else: + return 1.0 + + assert ( + graph_edit_distance( + G1, + G2, + edge_subst_cost=edge_subst_cost, + edge_del_cost=edge_del_cost, + edge_ins_cost=edge_ins_cost, + ) + == 0.23 + ) + + def test_graph_edit_distance_upper_bound(self): + G1 = circular_ladder_graph(2) + G2 = circular_ladder_graph(6) + assert graph_edit_distance(G1, G2, upper_bound=5) is None + assert graph_edit_distance(G1, G2, upper_bound=24) == 22 + assert graph_edit_distance(G1, G2) == 22 + + def test_optimal_edit_paths(self): + G1 = path_graph(3) + G2 = cycle_graph(3) + paths, cost = optimal_edit_paths(G1, G2) + assert cost == 1 + assert len(paths) == 6 + + def canonical(vertex_path, edge_path): + return ( + tuple(sorted(vertex_path)), + tuple(sorted(edge_path, key=lambda x: (None in x, x))), + ) + + expected_paths = [ + ( + [(0, 0), (1, 1), (2, 2)], + [((0, 1), (0, 1)), ((1, 2), (1, 2)), (None, (0, 2))], + ), + ( + [(0, 0), (1, 2), (2, 1)], + [((0, 1), (0, 2)), ((1, 2), (1, 2)), (None, (0, 1))], + ), + ( + [(0, 1), (1, 0), (2, 2)], + [((0, 1), (0, 1)), ((1, 2), (0, 2)), (None, (1, 2))], + ), + ( + [(0, 1), (1, 2), (2, 0)], + [((0, 1), (1, 2)), ((1, 2), (0, 2)), (None, (0, 1))], + ), + ( + [(0, 2), (1, 0), (2, 1)], + [((0, 1), (0, 2)), ((1, 2), (0, 1)), (None, (1, 2))], + ), + ( + [(0, 2), (1, 1), (2, 0)], + [((0, 1), (1, 2)), ((1, 2), (0, 1)), (None, (0, 2))], + ), + ] + assert {canonical(*p) for p in paths} == {canonical(*p) for p in expected_paths} + + def test_optimize_graph_edit_distance(self): + G1 = circular_ladder_graph(2) + G2 = circular_ladder_graph(6) + bestcost = 1000 + for cost in optimize_graph_edit_distance(G1, G2): + assert cost < bestcost + bestcost = cost + assert bestcost == 22 + + # def test_graph_edit_distance_bigger(self): + # G1 = circular_ladder_graph(12) + # G2 = circular_ladder_graph(16) + # assert_equal(graph_edit_distance(G1, G2), 22) + + def test_selfloops(self): + G0 = nx.Graph() + G1 = nx.Graph() + G1.add_edges_from((("A", "A"), ("A", "B"))) + G2 = nx.Graph() + G2.add_edges_from((("A", "B"), ("B", "B"))) + G3 = nx.Graph() + G3.add_edges_from((("A", "A"), ("A", "B"), ("B", "B"))) + + assert graph_edit_distance(G0, G0) == 0 + assert graph_edit_distance(G0, G1) == 4 + assert graph_edit_distance(G1, G0) == 4 + assert graph_edit_distance(G0, G2) == 4 + assert graph_edit_distance(G2, G0) == 4 + assert graph_edit_distance(G0, G3) == 5 + assert graph_edit_distance(G3, G0) == 5 + + assert graph_edit_distance(G1, G1) == 0 + assert graph_edit_distance(G1, G2) == 0 + assert graph_edit_distance(G2, G1) == 0 + assert graph_edit_distance(G1, G3) == 1 + assert graph_edit_distance(G3, G1) == 1 + + assert graph_edit_distance(G2, G2) == 0 + assert graph_edit_distance(G2, G3) == 1 + assert graph_edit_distance(G3, G2) == 1 + + assert graph_edit_distance(G3, G3) == 0 + + def test_digraph(self): + G0 = nx.DiGraph() + G1 = nx.DiGraph() + G1.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("D", "A"))) + G2 = nx.DiGraph() + G2.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("A", "D"))) + G3 = nx.DiGraph() + G3.add_edges_from((("A", "B"), ("A", "C"), ("B", "D"), ("C", "D"))) + + assert graph_edit_distance(G0, G0) == 0 + assert graph_edit_distance(G0, G1) == 8 + assert graph_edit_distance(G1, G0) == 8 + assert graph_edit_distance(G0, G2) == 8 + assert graph_edit_distance(G2, G0) == 8 + assert graph_edit_distance(G0, G3) == 8 + assert graph_edit_distance(G3, G0) == 8 + + assert graph_edit_distance(G1, G1) == 0 + assert graph_edit_distance(G1, G2) == 2 + assert graph_edit_distance(G2, G1) == 2 + assert graph_edit_distance(G1, G3) == 4 + assert graph_edit_distance(G3, G1) == 4 + + assert graph_edit_distance(G2, G2) == 0 + assert graph_edit_distance(G2, G3) == 2 + assert graph_edit_distance(G3, G2) == 2 + + assert graph_edit_distance(G3, G3) == 0 + + def test_multigraph(self): + G0 = nx.MultiGraph() + G1 = nx.MultiGraph() + G1.add_edges_from((("A", "B"), ("B", "C"), ("A", "C"))) + G2 = nx.MultiGraph() + G2.add_edges_from((("A", "B"), ("B", "C"), ("B", "C"), ("A", "C"))) + G3 = nx.MultiGraph() + G3.add_edges_from((("A", "B"), ("B", "C"), ("A", "C"), ("A", "C"), ("A", "C"))) + + assert graph_edit_distance(G0, G0) == 0 + assert graph_edit_distance(G0, G1) == 6 + assert graph_edit_distance(G1, G0) == 6 + assert graph_edit_distance(G0, G2) == 7 + assert graph_edit_distance(G2, G0) == 7 + assert graph_edit_distance(G0, G3) == 8 + assert graph_edit_distance(G3, G0) == 8 + + assert graph_edit_distance(G1, G1) == 0 + assert graph_edit_distance(G1, G2) == 1 + assert graph_edit_distance(G2, G1) == 1 + assert graph_edit_distance(G1, G3) == 2 + assert graph_edit_distance(G3, G1) == 2 + + assert graph_edit_distance(G2, G2) == 0 + assert graph_edit_distance(G2, G3) == 1 + assert graph_edit_distance(G3, G2) == 1 + + assert graph_edit_distance(G3, G3) == 0 + + def test_multidigraph(self): + G1 = nx.MultiDiGraph() + G1.add_edges_from( + ( + ("hardware", "kernel"), + ("kernel", "hardware"), + ("kernel", "userspace"), + ("userspace", "kernel"), + ) + ) + G2 = nx.MultiDiGraph() + G2.add_edges_from( + ( + ("winter", "spring"), + ("spring", "summer"), + ("summer", "autumn"), + ("autumn", "winter"), + ) + ) + + assert graph_edit_distance(G1, G2) == 5 + assert graph_edit_distance(G2, G1) == 5 + + # by https://github.com/jfbeaumont + def testCopy(self): + G = nx.Graph() + G.add_node("A", label="A") + G.add_node("B", label="B") + G.add_edge("A", "B", label="a-b") + assert ( + graph_edit_distance(G, G.copy(), node_match=nmatch, edge_match=ematch) == 0 + ) + + def testSame(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_edge("A", "B", label="a-b") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 0 + + def testOneEdgeLabelDiff(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_edge("A", "B", label="bad") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1 + + def testOneNodeLabelDiff(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="Z") + G2.add_node("B", label="B") + G2.add_edge("A", "B", label="a-b") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1 + + def testOneExtraNode(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_edge("A", "B", label="a-b") + G2.add_node("C", label="C") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1 + + def testOneExtraEdge(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_node("C", label="C") + G1.add_node("C", label="C") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("A", "C", label="a-c") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1 + + def testOneExtraNodeAndEdge(self): + G1 = nx.Graph() + G1.add_node("A", label="A") + G1.add_node("B", label="B") + G1.add_edge("A", "B", label="a-b") + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("A", "C", label="a-c") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2 + + def testGraph1(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("D", label="D") + G2.add_node("E", label="E") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("B", "D", label="b-d") + G2.add_edge("D", "E", label="d-e") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 3 + + def testGraph2(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_node("D", label="D") + G2.add_node("E", label="E") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("B", "C", label="b-c") + G2.add_edge("C", "D", label="c-d") + G2.add_edge("C", "E", label="c-e") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 4 + + def testGraph3(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_node("D", label="D") + G2.add_node("E", label="E") + G2.add_node("F", label="F") + G2.add_node("G", label="G") + G2.add_edge("A", "C", label="a-c") + G2.add_edge("A", "D", label="a-d") + G2.add_edge("D", "E", label="d-e") + G2.add_edge("D", "F", label="d-f") + G2.add_edge("D", "G", label="d-g") + G2.add_edge("E", "B", label="e-b") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 12 + + def testGraph4(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_node("D", label="D") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("B", "C", label="b-c") + G2.add_edge("C", "D", label="c-d") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2 + + def testGraph4_a(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_node("D", label="D") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("B", "C", label="b-c") + G2.add_edge("A", "D", label="a-d") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2 + + def testGraph4_b(self): + G1 = getCanonical() + G2 = nx.Graph() + G2.add_node("A", label="A") + G2.add_node("B", label="B") + G2.add_node("C", label="C") + G2.add_node("D", label="D") + G2.add_edge("A", "B", label="a-b") + G2.add_edge("B", "C", label="b-c") + G2.add_edge("B", "D", label="bad") + assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1 + + # note: nx.simrank_similarity_numpy not included because returns np.array + simrank_algs = [ + nx.simrank_similarity, + nx.algorithms.similarity._simrank_similarity_python, + ] + + @pytest.mark.parametrize("simrank_similarity", simrank_algs) + def test_simrank_no_source_no_target(self, simrank_similarity): + G = nx.cycle_graph(5) + expected = { + 0: { + 0: 1, + 1: 0.3951219505902448, + 2: 0.5707317069281646, + 3: 0.5707317069281646, + 4: 0.3951219505902449, + }, + 1: { + 0: 0.3951219505902448, + 1: 1, + 2: 0.3951219505902449, + 3: 0.5707317069281646, + 4: 0.5707317069281646, + }, + 2: { + 0: 0.5707317069281646, + 1: 0.3951219505902449, + 2: 1, + 3: 0.3951219505902449, + 4: 0.5707317069281646, + }, + 3: { + 0: 0.5707317069281646, + 1: 0.5707317069281646, + 2: 0.3951219505902449, + 3: 1, + 4: 0.3951219505902449, + }, + 4: { + 0: 0.3951219505902449, + 1: 0.5707317069281646, + 2: 0.5707317069281646, + 3: 0.3951219505902449, + 4: 1, + }, + } + actual = simrank_similarity(G) + for k, v in expected.items(): + assert v == pytest.approx(actual[k], abs=1e-2) + + # For a DiGraph test, use the first graph from the paper cited in + # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126 + G = nx.DiGraph() + G.add_node(0, label="Univ") + G.add_node(1, label="ProfA") + G.add_node(2, label="ProfB") + G.add_node(3, label="StudentA") + G.add_node(4, label="StudentB") + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)]) + + expected = { + 0: {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443}, + 1: {0: 0.0, 1: 1, 2: 0.4135512472705618, 3: 0.0, 4: 0.10586911930126384}, + 2: { + 0: 0.1323363991265798, + 1: 0.4135512472705618, + 2: 1, + 3: 0.04234764772050554, + 4: 0.08822426608438655, + }, + 3: {0: 0.0, 1: 0.0, 2: 0.04234764772050554, 3: 1, 4: 0.3308409978164495}, + 4: { + 0: 0.03387811817640443, + 1: 0.10586911930126384, + 2: 0.08822426608438655, + 3: 0.3308409978164495, + 4: 1, + }, + } + # Use the importance_factor from the paper to get the same numbers. + actual = simrank_similarity(G, importance_factor=0.8) + for k, v in expected.items(): + assert v == pytest.approx(actual[k], abs=1e-2) + + @pytest.mark.parametrize("simrank_similarity", simrank_algs) + def test_simrank_source_no_target(self, simrank_similarity): + G = nx.cycle_graph(5) + expected = { + 0: 1, + 1: 0.3951219505902448, + 2: 0.5707317069281646, + 3: 0.5707317069281646, + 4: 0.3951219505902449, + } + actual = simrank_similarity(G, source=0) + assert expected == pytest.approx(actual, abs=1e-2) + + # For a DiGraph test, use the first graph from the paper cited in + # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126 + G = nx.DiGraph() + G.add_node(0, label="Univ") + G.add_node(1, label="ProfA") + G.add_node(2, label="ProfB") + G.add_node(3, label="StudentA") + G.add_node(4, label="StudentB") + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)]) + + expected = {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443} + # Use the importance_factor from the paper to get the same numbers. + actual = simrank_similarity(G, importance_factor=0.8, source=0) + assert expected == pytest.approx(actual, abs=1e-2) + + @pytest.mark.parametrize("simrank_similarity", simrank_algs) + def test_simrank_noninteger_nodes(self, simrank_similarity): + G = nx.cycle_graph(5) + G = nx.relabel_nodes(G, dict(enumerate("abcde"))) + expected = { + "a": 1, + "b": 0.3951219505902448, + "c": 0.5707317069281646, + "d": 0.5707317069281646, + "e": 0.3951219505902449, + } + actual = simrank_similarity(G, source="a") + assert expected == pytest.approx(actual, abs=1e-2) + + # For a DiGraph test, use the first graph from the paper cited in + # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126 + G = nx.DiGraph() + G.add_node(0, label="Univ") + G.add_node(1, label="ProfA") + G.add_node(2, label="ProfB") + G.add_node(3, label="StudentA") + G.add_node(4, label="StudentB") + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)]) + node_labels = dict(enumerate(nx.get_node_attributes(G, "label").values())) + G = nx.relabel_nodes(G, node_labels) + + expected = { + "Univ": 1, + "ProfA": 0.0, + "ProfB": 0.1323363991265798, + "StudentA": 0.0, + "StudentB": 0.03387811817640443, + } + # Use the importance_factor from the paper to get the same numbers. + actual = simrank_similarity(G, importance_factor=0.8, source="Univ") + assert expected == pytest.approx(actual, abs=1e-2) + + @pytest.mark.parametrize("simrank_similarity", simrank_algs) + def test_simrank_source_and_target(self, simrank_similarity): + G = nx.cycle_graph(5) + expected = 1 + actual = simrank_similarity(G, source=0, target=0) + assert expected == pytest.approx(actual, abs=1e-2) + + # For a DiGraph test, use the first graph from the paper cited in + # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126 + G = nx.DiGraph() + G.add_node(0, label="Univ") + G.add_node(1, label="ProfA") + G.add_node(2, label="ProfB") + G.add_node(3, label="StudentA") + G.add_node(4, label="StudentB") + G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)]) + + expected = 0.1323363991265798 + # Use the importance_factor from the paper to get the same numbers. + # Use the pair (0,2) because (0,0) and (0,1) have trivial results. + actual = simrank_similarity(G, importance_factor=0.8, source=0, target=2) + assert expected == pytest.approx(actual, abs=1e-5) + + @pytest.mark.parametrize("alg", simrank_algs) + def test_simrank_max_iterations(self, alg): + G = nx.cycle_graph(5) + pytest.raises(nx.ExceededMaxIterations, alg, G, max_iterations=10) + + def test_simrank_between_versions(self): + G = nx.cycle_graph(5) + # _python tolerance 1e-4 + expected_python_tol4 = { + 0: 1, + 1: 0.394512499239852, + 2: 0.5703550452791322, + 3: 0.5703550452791323, + 4: 0.394512499239852, + } + # _numpy tolerance 1e-4 + expected_numpy_tol4 = { + 0: 1.0, + 1: 0.3947180735764555, + 2: 0.570482097206368, + 3: 0.570482097206368, + 4: 0.3947180735764555, + } + actual = nx.simrank_similarity(G, source=0) + assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-7) + # versions differ at 1e-4 level but equal at 1e-3 + assert expected_python_tol4 != pytest.approx(actual, abs=1e-4) + assert expected_python_tol4 == pytest.approx(actual, abs=1e-3) + + actual = nx.similarity._simrank_similarity_python(G, source=0) + assert expected_python_tol4 == pytest.approx(actual, abs=1e-7) + # versions differ at 1e-4 level but equal at 1e-3 + assert expected_numpy_tol4 != pytest.approx(actual, abs=1e-4) + assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-3) + + def test_simrank_numpy_no_source_no_target(self): + G = nx.cycle_graph(5) + expected = np.array( + [ + [ + 1.0, + 0.3947180735764555, + 0.570482097206368, + 0.570482097206368, + 0.3947180735764555, + ], + [ + 0.3947180735764555, + 1.0, + 0.3947180735764555, + 0.570482097206368, + 0.570482097206368, + ], + [ + 0.570482097206368, + 0.3947180735764555, + 1.0, + 0.3947180735764555, + 0.570482097206368, + ], + [ + 0.570482097206368, + 0.570482097206368, + 0.3947180735764555, + 1.0, + 0.3947180735764555, + ], + [ + 0.3947180735764555, + 0.570482097206368, + 0.570482097206368, + 0.3947180735764555, + 1.0, + ], + ] + ) + actual = nx.similarity._simrank_similarity_numpy(G) + np.testing.assert_allclose(expected, actual, atol=1e-7) + + def test_simrank_numpy_source_no_target(self): + G = nx.cycle_graph(5) + expected = np.array( + [ + 1.0, + 0.3947180735764555, + 0.570482097206368, + 0.570482097206368, + 0.3947180735764555, + ] + ) + actual = nx.similarity._simrank_similarity_numpy(G, source=0) + np.testing.assert_allclose(expected, actual, atol=1e-7) + + def test_simrank_numpy_source_and_target(self): + G = nx.cycle_graph(5) + expected = 1.0 + actual = nx.similarity._simrank_similarity_numpy(G, source=0, target=0) + np.testing.assert_allclose(expected, actual, atol=1e-7) + + def test_panther_similarity_unweighted(self): + np.random.seed(42) + + G = nx.Graph() + G.add_edge(0, 1) + G.add_edge(0, 2) + G.add_edge(0, 3) + G.add_edge(1, 2) + G.add_edge(2, 4) + expected = {3: 0.5, 2: 0.5, 1: 0.5, 4: 0.125} + sim = nx.panther_similarity(G, 0, path_length=2) + assert sim == expected + + def test_panther_similarity_weighted(self): + np.random.seed(42) + + G = nx.Graph() + G.add_edge("v1", "v2", w=5) + G.add_edge("v1", "v3", w=1) + G.add_edge("v1", "v4", w=2) + G.add_edge("v2", "v3", w=0.1) + G.add_edge("v3", "v5", w=1) + expected = {"v3": 0.75, "v4": 0.5, "v2": 0.5, "v5": 0.25} + sim = nx.panther_similarity(G, "v1", path_length=2, weight="w") + assert sim == expected + + def test_generate_random_paths_unweighted(self): + np.random.seed(42) + + index_map = {} + num_paths = 10 + path_length = 2 + G = nx.Graph() + G.add_edge(0, 1) + G.add_edge(0, 2) + G.add_edge(0, 3) + G.add_edge(1, 2) + G.add_edge(2, 4) + paths = nx.generate_random_paths( + G, num_paths, path_length=path_length, index_map=index_map + ) + expected_paths = [ + [3, 0, 3], + [4, 2, 1], + [2, 1, 0], + [2, 0, 3], + [3, 0, 1], + [3, 0, 1], + [4, 2, 0], + [2, 1, 0], + [3, 0, 2], + [2, 1, 2], + ] + expected_map = { + 0: {0, 2, 3, 4, 5, 6, 7, 8}, + 1: {1, 2, 4, 5, 7, 9}, + 2: {1, 2, 3, 6, 7, 8, 9}, + 3: {0, 3, 4, 5, 8}, + 4: {1, 6}, + } + + assert expected_paths == list(paths) + assert expected_map == index_map + + def test_generate_random_paths_weighted(self): + np.random.seed(42) + + index_map = {} + num_paths = 10 + path_length = 6 + G = nx.Graph() + G.add_edge("a", "b", weight=0.6) + G.add_edge("a", "c", weight=0.2) + G.add_edge("c", "d", weight=0.1) + G.add_edge("c", "e", weight=0.7) + G.add_edge("c", "f", weight=0.9) + G.add_edge("a", "d", weight=0.3) + paths = nx.generate_random_paths( + G, num_paths, path_length=path_length, index_map=index_map + ) + + expected_paths = [ + ["d", "c", "f", "c", "d", "a", "b"], + ["e", "c", "f", "c", "f", "c", "e"], + ["d", "a", "b", "a", "b", "a", "c"], + ["b", "a", "d", "a", "b", "a", "b"], + ["d", "a", "b", "a", "b", "a", "d"], + ["d", "a", "b", "a", "b", "a", "c"], + ["d", "a", "b", "a", "b", "a", "b"], + ["f", "c", "f", "c", "f", "c", "e"], + ["d", "a", "d", "a", "b", "a", "b"], + ["e", "c", "f", "c", "e", "c", "d"], + ] + expected_map = { + "d": {0, 2, 3, 4, 5, 6, 8, 9}, + "c": {0, 1, 2, 5, 7, 9}, + "f": {0, 1, 9, 7}, + "a": {0, 2, 3, 4, 5, 6, 8}, + "b": {0, 2, 3, 4, 5, 6, 8}, + "e": {1, 9, 7}, + } + + assert expected_paths == list(paths) + assert expected_map == index_map + + def test_symmetry_with_custom_matching(self): + print("G2 is edge (a,b) and G3 is edge (a,a)") + print("but node order for G2 is (a,b) while for G3 it is (b,a)") + + a, b = "A", "B" + G2 = nx.Graph() + G2.add_nodes_from((a, b)) + G2.add_edges_from([(a, b)]) + G3 = nx.Graph() + G3.add_nodes_from((b, a)) + G3.add_edges_from([(a, a)]) + for G in (G2, G3): + for n in G: + G.nodes[n]["attr"] = n + for e in G.edges: + G.edges[e]["attr"] = e + match = lambda x, y: x == y + + print("Starting G2 to G3 GED calculation") + assert nx.graph_edit_distance(G2, G3, node_match=match, edge_match=match) == 1 + + print("Starting G3 to G2 GED calculation") + assert nx.graph_edit_distance(G3, G2, node_match=match, edge_match=match) == 1 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_simple_paths.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_simple_paths.py new file mode 100644 index 0000000000000000000000000000000000000000..ef9506c22b0ca06e5af62fc671586c4a4c506acb --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_simple_paths.py @@ -0,0 +1,769 @@ +import random + +import pytest + +import networkx as nx +from networkx import convert_node_labels_to_integers as cnlti +from networkx.algorithms.simple_paths import ( + _bidirectional_dijkstra, + _bidirectional_shortest_path, +) +from networkx.utils import arbitrary_element, pairwise + + +class TestIsSimplePath: + """Unit tests for the + :func:`networkx.algorithms.simple_paths.is_simple_path` function. + + """ + + def test_empty_list(self): + """Tests that the empty list is not a valid path, since there + should be a one-to-one correspondence between paths as lists of + nodes and paths as lists of edges. + + """ + G = nx.trivial_graph() + assert not nx.is_simple_path(G, []) + + def test_trivial_path(self): + """Tests that the trivial path, a path of length one, is + considered a simple path in a graph. + + """ + G = nx.trivial_graph() + assert nx.is_simple_path(G, [0]) + + def test_trivial_nonpath(self): + """Tests that a list whose sole element is an object not in the + graph is not considered a simple path. + + """ + G = nx.trivial_graph() + assert not nx.is_simple_path(G, ["not a node"]) + + def test_simple_path(self): + G = nx.path_graph(2) + assert nx.is_simple_path(G, [0, 1]) + + def test_non_simple_path(self): + G = nx.path_graph(2) + assert not nx.is_simple_path(G, [0, 1, 0]) + + def test_cycle(self): + G = nx.cycle_graph(3) + assert not nx.is_simple_path(G, [0, 1, 2, 0]) + + def test_missing_node(self): + G = nx.path_graph(2) + assert not nx.is_simple_path(G, [0, 2]) + + def test_missing_starting_node(self): + G = nx.path_graph(2) + assert not nx.is_simple_path(G, [2, 0]) + + def test_directed_path(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + assert nx.is_simple_path(G, [0, 1, 2]) + + def test_directed_non_path(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + assert not nx.is_simple_path(G, [2, 1, 0]) + + def test_directed_cycle(self): + G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + assert not nx.is_simple_path(G, [0, 1, 2, 0]) + + def test_multigraph(self): + G = nx.MultiGraph([(0, 1), (0, 1)]) + assert nx.is_simple_path(G, [0, 1]) + + def test_multidigraph(self): + G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 0), (1, 0)]) + assert nx.is_simple_path(G, [0, 1]) + + +# Tests for all_simple_paths +def test_all_simple_paths(): + G = nx.path_graph(4) + paths = nx.all_simple_paths(G, 0, 3) + assert {tuple(p) for p in paths} == {(0, 1, 2, 3)} + + +def test_all_simple_paths_with_two_targets_emits_two_paths(): + G = nx.path_graph(4) + G.add_edge(2, 4) + paths = nx.all_simple_paths(G, 0, [3, 4]) + assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)} + + +def test_digraph_all_simple_paths_with_two_targets_emits_two_paths(): + G = nx.path_graph(4, create_using=nx.DiGraph()) + G.add_edge(2, 4) + paths = nx.all_simple_paths(G, 0, [3, 4]) + assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)} + + +def test_all_simple_paths_with_two_targets_cutoff(): + G = nx.path_graph(4) + G.add_edge(2, 4) + paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3) + assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)} + + +def test_digraph_all_simple_paths_with_two_targets_cutoff(): + G = nx.path_graph(4, create_using=nx.DiGraph()) + G.add_edge(2, 4) + paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3) + assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)} + + +def test_all_simple_paths_with_two_targets_in_line_emits_two_paths(): + G = nx.path_graph(4) + paths = nx.all_simple_paths(G, 0, [2, 3]) + assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 2, 3)} + + +def test_all_simple_paths_ignores_cycle(): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(1, 3) + paths = nx.all_simple_paths(G, 0, 3) + assert {tuple(p) for p in paths} == {(0, 1, 3)} + + +def test_all_simple_paths_with_two_targets_inside_cycle_emits_two_paths(): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(1, 3) + paths = nx.all_simple_paths(G, 0, [2, 3]) + assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 3)} + + +def test_all_simple_paths_source_target(): + G = nx.path_graph(4) + paths = nx.all_simple_paths(G, 1, 1) + assert list(paths) == [] + + +def test_all_simple_paths_cutoff(): + G = nx.complete_graph(4) + paths = nx.all_simple_paths(G, 0, 1, cutoff=1) + assert {tuple(p) for p in paths} == {(0, 1)} + paths = nx.all_simple_paths(G, 0, 1, cutoff=2) + assert {tuple(p) for p in paths} == {(0, 1), (0, 2, 1), (0, 3, 1)} + + +def test_all_simple_paths_on_non_trivial_graph(): + """you may need to draw this graph to make sure it is reasonable""" + G = nx.path_graph(5, create_using=nx.DiGraph()) + G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)]) + paths = nx.all_simple_paths(G, 1, [2, 3]) + assert {tuple(p) for p in paths} == { + (1, 2), + (1, 3, 4, 2), + (1, 5, 4, 2), + (1, 3), + (1, 2, 3), + (1, 5, 4, 3), + (1, 5, 4, 2, 3), + } + paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=3) + assert {tuple(p) for p in paths} == { + (1, 2), + (1, 3, 4, 2), + (1, 5, 4, 2), + (1, 3), + (1, 2, 3), + (1, 5, 4, 3), + } + paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=2) + assert {tuple(p) for p in paths} == {(1, 2), (1, 3), (1, 2, 3)} + + +def test_all_simple_paths_multigraph(): + G = nx.MultiGraph([(1, 2), (1, 2)]) + paths = nx.all_simple_paths(G, 1, 1) + assert list(paths) == [] + nx.add_path(G, [3, 1, 10, 2]) + paths = list(nx.all_simple_paths(G, 1, 2)) + assert len(paths) == 3 + assert {tuple(p) for p in paths} == {(1, 2), (1, 2), (1, 10, 2)} + + +def test_all_simple_paths_multigraph_with_cutoff(): + G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)]) + paths = list(nx.all_simple_paths(G, 1, 2, cutoff=1)) + assert len(paths) == 2 + assert {tuple(p) for p in paths} == {(1, 2), (1, 2)} + + +def test_all_simple_paths_directed(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [3, 2, 1]) + paths = nx.all_simple_paths(G, 1, 3) + assert {tuple(p) for p in paths} == {(1, 2, 3)} + + +def test_all_simple_paths_empty(): + G = nx.path_graph(4) + paths = nx.all_simple_paths(G, 0, 3, cutoff=2) + assert list(paths) == [] + + +def test_all_simple_paths_corner_cases(): + assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 0)) == [] + assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 1)) == [] + assert list(nx.all_simple_paths(nx.path_graph(9), 0, 8, 0)) == [] + + +def hamiltonian_path(G, source): + source = arbitrary_element(G) + neighbors = set(G[source]) - {source} + n = len(G) + for target in neighbors: + for path in nx.all_simple_paths(G, source, target): + if len(path) == n: + yield path + + +def test_hamiltonian_path(): + from itertools import permutations + + G = nx.complete_graph(4) + paths = [list(p) for p in hamiltonian_path(G, 0)] + exact = [[0] + list(p) for p in permutations([1, 2, 3], 3)] + assert sorted(paths) == sorted(exact) + + +def test_cutoff_zero(): + G = nx.complete_graph(4) + paths = nx.all_simple_paths(G, 0, 3, cutoff=0) + assert [list(p) for p in paths] == [] + paths = nx.all_simple_paths(nx.MultiGraph(G), 0, 3, cutoff=0) + assert [list(p) for p in paths] == [] + + +def test_source_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.all_simple_paths(nx.MultiGraph(G), 0, 3)) + + +def test_target_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.all_simple_paths(nx.MultiGraph(G), 1, 4)) + + +# Tests for all_simple_edge_paths +def test_all_simple_edge_paths(): + G = nx.path_graph(4) + paths = nx.all_simple_edge_paths(G, 0, 3) + assert {tuple(p) for p in paths} == {((0, 1), (1, 2), (2, 3))} + + +def test_all_simple_edge_paths_with_two_targets_emits_two_paths(): + G = nx.path_graph(4) + G.add_edge(2, 4) + paths = nx.all_simple_edge_paths(G, 0, [3, 4]) + assert {tuple(p) for p in paths} == { + ((0, 1), (1, 2), (2, 3)), + ((0, 1), (1, 2), (2, 4)), + } + + +def test_digraph_all_simple_edge_paths_with_two_targets_emits_two_paths(): + G = nx.path_graph(4, create_using=nx.DiGraph()) + G.add_edge(2, 4) + paths = nx.all_simple_edge_paths(G, 0, [3, 4]) + assert {tuple(p) for p in paths} == { + ((0, 1), (1, 2), (2, 3)), + ((0, 1), (1, 2), (2, 4)), + } + + +def test_all_simple_edge_paths_with_two_targets_cutoff(): + G = nx.path_graph(4) + G.add_edge(2, 4) + paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3) + assert {tuple(p) for p in paths} == { + ((0, 1), (1, 2), (2, 3)), + ((0, 1), (1, 2), (2, 4)), + } + + +def test_digraph_all_simple_edge_paths_with_two_targets_cutoff(): + G = nx.path_graph(4, create_using=nx.DiGraph()) + G.add_edge(2, 4) + paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3) + assert {tuple(p) for p in paths} == { + ((0, 1), (1, 2), (2, 3)), + ((0, 1), (1, 2), (2, 4)), + } + + +def test_all_simple_edge_paths_with_two_targets_in_line_emits_two_paths(): + G = nx.path_graph(4) + paths = nx.all_simple_edge_paths(G, 0, [2, 3]) + assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 2), (2, 3))} + + +def test_all_simple_edge_paths_ignores_cycle(): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(1, 3) + paths = nx.all_simple_edge_paths(G, 0, 3) + assert {tuple(p) for p in paths} == {((0, 1), (1, 3))} + + +def test_all_simple_edge_paths_with_two_targets_inside_cycle_emits_two_paths(): + G = nx.cycle_graph(3, create_using=nx.DiGraph()) + G.add_edge(1, 3) + paths = nx.all_simple_edge_paths(G, 0, [2, 3]) + assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 3))} + + +def test_all_simple_edge_paths_source_target(): + G = nx.path_graph(4) + paths = nx.all_simple_edge_paths(G, 1, 1) + assert list(paths) == [] + + +def test_all_simple_edge_paths_cutoff(): + G = nx.complete_graph(4) + paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=1) + assert {tuple(p) for p in paths} == {((0, 1),)} + paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=2) + assert {tuple(p) for p in paths} == {((0, 1),), ((0, 2), (2, 1)), ((0, 3), (3, 1))} + + +def test_all_simple_edge_paths_on_non_trivial_graph(): + """you may need to draw this graph to make sure it is reasonable""" + G = nx.path_graph(5, create_using=nx.DiGraph()) + G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)]) + paths = nx.all_simple_edge_paths(G, 1, [2, 3]) + assert {tuple(p) for p in paths} == { + ((1, 2),), + ((1, 3), (3, 4), (4, 2)), + ((1, 5), (5, 4), (4, 2)), + ((1, 3),), + ((1, 2), (2, 3)), + ((1, 5), (5, 4), (4, 3)), + ((1, 5), (5, 4), (4, 2), (2, 3)), + } + paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=3) + assert {tuple(p) for p in paths} == { + ((1, 2),), + ((1, 3), (3, 4), (4, 2)), + ((1, 5), (5, 4), (4, 2)), + ((1, 3),), + ((1, 2), (2, 3)), + ((1, 5), (5, 4), (4, 3)), + } + paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=2) + assert {tuple(p) for p in paths} == {((1, 2),), ((1, 3),), ((1, 2), (2, 3))} + + +def test_all_simple_edge_paths_multigraph(): + G = nx.MultiGraph([(1, 2), (1, 2)]) + paths = nx.all_simple_edge_paths(G, 1, 1) + assert list(paths) == [] + nx.add_path(G, [3, 1, 10, 2]) + paths = list(nx.all_simple_edge_paths(G, 1, 2)) + assert len(paths) == 3 + assert {tuple(p) for p in paths} == { + ((1, 2, 0),), + ((1, 2, 1),), + ((1, 10, 0), (10, 2, 0)), + } + + +def test_all_simple_edge_paths_multigraph_with_cutoff(): + G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)]) + paths = list(nx.all_simple_edge_paths(G, 1, 2, cutoff=1)) + assert len(paths) == 2 + assert {tuple(p) for p in paths} == {((1, 2, 0),), ((1, 2, 1),)} + + +def test_all_simple_edge_paths_directed(): + G = nx.DiGraph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [3, 2, 1]) + paths = nx.all_simple_edge_paths(G, 1, 3) + assert {tuple(p) for p in paths} == {((1, 2), (2, 3))} + + +def test_all_simple_edge_paths_empty(): + G = nx.path_graph(4) + paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=2) + assert list(paths) == [] + + +def test_all_simple_edge_paths_corner_cases(): + assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 0)) == [] + assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 1)) == [] + assert list(nx.all_simple_edge_paths(nx.path_graph(9), 0, 8, 0)) == [] + + +def hamiltonian_edge_path(G, source): + source = arbitrary_element(G) + neighbors = set(G[source]) - {source} + n = len(G) + for target in neighbors: + for path in nx.all_simple_edge_paths(G, source, target): + if len(path) == n - 1: + yield path + + +def test_hamiltonian__edge_path(): + from itertools import permutations + + G = nx.complete_graph(4) + paths = hamiltonian_edge_path(G, 0) + exact = [list(pairwise([0] + list(p))) for p in permutations([1, 2, 3], 3)] + assert sorted(exact) == sorted(paths) + + +def test_edge_cutoff_zero(): + G = nx.complete_graph(4) + paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=0) + assert [list(p) for p in paths] == [] + paths = nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3, cutoff=0) + assert [list(p) for p in paths] == [] + + +def test_edge_source_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3)) + + +def test_edge_target_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.all_simple_edge_paths(nx.MultiGraph(G), 1, 4)) + + +# Tests for shortest_simple_paths +def test_shortest_simple_paths(): + G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + paths = nx.shortest_simple_paths(G, 1, 12) + assert next(paths) == [1, 2, 3, 4, 8, 12] + assert next(paths) == [1, 5, 6, 7, 8, 12] + assert [len(path) for path in nx.shortest_simple_paths(G, 1, 12)] == sorted( + len(path) for path in nx.all_simple_paths(G, 1, 12) + ) + + +def test_shortest_simple_paths_directed(): + G = nx.cycle_graph(7, create_using=nx.DiGraph()) + paths = nx.shortest_simple_paths(G, 0, 3) + assert list(paths) == [[0, 1, 2, 3]] + + +def test_shortest_simple_paths_directed_with_weight_function(): + def cost(u, v, x): + return 1 + + G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted") + paths = nx.shortest_simple_paths(G, 1, 12) + assert next(paths) == [1, 2, 3, 4, 8, 12] + assert next(paths) == [1, 5, 6, 7, 8, 12] + assert [ + len(path) for path in nx.shortest_simple_paths(G, 1, 12, weight=cost) + ] == sorted(len(path) for path in nx.all_simple_paths(G, 1, 12)) + + +def test_shortest_simple_paths_with_weight_function(): + def cost(u, v, x): + return 1 + + G = nx.cycle_graph(7, create_using=nx.DiGraph()) + paths = nx.shortest_simple_paths(G, 0, 3, weight=cost) + assert list(paths) == [[0, 1, 2, 3]] + + +def test_Greg_Bernstein(): + g1 = nx.Graph() + g1.add_nodes_from(["N0", "N1", "N2", "N3", "N4"]) + g1.add_edge("N4", "N1", weight=10.0, capacity=50, name="L5") + g1.add_edge("N4", "N0", weight=7.0, capacity=40, name="L4") + g1.add_edge("N0", "N1", weight=10.0, capacity=45, name="L1") + g1.add_edge("N3", "N0", weight=10.0, capacity=50, name="L0") + g1.add_edge("N2", "N3", weight=12.0, capacity=30, name="L2") + g1.add_edge("N1", "N2", weight=15.0, capacity=42, name="L3") + solution = [["N1", "N0", "N3"], ["N1", "N2", "N3"], ["N1", "N4", "N0", "N3"]] + result = list(nx.shortest_simple_paths(g1, "N1", "N3", weight="weight")) + assert result == solution + + +def test_weighted_shortest_simple_path(): + def cost_func(path): + return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:])) + + G = nx.complete_graph(5) + weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()} + nx.set_edge_attributes(G, weight, "weight") + cost = 0 + for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"): + this_cost = cost_func(path) + assert cost <= this_cost + cost = this_cost + + +def test_directed_weighted_shortest_simple_path(): + def cost_func(path): + return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:])) + + G = nx.complete_graph(5) + G = G.to_directed() + weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()} + nx.set_edge_attributes(G, weight, "weight") + cost = 0 + for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"): + this_cost = cost_func(path) + assert cost <= this_cost + cost = this_cost + + +def test_weighted_shortest_simple_path_issue2427(): + G = nx.Graph() + G.add_edge("IN", "OUT", weight=2) + G.add_edge("IN", "A", weight=1) + G.add_edge("IN", "B", weight=2) + G.add_edge("B", "OUT", weight=2) + assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [ + ["IN", "OUT"], + ["IN", "B", "OUT"], + ] + G = nx.Graph() + G.add_edge("IN", "OUT", weight=10) + G.add_edge("IN", "A", weight=1) + G.add_edge("IN", "B", weight=1) + G.add_edge("B", "OUT", weight=1) + assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [ + ["IN", "B", "OUT"], + ["IN", "OUT"], + ] + + +def test_directed_weighted_shortest_simple_path_issue2427(): + G = nx.DiGraph() + G.add_edge("IN", "OUT", weight=2) + G.add_edge("IN", "A", weight=1) + G.add_edge("IN", "B", weight=2) + G.add_edge("B", "OUT", weight=2) + assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [ + ["IN", "OUT"], + ["IN", "B", "OUT"], + ] + G = nx.DiGraph() + G.add_edge("IN", "OUT", weight=10) + G.add_edge("IN", "A", weight=1) + G.add_edge("IN", "B", weight=1) + G.add_edge("B", "OUT", weight=1) + assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [ + ["IN", "B", "OUT"], + ["IN", "OUT"], + ] + + +def test_weight_name(): + G = nx.cycle_graph(7) + nx.set_edge_attributes(G, 1, "weight") + nx.set_edge_attributes(G, 1, "foo") + G.adj[1][2]["foo"] = 7 + paths = list(nx.shortest_simple_paths(G, 0, 3, weight="foo")) + solution = [[0, 6, 5, 4, 3], [0, 1, 2, 3]] + assert paths == solution + + +def test_ssp_source_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.shortest_simple_paths(G, 0, 3)) + + +def test_ssp_target_missing(): + with pytest.raises(nx.NodeNotFound): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + list(nx.shortest_simple_paths(G, 1, 4)) + + +def test_ssp_multigraph(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.MultiGraph() + nx.add_path(G, [1, 2, 3]) + list(nx.shortest_simple_paths(G, 1, 4)) + + +def test_ssp_source_missing2(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [0, 1, 2]) + nx.add_path(G, [3, 4, 5]) + list(nx.shortest_simple_paths(G, 0, 3)) + + +def test_bidirectional_shortest_path_restricted_cycle(): + cycle = nx.cycle_graph(7) + length, path = _bidirectional_shortest_path(cycle, 0, 3) + assert path == [0, 1, 2, 3] + length, path = _bidirectional_shortest_path(cycle, 0, 3, ignore_nodes=[1]) + assert path == [0, 6, 5, 4, 3] + + +def test_bidirectional_shortest_path_restricted_wheel(): + wheel = nx.wheel_graph(6) + length, path = _bidirectional_shortest_path(wheel, 1, 3) + assert path in [[1, 0, 3], [1, 2, 3]] + length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0]) + assert path == [1, 2, 3] + length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0, 2]) + assert path == [1, 5, 4, 3] + length, path = _bidirectional_shortest_path( + wheel, 1, 3, ignore_edges=[(1, 0), (5, 0), (2, 3)] + ) + assert path in [[1, 2, 0, 3], [1, 5, 4, 3]] + + +def test_bidirectional_shortest_path_restricted_directed_cycle(): + directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + length, path = _bidirectional_shortest_path(directed_cycle, 0, 3) + assert path == [0, 1, 2, 3] + pytest.raises( + nx.NetworkXNoPath, + _bidirectional_shortest_path, + directed_cycle, + 0, + 3, + ignore_nodes=[1], + ) + length, path = _bidirectional_shortest_path( + directed_cycle, 0, 3, ignore_edges=[(2, 1)] + ) + assert path == [0, 1, 2, 3] + pytest.raises( + nx.NetworkXNoPath, + _bidirectional_shortest_path, + directed_cycle, + 0, + 3, + ignore_edges=[(1, 2)], + ) + + +def test_bidirectional_shortest_path_ignore(): + G = nx.Graph() + nx.add_path(G, [1, 2]) + nx.add_path(G, [1, 3]) + nx.add_path(G, [1, 4]) + pytest.raises( + nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1] + ) + pytest.raises( + nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[2] + ) + G = nx.Graph() + nx.add_path(G, [1, 3]) + nx.add_path(G, [1, 4]) + nx.add_path(G, [3, 2]) + pytest.raises( + nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1, 2] + ) + + +def validate_path(G, s, t, soln_len, path): + assert path[0] == s + assert path[-1] == t + assert soln_len == sum( + G[u][v].get("weight", 1) for u, v in zip(path[:-1], path[1:]) + ) + + +def validate_length_path(G, s, t, soln_len, length, path): + assert soln_len == length + validate_path(G, s, t, length, path) + + +def test_bidirectional_dijkstra_restricted(): + XG = nx.DiGraph() + XG.add_weighted_edges_from( + [ + ("s", "u", 10), + ("s", "x", 5), + ("u", "v", 1), + ("u", "x", 2), + ("v", "y", 1), + ("x", "u", 3), + ("x", "v", 5), + ("x", "y", 2), + ("y", "s", 7), + ("y", "v", 6), + ] + ) + + XG3 = nx.Graph() + XG3.add_weighted_edges_from( + [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]] + ) + validate_length_path(XG, "s", "v", 9, *_bidirectional_dijkstra(XG, "s", "v")) + validate_length_path( + XG, "s", "v", 10, *_bidirectional_dijkstra(XG, "s", "v", ignore_nodes=["u"]) + ) + validate_length_path( + XG, + "s", + "v", + 11, + *_bidirectional_dijkstra(XG, "s", "v", ignore_edges=[("s", "x")]), + ) + pytest.raises( + nx.NetworkXNoPath, + _bidirectional_dijkstra, + XG, + "s", + "v", + ignore_nodes=["u"], + ignore_edges=[("s", "x")], + ) + validate_length_path(XG3, 0, 3, 15, *_bidirectional_dijkstra(XG3, 0, 3)) + validate_length_path( + XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_nodes=[1]) + ) + validate_length_path( + XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_edges=[(2, 3)]) + ) + pytest.raises( + nx.NetworkXNoPath, + _bidirectional_dijkstra, + XG3, + 0, + 3, + ignore_nodes=[1], + ignore_edges=[(5, 4)], + ) + + +def test_bidirectional_dijkstra_no_path(): + with pytest.raises(nx.NetworkXNoPath): + G = nx.Graph() + nx.add_path(G, [1, 2, 3]) + nx.add_path(G, [4, 5, 6]) + _bidirectional_dijkstra(G, 1, 6) + + +def test_bidirectional_dijkstra_ignore(): + G = nx.Graph() + nx.add_path(G, [1, 2, 10]) + nx.add_path(G, [1, 3, 10]) + pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1]) + pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[2]) + pytest.raises( + nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1, 2] + ) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smallworld.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smallworld.py new file mode 100644 index 0000000000000000000000000000000000000000..d115dd99b796fc256341f1e8ff75fd4bc01b9b17 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smallworld.py @@ -0,0 +1,78 @@ +import pytest + +pytest.importorskip("numpy") + +import random + +import networkx as nx +from networkx import lattice_reference, omega, random_reference, sigma + +rng = 42 + + +def test_random_reference(): + G = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) + Gr = random_reference(G, niter=1, seed=rng) + C = nx.average_clustering(G) + Cr = nx.average_clustering(Gr) + assert C > Cr + + with pytest.raises(nx.NetworkXError): + next(random_reference(nx.Graph())) + with pytest.raises(nx.NetworkXNotImplemented): + next(random_reference(nx.DiGraph())) + + H = nx.Graph(((0, 1), (2, 3))) + Hl = random_reference(H, niter=1, seed=rng) + + +def test_lattice_reference(): + G = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) + Gl = lattice_reference(G, niter=1, seed=rng) + L = nx.average_shortest_path_length(G) + Ll = nx.average_shortest_path_length(Gl) + assert Ll > L + + pytest.raises(nx.NetworkXError, lattice_reference, nx.Graph()) + pytest.raises(nx.NetworkXNotImplemented, lattice_reference, nx.DiGraph()) + + H = nx.Graph(((0, 1), (2, 3))) + Hl = lattice_reference(H, niter=1) + + +def test_sigma(): + Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) + Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) + sigmas = sigma(Gs, niter=1, nrand=2, seed=rng) + sigmar = sigma(Gr, niter=1, nrand=2, seed=rng) + assert sigmar < sigmas + + +def test_omega(): + Gl = nx.connected_watts_strogatz_graph(50, 6, 0, seed=rng) + Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng) + Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng) + omegal = omega(Gl, niter=1, nrand=1, seed=rng) + omegar = omega(Gr, niter=1, nrand=1, seed=rng) + omegas = omega(Gs, niter=1, nrand=1, seed=rng) + assert omegal < omegas and omegas < omegar + + # Test that omega lies within the [-1, 1] bounds + G_barbell = nx.barbell_graph(5, 1) + G_karate = nx.karate_club_graph() + + omega_barbell = nx.omega(G_barbell) + omega_karate = nx.omega(G_karate, nrand=2) + + omegas = (omegal, omegar, omegas, omega_barbell, omega_karate) + + for o in omegas: + assert -1 <= o <= 1 + + +@pytest.mark.parametrize("f", (nx.random_reference, nx.lattice_reference)) +def test_graph_no_edges(f): + G = nx.Graph() + G.add_nodes_from([0, 1, 2, 3]) + with pytest.raises(nx.NetworkXError, match="Graph has fewer that 2 edges"): + f(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smetric.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smetric.py new file mode 100644 index 0000000000000000000000000000000000000000..29389a7587264792b8b48186eae1c229178f3330 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_smetric.py @@ -0,0 +1,36 @@ +import warnings + +import pytest + +import networkx as nx + + +def test_smetric(): + g = nx.Graph() + g.add_edge(1, 2) + g.add_edge(2, 3) + g.add_edge(2, 4) + g.add_edge(1, 4) + sm = nx.s_metric(g, normalized=False) + assert sm == 19.0 + + +# NOTE: Tests below to be deleted when deprecation of `normalized` kwarg expires + + +def test_normalized_deprecation_warning(): + """Test that a deprecation warning is raised when s_metric is called with + a `normalized` kwarg.""" + G = nx.cycle_graph(7) + # No warning raised when called without kwargs (future behavior) + with warnings.catch_warnings(): + warnings.simplefilter("error") # Fail the test if warning caught + assert nx.s_metric(G) == 28 + + # Deprecation warning + with pytest.deprecated_call(): + nx.s_metric(G, normalized=True) + + # Make sure you get standard Python behavior when unrecognized keyword provided + with pytest.raises(TypeError): + nx.s_metric(G, normalize=True) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_sparsifiers.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_sparsifiers.py new file mode 100644 index 0000000000000000000000000000000000000000..78cabceed0102bf2ffe01d8675102c1ae85efac2 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_sparsifiers.py @@ -0,0 +1,137 @@ +"""Unit tests for the sparsifier computation functions.""" +import pytest + +import networkx as nx +from networkx.utils import py_random_state + +_seed = 2 + + +def _test_spanner(G, spanner, stretch, weight=None): + """Test whether a spanner is valid. + + This function tests whether the given spanner is a subgraph of the + given graph G with the same node set. It also tests for all shortest + paths whether they adhere to the given stretch. + + Parameters + ---------- + G : NetworkX graph + The original graph for which the spanner was constructed. + + spanner : NetworkX graph + The spanner to be tested. + + stretch : float + The proclaimed stretch of the spanner. + + weight : object + The edge attribute to use as distance. + """ + # check node set + assert set(G.nodes()) == set(spanner.nodes()) + + # check edge set and weights + for u, v in spanner.edges(): + assert G.has_edge(u, v) + if weight: + assert spanner[u][v][weight] == G[u][v][weight] + + # check connectivity and stretch + original_length = dict(nx.shortest_path_length(G, weight=weight)) + spanner_length = dict(nx.shortest_path_length(spanner, weight=weight)) + for u in G.nodes(): + for v in G.nodes(): + if u in original_length and v in original_length[u]: + assert spanner_length[u][v] <= stretch * original_length[u][v] + + +@py_random_state(1) +def _assign_random_weights(G, seed=None): + """Assigns random weights to the edges of a graph. + + Parameters + ---------- + + G : NetworkX graph + The original graph for which the spanner was constructed. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + """ + for u, v in G.edges(): + G[u][v]["weight"] = seed.random() + + +def test_spanner_trivial(): + """Test a trivial spanner with stretch 1.""" + G = nx.complete_graph(20) + spanner = nx.spanner(G, 1, seed=_seed) + + for u, v in G.edges: + assert spanner.has_edge(u, v) + + +def test_spanner_unweighted_complete_graph(): + """Test spanner construction on a complete unweighted graph.""" + G = nx.complete_graph(20) + + spanner = nx.spanner(G, 4, seed=_seed) + _test_spanner(G, spanner, 4) + + spanner = nx.spanner(G, 10, seed=_seed) + _test_spanner(G, spanner, 10) + + +def test_spanner_weighted_complete_graph(): + """Test spanner construction on a complete weighted graph.""" + G = nx.complete_graph(20) + _assign_random_weights(G, seed=_seed) + + spanner = nx.spanner(G, 4, weight="weight", seed=_seed) + _test_spanner(G, spanner, 4, weight="weight") + + spanner = nx.spanner(G, 10, weight="weight", seed=_seed) + _test_spanner(G, spanner, 10, weight="weight") + + +def test_spanner_unweighted_gnp_graph(): + """Test spanner construction on an unweighted gnp graph.""" + G = nx.gnp_random_graph(20, 0.4, seed=_seed) + + spanner = nx.spanner(G, 4, seed=_seed) + _test_spanner(G, spanner, 4) + + spanner = nx.spanner(G, 10, seed=_seed) + _test_spanner(G, spanner, 10) + + +def test_spanner_weighted_gnp_graph(): + """Test spanner construction on an weighted gnp graph.""" + G = nx.gnp_random_graph(20, 0.4, seed=_seed) + _assign_random_weights(G, seed=_seed) + + spanner = nx.spanner(G, 4, weight="weight", seed=_seed) + _test_spanner(G, spanner, 4, weight="weight") + + spanner = nx.spanner(G, 10, weight="weight", seed=_seed) + _test_spanner(G, spanner, 10, weight="weight") + + +def test_spanner_unweighted_disconnected_graph(): + """Test spanner construction on a disconnected graph.""" + G = nx.disjoint_union(nx.complete_graph(10), nx.complete_graph(10)) + + spanner = nx.spanner(G, 4, seed=_seed) + _test_spanner(G, spanner, 4) + + spanner = nx.spanner(G, 10, seed=_seed) + _test_spanner(G, spanner, 10) + + +def test_spanner_invalid_stretch(): + """Check whether an invalid stretch is caught.""" + with pytest.raises(ValueError): + G = nx.empty_graph() + nx.spanner(G, 0) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_structuralholes.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_structuralholes.py new file mode 100644 index 0000000000000000000000000000000000000000..6f92baa4f324595b747d4250611c37b807a4cbbf --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_structuralholes.py @@ -0,0 +1,139 @@ +"""Unit tests for the :mod:`networkx.algorithms.structuralholes` module.""" +import math + +import pytest + +import networkx as nx +from networkx.classes.tests import dispatch_interface + + +class TestStructuralHoles: + """Unit tests for computing measures of structural holes. + + The expected values for these functions were originally computed using the + proprietary software `UCINET`_ and the free software `IGraph`_ , and then + computed by hand to make sure that the results are correct. + + .. _UCINET: https://sites.google.com/site/ucinetsoftware/home + .. _IGraph: http://igraph.org/ + + """ + + def setup_method(self): + self.D = nx.DiGraph() + self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)]) + self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1} + # Example from http://www.analytictech.com/connections/v20(1)/holes.htm + self.G = nx.Graph() + self.G.add_edges_from( + [ + ("A", "B"), + ("A", "F"), + ("A", "G"), + ("A", "E"), + ("E", "G"), + ("F", "G"), + ("B", "G"), + ("B", "D"), + ("D", "G"), + ("G", "C"), + ] + ) + self.G_weights = { + ("A", "B"): 2, + ("A", "F"): 3, + ("A", "G"): 5, + ("A", "E"): 2, + ("E", "G"): 8, + ("F", "G"): 3, + ("B", "G"): 4, + ("B", "D"): 1, + ("D", "G"): 3, + ("G", "C"): 10, + } + + # This additionally tests the @nx._dispatch mechanism, treating + # nx.mutual_weight as if it were a re-implementation from another package + @pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert]) + def test_constraint_directed(self, wrapper): + constraint = nx.constraint(wrapper(self.D)) + assert constraint[0] == pytest.approx(1.003, abs=1e-3) + assert constraint[1] == pytest.approx(1.003, abs=1e-3) + assert constraint[2] == pytest.approx(1.389, abs=1e-3) + + def test_effective_size_directed(self): + effective_size = nx.effective_size(self.D) + assert effective_size[0] == pytest.approx(1.167, abs=1e-3) + assert effective_size[1] == pytest.approx(1.167, abs=1e-3) + assert effective_size[2] == pytest.approx(1, abs=1e-3) + + def test_constraint_weighted_directed(self): + D = self.D.copy() + nx.set_edge_attributes(D, self.D_weights, "weight") + constraint = nx.constraint(D, weight="weight") + assert constraint[0] == pytest.approx(0.840, abs=1e-3) + assert constraint[1] == pytest.approx(1.143, abs=1e-3) + assert constraint[2] == pytest.approx(1.378, abs=1e-3) + + def test_effective_size_weighted_directed(self): + D = self.D.copy() + nx.set_edge_attributes(D, self.D_weights, "weight") + effective_size = nx.effective_size(D, weight="weight") + assert effective_size[0] == pytest.approx(1.567, abs=1e-3) + assert effective_size[1] == pytest.approx(1.083, abs=1e-3) + assert effective_size[2] == pytest.approx(1, abs=1e-3) + + def test_constraint_undirected(self): + constraint = nx.constraint(self.G) + assert constraint["G"] == pytest.approx(0.400, abs=1e-3) + assert constraint["A"] == pytest.approx(0.595, abs=1e-3) + assert constraint["C"] == pytest.approx(1, abs=1e-3) + + def test_effective_size_undirected_borgatti(self): + effective_size = nx.effective_size(self.G) + assert effective_size["G"] == pytest.approx(4.67, abs=1e-2) + assert effective_size["A"] == pytest.approx(2.50, abs=1e-2) + assert effective_size["C"] == pytest.approx(1, abs=1e-2) + + def test_effective_size_undirected(self): + G = self.G.copy() + nx.set_edge_attributes(G, 1, "weight") + effective_size = nx.effective_size(G, weight="weight") + assert effective_size["G"] == pytest.approx(4.67, abs=1e-2) + assert effective_size["A"] == pytest.approx(2.50, abs=1e-2) + assert effective_size["C"] == pytest.approx(1, abs=1e-2) + + def test_constraint_weighted_undirected(self): + G = self.G.copy() + nx.set_edge_attributes(G, self.G_weights, "weight") + constraint = nx.constraint(G, weight="weight") + assert constraint["G"] == pytest.approx(0.299, abs=1e-3) + assert constraint["A"] == pytest.approx(0.795, abs=1e-3) + assert constraint["C"] == pytest.approx(1, abs=1e-3) + + def test_effective_size_weighted_undirected(self): + G = self.G.copy() + nx.set_edge_attributes(G, self.G_weights, "weight") + effective_size = nx.effective_size(G, weight="weight") + assert effective_size["G"] == pytest.approx(5.47, abs=1e-2) + assert effective_size["A"] == pytest.approx(2.47, abs=1e-2) + assert effective_size["C"] == pytest.approx(1, abs=1e-2) + + def test_constraint_isolated(self): + G = self.G.copy() + G.add_node(1) + constraint = nx.constraint(G) + assert math.isnan(constraint[1]) + + def test_effective_size_isolated(self): + G = self.G.copy() + G.add_node(1) + nx.set_edge_attributes(G, self.G_weights, "weight") + effective_size = nx.effective_size(G, weight="weight") + assert math.isnan(effective_size[1]) + + def test_effective_size_borgatti_isolated(self): + G = self.G.copy() + G.add_node(1) + effective_size = nx.effective_size(G) + assert math.isnan(effective_size[1]) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_summarization.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_summarization.py new file mode 100644 index 0000000000000000000000000000000000000000..823a645d34b14edd2db199d630df397290c543fb --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_summarization.py @@ -0,0 +1,641 @@ +""" +Unit tests for dedensification and graph summarization +""" +import pytest + +import networkx as nx + + +class TestDirectedDedensification: + def build_original_graph(self): + original_matrix = [ + ("1", "BC"), + ("2", "ABC"), + ("3", ["A", "B", "6"]), + ("4", "ABC"), + ("5", "AB"), + ("6", ["5"]), + ("A", ["6"]), + ] + graph = nx.DiGraph() + for source, targets in original_matrix: + for target in targets: + graph.add_edge(source, target) + return graph + + def build_compressed_graph(self): + compressed_matrix = [ + ("1", "BC"), + ("2", ["ABC"]), + ("3", ["A", "B", "6"]), + ("4", ["ABC"]), + ("5", "AB"), + ("6", ["5"]), + ("A", ["6"]), + ("ABC", "ABC"), + ] + compressed_graph = nx.DiGraph() + for source, targets in compressed_matrix: + for target in targets: + compressed_graph.add_edge(source, target) + return compressed_graph + + def test_empty(self): + """ + Verify that an empty directed graph results in no compressor nodes + """ + G = nx.DiGraph() + compressed_graph, c_nodes = nx.dedensify(G, threshold=2) + assert c_nodes == set() + + @staticmethod + def densify(G, compressor_nodes, copy=True): + """ + Reconstructs the original graph from a dedensified, directed graph + + Parameters + ---------- + G: dedensified graph + A networkx graph + compressor_nodes: iterable + Iterable of compressor nodes in the dedensified graph + inplace: bool, optional (default: False) + Indicates if densification should be done inplace + + Returns + ------- + G: graph + A densified networkx graph + """ + if copy: + G = G.copy() + for compressor_node in compressor_nodes: + all_neighbors = set(nx.all_neighbors(G, compressor_node)) + out_neighbors = set(G.neighbors(compressor_node)) + for out_neighbor in out_neighbors: + G.remove_edge(compressor_node, out_neighbor) + in_neighbors = all_neighbors - out_neighbors + for in_neighbor in in_neighbors: + G.remove_edge(in_neighbor, compressor_node) + for out_neighbor in out_neighbors: + G.add_edge(in_neighbor, out_neighbor) + G.remove_node(compressor_node) + return G + + def setup_method(self): + self.c_nodes = ("ABC",) + + def test_dedensify_edges(self): + """ + Verifies that dedensify produced the correct edges to/from compressor + nodes in a directed graph + """ + G = self.build_original_graph() + compressed_G = self.build_compressed_graph() + compressed_graph, c_nodes = nx.dedensify(G, threshold=2) + for s, t in compressed_graph.edges(): + o_s = "".join(sorted(s)) + o_t = "".join(sorted(t)) + compressed_graph_exists = compressed_graph.has_edge(s, t) + verified_compressed_exists = compressed_G.has_edge(o_s, o_t) + assert compressed_graph_exists == verified_compressed_exists + assert len(c_nodes) == len(self.c_nodes) + + def test_dedensify_edge_count(self): + """ + Verifies that dedensify produced the correct number of compressor nodes + in a directed graph + """ + G = self.build_original_graph() + original_edge_count = len(G.edges()) + c_G, c_nodes = nx.dedensify(G, threshold=2) + compressed_edge_count = len(c_G.edges()) + assert compressed_edge_count <= original_edge_count + compressed_G = self.build_compressed_graph() + assert compressed_edge_count == len(compressed_G.edges()) + + def test_densify_edges(self): + """ + Verifies that densification produces the correct edges from the + original directed graph + """ + compressed_G = self.build_compressed_graph() + original_graph = self.densify(compressed_G, self.c_nodes, copy=True) + G = self.build_original_graph() + for s, t in G.edges(): + assert G.has_edge(s, t) == original_graph.has_edge(s, t) + + def test_densify_edge_count(self): + """ + Verifies that densification produces the correct number of edges in the + original directed graph + """ + compressed_G = self.build_compressed_graph() + compressed_edge_count = len(compressed_G.edges()) + original_graph = self.densify(compressed_G, self.c_nodes) + original_edge_count = len(original_graph.edges()) + assert compressed_edge_count <= original_edge_count + G = self.build_original_graph() + assert original_edge_count == len(G.edges()) + + +class TestUnDirectedDedensification: + def build_original_graph(self): + """ + Builds graph shown in the original research paper + """ + original_matrix = [ + ("1", "CB"), + ("2", "ABC"), + ("3", ["A", "B", "6"]), + ("4", "ABC"), + ("5", "AB"), + ("6", ["5"]), + ("A", ["6"]), + ] + graph = nx.Graph() + for source, targets in original_matrix: + for target in targets: + graph.add_edge(source, target) + return graph + + def test_empty(self): + """ + Verify that an empty undirected graph results in no compressor nodes + """ + G = nx.Graph() + compressed_G, c_nodes = nx.dedensify(G, threshold=2) + assert c_nodes == set() + + def setup_method(self): + self.c_nodes = ("6AB", "ABC") + + def build_compressed_graph(self): + compressed_matrix = [ + ("1", ["B", "C"]), + ("2", ["ABC"]), + ("3", ["6AB"]), + ("4", ["ABC"]), + ("5", ["6AB"]), + ("6", ["6AB", "A"]), + ("A", ["6AB", "ABC"]), + ("B", ["ABC", "6AB"]), + ("C", ["ABC"]), + ] + compressed_graph = nx.Graph() + for source, targets in compressed_matrix: + for target in targets: + compressed_graph.add_edge(source, target) + return compressed_graph + + def test_dedensify_edges(self): + """ + Verifies that dedensify produced correct compressor nodes and the + correct edges to/from the compressor nodes in an undirected graph + """ + G = self.build_original_graph() + c_G, c_nodes = nx.dedensify(G, threshold=2) + v_compressed_G = self.build_compressed_graph() + for s, t in c_G.edges(): + o_s = "".join(sorted(s)) + o_t = "".join(sorted(t)) + has_compressed_edge = c_G.has_edge(s, t) + verified_has_compressed_edge = v_compressed_G.has_edge(o_s, o_t) + assert has_compressed_edge == verified_has_compressed_edge + assert len(c_nodes) == len(self.c_nodes) + + def test_dedensify_edge_count(self): + """ + Verifies that dedensify produced the correct number of edges in an + undirected graph + """ + G = self.build_original_graph() + c_G, c_nodes = nx.dedensify(G, threshold=2, copy=True) + compressed_edge_count = len(c_G.edges()) + verified_original_edge_count = len(G.edges()) + assert compressed_edge_count <= verified_original_edge_count + verified_compressed_G = self.build_compressed_graph() + verified_compressed_edge_count = len(verified_compressed_G.edges()) + assert compressed_edge_count == verified_compressed_edge_count + + +@pytest.mark.parametrize( + "graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] +) +def test_summarization_empty(graph_type): + G = graph_type() + summary_graph = nx.snap_aggregation(G, node_attributes=("color",)) + assert nx.is_isomorphic(summary_graph, G) + + +class AbstractSNAP: + node_attributes = ("color",) + + def build_original_graph(self): + pass + + def build_summary_graph(self): + pass + + def test_summary_graph(self): + original_graph = self.build_original_graph() + summary_graph = self.build_summary_graph() + + relationship_attributes = ("type",) + generated_summary_graph = nx.snap_aggregation( + original_graph, self.node_attributes, relationship_attributes + ) + relabeled_summary_graph = self.deterministic_labels(generated_summary_graph) + assert nx.is_isomorphic(summary_graph, relabeled_summary_graph) + + def deterministic_labels(self, G): + node_labels = list(G.nodes) + node_labels = sorted(node_labels, key=lambda n: sorted(G.nodes[n]["group"])[0]) + node_labels.sort() + + label_mapping = {} + for index, node in enumerate(node_labels): + label = "Supernode-%s" % index + label_mapping[node] = label + + return nx.relabel_nodes(G, label_mapping) + + +class TestSNAPNoEdgeTypes(AbstractSNAP): + relationship_attributes = () + + def test_summary_graph(self): + original_graph = self.build_original_graph() + summary_graph = self.build_summary_graph() + + relationship_attributes = ("type",) + generated_summary_graph = nx.snap_aggregation( + original_graph, self.node_attributes + ) + relabeled_summary_graph = self.deterministic_labels(generated_summary_graph) + assert nx.is_isomorphic(summary_graph, relabeled_summary_graph) + + def build_original_graph(self): + nodes = { + "A": {"color": "Red"}, + "B": {"color": "Red"}, + "C": {"color": "Red"}, + "D": {"color": "Red"}, + "E": {"color": "Blue"}, + "F": {"color": "Blue"}, + "G": {"color": "Blue"}, + "H": {"color": "Blue"}, + "I": {"color": "Yellow"}, + "J": {"color": "Yellow"}, + "K": {"color": "Yellow"}, + "L": {"color": "Yellow"}, + } + edges = [ + ("A", "B"), + ("A", "C"), + ("A", "E"), + ("A", "I"), + ("B", "D"), + ("B", "J"), + ("B", "F"), + ("C", "G"), + ("D", "H"), + ("I", "J"), + ("J", "K"), + ("I", "L"), + ] + G = nx.Graph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target in edges: + G.add_edge(source, target) + + return G + + def build_summary_graph(self): + nodes = { + "Supernode-0": {"color": "Red"}, + "Supernode-1": {"color": "Red"}, + "Supernode-2": {"color": "Blue"}, + "Supernode-3": {"color": "Blue"}, + "Supernode-4": {"color": "Yellow"}, + "Supernode-5": {"color": "Yellow"}, + } + edges = [ + ("Supernode-0", "Supernode-0"), + ("Supernode-0", "Supernode-1"), + ("Supernode-0", "Supernode-2"), + ("Supernode-0", "Supernode-4"), + ("Supernode-1", "Supernode-3"), + ("Supernode-4", "Supernode-4"), + ("Supernode-4", "Supernode-5"), + ] + G = nx.Graph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target in edges: + G.add_edge(source, target) + + supernodes = { + "Supernode-0": {"A", "B"}, + "Supernode-1": {"C", "D"}, + "Supernode-2": {"E", "F"}, + "Supernode-3": {"G", "H"}, + "Supernode-4": {"I", "J"}, + "Supernode-5": {"K", "L"}, + } + nx.set_node_attributes(G, supernodes, "group") + return G + + +class TestSNAPUndirected(AbstractSNAP): + def build_original_graph(self): + nodes = { + "A": {"color": "Red"}, + "B": {"color": "Red"}, + "C": {"color": "Red"}, + "D": {"color": "Red"}, + "E": {"color": "Blue"}, + "F": {"color": "Blue"}, + "G": {"color": "Blue"}, + "H": {"color": "Blue"}, + "I": {"color": "Yellow"}, + "J": {"color": "Yellow"}, + "K": {"color": "Yellow"}, + "L": {"color": "Yellow"}, + } + edges = [ + ("A", "B", "Strong"), + ("A", "C", "Weak"), + ("A", "E", "Strong"), + ("A", "I", "Weak"), + ("B", "D", "Weak"), + ("B", "J", "Weak"), + ("B", "F", "Strong"), + ("C", "G", "Weak"), + ("D", "H", "Weak"), + ("I", "J", "Strong"), + ("J", "K", "Strong"), + ("I", "L", "Strong"), + ] + G = nx.Graph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, type in edges: + G.add_edge(source, target, type=type) + + return G + + def build_summary_graph(self): + nodes = { + "Supernode-0": {"color": "Red"}, + "Supernode-1": {"color": "Red"}, + "Supernode-2": {"color": "Blue"}, + "Supernode-3": {"color": "Blue"}, + "Supernode-4": {"color": "Yellow"}, + "Supernode-5": {"color": "Yellow"}, + } + edges = [ + ("Supernode-0", "Supernode-0", "Strong"), + ("Supernode-0", "Supernode-1", "Weak"), + ("Supernode-0", "Supernode-2", "Strong"), + ("Supernode-0", "Supernode-4", "Weak"), + ("Supernode-1", "Supernode-3", "Weak"), + ("Supernode-4", "Supernode-4", "Strong"), + ("Supernode-4", "Supernode-5", "Strong"), + ] + G = nx.Graph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, type in edges: + G.add_edge(source, target, types=[{"type": type}]) + + supernodes = { + "Supernode-0": {"A", "B"}, + "Supernode-1": {"C", "D"}, + "Supernode-2": {"E", "F"}, + "Supernode-3": {"G", "H"}, + "Supernode-4": {"I", "J"}, + "Supernode-5": {"K", "L"}, + } + nx.set_node_attributes(G, supernodes, "group") + return G + + +class TestSNAPDirected(AbstractSNAP): + def build_original_graph(self): + nodes = { + "A": {"color": "Red"}, + "B": {"color": "Red"}, + "C": {"color": "Green"}, + "D": {"color": "Green"}, + "E": {"color": "Blue"}, + "F": {"color": "Blue"}, + "G": {"color": "Yellow"}, + "H": {"color": "Yellow"}, + } + edges = [ + ("A", "C", "Strong"), + ("A", "E", "Strong"), + ("A", "F", "Weak"), + ("B", "D", "Strong"), + ("B", "E", "Weak"), + ("B", "F", "Strong"), + ("C", "G", "Strong"), + ("C", "F", "Strong"), + ("D", "E", "Strong"), + ("D", "H", "Strong"), + ("G", "E", "Strong"), + ("H", "F", "Strong"), + ] + G = nx.DiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, type in edges: + G.add_edge(source, target, type=type) + + return G + + def build_summary_graph(self): + nodes = { + "Supernode-0": {"color": "Red"}, + "Supernode-1": {"color": "Green"}, + "Supernode-2": {"color": "Blue"}, + "Supernode-3": {"color": "Yellow"}, + } + edges = [ + ("Supernode-0", "Supernode-1", [{"type": "Strong"}]), + ("Supernode-0", "Supernode-2", [{"type": "Weak"}, {"type": "Strong"}]), + ("Supernode-1", "Supernode-2", [{"type": "Strong"}]), + ("Supernode-1", "Supernode-3", [{"type": "Strong"}]), + ("Supernode-3", "Supernode-2", [{"type": "Strong"}]), + ] + G = nx.DiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, types in edges: + G.add_edge(source, target, types=types) + + supernodes = { + "Supernode-0": {"A", "B"}, + "Supernode-1": {"C", "D"}, + "Supernode-2": {"E", "F"}, + "Supernode-3": {"G", "H"}, + "Supernode-4": {"I", "J"}, + "Supernode-5": {"K", "L"}, + } + nx.set_node_attributes(G, supernodes, "group") + return G + + +class TestSNAPUndirectedMulti(AbstractSNAP): + def build_original_graph(self): + nodes = { + "A": {"color": "Red"}, + "B": {"color": "Red"}, + "C": {"color": "Red"}, + "D": {"color": "Blue"}, + "E": {"color": "Blue"}, + "F": {"color": "Blue"}, + "G": {"color": "Yellow"}, + "H": {"color": "Yellow"}, + "I": {"color": "Yellow"}, + } + edges = [ + ("A", "D", ["Weak", "Strong"]), + ("B", "E", ["Weak", "Strong"]), + ("D", "I", ["Strong"]), + ("E", "H", ["Strong"]), + ("F", "G", ["Weak"]), + ("I", "G", ["Weak", "Strong"]), + ("I", "H", ["Weak", "Strong"]), + ("G", "H", ["Weak", "Strong"]), + ] + G = nx.MultiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, types in edges: + for type in types: + G.add_edge(source, target, type=type) + + return G + + def build_summary_graph(self): + nodes = { + "Supernode-0": {"color": "Red"}, + "Supernode-1": {"color": "Blue"}, + "Supernode-2": {"color": "Yellow"}, + "Supernode-3": {"color": "Blue"}, + "Supernode-4": {"color": "Yellow"}, + "Supernode-5": {"color": "Red"}, + } + edges = [ + ("Supernode-1", "Supernode-2", [{"type": "Weak"}]), + ("Supernode-2", "Supernode-4", [{"type": "Weak"}, {"type": "Strong"}]), + ("Supernode-3", "Supernode-4", [{"type": "Strong"}]), + ("Supernode-3", "Supernode-5", [{"type": "Weak"}, {"type": "Strong"}]), + ("Supernode-4", "Supernode-4", [{"type": "Weak"}, {"type": "Strong"}]), + ] + G = nx.MultiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, types in edges: + for type in types: + G.add_edge(source, target, type=type) + + supernodes = { + "Supernode-0": {"A", "B"}, + "Supernode-1": {"C", "D"}, + "Supernode-2": {"E", "F"}, + "Supernode-3": {"G", "H"}, + "Supernode-4": {"I", "J"}, + "Supernode-5": {"K", "L"}, + } + nx.set_node_attributes(G, supernodes, "group") + return G + + +class TestSNAPDirectedMulti(AbstractSNAP): + def build_original_graph(self): + nodes = { + "A": {"color": "Red"}, + "B": {"color": "Red"}, + "C": {"color": "Green"}, + "D": {"color": "Green"}, + "E": {"color": "Blue"}, + "F": {"color": "Blue"}, + "G": {"color": "Yellow"}, + "H": {"color": "Yellow"}, + } + edges = [ + ("A", "C", ["Weak", "Strong"]), + ("A", "E", ["Strong"]), + ("A", "F", ["Weak"]), + ("B", "D", ["Weak", "Strong"]), + ("B", "E", ["Weak"]), + ("B", "F", ["Strong"]), + ("C", "G", ["Weak", "Strong"]), + ("C", "F", ["Strong"]), + ("D", "E", ["Strong"]), + ("D", "H", ["Weak", "Strong"]), + ("G", "E", ["Strong"]), + ("H", "F", ["Strong"]), + ] + G = nx.MultiDiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, types in edges: + for type in types: + G.add_edge(source, target, type=type) + + return G + + def build_summary_graph(self): + nodes = { + "Supernode-0": {"color": "Red"}, + "Supernode-1": {"color": "Blue"}, + "Supernode-2": {"color": "Yellow"}, + "Supernode-3": {"color": "Blue"}, + } + edges = [ + ("Supernode-0", "Supernode-1", ["Weak", "Strong"]), + ("Supernode-0", "Supernode-2", ["Weak", "Strong"]), + ("Supernode-1", "Supernode-2", ["Strong"]), + ("Supernode-1", "Supernode-3", ["Weak", "Strong"]), + ("Supernode-3", "Supernode-2", ["Strong"]), + ] + G = nx.MultiDiGraph() + for node in nodes: + attributes = nodes[node] + G.add_node(node, **attributes) + + for source, target, types in edges: + for type in types: + G.add_edge(source, target, type=type) + + supernodes = { + "Supernode-0": {"A", "B"}, + "Supernode-1": {"C", "D"}, + "Supernode-2": {"E", "F"}, + "Supernode-3": {"G", "H"}, + } + nx.set_node_attributes(G, supernodes, "group") + return G diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_swap.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_swap.py new file mode 100644 index 0000000000000000000000000000000000000000..49dd5f8e8c75f95a5650a563530fab67916becc9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_swap.py @@ -0,0 +1,156 @@ +import pytest + +import networkx as nx + + +def test_directed_edge_swap(): + graph = nx.path_graph(200, create_using=nx.DiGraph) + in_degrees = sorted((n, d) for n, d in graph.in_degree()) + out_degrees = sorted((n, d) for n, d in graph.out_degree()) + G = nx.directed_edge_swap(graph, nswap=40, max_tries=500, seed=1) + assert in_degrees == sorted((n, d) for n, d in G.in_degree()) + assert out_degrees == sorted((n, d) for n, d in G.out_degree()) + + +def test_edge_cases_directed_edge_swap(): + # Tests cases when swaps are impossible, either too few edges exist, or self loops/cycles are unavoidable + # TODO: Rewrite function to explicitly check for impossible swaps and raise error + e = ( + "Maximum number of swap attempts \\(11\\) exceeded " + "before desired swaps achieved \\(\\d\\)." + ) + graph = nx.DiGraph([(0, 0), (0, 1), (1, 0), (2, 3), (3, 2)]) + with pytest.raises(nx.NetworkXAlgorithmError, match=e): + nx.directed_edge_swap(graph, nswap=1, max_tries=10, seed=1) + + +def test_double_edge_swap(): + graph = nx.barabasi_albert_graph(200, 1) + degrees = sorted(d for n, d in graph.degree()) + G = nx.double_edge_swap(graph, 40) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_double_edge_swap_seed(): + graph = nx.barabasi_albert_graph(200, 1) + degrees = sorted(d for n, d in graph.degree()) + G = nx.double_edge_swap(graph, 40, seed=1) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_connected_double_edge_swap(): + graph = nx.barabasi_albert_graph(200, 1) + degrees = sorted(d for n, d in graph.degree()) + G = nx.connected_double_edge_swap(graph, 40, seed=1) + assert nx.is_connected(graph) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_connected_double_edge_swap_low_window_threshold(): + graph = nx.barabasi_albert_graph(200, 1) + degrees = sorted(d for n, d in graph.degree()) + G = nx.connected_double_edge_swap(graph, 40, _window_threshold=0, seed=1) + assert nx.is_connected(graph) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_connected_double_edge_swap_star(): + # Testing ui==xi in connected_double_edge_swap + graph = nx.star_graph(40) + degrees = sorted(d for n, d in graph.degree()) + G = nx.connected_double_edge_swap(graph, 1, seed=4) + assert nx.is_connected(graph) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_connected_double_edge_swap_star_low_window_threshold(): + # Testing ui==xi in connected_double_edge_swap with low window threshold + graph = nx.star_graph(40) + degrees = sorted(d for n, d in graph.degree()) + G = nx.connected_double_edge_swap(graph, 1, _window_threshold=0, seed=4) + assert nx.is_connected(graph) + assert degrees == sorted(d for n, d in graph.degree()) + + +def test_directed_edge_swap_small(): + with pytest.raises(nx.NetworkXError): + G = nx.directed_edge_swap(nx.path_graph(3, create_using=nx.DiGraph)) + + +def test_directed_edge_swap_tries(): + with pytest.raises(nx.NetworkXError): + G = nx.directed_edge_swap( + nx.path_graph(3, create_using=nx.DiGraph), nswap=1, max_tries=0 + ) + + +def test_directed_exception_undirected(): + graph = nx.Graph([(0, 1), (2, 3)]) + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.directed_edge_swap(graph) + + +def test_directed_edge_max_tries(): + with pytest.raises(nx.NetworkXAlgorithmError): + G = nx.directed_edge_swap( + nx.complete_graph(4, nx.DiGraph()), nswap=1, max_tries=5 + ) + + +def test_double_edge_swap_small(): + with pytest.raises(nx.NetworkXError): + G = nx.double_edge_swap(nx.path_graph(3)) + + +def test_double_edge_swap_tries(): + with pytest.raises(nx.NetworkXError): + G = nx.double_edge_swap(nx.path_graph(10), nswap=1, max_tries=0) + + +def test_double_edge_directed(): + graph = nx.DiGraph([(0, 1), (2, 3)]) + with pytest.raises(nx.NetworkXError, match="not defined for directed graphs."): + G = nx.double_edge_swap(graph) + + +def test_double_edge_max_tries(): + with pytest.raises(nx.NetworkXAlgorithmError): + G = nx.double_edge_swap(nx.complete_graph(4), nswap=1, max_tries=5) + + +def test_connected_double_edge_swap_small(): + with pytest.raises(nx.NetworkXError): + G = nx.connected_double_edge_swap(nx.path_graph(3)) + + +def test_connected_double_edge_swap_not_connected(): + with pytest.raises(nx.NetworkXError): + G = nx.path_graph(3) + nx.add_path(G, [10, 11, 12]) + G = nx.connected_double_edge_swap(G) + + +def test_degree_seq_c4(): + G = nx.cycle_graph(4) + degrees = sorted(d for n, d in G.degree()) + G = nx.double_edge_swap(G, 1, 100) + assert degrees == sorted(d for n, d in G.degree()) + + +def test_fewer_than_4_nodes(): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2]) + with pytest.raises(nx.NetworkXError, match=".*fewer than four nodes."): + nx.directed_edge_swap(G) + + +def test_less_than_3_edges(): + G = nx.DiGraph([(0, 1), (1, 2)]) + G.add_nodes_from([3, 4]) + with pytest.raises(nx.NetworkXError, match=".*fewer than 3 edges"): + nx.directed_edge_swap(G) + + G = nx.Graph() + G.add_nodes_from([0, 1, 2, 3]) + with pytest.raises(nx.NetworkXError, match=".*fewer than 2 edges"): + nx.double_edge_swap(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_threshold.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_threshold.py new file mode 100644 index 0000000000000000000000000000000000000000..07aad44bb268a42944260b4217bce15b1278ebfd --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_threshold.py @@ -0,0 +1,269 @@ +""" +Threshold Graphs +================ +""" + +import pytest + +import networkx as nx +import networkx.algorithms.threshold as nxt +from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic + +cnlti = nx.convert_node_labels_to_integers + + +class TestGeneratorThreshold: + def test_threshold_sequence_graph_test(self): + G = nx.star_graph(10) + assert nxt.is_threshold_graph(G) + assert nxt.is_threshold_sequence([d for n, d in G.degree()]) + + G = nx.complete_graph(10) + assert nxt.is_threshold_graph(G) + assert nxt.is_threshold_sequence([d for n, d in G.degree()]) + + deg = [3, 2, 2, 1, 1, 1] + assert not nxt.is_threshold_sequence(deg) + + deg = [3, 2, 2, 1] + assert nxt.is_threshold_sequence(deg) + + G = nx.generators.havel_hakimi_graph(deg) + assert nxt.is_threshold_graph(G) + + def test_creation_sequences(self): + deg = [3, 2, 2, 1] + G = nx.generators.havel_hakimi_graph(deg) + + with pytest.raises(ValueError): + nxt.creation_sequence(deg, with_labels=True, compact=True) + + cs0 = nxt.creation_sequence(deg) + H0 = nxt.threshold_graph(cs0) + assert "".join(cs0) == "ddid" + + cs1 = nxt.creation_sequence(deg, with_labels=True) + H1 = nxt.threshold_graph(cs1) + assert cs1 == [(1, "d"), (2, "d"), (3, "i"), (0, "d")] + + cs2 = nxt.creation_sequence(deg, compact=True) + H2 = nxt.threshold_graph(cs2) + assert cs2 == [2, 1, 1] + assert "".join(nxt.uncompact(cs2)) == "ddid" + assert graph_could_be_isomorphic(H0, G) + assert graph_could_be_isomorphic(H0, H1) + assert graph_could_be_isomorphic(H0, H2) + + def test_make_compact(self): + assert nxt.make_compact(["d", "d", "d", "i", "d", "d"]) == [3, 1, 2] + assert nxt.make_compact([3, 1, 2]) == [3, 1, 2] + assert pytest.raises(TypeError, nxt.make_compact, [3.0, 1.0, 2.0]) + + def test_uncompact(self): + assert nxt.uncompact([3, 1, 2]) == ["d", "d", "d", "i", "d", "d"] + assert nxt.uncompact(["d", "d", "i", "d"]) == ["d", "d", "i", "d"] + assert nxt.uncompact( + nxt.uncompact([(1, "d"), (2, "d"), (3, "i"), (0, "d")]) + ) == nxt.uncompact([(1, "d"), (2, "d"), (3, "i"), (0, "d")]) + assert pytest.raises(TypeError, nxt.uncompact, [3.0, 1.0, 2.0]) + + def test_creation_sequence_to_weights(self): + assert nxt.creation_sequence_to_weights([3, 1, 2]) == [ + 0.5, + 0.5, + 0.5, + 0.25, + 0.75, + 0.75, + ] + assert pytest.raises( + TypeError, nxt.creation_sequence_to_weights, [3.0, 1.0, 2.0] + ) + + def test_weights_to_creation_sequence(self): + deg = [3, 2, 2, 1] + with pytest.raises(ValueError): + nxt.weights_to_creation_sequence(deg, with_labels=True, compact=True) + assert nxt.weights_to_creation_sequence(deg, with_labels=True) == [ + (3, "d"), + (1, "d"), + (2, "d"), + (0, "d"), + ] + assert nxt.weights_to_creation_sequence(deg, compact=True) == [4] + + def test_find_alternating_4_cycle(self): + G = nx.Graph() + G.add_edge(1, 2) + assert not nxt.find_alternating_4_cycle(G) + + def test_shortest_path(self): + deg = [3, 2, 2, 1] + G = nx.generators.havel_hakimi_graph(deg) + cs1 = nxt.creation_sequence(deg, with_labels=True) + for n, m in [(3, 0), (0, 3), (0, 2), (0, 1), (1, 3), (3, 1), (1, 2), (2, 3)]: + assert nxt.shortest_path(cs1, n, m) == nx.shortest_path(G, n, m) + + spl = nxt.shortest_path_length(cs1, 3) + spl2 = nxt.shortest_path_length([t for v, t in cs1], 2) + assert spl == spl2 + + spld = {} + for j, pl in enumerate(spl): + n = cs1[j][0] + spld[n] = pl + assert spld == nx.single_source_shortest_path_length(G, 3) + + assert nxt.shortest_path(["d", "d", "d", "i", "d", "d"], 1, 2) == [1, 2] + assert nxt.shortest_path([3, 1, 2], 1, 2) == [1, 2] + assert pytest.raises(TypeError, nxt.shortest_path, [3.0, 1.0, 2.0], 1, 2) + assert pytest.raises(ValueError, nxt.shortest_path, [3, 1, 2], "a", 2) + assert pytest.raises(ValueError, nxt.shortest_path, [3, 1, 2], 1, "b") + assert nxt.shortest_path([3, 1, 2], 1, 1) == [1] + + def test_shortest_path_length(self): + assert nxt.shortest_path_length([3, 1, 2], 1) == [1, 0, 1, 2, 1, 1] + assert nxt.shortest_path_length(["d", "d", "d", "i", "d", "d"], 1) == [ + 1, + 0, + 1, + 2, + 1, + 1, + ] + assert nxt.shortest_path_length(("d", "d", "d", "i", "d", "d"), 1) == [ + 1, + 0, + 1, + 2, + 1, + 1, + ] + assert pytest.raises(TypeError, nxt.shortest_path, [3.0, 1.0, 2.0], 1) + + def test_random_threshold_sequence(self): + assert len(nxt.random_threshold_sequence(10, 0.5)) == 10 + assert nxt.random_threshold_sequence(10, 0.5, seed=42) == [ + "d", + "i", + "d", + "d", + "d", + "i", + "i", + "i", + "d", + "d", + ] + assert pytest.raises(ValueError, nxt.random_threshold_sequence, 10, 1.5) + + def test_right_d_threshold_sequence(self): + assert nxt.right_d_threshold_sequence(3, 2) == ["d", "i", "d"] + assert pytest.raises(ValueError, nxt.right_d_threshold_sequence, 2, 3) + + def test_left_d_threshold_sequence(self): + assert nxt.left_d_threshold_sequence(3, 2) == ["d", "i", "d"] + assert pytest.raises(ValueError, nxt.left_d_threshold_sequence, 2, 3) + + def test_weights_thresholds(self): + wseq = [3, 4, 3, 3, 5, 6, 5, 4, 5, 6] + cs = nxt.weights_to_creation_sequence(wseq, threshold=10) + wseq = nxt.creation_sequence_to_weights(cs) + cs2 = nxt.weights_to_creation_sequence(wseq) + assert cs == cs2 + + wseq = nxt.creation_sequence_to_weights(nxt.uncompact([3, 1, 2, 3, 3, 2, 3])) + assert wseq == [ + s * 0.125 for s in [4, 4, 4, 3, 5, 5, 2, 2, 2, 6, 6, 6, 1, 1, 7, 7, 7] + ] + + wseq = nxt.creation_sequence_to_weights([3, 1, 2, 3, 3, 2, 3]) + assert wseq == [ + s * 0.125 for s in [4, 4, 4, 3, 5, 5, 2, 2, 2, 6, 6, 6, 1, 1, 7, 7, 7] + ] + + wseq = nxt.creation_sequence_to_weights(list(enumerate("ddidiiidididi"))) + assert wseq == [s * 0.1 for s in [5, 5, 4, 6, 3, 3, 3, 7, 2, 8, 1, 9, 0]] + + wseq = nxt.creation_sequence_to_weights("ddidiiidididi") + assert wseq == [s * 0.1 for s in [5, 5, 4, 6, 3, 3, 3, 7, 2, 8, 1, 9, 0]] + + wseq = nxt.creation_sequence_to_weights("ddidiiidididid") + ws = [s / 12 for s in [6, 6, 5, 7, 4, 4, 4, 8, 3, 9, 2, 10, 1, 11]] + assert sum(abs(c - d) for c, d in zip(wseq, ws)) < 1e-14 + + def test_finding_routines(self): + G = nx.Graph({1: [2], 2: [3], 3: [4], 4: [5], 5: [6]}) + G.add_edge(2, 4) + G.add_edge(2, 5) + G.add_edge(2, 7) + G.add_edge(3, 6) + G.add_edge(4, 6) + + # Alternating 4 cycle + assert nxt.find_alternating_4_cycle(G) == [1, 2, 3, 6] + + # Threshold graph + TG = nxt.find_threshold_graph(G) + assert nxt.is_threshold_graph(TG) + assert sorted(TG.nodes()) == [1, 2, 3, 4, 5, 7] + + cs = nxt.creation_sequence(dict(TG.degree()), with_labels=True) + assert nxt.find_creation_sequence(G) == cs + + def test_fast_versions_properties_threshold_graphs(self): + cs = "ddiiddid" + G = nxt.threshold_graph(cs) + assert nxt.density("ddiiddid") == nx.density(G) + assert sorted(nxt.degree_sequence(cs)) == sorted(d for n, d in G.degree()) + + ts = nxt.triangle_sequence(cs) + assert ts == list(nx.triangles(G).values()) + assert sum(ts) // 3 == nxt.triangles(cs) + + c1 = nxt.cluster_sequence(cs) + c2 = list(nx.clustering(G).values()) + assert sum(abs(c - d) for c, d in zip(c1, c2)) == pytest.approx(0, abs=1e-7) + + b1 = nx.betweenness_centrality(G).values() + b2 = nxt.betweenness_sequence(cs) + assert sum(abs(c - d) for c, d in zip(b1, b2)) < 1e-7 + + assert nxt.eigenvalues(cs) == [0, 1, 3, 3, 5, 7, 7, 8] + + # Degree Correlation + assert abs(nxt.degree_correlation(cs) + 0.593038821954) < 1e-12 + assert nxt.degree_correlation("diiiddi") == -0.8 + assert nxt.degree_correlation("did") == -1.0 + assert nxt.degree_correlation("ddd") == 1.0 + assert nxt.eigenvalues("dddiii") == [0, 0, 0, 0, 3, 3] + assert nxt.eigenvalues("dddiiid") == [0, 1, 1, 1, 4, 4, 7] + + def test_tg_creation_routines(self): + s = nxt.left_d_threshold_sequence(5, 7) + s = nxt.right_d_threshold_sequence(5, 7) + s1 = nxt.swap_d(s, 1.0, 1.0) + s1 = nxt.swap_d(s, 1.0, 1.0, seed=1) + + def test_eigenvectors(self): + np = pytest.importorskip("numpy") + eigenval = np.linalg.eigvals + pytest.importorskip("scipy") + + cs = "ddiiddid" + G = nxt.threshold_graph(cs) + (tgeval, tgevec) = nxt.eigenvectors(cs) + np.testing.assert_allclose([np.dot(lv, lv) for lv in tgevec], 1.0, rtol=1e-9) + lapl = nx.laplacian_matrix(G) + + def test_create_using(self): + cs = "ddiiddid" + G = nxt.threshold_graph(cs) + assert pytest.raises( + nx.exception.NetworkXError, + nxt.threshold_graph, + cs, + create_using=nx.DiGraph(), + ) + MG = nxt.threshold_graph(cs, create_using=nx.MultiGraph()) + assert sorted(MG.edges()) == sorted(G.edges()) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_time_dependent.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_time_dependent.py new file mode 100644 index 0000000000000000000000000000000000000000..1e256f4bc69389464cfa164f209bc2db713b79ee --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_time_dependent.py @@ -0,0 +1,431 @@ +"""Unit testing for time dependent algorithms.""" + +from datetime import datetime, timedelta + +import pytest + +import networkx as nx + +_delta = timedelta(days=5 * 365) + + +class TestCdIndex: + """Unit testing for the cd index function.""" + + def test_common_graph(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 1) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(1997, 1, 1)}, + 6: {"time": datetime(1998, 1, 1)}, + 7: {"time": datetime(1999, 1, 1)}, + 8: {"time": datetime(1999, 1, 1)}, + 9: {"time": datetime(1998, 1, 1)}, + 10: {"time": datetime(1997, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 4, time_delta=_delta) == 0.17 + + def test_common_graph_with_given_attributes(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 1) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"date": datetime(1992, 1, 1)}, + 1: {"date": datetime(1992, 1, 1)}, + 2: {"date": datetime(1993, 1, 1)}, + 3: {"date": datetime(1993, 1, 1)}, + 4: {"date": datetime(1995, 1, 1)}, + 5: {"date": datetime(1997, 1, 1)}, + 6: {"date": datetime(1998, 1, 1)}, + 7: {"date": datetime(1999, 1, 1)}, + 8: {"date": datetime(1999, 1, 1)}, + 9: {"date": datetime(1998, 1, 1)}, + 10: {"date": datetime(1997, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 4, time_delta=_delta, time="date") == 0.17 + + def test_common_graph_with_int_attributes(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 1) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": 20}, + 1: {"time": 20}, + 2: {"time": 30}, + 3: {"time": 30}, + 4: {"time": 50}, + 5: {"time": 70}, + 6: {"time": 80}, + 7: {"time": 90}, + 8: {"time": 90}, + 9: {"time": 80}, + 10: {"time": 74}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 4, time_delta=50) == 0.17 + + def test_common_graph_with_float_attributes(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 1) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": 20.2}, + 1: {"time": 20.2}, + 2: {"time": 30.7}, + 3: {"time": 30.7}, + 4: {"time": 50.9}, + 5: {"time": 70.1}, + 6: {"time": 80.6}, + 7: {"time": 90.7}, + 8: {"time": 90.7}, + 9: {"time": 80.6}, + 10: {"time": 74.2}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 4, time_delta=50) == 0.17 + + def test_common_graph_with_weights(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 1) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(1997, 1, 1)}, + 6: {"time": datetime(1998, 1, 1), "weight": 5}, + 7: {"time": datetime(1999, 1, 1), "weight": 2}, + 8: {"time": datetime(1999, 1, 1), "weight": 6}, + 9: {"time": datetime(1998, 1, 1), "weight": 3}, + 10: {"time": datetime(1997, 4, 1), "weight": 10}, + } + + nx.set_node_attributes(G, node_attrs) + assert nx.cd_index(G, 4, time_delta=_delta, weight="weight") == 0.04 + + def test_node_with_no_predecessors(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(2005, 1, 1)}, + 6: {"time": datetime(2010, 1, 1)}, + 7: {"time": datetime(2001, 1, 1)}, + 8: {"time": datetime(2020, 1, 1)}, + 9: {"time": datetime(2017, 1, 1)}, + 10: {"time": datetime(2004, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + assert nx.cd_index(G, 4, time_delta=_delta) == 0.0 + + def test_node_with_no_successors(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(8, 2) + G.add_edge(6, 0) + G.add_edge(6, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(1997, 1, 1)}, + 6: {"time": datetime(1998, 1, 1)}, + 7: {"time": datetime(1999, 1, 1)}, + 8: {"time": datetime(1999, 1, 1)}, + 9: {"time": datetime(1998, 1, 1)}, + 10: {"time": datetime(1997, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + assert nx.cd_index(G, 4, time_delta=_delta) == 1.0 + + def test_n_equals_zero(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 3) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(2005, 1, 1)}, + 6: {"time": datetime(2010, 1, 1)}, + 7: {"time": datetime(2001, 1, 1)}, + 8: {"time": datetime(2020, 1, 1)}, + 9: {"time": datetime(2017, 1, 1)}, + 10: {"time": datetime(2004, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + with pytest.raises( + nx.NetworkXError, match="The cd index cannot be defined." + ) as ve: + nx.cd_index(G, 4, time_delta=_delta) + + def test_time_timedelta_compatibility(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(4, 2) + G.add_edge(4, 0) + G.add_edge(4, 3) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": 20.2}, + 1: {"time": 20.2}, + 2: {"time": 30.7}, + 3: {"time": 30.7}, + 4: {"time": 50.9}, + 5: {"time": 70.1}, + 6: {"time": 80.6}, + 7: {"time": 90.7}, + 8: {"time": 90.7}, + 9: {"time": 80.6}, + 10: {"time": 74.2}, + } + + nx.set_node_attributes(G, node_attrs) + + with pytest.raises( + nx.NetworkXError, + match="Addition and comparison are not supported between", + ) as ve: + nx.cd_index(G, 4, time_delta=_delta) + + def test_node_with_no_time(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) + G.add_edge(8, 2) + G.add_edge(6, 0) + G.add_edge(6, 3) + G.add_edge(5, 2) + G.add_edge(6, 2) + G.add_edge(6, 4) + G.add_edge(7, 4) + G.add_edge(8, 4) + G.add_edge(9, 4) + G.add_edge(9, 1) + G.add_edge(9, 3) + G.add_edge(10, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 6: {"time": datetime(1998, 1, 1)}, + 7: {"time": datetime(1999, 1, 1)}, + 8: {"time": datetime(1999, 1, 1)}, + 9: {"time": datetime(1998, 1, 1)}, + 10: {"time": datetime(1997, 4, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + with pytest.raises( + nx.NetworkXError, match="Not all nodes have a 'time' attribute." + ) as ve: + nx.cd_index(G, 4, time_delta=_delta) + + def test_maximally_consolidating(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + G.add_edge(5, 1) + G.add_edge(5, 2) + G.add_edge(5, 3) + G.add_edge(5, 4) + G.add_edge(6, 1) + G.add_edge(6, 5) + G.add_edge(7, 1) + G.add_edge(7, 5) + G.add_edge(8, 2) + G.add_edge(8, 5) + G.add_edge(9, 5) + G.add_edge(9, 3) + G.add_edge(10, 5) + G.add_edge(10, 3) + G.add_edge(10, 4) + G.add_edge(11, 5) + G.add_edge(11, 4) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(1997, 1, 1)}, + 6: {"time": datetime(1998, 1, 1)}, + 7: {"time": datetime(1999, 1, 1)}, + 8: {"time": datetime(1999, 1, 1)}, + 9: {"time": datetime(1998, 1, 1)}, + 10: {"time": datetime(1997, 4, 1)}, + 11: {"time": datetime(1998, 5, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 5, time_delta=_delta) == -1 + + def test_maximally_destabilizing(self): + G = nx.DiGraph() + G.add_nodes_from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + G.add_edge(5, 1) + G.add_edge(5, 2) + G.add_edge(5, 3) + G.add_edge(5, 4) + G.add_edge(6, 5) + G.add_edge(7, 5) + G.add_edge(8, 5) + G.add_edge(9, 5) + G.add_edge(10, 5) + G.add_edge(11, 5) + + node_attrs = { + 0: {"time": datetime(1992, 1, 1)}, + 1: {"time": datetime(1992, 1, 1)}, + 2: {"time": datetime(1993, 1, 1)}, + 3: {"time": datetime(1993, 1, 1)}, + 4: {"time": datetime(1995, 1, 1)}, + 5: {"time": datetime(1997, 1, 1)}, + 6: {"time": datetime(1998, 1, 1)}, + 7: {"time": datetime(1999, 1, 1)}, + 8: {"time": datetime(1999, 1, 1)}, + 9: {"time": datetime(1998, 1, 1)}, + 10: {"time": datetime(1997, 4, 1)}, + 11: {"time": datetime(1998, 5, 1)}, + } + + nx.set_node_attributes(G, node_attrs) + + assert nx.cd_index(G, 5, time_delta=_delta) == 1 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_tournament.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_tournament.py new file mode 100644 index 0000000000000000000000000000000000000000..0a88b42ba8fe12a345c2dfcba41ebf8d4e2e4633 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_tournament.py @@ -0,0 +1,162 @@ +"""Unit tests for the :mod:`networkx.algorithms.tournament` module.""" +from itertools import combinations + +import pytest + +from networkx import DiGraph +from networkx.algorithms.tournament import ( + hamiltonian_path, + index_satisfying, + is_reachable, + is_strongly_connected, + is_tournament, + random_tournament, + score_sequence, + tournament_matrix, +) + + +def test_condition_not_satisfied(): + condition = lambda x: x > 0 + iter_in = [0] + assert index_satisfying(iter_in, condition) == 1 + + +def test_empty_iterable(): + condition = lambda x: x > 0 + with pytest.raises(ValueError): + index_satisfying([], condition) + + +def test_is_tournament(): + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + assert is_tournament(G) + + +def test_self_loops(): + """A tournament must have no self-loops.""" + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + G.add_edge(0, 0) + assert not is_tournament(G) + + +def test_missing_edges(): + """A tournament must not have any pair of nodes without at least + one edge joining the pair. + + """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3)]) + assert not is_tournament(G) + + +def test_bidirectional_edges(): + """A tournament must not have any pair of nodes with greater + than one edge joining the pair. + + """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + G.add_edge(1, 0) + assert not is_tournament(G) + + +def test_graph_is_tournament(): + for _ in range(10): + G = random_tournament(5) + assert is_tournament(G) + + +def test_graph_is_tournament_seed(): + for _ in range(10): + G = random_tournament(5, seed=1) + assert is_tournament(G) + + +def test_graph_is_tournament_one_node(): + G = random_tournament(1) + assert is_tournament(G) + + +def test_graph_is_tournament_zero_node(): + G = random_tournament(0) + assert is_tournament(G) + + +def test_hamiltonian_empty_graph(): + path = hamiltonian_path(DiGraph()) + assert len(path) == 0 + + +def test_path_is_hamiltonian(): + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + path = hamiltonian_path(G) + assert len(path) == 4 + assert all(v in G[u] for u, v in zip(path, path[1:])) + + +def test_hamiltonian_cycle(): + """Tests that :func:`networkx.tournament.hamiltonian_path` + returns a Hamiltonian cycle when provided a strongly connected + tournament. + + """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + path = hamiltonian_path(G) + assert len(path) == 4 + assert all(v in G[u] for u, v in zip(path, path[1:])) + assert path[0] in G[path[-1]] + + +def test_score_sequence_edge(): + G = DiGraph([(0, 1)]) + assert score_sequence(G) == [0, 1] + + +def test_score_sequence_triangle(): + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert score_sequence(G) == [1, 1, 1] + + +def test_tournament_matrix(): + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + npt = np.testing + G = DiGraph([(0, 1)]) + m = tournament_matrix(G) + npt.assert_array_equal(m.todense(), np.array([[0, 1], [-1, 0]])) + + +def test_reachable_pair(): + """Tests for a reachable pair of nodes.""" + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert is_reachable(G, 0, 2) + + +def test_same_node_is_reachable(): + """Tests that a node is always reachable from it.""" + # G is an arbitrary tournament on ten nodes. + G = DiGraph(sorted(p) for p in combinations(range(10), 2)) + assert all(is_reachable(G, v, v) for v in G) + + +def test_unreachable_pair(): + """Tests for an unreachable pair of nodes.""" + G = DiGraph([(0, 1), (0, 2), (1, 2)]) + assert not is_reachable(G, 1, 0) + + +def test_is_strongly_connected(): + """Tests for a strongly connected tournament.""" + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert is_strongly_connected(G) + + +def test_not_strongly_connected(): + """Tests for a tournament that is not strongly connected.""" + G = DiGraph([(0, 1), (0, 2), (1, 2)]) + assert not is_strongly_connected(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_triads.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_triads.py new file mode 100644 index 0000000000000000000000000000000000000000..66dedb758567fcc1bf510700e33035d9855c2549 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_triads.py @@ -0,0 +1,277 @@ +"""Tests for the :mod:`networkx.algorithms.triads` module.""" + +import itertools +from collections import defaultdict +from random import sample + +import pytest + +import networkx as nx + + +def test_triadic_census(): + """Tests the triadic_census function.""" + G = nx.DiGraph() + G.add_edges_from(["01", "02", "03", "04", "05", "12", "16", "51", "56", "65"]) + expected = { + "030T": 2, + "120C": 1, + "210": 0, + "120U": 0, + "012": 9, + "102": 3, + "021U": 0, + "111U": 0, + "003": 8, + "030C": 0, + "021D": 9, + "201": 0, + "111D": 1, + "300": 0, + "120D": 0, + "021C": 2, + } + actual = nx.triadic_census(G) + assert expected == actual + + +def test_is_triad(): + """Tests the is_triad function""" + G = nx.karate_club_graph() + G = G.to_directed() + for i in range(100): + nodes = sample(sorted(G.nodes()), 3) + G2 = G.subgraph(nodes) + assert nx.is_triad(G2) + + +def test_all_triplets(): + """Tests the all_triplets function.""" + G = nx.DiGraph() + G.add_edges_from(["01", "02", "03", "04", "05", "12", "16", "51", "56", "65"]) + expected = [ + f"{i},{j},{k}" + for i in range(7) + for j in range(i + 1, 7) + for k in range(j + 1, 7) + ] + expected = [set(x.split(",")) for x in expected] + actual = [set(x) for x in nx.all_triplets(G)] + assert all(any(s1 == s2 for s1 in expected) for s2 in actual) + + +def test_all_triads(): + """Tests the all_triplets function.""" + G = nx.DiGraph() + G.add_edges_from(["01", "02", "03", "04", "05", "12", "16", "51", "56", "65"]) + expected = [ + f"{i},{j},{k}" + for i in range(7) + for j in range(i + 1, 7) + for k in range(j + 1, 7) + ] + expected = [G.subgraph(x.split(",")) for x in expected] + actual = list(nx.all_triads(G)) + assert all(any(nx.is_isomorphic(G1, G2) for G1 in expected) for G2 in actual) + + +def test_triad_type(): + """Tests the triad_type function.""" + # 0 edges (1 type) + G = nx.DiGraph({0: [], 1: [], 2: []}) + assert nx.triad_type(G) == "003" + # 1 edge (1 type) + G = nx.DiGraph({0: [1], 1: [], 2: []}) + assert nx.triad_type(G) == "012" + # 2 edges (4 types) + G = nx.DiGraph([(0, 1), (0, 2)]) + assert nx.triad_type(G) == "021D" + G = nx.DiGraph({0: [1], 1: [0], 2: []}) + assert nx.triad_type(G) == "102" + G = nx.DiGraph([(0, 1), (2, 1)]) + assert nx.triad_type(G) == "021U" + G = nx.DiGraph([(0, 1), (1, 2)]) + assert nx.triad_type(G) == "021C" + # 3 edges (4 types) + G = nx.DiGraph([(0, 1), (1, 0), (2, 1)]) + assert nx.triad_type(G) == "111D" + G = nx.DiGraph([(0, 1), (1, 0), (1, 2)]) + assert nx.triad_type(G) == "111U" + G = nx.DiGraph([(0, 1), (1, 2), (0, 2)]) + assert nx.triad_type(G) == "030T" + G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + assert nx.triad_type(G) == "030C" + # 4 edges (4 types) + G = nx.DiGraph([(0, 1), (1, 0), (2, 0), (0, 2)]) + assert nx.triad_type(G) == "201" + G = nx.DiGraph([(0, 1), (1, 0), (2, 0), (2, 1)]) + assert nx.triad_type(G) == "120D" + G = nx.DiGraph([(0, 1), (1, 0), (0, 2), (1, 2)]) + assert nx.triad_type(G) == "120U" + G = nx.DiGraph([(0, 1), (1, 0), (0, 2), (2, 1)]) + assert nx.triad_type(G) == "120C" + # 5 edges (1 type) + G = nx.DiGraph([(0, 1), (1, 0), (2, 1), (1, 2), (0, 2)]) + assert nx.triad_type(G) == "210" + # 6 edges (1 type) + G = nx.DiGraph([(0, 1), (1, 0), (1, 2), (2, 1), (0, 2), (2, 0)]) + assert nx.triad_type(G) == "300" + + +def test_triads_by_type(): + """Tests the all_triplets function.""" + G = nx.DiGraph() + G.add_edges_from(["01", "02", "03", "04", "05", "12", "16", "51", "56", "65"]) + all_triads = nx.all_triads(G) + expected = defaultdict(list) + for triad in all_triads: + name = nx.triad_type(triad) + expected[name].append(triad) + actual = nx.triads_by_type(G) + assert set(actual.keys()) == set(expected.keys()) + for tri_type, actual_Gs in actual.items(): + expected_Gs = expected[tri_type] + for a in actual_Gs: + assert any(nx.is_isomorphic(a, e) for e in expected_Gs) + + +def test_random_triad(): + """Tests the random_triad function""" + G = nx.karate_club_graph() + G = G.to_directed() + for i in range(100): + assert nx.is_triad(nx.random_triad(G)) + + G = nx.DiGraph() + msg = "at least 3 nodes to form a triad" + with pytest.raises(nx.NetworkXError, match=msg): + nx.random_triad(G) + + +def test_triadic_census_short_path_nodelist(): + G = nx.path_graph("abc", create_using=nx.DiGraph) + expected = {"021C": 1} + for nl in ["a", "b", "c", "ab", "ac", "bc", "abc"]: + triad_census = nx.triadic_census(G, nodelist=nl) + assert expected == {typ: cnt for typ, cnt in triad_census.items() if cnt > 0} + + +def test_triadic_census_correct_nodelist_values(): + G = nx.path_graph(5, create_using=nx.DiGraph) + msg = r"nodelist includes duplicate nodes or nodes not in G" + with pytest.raises(ValueError, match=msg): + nx.triadic_census(G, [1, 2, 2, 3]) + with pytest.raises(ValueError, match=msg): + nx.triadic_census(G, [1, 2, "a", 3]) + + +def test_triadic_census_tiny_graphs(): + tc = nx.triadic_census(nx.empty_graph(0, create_using=nx.DiGraph)) + assert {} == {typ: cnt for typ, cnt in tc.items() if cnt > 0} + tc = nx.triadic_census(nx.empty_graph(1, create_using=nx.DiGraph)) + assert {} == {typ: cnt for typ, cnt in tc.items() if cnt > 0} + tc = nx.triadic_census(nx.empty_graph(2, create_using=nx.DiGraph)) + assert {} == {typ: cnt for typ, cnt in tc.items() if cnt > 0} + tc = nx.triadic_census(nx.DiGraph([(1, 2)])) + assert {} == {typ: cnt for typ, cnt in tc.items() if cnt > 0} + + +def test_triadic_census_selfloops(): + GG = nx.path_graph("abc", create_using=nx.DiGraph) + expected = {"021C": 1} + for n in GG: + G = GG.copy() + G.add_edge(n, n) + tc = nx.triadic_census(G) + assert expected == {typ: cnt for typ, cnt in tc.items() if cnt > 0} + + GG = nx.path_graph("abcde", create_using=nx.DiGraph) + tbt = nx.triads_by_type(GG) + for n in GG: + GG.add_edge(n, n) + tc = nx.triadic_census(GG) + assert tc == {tt: len(tbt[tt]) for tt in tc} + + +def test_triadic_census_four_path(): + G = nx.path_graph("abcd", create_using=nx.DiGraph) + expected = {"012": 2, "021C": 2} + triad_census = nx.triadic_census(G) + assert expected == {typ: cnt for typ, cnt in triad_census.items() if cnt > 0} + + +def test_triadic_census_four_path_nodelist(): + G = nx.path_graph("abcd", create_using=nx.DiGraph) + expected_end = {"012": 2, "021C": 1} + expected_mid = {"012": 1, "021C": 2} + a_triad_census = nx.triadic_census(G, nodelist=["a"]) + assert expected_end == {typ: cnt for typ, cnt in a_triad_census.items() if cnt > 0} + b_triad_census = nx.triadic_census(G, nodelist=["b"]) + assert expected_mid == {typ: cnt for typ, cnt in b_triad_census.items() if cnt > 0} + c_triad_census = nx.triadic_census(G, nodelist=["c"]) + assert expected_mid == {typ: cnt for typ, cnt in c_triad_census.items() if cnt > 0} + d_triad_census = nx.triadic_census(G, nodelist=["d"]) + assert expected_end == {typ: cnt for typ, cnt in d_triad_census.items() if cnt > 0} + + +def test_triadic_census_nodelist(): + """Tests the triadic_census function.""" + G = nx.DiGraph() + G.add_edges_from(["01", "02", "03", "04", "05", "12", "16", "51", "56", "65"]) + expected = { + "030T": 2, + "120C": 1, + "210": 0, + "120U": 0, + "012": 9, + "102": 3, + "021U": 0, + "111U": 0, + "003": 8, + "030C": 0, + "021D": 9, + "201": 0, + "111D": 1, + "300": 0, + "120D": 0, + "021C": 2, + } + actual = {k: 0 for k in expected} + for node in G.nodes(): + node_triad_census = nx.triadic_census(G, nodelist=[node]) + for triad_key in expected: + actual[triad_key] += node_triad_census[triad_key] + # Divide all counts by 3 + for k, v in actual.items(): + actual[k] //= 3 + assert expected == actual + + +@pytest.mark.parametrize("N", [5, 10]) +def test_triadic_census_on_random_graph(N): + G = nx.binomial_graph(N, 0.3, directed=True, seed=42) + tc1 = nx.triadic_census(G) + tbt = nx.triads_by_type(G) + tc2 = {tt: len(tbt[tt]) for tt in tc1} + assert tc1 == tc2 + + for n in G: + tc1 = nx.triadic_census(G, nodelist={n}) + tc2 = {tt: sum(1 for t in tbt.get(tt, []) if n in t) for tt in tc1} + assert tc1 == tc2 + + for ns in itertools.combinations(G, 2): + ns = set(ns) + tc1 = nx.triadic_census(G, nodelist=ns) + tc2 = { + tt: sum(1 for t in tbt.get(tt, []) if any(n in ns for n in t)) for tt in tc1 + } + assert tc1 == tc2 + + for ns in itertools.combinations(G, 3): + ns = set(ns) + tc1 = nx.triadic_census(G, nodelist=ns) + tc2 = { + tt: sum(1 for t in tbt.get(tt, []) if any(n in ns for n in t)) for tt in tc1 + } + assert tc1 == tc2 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_vitality.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_vitality.py new file mode 100644 index 0000000000000000000000000000000000000000..248206e670fa911f62177bb6727d6a7a6df1e6b9 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_vitality.py @@ -0,0 +1,41 @@ +import networkx as nx + + +class TestClosenessVitality: + def test_unweighted(self): + G = nx.cycle_graph(3) + vitality = nx.closeness_vitality(G) + assert vitality == {0: 2, 1: 2, 2: 2} + + def test_weighted(self): + G = nx.Graph() + nx.add_cycle(G, [0, 1, 2], weight=2) + vitality = nx.closeness_vitality(G, weight="weight") + assert vitality == {0: 4, 1: 4, 2: 4} + + def test_unweighted_digraph(self): + G = nx.DiGraph(nx.cycle_graph(3)) + vitality = nx.closeness_vitality(G) + assert vitality == {0: 4, 1: 4, 2: 4} + + def test_weighted_digraph(self): + G = nx.DiGraph() + nx.add_cycle(G, [0, 1, 2], weight=2) + nx.add_cycle(G, [2, 1, 0], weight=2) + vitality = nx.closeness_vitality(G, weight="weight") + assert vitality == {0: 8, 1: 8, 2: 8} + + def test_weighted_multidigraph(self): + G = nx.MultiDiGraph() + nx.add_cycle(G, [0, 1, 2], weight=2) + nx.add_cycle(G, [2, 1, 0], weight=2) + vitality = nx.closeness_vitality(G, weight="weight") + assert vitality == {0: 8, 1: 8, 2: 8} + + def test_disconnecting_graph(self): + """Tests that the closeness vitality of a node whose removal + disconnects the graph is negative infinity. + + """ + G = nx.path_graph(3) + assert nx.closeness_vitality(G, node=1) == -float("inf") diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_voronoi.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_voronoi.py new file mode 100644 index 0000000000000000000000000000000000000000..3269ae62a023ff0cf9fdc55122cb6e7c8d2ba319 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_voronoi.py @@ -0,0 +1,103 @@ +import networkx as nx +from networkx.utils import pairwise + + +class TestVoronoiCells: + """Unit tests for the Voronoi cells function.""" + + def test_isolates(self): + """Tests that a graph with isolated nodes has all isolates in + one block of the partition. + + """ + G = nx.empty_graph(5) + cells = nx.voronoi_cells(G, {0, 2, 4}) + expected = {0: {0}, 2: {2}, 4: {4}, "unreachable": {1, 3}} + assert expected == cells + + def test_undirected_unweighted(self): + G = nx.cycle_graph(6) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0, 1, 5}, 3: {2, 3, 4}} + assert expected == cells + + def test_directed_unweighted(self): + # This is the singly-linked directed cycle graph on six nodes. + G = nx.DiGraph(pairwise(range(6), cyclic=True)) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0, 1, 2}, 3: {3, 4, 5}} + assert expected == cells + + def test_directed_inward(self): + """Tests that reversing the graph gives the "inward" Voronoi + partition. + + """ + # This is the singly-linked reverse directed cycle graph on six nodes. + G = nx.DiGraph(pairwise(range(6), cyclic=True)) + G = G.reverse(copy=False) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0, 4, 5}, 3: {1, 2, 3}} + assert expected == cells + + def test_undirected_weighted(self): + edges = [(0, 1, 10), (1, 2, 1), (2, 3, 1)] + G = nx.Graph() + G.add_weighted_edges_from(edges) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0}, 3: {1, 2, 3}} + assert expected == cells + + def test_directed_weighted(self): + edges = [(0, 1, 10), (1, 2, 1), (2, 3, 1), (3, 2, 1), (2, 1, 1)] + G = nx.DiGraph() + G.add_weighted_edges_from(edges) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0}, 3: {1, 2, 3}} + assert expected == cells + + def test_multigraph_unweighted(self): + """Tests that the Voronoi cells for a multigraph are the same as + for a simple graph. + + """ + edges = [(0, 1), (1, 2), (2, 3)] + G = nx.MultiGraph(2 * edges) + H = nx.Graph(G) + G_cells = nx.voronoi_cells(G, {0, 3}) + H_cells = nx.voronoi_cells(H, {0, 3}) + assert G_cells == H_cells + + def test_multidigraph_unweighted(self): + # This is the twice-singly-linked directed cycle graph on six nodes. + edges = list(pairwise(range(6), cyclic=True)) + G = nx.MultiDiGraph(2 * edges) + H = nx.DiGraph(G) + G_cells = nx.voronoi_cells(G, {0, 3}) + H_cells = nx.voronoi_cells(H, {0, 3}) + assert G_cells == H_cells + + def test_multigraph_weighted(self): + edges = [(0, 1, 10), (0, 1, 10), (1, 2, 1), (1, 2, 100), (2, 3, 1), (2, 3, 100)] + G = nx.MultiGraph() + G.add_weighted_edges_from(edges) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0}, 3: {1, 2, 3}} + assert expected == cells + + def test_multidigraph_weighted(self): + edges = [ + (0, 1, 10), + (0, 1, 10), + (1, 2, 1), + (2, 3, 1), + (3, 2, 10), + (3, 2, 1), + (2, 1, 10), + (2, 1, 1), + ] + G = nx.MultiDiGraph() + G.add_weighted_edges_from(edges) + cells = nx.voronoi_cells(G, {0, 3}) + expected = {0: {0}, 3: {1, 2, 3}} + assert expected == cells diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_walks.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_walks.py new file mode 100644 index 0000000000000000000000000000000000000000..7a6b323932988e1b9513118162df62e9613ee65b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_walks.py @@ -0,0 +1,54 @@ +"""Unit tests for the :mod:`networkx.algorithms.walks` module.""" + +import pytest + +import networkx as nx + +pytest.importorskip("numpy") +pytest.importorskip("scipy") + + +def test_directed(): + G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + num_walks = nx.number_of_walks(G, 3) + expected = {0: {0: 1, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 0}, 2: {0: 0, 1: 0, 2: 1}} + assert num_walks == expected + + +def test_undirected(): + G = nx.cycle_graph(3) + num_walks = nx.number_of_walks(G, 3) + expected = {0: {0: 2, 1: 3, 2: 3}, 1: {0: 3, 1: 2, 2: 3}, 2: {0: 3, 1: 3, 2: 2}} + assert num_walks == expected + + +def test_non_integer_nodes(): + G = nx.DiGraph([("A", "B"), ("B", "C"), ("C", "A")]) + num_walks = nx.number_of_walks(G, 2) + expected = { + "A": {"A": 0, "B": 0, "C": 1}, + "B": {"A": 1, "B": 0, "C": 0}, + "C": {"A": 0, "B": 1, "C": 0}, + } + assert num_walks == expected + + +def test_zero_length(): + G = nx.cycle_graph(3) + num_walks = nx.number_of_walks(G, 0) + expected = {0: {0: 1, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 0}, 2: {0: 0, 1: 0, 2: 1}} + assert num_walks == expected + + +def test_negative_length_exception(): + G = nx.cycle_graph(3) + with pytest.raises(ValueError): + nx.number_of_walks(G, -1) + + +def test_hidden_weight_attr(): + G = nx.cycle_graph(3) + G.add_edge(1, 2, weight=5) + num_walks = nx.number_of_walks(G, 3) + expected = {0: {0: 2, 1: 3, 2: 3}, 1: {0: 3, 1: 2, 2: 3}, 2: {0: 3, 1: 3, 2: 2}} + assert num_walks == expected diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tests/test_wiener.py b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_wiener.py new file mode 100644 index 0000000000000000000000000000000000000000..1cb404064fe3bedbf1695f5bc4a773a7d146da90 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tests/test_wiener.py @@ -0,0 +1,66 @@ +"""Unit tests for the :mod:`networkx.algorithms.wiener` module.""" + + +from networkx import DiGraph, complete_graph, empty_graph, path_graph, wiener_index + + +class TestWienerIndex: + """Unit tests for computing the Wiener index of a graph.""" + + def test_disconnected_graph(self): + """Tests that the Wiener index of a disconnected graph is + positive infinity. + + """ + assert wiener_index(empty_graph(2)) == float("inf") + + def test_directed(self): + """Tests that each pair of nodes in the directed graph is + counted once when computing the Wiener index. + + """ + G = complete_graph(3) + H = DiGraph(G) + assert (2 * wiener_index(G)) == wiener_index(H) + + def test_complete_graph(self): + """Tests that the Wiener index of the complete graph is simply + the number of edges. + + """ + n = 10 + G = complete_graph(n) + assert wiener_index(G) == (n * (n - 1) / 2) + + def test_path_graph(self): + """Tests that the Wiener index of the path graph is correctly + computed. + + """ + # In P_n, there are n - 1 pairs of vertices at distance one, n - + # 2 pairs at distance two, n - 3 at distance three, ..., 1 at + # distance n - 1, so the Wiener index should be + # + # 1 * (n - 1) + 2 * (n - 2) + ... + (n - 2) * 2 + (n - 1) * 1 + # + # For example, in P_5, + # + # 1 * 4 + 2 * 3 + 3 * 2 + 4 * 1 = 2 (1 * 4 + 2 * 3) + # + # and in P_6, + # + # 1 * 5 + 2 * 4 + 3 * 3 + 4 * 2 + 5 * 1 = 2 (1 * 5 + 2 * 4) + 3 * 3 + # + # assuming n is *odd*, this gives the formula + # + # 2 \sum_{i = 1}^{(n - 1) / 2} [i * (n - i)] + # + # assuming n is *even*, this gives the formula + # + # 2 \sum_{i = 1}^{n / 2} [i * (n - i)] - (n / 2) ** 2 + # + n = 9 + G = path_graph(n) + expected = 2 * sum(i * (n - i) for i in range(1, (n // 2) + 1)) + actual = wiener_index(G) + assert expected == actual diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..93e6cdd08ca959835cc5c5f9a3e6dc353f4b217d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__init__.py @@ -0,0 +1,5 @@ +from .beamsearch import * +from .breadth_first_search import * +from .depth_first_search import * +from .edgedfs import * +from .edgebfs import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2ef254e94221a8c53c4b1c2ec23fd36f7005c01 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/beamsearch.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/beamsearch.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b713e23bf7f6478d2fe742686b0b342fa8a1de1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/beamsearch.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/breadth_first_search.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/breadth_first_search.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..862e860f34b5d49144ebc9bc168ae9a117d3bbdc Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/breadth_first_search.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/depth_first_search.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/depth_first_search.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3842b11469ff9735ea0ac9e58a4790bf8d096ba4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/depth_first_search.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgebfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgebfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1baaca00d4940792feb0ef810db80b509dceee11 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgebfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgedfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgedfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50cf724da3b57d6ed3e8d7789db268dd24e0451d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/__pycache__/edgedfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/beamsearch.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/beamsearch.py new file mode 100644 index 0000000000000000000000000000000000000000..7fe93669a3a18f50e8b46ffa8c667db1e2d4a97a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/beamsearch.py @@ -0,0 +1,106 @@ +"""Basic algorithms for breadth-first searching the nodes of a graph.""" +import networkx as nx + +from .breadth_first_search import generic_bfs_edges + +__all__ = ["bfs_beam_edges"] + + +@nx._dispatch +def bfs_beam_edges(G, source, value, width=None): + """Iterates over edges in a beam search. + + The beam search is a generalized breadth-first search in which only + the "best" *w* neighbors of the current node are enqueued, where *w* + is the beam width and "best" is an application-specific + heuristic. In general, a beam search with a small beam width might + not visit each node in the graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for the breadth-first search; this function + iterates over only those edges in the component reachable from + this node. + + value : function + A function that takes a node of the graph as input and returns a + real number indicating how "good" it is. A higher value means it + is more likely to be visited sooner during the search. When + visiting a new node, only the `width` neighbors with the highest + `value` are enqueued (in decreasing order of `value`). + + width : int (default = None) + The beam width for the search. This is the number of neighbors + (ordered by `value`) to enqueue when visiting each new node. + + Yields + ------ + edge + Edges in the beam search starting from `source`, given as a pair + of nodes. + + Examples + -------- + To give nodes with, for example, a higher centrality precedence + during the search, set the `value` function to return the centrality + value of the node: + + >>> G = nx.karate_club_graph() + >>> centrality = nx.eigenvector_centrality(G) + >>> source = 0 + >>> width = 5 + >>> for u, v in nx.bfs_beam_edges(G, source, centrality.get, width): + ... print((u, v)) + ... + (0, 2) + (0, 1) + (0, 8) + (0, 13) + (0, 3) + (2, 32) + (1, 30) + (8, 33) + (3, 7) + (32, 31) + (31, 28) + (31, 25) + (25, 23) + (25, 24) + (23, 29) + (23, 27) + (29, 26) + """ + + if width is None: + width = len(G) + + def successors(v): + """Returns a list of the best neighbors of a node. + + `v` is a node in the graph `G`. + + The "best" neighbors are chosen according to the `value` + function (higher is better). Only the `width` best neighbors of + `v` are returned. + + The list returned by this function is in decreasing value as + measured by the `value` function. + + """ + # TODO The Python documentation states that for small values, it + # is better to use `heapq.nlargest`. We should determine the + # threshold at which its better to use `heapq.nlargest()` + # instead of `sorted()[:]` and apply that optimization here. + # + # If `width` is greater than the number of neighbors of `v`, all + # neighbors are returned by the semantics of slicing in + # Python. This occurs in the special case that the user did not + # specify a `width`: in this case all neighbors are always + # returned, so this is just a (slower) implementation of + # `bfs_edges(G, source)` but with a sorted enqueue step. + return iter(sorted(G.neighbors(v), key=value, reverse=True)[:width]) + + yield from generic_bfs_edges(G, source, successors) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/breadth_first_search.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/breadth_first_search.py new file mode 100644 index 0000000000000000000000000000000000000000..33b0df8e1746f41c143b208a589628a5fc81be9f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/breadth_first_search.py @@ -0,0 +1,581 @@ +"""Basic algorithms for breadth-first searching the nodes of a graph.""" +import math +from collections import deque + +import networkx as nx + +__all__ = [ + "bfs_edges", + "bfs_tree", + "bfs_predecessors", + "bfs_successors", + "descendants_at_distance", + "bfs_layers", + "bfs_labeled_edges", + "generic_bfs_edges", +] + + +@nx._dispatch +def generic_bfs_edges(G, source, neighbors=None, depth_limit=None, sort_neighbors=None): + """Iterate over edges in a breadth-first search. + + The breadth-first search begins at `source` and enqueues the + neighbors of newly visited nodes specified by the `neighbors` + function. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for the breadth-first search; this function + iterates over only those edges in the component reachable from + this node. + + neighbors : function + A function that takes a newly visited node of the graph as input + and returns an *iterator* (not just a list) of nodes that are + neighbors of that node with custom ordering. If not specified, this is + just the``G.neighbors`` method, but in general it can be any function + that returns an iterator over some or all of the neighbors of a + given node, in any order. + + depth_limit : int, optional(default=len(G)) + Specify the maximum search depth. + + sort_neighbors : Callable + + .. deprecated:: 3.2 + + The sort_neighbors parameter is deprecated and will be removed in + version 3.4. A custom (e.g. sorted) ordering of neighbors can be + specified with the `neighbors` parameter. + + A function that takes the list of neighbors of a given node as input, + and returns an iterator over these neighbors but with a custom + ordering. + + Yields + ------ + edge + Edges in the breadth-first search starting from `source`. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> list(nx.bfs_edges(G, 0)) + [(0, 1), (1, 2)] + >>> list(nx.bfs_edges(G, source=0, depth_limit=1)) + [(0, 1)] + + Notes + ----- + This implementation is from `PADS`_, which was in the public domain + when it was first accessed in July, 2004. The modifications + to allow depth limits are based on the Wikipedia article + "`Depth-limited-search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS/BFS.py + .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search + """ + if neighbors is None: + neighbors = G.neighbors + if sort_neighbors is not None: + import warnings + + warnings.warn( + ( + "The sort_neighbors parameter is deprecated and will be removed\n" + "in NetworkX 3.4, use the neighbors parameter instead." + ), + DeprecationWarning, + stacklevel=2, + ) + _neighbors = neighbors + neighbors = lambda node: iter(sort_neighbors(_neighbors(node))) + if depth_limit is None: + depth_limit = len(G) + + seen = {source} + n = len(G) + depth = 0 + next_parents_children = [(source, neighbors(source))] + while next_parents_children and depth < depth_limit: + this_parents_children = next_parents_children + next_parents_children = [] + for parent, children in this_parents_children: + for child in children: + if child not in seen: + seen.add(child) + next_parents_children.append((child, neighbors(child))) + yield parent, child + if len(seen) == n: + return + depth += 1 + + +@nx._dispatch +def bfs_edges(G, source, reverse=False, depth_limit=None, sort_neighbors=None): + """Iterate over edges in a breadth-first-search starting at source. + + Parameters + ---------- + G : NetworkX graph + + source : node + Specify starting node for breadth-first search; this function + iterates over only those edges in the component reachable from + this node. + + reverse : bool, optional + If True traverse a directed graph in the reverse direction + + depth_limit : int, optional(default=len(G)) + Specify the maximum search depth + + sort_neighbors : function + A function that takes the list of neighbors of given node as input, and + returns an *iterator* over these neighbors but with custom ordering. + + Yields + ------ + edge: 2-tuple of nodes + Yields edges resulting from the breadth-first search. + + Examples + -------- + To get the edges in a breadth-first search:: + + >>> G = nx.path_graph(3) + >>> list(nx.bfs_edges(G, 0)) + [(0, 1), (1, 2)] + >>> list(nx.bfs_edges(G, source=0, depth_limit=1)) + [(0, 1)] + + To get the nodes in a breadth-first search order:: + + >>> G = nx.path_graph(3) + >>> root = 2 + >>> edges = nx.bfs_edges(G, root) + >>> nodes = [root] + [v for u, v in edges] + >>> nodes + [2, 1, 0] + + Notes + ----- + The naming of this function is very similar to + :func:`~networkx.algorithms.traversal.edgebfs.edge_bfs`. The difference + is that ``edge_bfs`` yields edges even if they extend back to an already + explored node while this generator yields the edges of the tree that results + from a breadth-first-search (BFS) so no edges are reported if they extend + to already explored nodes. That means ``edge_bfs`` reports all edges while + ``bfs_edges`` only reports those traversed by a node-based BFS. Yet another + description is that ``bfs_edges`` reports the edges traversed during BFS + while ``edge_bfs`` reports all edges in the order they are explored. + + Based on the breadth-first search implementation in PADS [1]_ + by D. Eppstein, July 2004; with modifications to allow depth limits + as described in [2]_. + + References + ---------- + .. [1] http://www.ics.uci.edu/~eppstein/PADS/BFS.py. + .. [2] https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + bfs_tree + :func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges` + :func:`~networkx.algorithms.traversal.edgebfs.edge_bfs` + + """ + if reverse and G.is_directed(): + successors = G.predecessors + else: + successors = G.neighbors + + if callable(sort_neighbors): + yield from generic_bfs_edges( + G, source, lambda node: iter(sort_neighbors(successors(node))), depth_limit + ) + else: + yield from generic_bfs_edges(G, source, successors, depth_limit) + + +@nx._dispatch +def bfs_tree(G, source, reverse=False, depth_limit=None, sort_neighbors=None): + """Returns an oriented tree constructed from of a breadth-first-search + starting at source. + + Parameters + ---------- + G : NetworkX graph + + source : node + Specify starting node for breadth-first search + + reverse : bool, optional + If True traverse a directed graph in the reverse direction + + depth_limit : int, optional(default=len(G)) + Specify the maximum search depth + + sort_neighbors : function + A function that takes the list of neighbors of given node as input, and + returns an *iterator* over these neighbors but with custom ordering. + + Returns + ------- + T: NetworkX DiGraph + An oriented tree + + Examples + -------- + >>> G = nx.path_graph(3) + >>> list(nx.bfs_tree(G, 1).edges()) + [(1, 0), (1, 2)] + >>> H = nx.Graph() + >>> nx.add_path(H, [0, 1, 2, 3, 4, 5, 6]) + >>> nx.add_path(H, [2, 7, 8, 9, 10]) + >>> sorted(list(nx.bfs_tree(H, source=3, depth_limit=3).edges())) + [(1, 0), (2, 1), (2, 7), (3, 2), (3, 4), (4, 5), (5, 6), (7, 8)] + + + Notes + ----- + Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py + by D. Eppstein, July 2004. The modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited-search`_". + + .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_tree + bfs_edges + edge_bfs + """ + T = nx.DiGraph() + T.add_node(source) + edges_gen = bfs_edges( + G, + source, + reverse=reverse, + depth_limit=depth_limit, + sort_neighbors=sort_neighbors, + ) + T.add_edges_from(edges_gen) + return T + + +@nx._dispatch +def bfs_predecessors(G, source, depth_limit=None, sort_neighbors=None): + """Returns an iterator of predecessors in breadth-first-search from source. + + Parameters + ---------- + G : NetworkX graph + + source : node + Specify starting node for breadth-first search + + depth_limit : int, optional(default=len(G)) + Specify the maximum search depth + + sort_neighbors : function + A function that takes the list of neighbors of given node as input, and + returns an *iterator* over these neighbors but with custom ordering. + + Returns + ------- + pred: iterator + (node, predecessor) iterator where `predecessor` is the predecessor of + `node` in a breadth first search starting from `source`. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> dict(nx.bfs_predecessors(G, 0)) + {1: 0, 2: 1} + >>> H = nx.Graph() + >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) + >>> dict(nx.bfs_predecessors(H, 0)) + {1: 0, 2: 0, 3: 1, 4: 1, 5: 2, 6: 2} + >>> M = nx.Graph() + >>> nx.add_path(M, [0, 1, 2, 3, 4, 5, 6]) + >>> nx.add_path(M, [2, 7, 8, 9, 10]) + >>> sorted(nx.bfs_predecessors(M, source=1, depth_limit=3)) + [(0, 1), (2, 1), (3, 2), (4, 3), (7, 2), (8, 7)] + >>> N = nx.DiGraph() + >>> nx.add_path(N, [0, 1, 2, 3, 4, 7]) + >>> nx.add_path(N, [3, 5, 6, 7]) + >>> sorted(nx.bfs_predecessors(N, source=2)) + [(3, 2), (4, 3), (5, 3), (6, 5), (7, 4)] + + Notes + ----- + Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py + by D. Eppstein, July 2004. The modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited-search`_". + + .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + bfs_tree + bfs_edges + edge_bfs + """ + for s, t in bfs_edges( + G, source, depth_limit=depth_limit, sort_neighbors=sort_neighbors + ): + yield (t, s) + + +@nx._dispatch +def bfs_successors(G, source, depth_limit=None, sort_neighbors=None): + """Returns an iterator of successors in breadth-first-search from source. + + Parameters + ---------- + G : NetworkX graph + + source : node + Specify starting node for breadth-first search + + depth_limit : int, optional(default=len(G)) + Specify the maximum search depth + + sort_neighbors : function + A function that takes the list of neighbors of given node as input, and + returns an *iterator* over these neighbors but with custom ordering. + + Returns + ------- + succ: iterator + (node, successors) iterator where `successors` is the non-empty list of + successors of `node` in a breadth first search from `source`. + To appear in the iterator, `node` must have successors. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> dict(nx.bfs_successors(G, 0)) + {0: [1], 1: [2]} + >>> H = nx.Graph() + >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) + >>> dict(nx.bfs_successors(H, 0)) + {0: [1, 2], 1: [3, 4], 2: [5, 6]} + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2, 3, 4, 5, 6]) + >>> nx.add_path(G, [2, 7, 8, 9, 10]) + >>> dict(nx.bfs_successors(G, source=1, depth_limit=3)) + {1: [0, 2], 2: [3, 7], 3: [4], 7: [8]} + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3, 4, 5]) + >>> dict(nx.bfs_successors(G, source=3)) + {3: [4], 4: [5]} + + Notes + ----- + Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py + by D. Eppstein, July 2004.The modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited-search`_". + + .. _Depth-limited-search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + bfs_tree + bfs_edges + edge_bfs + """ + parent = source + children = [] + for p, c in bfs_edges( + G, source, depth_limit=depth_limit, sort_neighbors=sort_neighbors + ): + if p == parent: + children.append(c) + continue + yield (parent, children) + children = [c] + parent = p + yield (parent, children) + + +@nx._dispatch +def bfs_layers(G, sources): + """Returns an iterator of all the layers in breadth-first search traversal. + + Parameters + ---------- + G : NetworkX graph + A graph over which to find the layers using breadth-first search. + + sources : node in `G` or list of nodes in `G` + Specify starting nodes for single source or multiple sources breadth-first search + + Yields + ------ + layer: list of nodes + Yields list of nodes at the same distance from sources + + Examples + -------- + >>> G = nx.path_graph(5) + >>> dict(enumerate(nx.bfs_layers(G, [0, 4]))) + {0: [0, 4], 1: [1, 3], 2: [2]} + >>> H = nx.Graph() + >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) + >>> dict(enumerate(nx.bfs_layers(H, [1]))) + {0: [1], 1: [0, 3, 4], 2: [2], 3: [5, 6]} + >>> dict(enumerate(nx.bfs_layers(H, [1, 6]))) + {0: [1, 6], 1: [0, 3, 4, 2], 2: [5]} + """ + if sources in G: + sources = [sources] + + current_layer = list(sources) + visited = set(sources) + + for source in current_layer: + if source not in G: + raise nx.NetworkXError(f"The node {source} is not in the graph.") + + # this is basically BFS, except that the current layer only stores the nodes at + # same distance from sources at each iteration + while current_layer: + yield current_layer + next_layer = [] + for node in current_layer: + for child in G[node]: + if child not in visited: + visited.add(child) + next_layer.append(child) + current_layer = next_layer + + +REVERSE_EDGE = "reverse" +TREE_EDGE = "tree" +FORWARD_EDGE = "forward" +LEVEL_EDGE = "level" + + +@nx._dispatch +def bfs_labeled_edges(G, sources): + """Iterate over edges in a breadth-first search (BFS) labeled by type. + + We generate triple of the form (*u*, *v*, *d*), where (*u*, *v*) is the + edge being explored in the breadth-first search and *d* is one of the + strings 'tree', 'forward', 'level', or 'reverse'. A 'tree' edge is one in + which *v* is first discovered and placed into the layer below *u*. A + 'forward' edge is one in which *u* is on the layer above *v* and *v* has + already been discovered. A 'level' edge is one in which both *u* and *v* + occur on the same layer. A 'reverse' edge is one in which *u* is on a layer + below *v*. + + We emit each edge exactly once. In an undirected graph, 'reverse' edges do + not occur, because each is discovered either as a 'tree' or 'forward' edge. + + Parameters + ---------- + G : NetworkX graph + A graph over which to find the layers using breadth-first search. + + sources : node in `G` or list of nodes in `G` + Starting nodes for single source or multiple sources breadth-first search + + Yields + ------ + edges: generator + A generator of triples (*u*, *v*, *d*) where (*u*, *v*) is the edge being + explored and *d* is described above. + + Examples + -------- + >>> G = nx.cycle_graph(4, create_using = nx.DiGraph) + >>> list(nx.bfs_labeled_edges(G, 0)) + [(0, 1, 'tree'), (1, 2, 'tree'), (2, 3, 'tree'), (3, 0, 'reverse')] + >>> G = nx.complete_graph(3) + >>> list(nx.bfs_labeled_edges(G, 0)) + [(0, 1, 'tree'), (0, 2, 'tree'), (1, 2, 'level')] + >>> list(nx.bfs_labeled_edges(G, [0, 1])) + [(0, 1, 'level'), (0, 2, 'tree'), (1, 2, 'forward')] + """ + if sources in G: + sources = [sources] + + neighbors = G._adj + directed = G.is_directed() + visited = set() + visit = visited.discard if directed else visited.add + # We use visited in a negative sense, so the visited set stays empty for the + # directed case and level edges are reported on their first occurrence in + # the undirected case. Note our use of visited.discard -- this is built-in + # thus somewhat faster than a python-defined def nop(x): pass + depth = {s: 0 for s in sources} + queue = deque(depth.items()) + push = queue.append + pop = queue.popleft + while queue: + u, du = pop() + for v in neighbors[u]: + if v not in depth: + depth[v] = dv = du + 1 + push((v, dv)) + yield u, v, TREE_EDGE + else: + dv = depth[v] + if du == dv: + if v not in visited: + yield u, v, LEVEL_EDGE + elif du < dv: + yield u, v, FORWARD_EDGE + elif directed: + yield u, v, REVERSE_EDGE + visit(u) + + +@nx._dispatch +def descendants_at_distance(G, source, distance): + """Returns all nodes at a fixed `distance` from `source` in `G`. + + Parameters + ---------- + G : NetworkX graph + A graph + source : node in `G` + distance : the distance of the wanted nodes from `source` + + Returns + ------- + set() + The descendants of `source` in `G` at the given `distance` from `source` + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.descendants_at_distance(G, 2, 2) + {0, 4} + >>> H = nx.DiGraph() + >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) + >>> nx.descendants_at_distance(H, 0, 2) + {3, 4, 5, 6} + >>> nx.descendants_at_distance(H, 5, 0) + {5} + >>> nx.descendants_at_distance(H, 5, 1) + set() + """ + if source not in G: + raise nx.NetworkXError(f"The node {source} is not in the graph.") + + bfs_generator = nx.bfs_layers(G, source) + for i, layer in enumerate(bfs_generator): + if i == distance: + return set(layer) + return set() diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/depth_first_search.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/depth_first_search.py new file mode 100644 index 0000000000000000000000000000000000000000..185a99c3dd148cf7bdeaeb4b848f0fd070e661fc --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/depth_first_search.py @@ -0,0 +1,469 @@ +"""Basic algorithms for depth-first searching the nodes of a graph.""" +from collections import defaultdict + +import networkx as nx + +__all__ = [ + "dfs_edges", + "dfs_tree", + "dfs_predecessors", + "dfs_successors", + "dfs_preorder_nodes", + "dfs_postorder_nodes", + "dfs_labeled_edges", +] + + +@nx._dispatch +def dfs_edges(G, source=None, depth_limit=None): + """Iterate over edges in a depth-first-search (DFS). + + Perform a depth-first-search over the nodes of `G` and yield + the edges in order. This may not generate all edges in `G` + (see `~networkx.algorithms.traversal.edgedfs.edge_dfs`). + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search and yield edges in + the component reachable from source. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Yields + ------ + edge: 2-tuple of nodes + Yields edges resulting from the depth-first-search. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> list(nx.dfs_edges(G, source=0)) + [(0, 1), (1, 2), (2, 3), (3, 4)] + >>> list(nx.dfs_edges(G, source=0, depth_limit=2)) + [(0, 1), (1, 2)] + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in PADS [1]_, with modifications + to allow depth limits based on the Wikipedia article + "Depth-limited search" [2]_. + + See Also + -------- + dfs_preorder_nodes + dfs_postorder_nodes + dfs_labeled_edges + :func:`~networkx.algorithms.traversal.edgedfs.edge_dfs` + :func:`~networkx.algorithms.traversal.breadth_first_search.bfs_edges` + + References + ---------- + .. [1] http://www.ics.uci.edu/~eppstein/PADS + .. [2] https://en.wikipedia.org/wiki/Depth-limited_search + """ + if source is None: + # edges for all components + nodes = G + else: + # edges for components with source + nodes = [source] + if depth_limit is None: + depth_limit = len(G) + + visited = set() + for start in nodes: + if start in visited: + continue + visited.add(start) + stack = [(start, iter(G[start]))] + depth_now = 1 + while stack: + parent, children = stack[-1] + for child in children: + if child not in visited: + yield parent, child + visited.add(child) + if depth_now < depth_limit: + stack.append((child, iter(G[child]))) + depth_now += 1 + break + else: + stack.pop() + depth_now -= 1 + + +@nx._dispatch +def dfs_tree(G, source=None, depth_limit=None): + """Returns oriented tree constructed from a depth-first-search from source. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + T : NetworkX DiGraph + An oriented tree + + Examples + -------- + >>> G = nx.path_graph(5) + >>> T = nx.dfs_tree(G, source=0, depth_limit=2) + >>> list(T.edges()) + [(0, 1), (1, 2)] + >>> T = nx.dfs_tree(G, source=0) + >>> list(T.edges()) + [(0, 1), (1, 2), (2, 3), (3, 4)] + + See Also + -------- + dfs_preorder_nodes + dfs_postorder_nodes + dfs_labeled_edges + edge_dfs + bfs_tree + """ + T = nx.DiGraph() + if source is None: + T.add_nodes_from(G) + else: + T.add_node(source) + T.add_edges_from(dfs_edges(G, source, depth_limit)) + return T + + +@nx._dispatch +def dfs_predecessors(G, source=None, depth_limit=None): + """Returns dictionary of predecessors in depth-first-search from source. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search. + Note that you will get predecessors for all nodes in the + component containing `source`. This input only specifies + where the DFS starts. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + pred: dict + A dictionary with nodes as keys and predecessor nodes as values. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> nx.dfs_predecessors(G, source=0) + {1: 0, 2: 1, 3: 2} + >>> nx.dfs_predecessors(G, source=0, depth_limit=2) + {1: 0, 2: 1} + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in `PADS`_, with modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS + .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_preorder_nodes + dfs_postorder_nodes + dfs_labeled_edges + edge_dfs + bfs_tree + """ + return {t: s for s, t in dfs_edges(G, source, depth_limit)} + + +@nx._dispatch +def dfs_successors(G, source=None, depth_limit=None): + """Returns dictionary of successors in depth-first-search from source. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search. + Note that you will get successors for all nodes in the + component containing `source`. This input only specifies + where the DFS starts. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + succ: dict + A dictionary with nodes as keys and list of successor nodes as values. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.dfs_successors(G, source=0) + {0: [1], 1: [2], 2: [3], 3: [4]} + >>> nx.dfs_successors(G, source=0, depth_limit=2) + {0: [1], 1: [2]} + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in `PADS`_, with modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS + .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_preorder_nodes + dfs_postorder_nodes + dfs_labeled_edges + edge_dfs + bfs_tree + """ + d = defaultdict(list) + for s, t in dfs_edges(G, source=source, depth_limit=depth_limit): + d[s].append(t) + return dict(d) + + +@nx._dispatch +def dfs_postorder_nodes(G, source=None, depth_limit=None): + """Generate nodes in a depth-first-search post-ordering starting at source. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + nodes: generator + A generator of nodes in a depth-first-search post-ordering. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> list(nx.dfs_postorder_nodes(G, source=0)) + [4, 3, 2, 1, 0] + >>> list(nx.dfs_postorder_nodes(G, source=0, depth_limit=2)) + [1, 0] + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in `PADS`_, with modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS + .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_edges + dfs_preorder_nodes + dfs_labeled_edges + edge_dfs + bfs_tree + """ + edges = nx.dfs_labeled_edges(G, source=source, depth_limit=depth_limit) + return (v for u, v, d in edges if d == "reverse") + + +@nx._dispatch +def dfs_preorder_nodes(G, source=None, depth_limit=None): + """Generate nodes in a depth-first-search pre-ordering starting at source. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search and return nodes in + the component reachable from source. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + nodes: generator + A generator of nodes in a depth-first-search pre-ordering. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> list(nx.dfs_preorder_nodes(G, source=0)) + [0, 1, 2, 3, 4] + >>> list(nx.dfs_preorder_nodes(G, source=0, depth_limit=2)) + [0, 1, 2] + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in `PADS`_, with modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS + .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_edges + dfs_postorder_nodes + dfs_labeled_edges + bfs_edges + """ + edges = nx.dfs_labeled_edges(G, source=source, depth_limit=depth_limit) + return (v for u, v, d in edges if d == "forward") + + +@nx._dispatch +def dfs_labeled_edges(G, source=None, depth_limit=None): + """Iterate over edges in a depth-first-search (DFS) labeled by type. + + Parameters + ---------- + G : NetworkX graph + + source : node, optional + Specify starting node for depth-first search and return edges in + the component reachable from source. + + depth_limit : int, optional (default=len(G)) + Specify the maximum search depth. + + Returns + ------- + edges: generator + A generator of triples of the form (*u*, *v*, *d*), where (*u*, + *v*) is the edge being explored in the depth-first search and *d* + is one of the strings 'forward', 'nontree', 'reverse', or 'reverse-depth_limit'. + A 'forward' edge is one in which *u* has been visited but *v* has + not. A 'nontree' edge is one in which both *u* and *v* have been + visited but the edge is not in the DFS tree. A 'reverse' edge is + one in which both *u* and *v* have been visited and the edge is in + the DFS tree. When the `depth_limit` is reached via a 'forward' edge, + a 'reverse' edge is immediately generated rather than the subtree + being explored. To indicate this flavor of 'reverse' edge, the string + yielded is 'reverse-depth_limit'. + + Examples + -------- + + The labels reveal the complete transcript of the depth-first search + algorithm in more detail than, for example, :func:`dfs_edges`:: + + >>> from pprint import pprint + >>> + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 1)]) + >>> pprint(list(nx.dfs_labeled_edges(G, source=0))) + [(0, 0, 'forward'), + (0, 1, 'forward'), + (1, 2, 'forward'), + (2, 1, 'nontree'), + (1, 2, 'reverse'), + (0, 1, 'reverse'), + (0, 0, 'reverse')] + + Notes + ----- + If a source is not specified then a source is chosen arbitrarily and + repeatedly until all components in the graph are searched. + + The implementation of this function is adapted from David Eppstein's + depth-first search function in `PADS`_, with modifications + to allow depth limits based on the Wikipedia article + "`Depth-limited search`_". + + .. _PADS: http://www.ics.uci.edu/~eppstein/PADS + .. _Depth-limited search: https://en.wikipedia.org/wiki/Depth-limited_search + + See Also + -------- + dfs_edges + dfs_preorder_nodes + dfs_postorder_nodes + """ + # Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py + # by D. Eppstein, July 2004. + if source is None: + # edges for all components + nodes = G + else: + # edges for components with source + nodes = [source] + if depth_limit is None: + depth_limit = len(G) + + visited = set() + for start in nodes: + if start in visited: + continue + yield start, start, "forward" + visited.add(start) + stack = [(start, iter(G[start]))] + depth_now = 1 + while stack: + parent, children = stack[-1] + for child in children: + if child in visited: + yield parent, child, "nontree" + else: + yield parent, child, "forward" + visited.add(child) + if depth_now < depth_limit: + stack.append((child, iter(G[child]))) + depth_now += 1 + break + else: + yield parent, child, "reverse-depth_limit" + else: + stack.pop() + depth_now -= 1 + if stack: + yield stack[-1][0], parent, "reverse" + yield start, start, "reverse" diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgebfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgebfs.py new file mode 100644 index 0000000000000000000000000000000000000000..c29ef5e02696f85a6e3aedad8995811135f042f5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgebfs.py @@ -0,0 +1,177 @@ +""" +============================= +Breadth First Search on Edges +============================= + +Algorithms for a breadth-first traversal of edges in a graph. + +""" +from collections import deque + +import networkx as nx + +FORWARD = "forward" +REVERSE = "reverse" + +__all__ = ["edge_bfs"] + + +@nx._dispatch +def edge_bfs(G, source=None, orientation=None): + """A directed, breadth-first-search of edges in `G`, beginning at `source`. + + Yield the edges of G in a breadth-first-search order continuing until + all edges are generated. + + Parameters + ---------- + G : graph + A directed/undirected graph/multigraph. + + source : node, list of nodes + The node from which the traversal begins. If None, then a source + is chosen arbitrarily and repeatedly until all edges from each node in + the graph are searched. + + orientation : None | 'original' | 'reverse' | 'ignore' (default: None) + For directed graphs and directed multigraphs, edge traversals need not + respect the original orientation of the edges. + When set to 'reverse' every edge is traversed in the reverse direction. + When set to 'ignore', every edge is treated as undirected. + When set to 'original', every edge is treated as directed. + In all three cases, the yielded edge tuples add a last entry to + indicate the direction in which that edge was traversed. + If orientation is None, the yielded edge has no direction indicated. + The direction is respected, but not reported. + + Yields + ------ + edge : directed edge + A directed edge indicating the path taken by the breadth-first-search. + For graphs, `edge` is of the form `(u, v)` where `u` and `v` + are the tail and head of the edge as determined by the traversal. + For multigraphs, `edge` is of the form `(u, v, key)`, where `key` is + the key of the edge. When the graph is directed, then `u` and `v` + are always in the order of the actual directed edge. + If orientation is not None then the edge tuple is extended to include + the direction of traversal ('forward' or 'reverse') on that edge. + + Examples + -------- + >>> nodes = [0, 1, 2, 3] + >>> edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)] + + >>> list(nx.edge_bfs(nx.Graph(edges), nodes)) + [(0, 1), (0, 2), (1, 2), (1, 3)] + + >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes)) + [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)] + + >>> list(nx.edge_bfs(nx.MultiGraph(edges), nodes)) + [(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)] + + >>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes)) + [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)] + + >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes, orientation="ignore")) + [(0, 1, 'forward'), (1, 0, 'reverse'), (2, 0, 'reverse'), (2, 1, 'reverse'), (3, 1, 'reverse')] + + >>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes, orientation="ignore")) + [(0, 1, 0, 'forward'), (1, 0, 0, 'reverse'), (1, 0, 1, 'reverse'), (2, 0, 0, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')] + + Notes + ----- + The goal of this function is to visit edges. It differs from the more + familiar breadth-first-search of nodes, as provided by + :func:`networkx.algorithms.traversal.breadth_first_search.bfs_edges`, in + that it does not stop once every node has been visited. In a directed graph + with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited + if not for the functionality provided by this function. + + The naming of this function is very similar to bfs_edges. The difference + is that 'edge_bfs' yields edges even if they extend back to an already + explored node while 'bfs_edges' yields the edges of the tree that results + from a breadth-first-search (BFS) so no edges are reported if they extend + to already explored nodes. That means 'edge_bfs' reports all edges while + 'bfs_edges' only report those traversed by a node-based BFS. Yet another + description is that 'bfs_edges' reports the edges traversed during BFS + while 'edge_bfs' reports all edges in the order they are explored. + + See Also + -------- + bfs_edges + bfs_tree + edge_dfs + + """ + nodes = list(G.nbunch_iter(source)) + if not nodes: + return + + directed = G.is_directed() + kwds = {"data": False} + if G.is_multigraph() is True: + kwds["keys"] = True + + # set up edge lookup + if orientation is None: + + def edges_from(node): + return iter(G.edges(node, **kwds)) + + elif not directed or orientation == "original": + + def edges_from(node): + for e in G.edges(node, **kwds): + yield e + (FORWARD,) + + elif orientation == "reverse": + + def edges_from(node): + for e in G.in_edges(node, **kwds): + yield e + (REVERSE,) + + elif orientation == "ignore": + + def edges_from(node): + for e in G.edges(node, **kwds): + yield e + (FORWARD,) + for e in G.in_edges(node, **kwds): + yield e + (REVERSE,) + + else: + raise nx.NetworkXError("invalid orientation argument.") + + if directed: + neighbors = G.successors + + def edge_id(edge): + # remove direction indicator + return edge[:-1] if orientation is not None else edge + + else: + neighbors = G.neighbors + + def edge_id(edge): + return (frozenset(edge[:2]),) + edge[2:] + + check_reverse = directed and orientation in ("reverse", "ignore") + + # start BFS + visited_nodes = set(nodes) + visited_edges = set() + queue = deque([(n, edges_from(n)) for n in nodes]) + while queue: + parent, children_edges = queue.popleft() + for edge in children_edges: + if check_reverse and edge[-1] == REVERSE: + child = edge[0] + else: + child = edge[1] + if child not in visited_nodes: + visited_nodes.add(child) + queue.append((child, edges_from(child))) + edgeid = edge_id(edge) + if edgeid not in visited_edges: + visited_edges.add(edgeid) + yield edge diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgedfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgedfs.py new file mode 100644 index 0000000000000000000000000000000000000000..1e583de6ec4d4dd1ea90129ef5ad1e473b3b6c1c --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/edgedfs.py @@ -0,0 +1,175 @@ +""" +=========================== +Depth First Search on Edges +=========================== + +Algorithms for a depth-first traversal of edges in a graph. + +""" +import networkx as nx + +FORWARD = "forward" +REVERSE = "reverse" + +__all__ = ["edge_dfs"] + + +@nx._dispatch +def edge_dfs(G, source=None, orientation=None): + """A directed, depth-first-search of edges in `G`, beginning at `source`. + + Yield the edges of G in a depth-first-search order continuing until + all edges are generated. + + Parameters + ---------- + G : graph + A directed/undirected graph/multigraph. + + source : node, list of nodes + The node from which the traversal begins. If None, then a source + is chosen arbitrarily and repeatedly until all edges from each node in + the graph are searched. + + orientation : None | 'original' | 'reverse' | 'ignore' (default: None) + For directed graphs and directed multigraphs, edge traversals need not + respect the original orientation of the edges. + When set to 'reverse' every edge is traversed in the reverse direction. + When set to 'ignore', every edge is treated as undirected. + When set to 'original', every edge is treated as directed. + In all three cases, the yielded edge tuples add a last entry to + indicate the direction in which that edge was traversed. + If orientation is None, the yielded edge has no direction indicated. + The direction is respected, but not reported. + + Yields + ------ + edge : directed edge + A directed edge indicating the path taken by the depth-first traversal. + For graphs, `edge` is of the form `(u, v)` where `u` and `v` + are the tail and head of the edge as determined by the traversal. + For multigraphs, `edge` is of the form `(u, v, key)`, where `key` is + the key of the edge. When the graph is directed, then `u` and `v` + are always in the order of the actual directed edge. + If orientation is not None then the edge tuple is extended to include + the direction of traversal ('forward' or 'reverse') on that edge. + + Examples + -------- + >>> nodes = [0, 1, 2, 3] + >>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] + + >>> list(nx.edge_dfs(nx.Graph(edges), nodes)) + [(0, 1), (1, 2), (1, 3)] + + >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes)) + [(0, 1), (1, 0), (2, 1), (3, 1)] + + >>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes)) + [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)] + + >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes)) + [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)] + + >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation="ignore")) + [(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')] + + >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation="ignore")) + [(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')] + + Notes + ----- + The goal of this function is to visit edges. It differs from the more + familiar depth-first traversal of nodes, as provided by + :func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges`, in + that it does not stop once every node has been visited. In a directed graph + with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited + if not for the functionality provided by this function. + + See Also + -------- + :func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges` + + """ + nodes = list(G.nbunch_iter(source)) + if not nodes: + return + + directed = G.is_directed() + kwds = {"data": False} + if G.is_multigraph() is True: + kwds["keys"] = True + + # set up edge lookup + if orientation is None: + + def edges_from(node): + return iter(G.edges(node, **kwds)) + + elif not directed or orientation == "original": + + def edges_from(node): + for e in G.edges(node, **kwds): + yield e + (FORWARD,) + + elif orientation == "reverse": + + def edges_from(node): + for e in G.in_edges(node, **kwds): + yield e + (REVERSE,) + + elif orientation == "ignore": + + def edges_from(node): + for e in G.edges(node, **kwds): + yield e + (FORWARD,) + for e in G.in_edges(node, **kwds): + yield e + (REVERSE,) + + else: + raise nx.NetworkXError("invalid orientation argument.") + + # set up formation of edge_id to easily look up if edge already returned + if directed: + + def edge_id(edge): + # remove direction indicator + return edge[:-1] if orientation is not None else edge + + else: + + def edge_id(edge): + # single id for undirected requires frozenset on nodes + return (frozenset(edge[:2]),) + edge[2:] + + # Basic setup + check_reverse = directed and orientation in ("reverse", "ignore") + + visited_edges = set() + visited_nodes = set() + edges = {} + + # start DFS + for start_node in nodes: + stack = [start_node] + while stack: + current_node = stack[-1] + if current_node not in visited_nodes: + edges[current_node] = edges_from(current_node) + visited_nodes.add(current_node) + + try: + edge = next(edges[current_node]) + except StopIteration: + # No more edges from the current node. + stack.pop() + else: + edgeid = edge_id(edge) + if edgeid not in visited_edges: + visited_edges.add(edgeid) + # Mark the traversed "to" node as to-be-explored. + if check_reverse and edge[-1] == REVERSE: + stack.append(edge[0]) + else: + stack.append(edge[1]) + yield edge diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fff4048317fe50505797430c26f893142e6da35e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_beamsearch.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_beamsearch.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..45d78947bbbcddefd17c1999c27cf6215edee372 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_beamsearch.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_bfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_bfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b5a2dbfbedd1ab735b1b1a126aeff35401aaa70 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_bfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_dfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_dfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01e7fb1cf75bc0ed12c9d11dfe0764719324a1c9 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_dfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgebfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgebfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0316fa872391f9fca245d5565e85c39aab6a383 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgebfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgedfs.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgedfs.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..274e957428b3f23ee3af254dbef8f6ae76c48689 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/__pycache__/test_edgedfs.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_beamsearch.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_beamsearch.py new file mode 100644 index 0000000000000000000000000000000000000000..8945b418457b0c5c31b956f40a9c4ded2a439d9d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_beamsearch.py @@ -0,0 +1,32 @@ +"""Unit tests for the beam search functions.""" + +import networkx as nx + + +def identity(x): + return x + + +class TestBeamSearch: + """Unit tests for the beam search function.""" + + def test_narrow(self): + """Tests that a narrow beam width may cause an incomplete search.""" + # In this search, we enqueue only the neighbor 3 at the first + # step, then only the neighbor 2 at the second step. Once at + # node 2, the search chooses node 3, since it has a higher value + # that node 1, but node 3 has already been visited, so the + # search terminates. + G = nx.cycle_graph(4) + edges = nx.bfs_beam_edges(G, 0, identity, width=1) + assert list(edges) == [(0, 3), (3, 2)] + + def test_wide(self): + G = nx.cycle_graph(4) + edges = nx.bfs_beam_edges(G, 0, identity, width=2) + assert list(edges) == [(0, 3), (0, 1), (3, 2)] + + def test_width_none(self): + G = nx.cycle_graph(4) + edges = nx.bfs_beam_edges(G, 0, identity, width=None) + assert list(edges) == [(0, 3), (0, 1), (3, 2)] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_bfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_bfs.py new file mode 100644 index 0000000000000000000000000000000000000000..f9207cdd21a649b711f912b77dbc79cdb1152b2a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_bfs.py @@ -0,0 +1,212 @@ +from functools import partial + +import pytest + +import networkx as nx + + +class TestBFS: + @classmethod + def setup_class(cls): + # simple graph + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4)]) + cls.G = G + + def test_successor(self): + assert dict(nx.bfs_successors(self.G, source=0)) == {0: [1], 1: [2, 3], 2: [4]} + + def test_predecessor(self): + assert dict(nx.bfs_predecessors(self.G, source=0)) == {1: 0, 2: 1, 3: 1, 4: 2} + + def test_bfs_tree(self): + T = nx.bfs_tree(self.G, source=0) + assert sorted(T.nodes()) == sorted(self.G.nodes()) + assert sorted(T.edges()) == [(0, 1), (1, 2), (1, 3), (2, 4)] + + def test_bfs_edges(self): + edges = nx.bfs_edges(self.G, source=0) + assert list(edges) == [(0, 1), (1, 2), (1, 3), (2, 4)] + + def test_bfs_edges_reverse(self): + D = nx.DiGraph() + D.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4)]) + edges = nx.bfs_edges(D, source=4, reverse=True) + assert list(edges) == [(4, 2), (4, 3), (2, 1), (1, 0)] + + def test_bfs_edges_sorting(self): + D = nx.DiGraph() + D.add_edges_from([(0, 1), (0, 2), (1, 4), (1, 3), (2, 5)]) + sort_desc = partial(sorted, reverse=True) + edges_asc = nx.bfs_edges(D, source=0, sort_neighbors=sorted) + edges_desc = nx.bfs_edges(D, source=0, sort_neighbors=sort_desc) + assert list(edges_asc) == [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5)] + assert list(edges_desc) == [(0, 2), (0, 1), (2, 5), (1, 4), (1, 3)] + + def test_bfs_tree_isolates(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + T = nx.bfs_tree(G, source=1) + assert sorted(T.nodes()) == [1] + assert sorted(T.edges()) == [] + + def test_bfs_layers(self): + expected = { + 0: [0], + 1: [1], + 2: [2, 3], + 3: [4], + } + assert dict(enumerate(nx.bfs_layers(self.G, sources=[0]))) == expected + assert dict(enumerate(nx.bfs_layers(self.G, sources=0))) == expected + + def test_bfs_layers_missing_source(self): + with pytest.raises(nx.NetworkXError): + next(nx.bfs_layers(self.G, sources="abc")) + with pytest.raises(nx.NetworkXError): + next(nx.bfs_layers(self.G, sources=["abc"])) + + def test_descendants_at_distance(self): + for distance, descendants in enumerate([{0}, {1}, {2, 3}, {4}]): + assert nx.descendants_at_distance(self.G, 0, distance) == descendants + + def test_descendants_at_distance_missing_source(self): + with pytest.raises(nx.NetworkXError): + nx.descendants_at_distance(self.G, "abc", 0) + + def test_bfs_labeled_edges_directed(self): + D = nx.cycle_graph(5, create_using=nx.DiGraph) + expected = [ + (0, 1, "tree"), + (1, 2, "tree"), + (2, 3, "tree"), + (3, 4, "tree"), + (4, 0, "reverse"), + ] + answer = list(nx.bfs_labeled_edges(D, 0)) + assert expected == answer + + D.add_edge(4, 4) + expected.append((4, 4, "level")) + answer = list(nx.bfs_labeled_edges(D, 0)) + assert expected == answer + + D.add_edge(0, 2) + D.add_edge(1, 5) + D.add_edge(2, 5) + D.remove_edge(4, 4) + expected = [ + (0, 1, "tree"), + (0, 2, "tree"), + (1, 2, "level"), + (1, 5, "tree"), + (2, 3, "tree"), + (2, 5, "forward"), + (3, 4, "tree"), + (4, 0, "reverse"), + ] + answer = list(nx.bfs_labeled_edges(D, 0)) + assert expected == answer + + G = D.to_undirected() + G.add_edge(4, 4) + expected = [ + (0, 1, "tree"), + (0, 2, "tree"), + (0, 4, "tree"), + (1, 2, "level"), + (1, 5, "tree"), + (2, 3, "tree"), + (2, 5, "forward"), + (4, 3, "forward"), + (4, 4, "level"), + ] + answer = list(nx.bfs_labeled_edges(G, 0)) + assert expected == answer + + +class TestBreadthLimitedSearch: + @classmethod + def setup_class(cls): + # a tree + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3, 4, 5, 6]) + nx.add_path(G, [2, 7, 8, 9, 10]) + cls.G = G + # a disconnected graph + D = nx.Graph() + D.add_edges_from([(0, 1), (2, 3)]) + nx.add_path(D, [2, 7, 8, 9, 10]) + cls.D = D + + def test_limited_bfs_successor(self): + assert dict(nx.bfs_successors(self.G, source=1, depth_limit=3)) == { + 1: [0, 2], + 2: [3, 7], + 3: [4], + 7: [8], + } + result = { + n: sorted(s) for n, s in nx.bfs_successors(self.D, source=7, depth_limit=2) + } + assert result == {8: [9], 2: [3], 7: [2, 8]} + + def test_limited_bfs_predecessor(self): + assert dict(nx.bfs_predecessors(self.G, source=1, depth_limit=3)) == { + 0: 1, + 2: 1, + 3: 2, + 4: 3, + 7: 2, + 8: 7, + } + assert dict(nx.bfs_predecessors(self.D, source=7, depth_limit=2)) == { + 2: 7, + 3: 2, + 8: 7, + 9: 8, + } + + def test_limited_bfs_tree(self): + T = nx.bfs_tree(self.G, source=3, depth_limit=1) + assert sorted(T.edges()) == [(3, 2), (3, 4)] + + def test_limited_bfs_edges(self): + edges = nx.bfs_edges(self.G, source=9, depth_limit=4) + assert list(edges) == [(9, 8), (9, 10), (8, 7), (7, 2), (2, 1), (2, 3)] + + def test_limited_bfs_layers(self): + assert dict(enumerate(nx.bfs_layers(self.G, sources=[0]))) == { + 0: [0], + 1: [1], + 2: [2], + 3: [3, 7], + 4: [4, 8], + 5: [5, 9], + 6: [6, 10], + } + assert dict(enumerate(nx.bfs_layers(self.D, sources=2))) == { + 0: [2], + 1: [3, 7], + 2: [8], + 3: [9], + 4: [10], + } + + def test_limited_descendants_at_distance(self): + for distance, descendants in enumerate( + [{0}, {1}, {2}, {3, 7}, {4, 8}, {5, 9}, {6, 10}] + ): + assert nx.descendants_at_distance(self.G, 0, distance) == descendants + for distance, descendants in enumerate([{2}, {3, 7}, {8}, {9}, {10}]): + assert nx.descendants_at_distance(self.D, 2, distance) == descendants + + +def test_deprecations(): + G = nx.Graph([(1, 2)]) + generic_bfs = nx.breadth_first_search.generic_bfs_edges + with pytest.deprecated_call(): + list(generic_bfs(G, source=1, sort_neighbors=sorted)) + with pytest.deprecated_call(): + list(generic_bfs(G, source=1, neighbors=G.neighbors, sort_neighbors=sorted)) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_dfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_dfs.py new file mode 100644 index 0000000000000000000000000000000000000000..0eb698b0f2da734c564c83a2d23ff7f191c7137a --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_dfs.py @@ -0,0 +1,251 @@ +import networkx as nx + + +class TestDFS: + @classmethod + def setup_class(cls): + # simple graph + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 0), (0, 4)]) + cls.G = G + # simple graph, disconnected + D = nx.Graph() + D.add_edges_from([(0, 1), (2, 3)]) + cls.D = D + + def test_preorder_nodes(self): + assert list(nx.dfs_preorder_nodes(self.G, source=0)) == [0, 1, 2, 4, 3] + assert list(nx.dfs_preorder_nodes(self.D)) == [0, 1, 2, 3] + assert list(nx.dfs_preorder_nodes(self.D, source=2)) == [2, 3] + + def test_postorder_nodes(self): + assert list(nx.dfs_postorder_nodes(self.G, source=0)) == [4, 2, 3, 1, 0] + assert list(nx.dfs_postorder_nodes(self.D)) == [1, 0, 3, 2] + assert list(nx.dfs_postorder_nodes(self.D, source=0)) == [1, 0] + + def test_successor(self): + assert nx.dfs_successors(self.G, source=0) == {0: [1], 1: [2, 3], 2: [4]} + assert nx.dfs_successors(self.G, source=1) == {0: [3, 4], 1: [0], 4: [2]} + assert nx.dfs_successors(self.D) == {0: [1], 2: [3]} + assert nx.dfs_successors(self.D, source=1) == {1: [0]} + + def test_predecessor(self): + assert nx.dfs_predecessors(self.G, source=0) == {1: 0, 2: 1, 3: 1, 4: 2} + assert nx.dfs_predecessors(self.D) == {1: 0, 3: 2} + + def test_dfs_tree(self): + exp_nodes = sorted(self.G.nodes()) + exp_edges = [(0, 1), (1, 2), (1, 3), (2, 4)] + # Search from first node + T = nx.dfs_tree(self.G, source=0) + assert sorted(T.nodes()) == exp_nodes + assert sorted(T.edges()) == exp_edges + # Check source=None + T = nx.dfs_tree(self.G, source=None) + assert sorted(T.nodes()) == exp_nodes + assert sorted(T.edges()) == exp_edges + # Check source=None is the default + T = nx.dfs_tree(self.G) + assert sorted(T.nodes()) == exp_nodes + assert sorted(T.edges()) == exp_edges + + def test_dfs_edges(self): + edges = nx.dfs_edges(self.G, source=0) + assert list(edges) == [(0, 1), (1, 2), (2, 4), (1, 3)] + edges = nx.dfs_edges(self.D) + assert list(edges) == [(0, 1), (2, 3)] + + def test_dfs_labeled_edges(self): + edges = list(nx.dfs_labeled_edges(self.G, source=0)) + forward = [(u, v) for (u, v, d) in edges if d == "forward"] + assert forward == [(0, 0), (0, 1), (1, 2), (2, 4), (1, 3)] + assert edges == [ + (0, 0, "forward"), + (0, 1, "forward"), + (1, 0, "nontree"), + (1, 2, "forward"), + (2, 1, "nontree"), + (2, 4, "forward"), + (4, 2, "nontree"), + (4, 0, "nontree"), + (2, 4, "reverse"), + (1, 2, "reverse"), + (1, 3, "forward"), + (3, 1, "nontree"), + (3, 0, "nontree"), + (1, 3, "reverse"), + (0, 1, "reverse"), + (0, 3, "nontree"), + (0, 4, "nontree"), + (0, 0, "reverse"), + ] + + def test_dfs_labeled_disconnected_edges(self): + edges = list(nx.dfs_labeled_edges(self.D)) + forward = [(u, v) for (u, v, d) in edges if d == "forward"] + assert forward == [(0, 0), (0, 1), (2, 2), (2, 3)] + assert edges == [ + (0, 0, "forward"), + (0, 1, "forward"), + (1, 0, "nontree"), + (0, 1, "reverse"), + (0, 0, "reverse"), + (2, 2, "forward"), + (2, 3, "forward"), + (3, 2, "nontree"), + (2, 3, "reverse"), + (2, 2, "reverse"), + ] + + def test_dfs_tree_isolates(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + T = nx.dfs_tree(G, source=1) + assert sorted(T.nodes()) == [1] + assert sorted(T.edges()) == [] + T = nx.dfs_tree(G, source=None) + assert sorted(T.nodes()) == [1, 2] + assert sorted(T.edges()) == [] + + +class TestDepthLimitedSearch: + @classmethod + def setup_class(cls): + # a tree + G = nx.Graph() + nx.add_path(G, [0, 1, 2, 3, 4, 5, 6]) + nx.add_path(G, [2, 7, 8, 9, 10]) + cls.G = G + # a disconnected graph + D = nx.Graph() + D.add_edges_from([(0, 1), (2, 3)]) + nx.add_path(D, [2, 7, 8, 9, 10]) + cls.D = D + + def test_dls_preorder_nodes(self): + assert list(nx.dfs_preorder_nodes(self.G, source=0, depth_limit=2)) == [0, 1, 2] + assert list(nx.dfs_preorder_nodes(self.D, source=1, depth_limit=2)) == ([1, 0]) + + def test_dls_postorder_nodes(self): + assert list(nx.dfs_postorder_nodes(self.G, source=3, depth_limit=3)) == [ + 1, + 7, + 2, + 5, + 4, + 3, + ] + assert list(nx.dfs_postorder_nodes(self.D, source=2, depth_limit=2)) == ( + [3, 7, 2] + ) + + def test_dls_successor(self): + result = nx.dfs_successors(self.G, source=4, depth_limit=3) + assert {n: set(v) for n, v in result.items()} == { + 2: {1, 7}, + 3: {2}, + 4: {3, 5}, + 5: {6}, + } + result = nx.dfs_successors(self.D, source=7, depth_limit=2) + assert {n: set(v) for n, v in result.items()} == {8: {9}, 2: {3}, 7: {8, 2}} + + def test_dls_predecessor(self): + assert nx.dfs_predecessors(self.G, source=0, depth_limit=3) == { + 1: 0, + 2: 1, + 3: 2, + 7: 2, + } + assert nx.dfs_predecessors(self.D, source=2, depth_limit=3) == { + 8: 7, + 9: 8, + 3: 2, + 7: 2, + } + + def test_dls_tree(self): + T = nx.dfs_tree(self.G, source=3, depth_limit=1) + assert sorted(T.edges()) == [(3, 2), (3, 4)] + + def test_dls_edges(self): + edges = nx.dfs_edges(self.G, source=9, depth_limit=4) + assert list(edges) == [(9, 8), (8, 7), (7, 2), (2, 1), (2, 3), (9, 10)] + + def test_dls_labeled_edges_depth_1(self): + edges = list(nx.dfs_labeled_edges(self.G, source=5, depth_limit=1)) + forward = [(u, v) for (u, v, d) in edges if d == "forward"] + assert forward == [(5, 5), (5, 4), (5, 6)] + # Note: reverse-depth_limit edge types were not reported before gh-6240 + assert edges == [ + (5, 5, "forward"), + (5, 4, "forward"), + (5, 4, "reverse-depth_limit"), + (5, 6, "forward"), + (5, 6, "reverse-depth_limit"), + (5, 5, "reverse"), + ] + + def test_dls_labeled_edges_depth_2(self): + edges = list(nx.dfs_labeled_edges(self.G, source=6, depth_limit=2)) + forward = [(u, v) for (u, v, d) in edges if d == "forward"] + assert forward == [(6, 6), (6, 5), (5, 4)] + assert edges == [ + (6, 6, "forward"), + (6, 5, "forward"), + (5, 4, "forward"), + (5, 4, "reverse-depth_limit"), + (5, 6, "nontree"), + (6, 5, "reverse"), + (6, 6, "reverse"), + ] + + def test_dls_labeled_disconnected_edges(self): + edges = list(nx.dfs_labeled_edges(self.D, depth_limit=1)) + assert edges == [ + (0, 0, "forward"), + (0, 1, "forward"), + (0, 1, "reverse-depth_limit"), + (0, 0, "reverse"), + (2, 2, "forward"), + (2, 3, "forward"), + (2, 3, "reverse-depth_limit"), + (2, 7, "forward"), + (2, 7, "reverse-depth_limit"), + (2, 2, "reverse"), + (8, 8, "forward"), + (8, 7, "nontree"), + (8, 9, "forward"), + (8, 9, "reverse-depth_limit"), + (8, 8, "reverse"), + (10, 10, "forward"), + (10, 9, "nontree"), + (10, 10, "reverse"), + ] + # large depth_limit has no impact + edges = list(nx.dfs_labeled_edges(self.D, depth_limit=19)) + assert edges == [ + (0, 0, "forward"), + (0, 1, "forward"), + (1, 0, "nontree"), + (0, 1, "reverse"), + (0, 0, "reverse"), + (2, 2, "forward"), + (2, 3, "forward"), + (3, 2, "nontree"), + (2, 3, "reverse"), + (2, 7, "forward"), + (7, 2, "nontree"), + (7, 8, "forward"), + (8, 7, "nontree"), + (8, 9, "forward"), + (9, 8, "nontree"), + (9, 10, "forward"), + (10, 9, "nontree"), + (9, 10, "reverse"), + (8, 9, "reverse"), + (7, 8, "reverse"), + (2, 7, "reverse"), + (2, 2, "reverse"), + ] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgebfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgebfs.py new file mode 100644 index 0000000000000000000000000000000000000000..1bf3fae0bd067dd548281e3382a6125f6e50ee22 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgebfs.py @@ -0,0 +1,147 @@ +import pytest + +import networkx as nx +from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE + + +class TestEdgeBFS: + @classmethod + def setup_class(cls): + cls.nodes = [0, 1, 2, 3] + cls.edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)] + + def test_empty(self): + G = nx.Graph() + edges = list(nx.edge_bfs(G)) + assert edges == [] + + def test_graph_single_source(self): + G = nx.Graph(self.edges) + G.add_edge(4, 5) + x = list(nx.edge_bfs(G, [0])) + x_ = [(0, 1), (0, 2), (1, 2), (1, 3)] + assert x == x_ + + def test_graph(self): + G = nx.Graph(self.edges) + x = list(nx.edge_bfs(G, self.nodes)) + x_ = [(0, 1), (0, 2), (1, 2), (1, 3)] + assert x == x_ + + def test_digraph(self): + G = nx.DiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes)) + x_ = [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)] + assert x == x_ + + def test_digraph_orientation_invalid(self): + G = nx.DiGraph(self.edges) + edge_iterator = nx.edge_bfs(G, self.nodes, orientation="hello") + pytest.raises(nx.NetworkXError, list, edge_iterator) + + def test_digraph_orientation_none(self): + G = nx.DiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation=None)) + x_ = [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)] + assert x == x_ + + def test_digraph_orientation_original(self): + G = nx.DiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation="original")) + x_ = [ + (0, 1, FORWARD), + (1, 0, FORWARD), + (2, 0, FORWARD), + (2, 1, FORWARD), + (3, 1, FORWARD), + ] + assert x == x_ + + def test_digraph2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(nx.edge_bfs(G, [0])) + x_ = [(0, 1), (1, 2), (2, 3)] + assert x == x_ + + def test_digraph_rev(self): + G = nx.DiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation="reverse")) + x_ = [ + (1, 0, REVERSE), + (2, 0, REVERSE), + (0, 1, REVERSE), + (2, 1, REVERSE), + (3, 1, REVERSE), + ] + assert x == x_ + + def test_digraph_rev2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(nx.edge_bfs(G, [3], orientation="reverse")) + x_ = [(2, 3, REVERSE), (1, 2, REVERSE), (0, 1, REVERSE)] + assert x == x_ + + def test_multigraph(self): + G = nx.MultiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes)) + x_ = [(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)] + # This is an example of where hash randomization can break. + # There are 3! * 2 alternative outputs, such as: + # [(0, 1, 1), (1, 0, 0), (0, 1, 2), (1, 3, 0), (1, 2, 0)] + # But note, the edges (1,2,0) and (1,3,0) always follow the (0,1,k) + # edges. So the algorithm only guarantees a partial order. A total + # order is guaranteed only if the graph data structures are ordered. + assert x == x_ + + def test_multidigraph(self): + G = nx.MultiDiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes)) + x_ = [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)] + assert x == x_ + + def test_multidigraph_rev(self): + G = nx.MultiDiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation="reverse")) + x_ = [ + (1, 0, 0, REVERSE), + (1, 0, 1, REVERSE), + (2, 0, 0, REVERSE), + (0, 1, 0, REVERSE), + (2, 1, 0, REVERSE), + (3, 1, 0, REVERSE), + ] + assert x == x_ + + def test_digraph_ignore(self): + G = nx.DiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation="ignore")) + x_ = [ + (0, 1, FORWARD), + (1, 0, REVERSE), + (2, 0, REVERSE), + (2, 1, REVERSE), + (3, 1, REVERSE), + ] + assert x == x_ + + def test_digraph_ignore2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(nx.edge_bfs(G, [0], orientation="ignore")) + x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 3, FORWARD)] + assert x == x_ + + def test_multidigraph_ignore(self): + G = nx.MultiDiGraph(self.edges) + x = list(nx.edge_bfs(G, self.nodes, orientation="ignore")) + x_ = [ + (0, 1, 0, FORWARD), + (1, 0, 0, REVERSE), + (1, 0, 1, REVERSE), + (2, 0, 0, REVERSE), + (2, 1, 0, REVERSE), + (3, 1, 0, REVERSE), + ] + assert x == x_ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgedfs.py b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgedfs.py new file mode 100644 index 0000000000000000000000000000000000000000..7c1967cce04b3a0c9db80f9af39d7b1dfd8ef4cb --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/traversal/tests/test_edgedfs.py @@ -0,0 +1,131 @@ +import pytest + +import networkx as nx +from networkx.algorithms import edge_dfs +from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE + +# These tests can fail with hash randomization. The easiest and clearest way +# to write these unit tests is for the edges to be output in an expected total +# order, but we cannot guarantee the order amongst outgoing edges from a node, +# unless each class uses an ordered data structure for neighbors. This is +# painful to do with the current API. The alternative is that the tests are +# written (IMO confusingly) so that there is not a total order over the edges, +# but only a partial order. Due to the small size of the graphs, hopefully +# failures due to hash randomization will not occur. For an example of how +# this can fail, see TestEdgeDFS.test_multigraph. + + +class TestEdgeDFS: + @classmethod + def setup_class(cls): + cls.nodes = [0, 1, 2, 3] + cls.edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] + + def test_empty(self): + G = nx.Graph() + edges = list(edge_dfs(G)) + assert edges == [] + + def test_graph(self): + G = nx.Graph(self.edges) + x = list(edge_dfs(G, self.nodes)) + x_ = [(0, 1), (1, 2), (1, 3)] + assert x == x_ + + def test_digraph(self): + G = nx.DiGraph(self.edges) + x = list(edge_dfs(G, self.nodes)) + x_ = [(0, 1), (1, 0), (2, 1), (3, 1)] + assert x == x_ + + def test_digraph_orientation_invalid(self): + G = nx.DiGraph(self.edges) + edge_iterator = edge_dfs(G, self.nodes, orientation="hello") + pytest.raises(nx.NetworkXError, list, edge_iterator) + + def test_digraph_orientation_none(self): + G = nx.DiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation=None)) + x_ = [(0, 1), (1, 0), (2, 1), (3, 1)] + assert x == x_ + + def test_digraph_orientation_original(self): + G = nx.DiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation="original")) + x_ = [(0, 1, FORWARD), (1, 0, FORWARD), (2, 1, FORWARD), (3, 1, FORWARD)] + assert x == x_ + + def test_digraph2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(edge_dfs(G, [0])) + x_ = [(0, 1), (1, 2), (2, 3)] + assert x == x_ + + def test_digraph_rev(self): + G = nx.DiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation="reverse")) + x_ = [(1, 0, REVERSE), (0, 1, REVERSE), (2, 1, REVERSE), (3, 1, REVERSE)] + assert x == x_ + + def test_digraph_rev2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(edge_dfs(G, [3], orientation="reverse")) + x_ = [(2, 3, REVERSE), (1, 2, REVERSE), (0, 1, REVERSE)] + assert x == x_ + + def test_multigraph(self): + G = nx.MultiGraph(self.edges) + x = list(edge_dfs(G, self.nodes)) + x_ = [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)] + # This is an example of where hash randomization can break. + # There are 3! * 2 alternative outputs, such as: + # [(0, 1, 1), (1, 0, 0), (0, 1, 2), (1, 3, 0), (1, 2, 0)] + # But note, the edges (1,2,0) and (1,3,0) always follow the (0,1,k) + # edges. So the algorithm only guarantees a partial order. A total + # order is guaranteed only if the graph data structures are ordered. + assert x == x_ + + def test_multidigraph(self): + G = nx.MultiDiGraph(self.edges) + x = list(edge_dfs(G, self.nodes)) + x_ = [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)] + assert x == x_ + + def test_multidigraph_rev(self): + G = nx.MultiDiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation="reverse")) + x_ = [ + (1, 0, 0, REVERSE), + (0, 1, 0, REVERSE), + (1, 0, 1, REVERSE), + (2, 1, 0, REVERSE), + (3, 1, 0, REVERSE), + ] + assert x == x_ + + def test_digraph_ignore(self): + G = nx.DiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation="ignore")) + x_ = [(0, 1, FORWARD), (1, 0, FORWARD), (2, 1, REVERSE), (3, 1, REVERSE)] + assert x == x_ + + def test_digraph_ignore2(self): + G = nx.DiGraph() + nx.add_path(G, range(4)) + x = list(edge_dfs(G, [0], orientation="ignore")) + x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 3, FORWARD)] + assert x == x_ + + def test_multidigraph_ignore(self): + G = nx.MultiDiGraph(self.edges) + x = list(edge_dfs(G, self.nodes, orientation="ignore")) + x_ = [ + (0, 1, 0, FORWARD), + (1, 0, 0, FORWARD), + (1, 0, 1, REVERSE), + (2, 1, 0, REVERSE), + (3, 1, 0, REVERSE), + ] + assert x == x_ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7120d4bc7ef25279b68eaa23690b6ff4574ed676 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/__init__.py @@ -0,0 +1,6 @@ +from .branchings import * +from .coding import * +from .mst import * +from .recognition import * +from .operations import * +from .decomposition import * diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..156a6cd80dd010c142967d9467a80ae4d1d3e77e Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/branchings.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/branchings.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b8544bd84f2828cfd86e24c00661261134030e2 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/branchings.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/coding.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/coding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b70064f9c321199077a1d03715732df4b5d7548 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/coding.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/decomposition.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/decomposition.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac5a486312fad587d1d8a81b26d371bf215dccef Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/decomposition.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/mst.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/mst.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80ae3d26a1bbab8c797d29ea682c9755c0fcab08 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/mst.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/operations.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/operations.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40a7654a342bfd329e6d0122835aefefc1912be6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/operations.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/recognition.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/recognition.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50a0ce8f91dd7faa98b75d8c479de0405fa8f5d4 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/__pycache__/recognition.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/branchings.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/branchings.py new file mode 100644 index 0000000000000000000000000000000000000000..653266915e77b2ac0e936fb9e28db432b979b85f --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/branchings.py @@ -0,0 +1,1600 @@ +""" +Algorithms for finding optimum branchings and spanning arborescences. + +This implementation is based on: + + J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), + 233–240. URL: http://archive.org/details/jresv71Bn4p233 + +""" +# TODO: Implement method from Gabow, Galil, Spence and Tarjan: +# +# @article{ +# year={1986}, +# issn={0209-9683}, +# journal={Combinatorica}, +# volume={6}, +# number={2}, +# doi={10.1007/BF02579168}, +# title={Efficient algorithms for finding minimum spanning trees in +# undirected and directed graphs}, +# url={https://doi.org/10.1007/BF02579168}, +# publisher={Springer-Verlag}, +# keywords={68 B 15; 68 C 05}, +# author={Gabow, Harold N. and Galil, Zvi and Spencer, Thomas and Tarjan, +# Robert E.}, +# pages={109-122}, +# language={English} +# } +import string +from dataclasses import dataclass, field +from enum import Enum +from operator import itemgetter +from queue import PriorityQueue + +import networkx as nx +from networkx.utils import py_random_state + +from .recognition import is_arborescence, is_branching + +__all__ = [ + "branching_weight", + "greedy_branching", + "maximum_branching", + "minimum_branching", + "minimal_branching", + "maximum_spanning_arborescence", + "minimum_spanning_arborescence", + "ArborescenceIterator", + "Edmonds", +] + +KINDS = {"max", "min"} + +STYLES = { + "branching": "branching", + "arborescence": "arborescence", + "spanning arborescence": "arborescence", +} + +INF = float("inf") + + +@py_random_state(1) +def random_string(L=15, seed=None): + return "".join([seed.choice(string.ascii_letters) for n in range(L)]) + + +def _min_weight(weight): + return -weight + + +def _max_weight(weight): + return weight + + +@nx._dispatch(edge_attrs={"attr": "default"}) +def branching_weight(G, attr="weight", default=1): + """ + Returns the total weight of a branching. + + You must access this function through the networkx.algorithms.tree module. + + Parameters + ---------- + G : DiGraph + The directed graph. + attr : str + The attribute to use as weights. If None, then each edge will be + treated equally with a weight of 1. + default : float + When `attr` is not None, then if an edge does not have that attribute, + `default` specifies what value it should take. + + Returns + ------- + weight: int or float + The total weight of the branching. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from([(0, 1, 2), (1, 2, 4), (2, 3, 3), (3, 4, 2)]) + >>> nx.tree.branching_weight(G) + 11 + + """ + return sum(edge[2].get(attr, default) for edge in G.edges(data=True)) + + +@py_random_state(4) +@nx._dispatch(edge_attrs={"attr": "default"}) +def greedy_branching(G, attr="weight", default=1, kind="max", seed=None): + """ + Returns a branching obtained through a greedy algorithm. + + This algorithm is wrong, and cannot give a proper optimal branching. + However, we include it for pedagogical reasons, as it can be helpful to + see what its outputs are. + + The output is a branching, and possibly, a spanning arborescence. However, + it is not guaranteed to be optimal in either case. + + Parameters + ---------- + G : DiGraph + The directed graph to scan. + attr : str + The attribute to use as weights. If None, then each edge will be + treated equally with a weight of 1. + default : float + When `attr` is not None, then if an edge does not have that attribute, + `default` specifies what value it should take. + kind : str + The type of optimum to search for: 'min' or 'max' greedy branching. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + B : directed graph + The greedily obtained branching. + + """ + if kind not in KINDS: + raise nx.NetworkXException("Unknown value for `kind`.") + + if kind == "min": + reverse = False + else: + reverse = True + + if attr is None: + # Generate a random string the graph probably won't have. + attr = random_string(seed=seed) + + edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)] + + # We sort by weight, but also by nodes to normalize behavior across runs. + try: + edges.sort(key=itemgetter(2, 0, 1), reverse=reverse) + except TypeError: + # This will fail in Python 3.x if the nodes are of varying types. + # In that case, we use the arbitrary order. + edges.sort(key=itemgetter(2), reverse=reverse) + + # The branching begins with a forest of no edges. + B = nx.DiGraph() + B.add_nodes_from(G) + + # Now we add edges greedily so long we maintain the branching. + uf = nx.utils.UnionFind() + for i, (u, v, w) in enumerate(edges): + if uf[u] == uf[v]: + # Adding this edge would form a directed cycle. + continue + elif B.in_degree(v) == 1: + # The edge would increase the degree to be greater than one. + continue + else: + # If attr was None, then don't insert weights... + data = {} + if attr is not None: + data[attr] = w + B.add_edge(u, v, **data) + uf.union(u, v) + + return B + + +class MultiDiGraph_EdgeKey(nx.MultiDiGraph): + """ + MultiDiGraph which assigns unique keys to every edge. + + Adds a dictionary edge_index which maps edge keys to (u, v, data) tuples. + + This is not a complete implementation. For Edmonds algorithm, we only use + add_node and add_edge, so that is all that is implemented here. During + additions, any specified keys are ignored---this means that you also + cannot update edge attributes through add_node and add_edge. + + Why do we need this? Edmonds algorithm requires that we track edges, even + as we change the head and tail of an edge, and even changing the weight + of edges. We must reliably track edges across graph mutations. + """ + + def __init__(self, incoming_graph_data=None, **attr): + cls = super() + cls.__init__(incoming_graph_data=incoming_graph_data, **attr) + + self._cls = cls + self.edge_index = {} + + import warnings + + msg = "MultiDiGraph_EdgeKey has been deprecated and will be removed in NetworkX 3.4." + warnings.warn(msg, DeprecationWarning) + + def remove_node(self, n): + keys = set() + for keydict in self.pred[n].values(): + keys.update(keydict) + for keydict in self.succ[n].values(): + keys.update(keydict) + + for key in keys: + del self.edge_index[key] + + self._cls.remove_node(n) + + def remove_nodes_from(self, nbunch): + for n in nbunch: + self.remove_node(n) + + def add_edge(self, u_for_edge, v_for_edge, key_for_edge, **attr): + """ + Key is now required. + + """ + u, v, key = u_for_edge, v_for_edge, key_for_edge + if key in self.edge_index: + uu, vv, _ = self.edge_index[key] + if (u != uu) or (v != vv): + raise Exception(f"Key {key!r} is already in use.") + + self._cls.add_edge(u, v, key, **attr) + self.edge_index[key] = (u, v, self.succ[u][v][key]) + + def add_edges_from(self, ebunch_to_add, **attr): + for u, v, k, d in ebunch_to_add: + self.add_edge(u, v, k, **d) + + def remove_edge_with_key(self, key): + try: + u, v, _ = self.edge_index[key] + except KeyError as err: + raise KeyError(f"Invalid edge key {key!r}") from err + else: + del self.edge_index[key] + self._cls.remove_edge(u, v, key) + + def remove_edges_from(self, ebunch): + raise NotImplementedError + + +def get_path(G, u, v): + """ + Returns the edge keys of the unique path between u and v. + + This is not a generic function. G must be a branching and an instance of + MultiDiGraph_EdgeKey. + + """ + nodes = nx.shortest_path(G, u, v) + + # We are guaranteed that there is only one edge connected every node + # in the shortest path. + + def first_key(i, vv): + # Needed for 2.x/3.x compatibility + keys = G[nodes[i]][vv].keys() + # Normalize behavior + keys = list(keys) + return keys[0] + + edges = [first_key(i, vv) for i, vv in enumerate(nodes[1:])] + return nodes, edges + + +class Edmonds: + """ + Edmonds algorithm [1]_ for finding optimal branchings and spanning + arborescences. + + This algorithm can find both minimum and maximum spanning arborescences and + branchings. + + Notes + ----- + While this algorithm can find a minimum branching, since it isn't required + to be spanning, the minimum branching is always from the set of negative + weight edges which is most likely the empty set for most graphs. + + References + ---------- + .. [1] J. Edmonds, Optimum Branchings, Journal of Research of the National + Bureau of Standards, 1967, Vol. 71B, p.233-240, + https://archive.org/details/jresv71Bn4p233 + + """ + + def __init__(self, G, seed=None): + self.G_original = G + + # Need to fix this. We need the whole tree. + self.store = True + + # The final answer. + self.edges = [] + + # Since we will be creating graphs with new nodes, we need to make + # sure that our node names do not conflict with the real node names. + self.template = random_string(seed=seed) + "_{0}" + + import warnings + + msg = "Edmonds has been deprecated and will be removed in NetworkX 3.4. Please use the appropriate minimum or maximum branching or arborescence function directly." + warnings.warn(msg, DeprecationWarning) + + def _init(self, attr, default, kind, style, preserve_attrs, seed, partition): + """ + So we need the code in _init and find_optimum to successfully run edmonds algorithm. + Responsibilities of the _init function: + - Check that the kind argument is in {min, max} or raise a NetworkXException. + - Transform the graph if we need a minimum arborescence/branching. + - The current method is to map weight -> -weight. This is NOT a good approach since + the algorithm can and does choose to ignore negative weights when creating a branching + since that is always optimal when maximzing the weights. I think we should set the edge + weights to be (max_weight + 1) - edge_weight. + - Transform the graph into a MultiDiGraph, adding the partition information and potoentially + other edge attributes if we set preserve_attrs = True. + - Setup the buckets and union find data structures required for the algorithm. + """ + if kind not in KINDS: + raise nx.NetworkXException("Unknown value for `kind`.") + + # Store inputs. + self.attr = attr + self.default = default + self.kind = kind + self.style = style + + # Determine how we are going to transform the weights. + if kind == "min": + self.trans = trans = _min_weight + else: + self.trans = trans = _max_weight + + if attr is None: + # Generate a random attr the graph probably won't have. + attr = random_string(seed=seed) + + # This is the actual attribute used by the algorithm. + self._attr = attr + + # This attribute is used to store whether a particular edge is still + # a candidate. We generate a random attr to remove clashes with + # preserved edges + self.candidate_attr = "candidate_" + random_string(seed=seed) + + # The object we manipulate at each step is a multidigraph. + self.G = G = MultiDiGraph_EdgeKey() + for key, (u, v, data) in enumerate(self.G_original.edges(data=True)): + d = {attr: trans(data.get(attr, default))} + + if data.get(partition) is not None: + d[partition] = data.get(partition) + + if preserve_attrs: + for d_k, d_v in data.items(): + if d_k != attr: + d[d_k] = d_v + + G.add_edge(u, v, key, **d) + + self.level = 0 + + # These are the "buckets" from the paper. + # + # As in the paper, G^i are modified versions of the original graph. + # D^i and E^i are nodes and edges of the maximal edges that are + # consistent with G^i. These are dashed edges in figures A-F of the + # paper. In this implementation, we store D^i and E^i together as a + # graph B^i. So we will have strictly more B^i than the paper does. + self.B = MultiDiGraph_EdgeKey() + self.B.edge_index = {} + self.graphs = [] # G^i + self.branchings = [] # B^i + self.uf = nx.utils.UnionFind() + + # A list of lists of edge indexes. Each list is a circuit for graph G^i. + # Note the edge list will not, in general, be a circuit in graph G^0. + self.circuits = [] + # Stores the index of the minimum edge in the circuit found in G^i + # and B^i. The ordering of the edges seems to preserve the weight + # ordering from G^0. So even if the circuit does not form a circuit + # in G^0, it is still true that the minimum edge of the circuit in + # G^i is still the minimum edge in circuit G^0 (despite their weights + # being different). + self.minedge_circuit = [] + + # TODO: separate each step into an inner function. Then the overall loop would become + # while True: + # step_I1() + # if cycle detected: + # step_I2() + # elif every node of G is in D and E is a branching + # break + + def find_optimum( + self, + attr="weight", + default=1, + kind="max", + style="branching", + preserve_attrs=False, + partition=None, + seed=None, + ): + """ + Returns a branching from G. + + Parameters + ---------- + attr : str + The edge attribute used to in determining optimality. + default : float + The value of the edge attribute used if an edge does not have + the attribute `attr`. + kind : {'min', 'max'} + The type of optimum to search for, either 'min' or 'max'. + style : {'branching', 'arborescence'} + If 'branching', then an optimal branching is found. If `style` is + 'arborescence', then a branching is found, such that if the + branching is also an arborescence, then the branching is an + optimal spanning arborescences. A given graph G need not have + an optimal spanning arborescence. + preserve_attrs : bool + If True, preserve the other edge attributes of the original + graph (that are not the one passed to `attr`) + partition : str + The edge attribute holding edge partition data. Used in the + spanning arborescence iterator. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + H : (multi)digraph + The branching. + + """ + self._init(attr, default, kind, style, preserve_attrs, seed, partition) + uf = self.uf + + # This enormous while loop could use some refactoring... + + G, B = self.G, self.B + D = set() + nodes = iter(list(G.nodes())) + attr = self._attr + G_pred = G.pred + + def desired_edge(v): + """ + Find the edge directed toward v with maximal weight. + + If an edge partition exists in this graph, return the included edge + if it exists and no not return any excluded edges. There can only + be one included edge for each vertex otherwise the edge partition is + empty. + """ + edge = None + weight = -INF + for u, _, key, data in G.in_edges(v, data=True, keys=True): + # Skip excluded edges + if data.get(partition) == nx.EdgePartition.EXCLUDED: + continue + new_weight = data[attr] + # Return the included edge + if data.get(partition) == nx.EdgePartition.INCLUDED: + weight = new_weight + edge = (u, v, key, new_weight, data) + return edge, weight + # Find the best open edge + if new_weight > weight: + weight = new_weight + edge = (u, v, key, new_weight, data) + + return edge, weight + + while True: + # (I1): Choose a node v in G^i not in D^i. + try: + v = next(nodes) + except StopIteration: + # If there are no more new nodes to consider, then we *should* + # meet the break condition (b) from the paper: + # (b) every node of G^i is in D^i and E^i is a branching + # Construction guarantees that it's a branching. + assert len(G) == len(B) + if len(B): + assert is_branching(B) + + if self.store: + self.graphs.append(G.copy()) + self.branchings.append(B.copy()) + + # Add these to keep the lengths equal. Element i is the + # circuit at level i that was merged to form branching i+1. + # There is no circuit for the last level. + self.circuits.append([]) + self.minedge_circuit.append(None) + break + else: + if v in D: + # print("v in D", v) + continue + + # Put v into bucket D^i. + # print(f"Adding node {v}") + D.add(v) + B.add_node(v) + # End (I1) + + # Start cycle detection + edge, weight = desired_edge(v) + # print(f"Max edge is {edge!r}") + if edge is None: + # If there is no edge, continue with a new node at (I1). + continue + else: + # Determine if adding the edge to E^i would mean its no longer + # a branching. Presently, v has indegree 0 in B---it is a root. + u = edge[0] + + if uf[u] == uf[v]: + # Then adding the edge will create a circuit. Then B + # contains a unique path P from v to u. So condition (a) + # from the paper does hold. We need to store the circuit + # for future reference. + Q_nodes, Q_edges = get_path(B, v, u) + Q_edges.append(edge[2]) # Edge key + else: + # Then B with the edge is still a branching and condition + # (a) from the paper does not hold. + Q_nodes, Q_edges = None, None + # End cycle detection + + # THIS WILL PROBABLY BE REMOVED? MAYBE A NEW ARG FOR THIS FEATURE? + # Conditions for adding the edge. + # If weight < 0, then it cannot help in finding a maximum branching. + # This is the root of the problem with minimum branching. + if self.style == "branching" and weight <= 0: + acceptable = False + else: + acceptable = True + + # print(f"Edge is acceptable: {acceptable}") + if acceptable: + dd = {attr: weight} + if edge[4].get(partition) is not None: + dd[partition] = edge[4].get(partition) + B.add_edge(u, v, edge[2], **dd) + G[u][v][edge[2]][self.candidate_attr] = True + uf.union(u, v) + if Q_edges is not None: + # print("Edge introduced a simple cycle:") + # print(Q_nodes, Q_edges) + + # Move to method + # Previous meaning of u and v is no longer important. + + # Apply (I2). + # Get the edge in the cycle with the minimum weight. + # Also, save the incoming weights for each node. + minweight = INF + minedge = None + Q_incoming_weight = {} + for edge_key in Q_edges: + u, v, data = B.edge_index[edge_key] + # We cannot remove an included edges, even if it is + # the minimum edge in the circuit + w = data[attr] + Q_incoming_weight[v] = w + if data.get(partition) == nx.EdgePartition.INCLUDED: + continue + if w < minweight: + minweight = w + minedge = edge_key + + self.circuits.append(Q_edges) + self.minedge_circuit.append(minedge) + + if self.store: + self.graphs.append(G.copy()) + # Always need the branching with circuits. + self.branchings.append(B.copy()) + + # Now we mutate it. + new_node = self.template.format(self.level) + + # print(minweight, minedge, Q_incoming_weight) + + G.add_node(new_node) + new_edges = [] + for u, v, key, data in G.edges(data=True, keys=True): + if u in Q_incoming_weight: + if v in Q_incoming_weight: + # Circuit edge, do nothing for now. + # Eventually delete it. + continue + else: + # Outgoing edge. Make it from new node + dd = data.copy() + new_edges.append((new_node, v, key, dd)) + else: + if v in Q_incoming_weight: + # Incoming edge. Change its weight + w = data[attr] + w += minweight - Q_incoming_weight[v] + dd = data.copy() + dd[attr] = w + new_edges.append((u, new_node, key, dd)) + else: + # Outside edge. No modification necessary. + continue + + G.remove_nodes_from(Q_nodes) + B.remove_nodes_from(Q_nodes) + D.difference_update(set(Q_nodes)) + + for u, v, key, data in new_edges: + G.add_edge(u, v, key, **data) + if self.candidate_attr in data: + del data[self.candidate_attr] + B.add_edge(u, v, key, **data) + uf.union(u, v) + + nodes = iter(list(G.nodes())) + self.level += 1 + # END STEP (I2)? + + # (I3) Branch construction. + # print(self.level) + H = self.G_original.__class__() + + def is_root(G, u, edgekeys): + """ + Returns True if `u` is a root node in G. + + Node `u` will be a root node if its in-degree, restricted to the + specified edges, is equal to 0. + + """ + if u not in G: + # print(G.nodes(), u) + raise Exception(f"{u!r} not in G") + for v in G.pred[u]: + for edgekey in G.pred[u][v]: + if edgekey in edgekeys: + return False, edgekey + else: + return True, None + + # Start with the branching edges in the last level. + edges = set(self.branchings[self.level].edge_index) + while self.level > 0: + self.level -= 1 + + # The current level is i, and we start counting from 0. + + # We need the node at level i+1 that results from merging a circuit + # at level i. randomname_0 is the first merged node and this + # happens at level 1. That is, randomname_0 is a node at level 1 + # that results from merging a circuit at level 0. + merged_node = self.template.format(self.level) + + # The circuit at level i that was merged as a node the graph + # at level i+1. + circuit = self.circuits[self.level] + # print + # print(merged_node, self.level, circuit) + # print("before", edges) + # Note, we ask if it is a root in the full graph, not the branching. + # The branching alone doesn't have all the edges. + isroot, edgekey = is_root(self.graphs[self.level + 1], merged_node, edges) + edges.update(circuit) + if isroot: + minedge = self.minedge_circuit[self.level] + if minedge is None: + raise Exception + + # Remove the edge in the cycle with minimum weight. + edges.remove(minedge) + else: + # We have identified an edge at next higher level that + # transitions into the merged node at the level. That edge + # transitions to some corresponding node at the current level. + # We want to remove an edge from the cycle that transitions + # into the corresponding node. + # print("edgekey is: ", edgekey) + # print("circuit is: ", circuit) + # The branching at level i + G = self.graphs[self.level] + # print(G.edge_index) + target = G.edge_index[edgekey][1] + for edgekey in circuit: + u, v, data = G.edge_index[edgekey] + if v == target: + break + else: + raise Exception("Couldn't find edge incoming to merged node.") + + edges.remove(edgekey) + + self.edges = edges + + H.add_nodes_from(self.G_original) + for edgekey in edges: + u, v, d = self.graphs[0].edge_index[edgekey] + dd = {self.attr: self.trans(d[self.attr])} + + # Optionally, preserve the other edge attributes of the original + # graph + if preserve_attrs: + for key, value in d.items(): + if key not in [self.attr, self.candidate_attr]: + dd[key] = value + + # TODO: make this preserve the key. + H.add_edge(u, v, **dd) + + return H + + +@nx._dispatch( + edge_attrs={"attr": "default", "partition": 0}, + preserve_edge_attrs="preserve_attrs", +) +def maximum_branching( + G, + attr="weight", + default=1, + preserve_attrs=False, + partition=None, +): + ####################################### + ### Data Structure Helper Functions ### + ####################################### + + def edmonds_add_edge(G, edge_index, u, v, key, **d): + """ + Adds an edge to `G` while also updating the edge index. + + This algorithm requires the use of an external dictionary to track + the edge keys since it is possible that the source or destination + node of an edge will be changed and the default key-handling + capabilities of the MultiDiGraph class do not account for this. + + Parameters + ---------- + G : MultiDiGraph + The graph to insert an edge into. + edge_index : dict + A mapping from integers to the edges of the graph. + u : node + The source node of the new edge. + v : node + The destination node of the new edge. + key : int + The key to use from `edge_index`. + d : keyword arguments, optional + Other attributes to store on the new edge. + """ + + if key in edge_index: + uu, vv, _ = edge_index[key] + if (u != uu) or (v != vv): + raise Exception(f"Key {key!r} is already in use.") + + G.add_edge(u, v, key, **d) + edge_index[key] = (u, v, G.succ[u][v][key]) + + def edmonds_remove_node(G, edge_index, n): + """ + Remove a node from the graph, updating the edge index to match. + + Parameters + ---------- + G : MultiDiGraph + The graph to remove an edge from. + edge_index : dict + A mapping from integers to the edges of the graph. + n : node + The node to remove from `G`. + """ + keys = set() + for keydict in G.pred[n].values(): + keys.update(keydict) + for keydict in G.succ[n].values(): + keys.update(keydict) + + for key in keys: + del edge_index[key] + + G.remove_node(n) + + ####################### + ### Algorithm Setup ### + ####################### + + # Pick an attribute name that the original graph is unlikly to have + candidate_attr = "edmonds' secret candidate attribute" + new_node_base_name = "edmonds new node base name " + + G_original = G + G = nx.MultiDiGraph() + # A dict to reliably track mutations to the edges using the key of the edge. + G_edge_index = {} + # Each edge is given an arbitrary numerical key + for key, (u, v, data) in enumerate(G_original.edges(data=True)): + d = {attr: data.get(attr, default)} + + if data.get(partition) is not None: + d[partition] = data.get(partition) + + if preserve_attrs: + for d_k, d_v in data.items(): + if d_k != attr: + d[d_k] = d_v + + edmonds_add_edge(G, G_edge_index, u, v, key, **d) + + level = 0 # Stores the number of contracted nodes + + # These are the buckets from the paper. + # + # In the paper, G^i are modified versions of the original graph. + # D^i and E^i are the nodes and edges of the maximal edges that are + # consistent with G^i. In this implementation, D^i and E^i are stored + # together as the graph B^i. We will have strictly more B^i then the + # paper will have. + # + # Note that the data in graphs and branchings are tuples with the graph as + # the first element and the edge index as the second. + B = nx.MultiDiGraph() + B_edge_index = {} + graphs = [] # G^i list + branchings = [] # B^i list + selected_nodes = set() # D^i bucket + uf = nx.utils.UnionFind() + + # A list of lists of edge indices. Each list is a circuit for graph G^i. + # Note the edge list is not required to be a circuit in G^0. + circuits = [] + + # Stores the index of the minimum edge in the circuit found in G^i and B^i. + # The ordering of the edges seems to preserver the weight ordering from + # G^0. So even if the circuit does not form a circuit in G^0, it is still + # true that the minimum edges in circuit G^0 (despite their weights being + # different) + minedge_circuit = [] + + ########################### + ### Algorithm Structure ### + ########################### + + # Each step listed in the algorithm is an inner function. Thus, the overall + # loop structure is: + # + # while True: + # step_I1() + # if cycle detected: + # step_I2() + # elif every node of G is in D and E is a branching: + # break + + ################################## + ### Algorithm Helper Functions ### + ################################## + + def edmonds_find_desired_edge(v): + """ + Find the edge directed towards v with maximal weight. + + If an edge partition exists in this graph, return the included + edge if it exists and never return any excluded edge. + + Note: There can only be one included edge for each vertex otherwise + the edge partition is empty. + + Parameters + ---------- + v : node + The node to search for the maximal weight incoming edge. + """ + edge = None + max_weight = -INF + for u, _, key, data in G.in_edges(v, data=True, keys=True): + # Skip excluded edges + if data.get(partition) == nx.EdgePartition.EXCLUDED: + continue + + new_weight = data[attr] + + # Return the included edge + if data.get(partition) == nx.EdgePartition.INCLUDED: + max_weight = new_weight + edge = (u, v, key, new_weight, data) + break + + # Find the best open edge + if new_weight > max_weight: + max_weight = new_weight + edge = (u, v, key, new_weight, data) + + return edge, max_weight + + def edmonds_step_I2(v, desired_edge, level): + """ + Perform step I2 from Edmonds' paper + + First, check if the last step I1 created a cycle. If it did not, do nothing. + If it did, store the cycle for later reference and contract it. + + Parameters + ---------- + v : node + The current node to consider + desired_edge : edge + The minimum desired edge to remove from the cycle. + level : int + The current level, i.e. the number of cycles that have already been removed. + """ + u = desired_edge[0] + + Q_nodes = nx.shortest_path(B, v, u) + Q_edges = [ + list(B[Q_nodes[i]][vv].keys())[0] for i, vv in enumerate(Q_nodes[1:]) + ] + Q_edges.append(desired_edge[2]) # Add the new edge key to complete the circuit + + # Get the edge in the circuit with the minimum weight. + # Also, save the incoming weights for each node. + minweight = INF + minedge = None + Q_incoming_weight = {} + for edge_key in Q_edges: + u, v, data = B_edge_index[edge_key] + w = data[attr] + # We cannot remove an included edge, even if it is the + # minimum edge in the circuit + Q_incoming_weight[v] = w + if data.get(partition) == nx.EdgePartition.INCLUDED: + continue + if w < minweight: + minweight = w + minedge = edge_key + + circuits.append(Q_edges) + minedge_circuit.append(minedge) + graphs.append((G.copy(), G_edge_index.copy())) + branchings.append((B.copy(), B_edge_index.copy())) + + # Mutate the graph to contract the circuit + new_node = new_node_base_name + str(level) + G.add_node(new_node) + new_edges = [] + for u, v, key, data in G.edges(data=True, keys=True): + if u in Q_incoming_weight: + if v in Q_incoming_weight: + # Circuit edge. For the moment do nothing, + # eventually it will be removed. + continue + else: + # Outgoing edge from a node in the circuit. + # Make it come from the new node instead + dd = data.copy() + new_edges.append((new_node, v, key, dd)) + else: + if v in Q_incoming_weight: + # Incoming edge to the circuit. + # Update it's weight + w = data[attr] + w += minweight - Q_incoming_weight[v] + dd = data.copy() + dd[attr] = w + new_edges.append((u, new_node, key, dd)) + else: + # Outside edge. No modification needed + continue + + for node in Q_nodes: + edmonds_remove_node(G, G_edge_index, node) + edmonds_remove_node(B, B_edge_index, node) + + selected_nodes.difference_update(set(Q_nodes)) + + for u, v, key, data in new_edges: + edmonds_add_edge(G, G_edge_index, u, v, key, **data) + if candidate_attr in data: + del data[candidate_attr] + edmonds_add_edge(B, B_edge_index, u, v, key, **data) + uf.union(u, v) + + def is_root(G, u, edgekeys): + """ + Returns True if `u` is a root node in G. + + Node `u` is a root node if its in-degree over the specified edges is zero. + + Parameters + ---------- + G : Graph + The current graph. + u : node + The node in `G` to check if it is a root. + edgekeys : iterable of edges + The edges for which to check if `u` is a root of. + """ + if u not in G: + raise Exception(f"{u!r} not in G") + + for v in G.pred[u]: + for edgekey in G.pred[u][v]: + if edgekey in edgekeys: + return False, edgekey + else: + return True, None + + nodes = iter(list(G.nodes)) + while True: + try: + v = next(nodes) + except StopIteration: + # If there are no more new nodes to consider, then we should + # meet stopping condition (b) from the paper: + # (b) every node of G^i is in D^i and E^i is a branching + assert len(G) == len(B) + if len(B): + assert is_branching(B) + + graphs.append((G.copy(), G_edge_index.copy())) + branchings.append((B.copy(), B_edge_index.copy())) + circuits.append([]) + minedge_circuit.append(None) + + break + else: + ##################### + ### BEGIN STEP I1 ### + ##################### + + # This is a very simple step, so I don't think it needs a method of it's own + if v in selected_nodes: + continue + + selected_nodes.add(v) + B.add_node(v) + desired_edge, desired_edge_weight = edmonds_find_desired_edge(v) + + # There might be no desired edge if all edges are excluded or + # v is the last node to be added to B, the ultimate root of the branching + if desired_edge is not None and desired_edge_weight > 0: + u = desired_edge[0] + # Flag adding the edge will create a circuit before merging the two + # connected components of u and v in B + circuit = uf[u] == uf[v] + dd = {attr: desired_edge_weight} + if desired_edge[4].get(partition) is not None: + dd[partition] = desired_edge[4].get(partition) + + edmonds_add_edge(B, B_edge_index, u, v, desired_edge[2], **dd) + G[u][v][desired_edge[2]][candidate_attr] = True + uf.union(u, v) + + ################### + ### END STEP I1 ### + ################### + + ##################### + ### BEGIN STEP I2 ### + ##################### + + if circuit: + edmonds_step_I2(v, desired_edge, level) + nodes = iter(list(G.nodes())) + level += 1 + + ################### + ### END STEP I2 ### + ################### + + ##################### + ### BEGIN STEP I3 ### + ##################### + + # Create a new graph of the same class as the input graph + H = G_original.__class__() + + # Start with the branching edges in the last level. + edges = set(branchings[level][1]) + while level > 0: + level -= 1 + + # The current level is i, and we start counting from 0. + # + # We need the node at level i+1 that results from merging a circuit + # at level i. basename_0 is the first merged node and this happens + # at level 1. That is basename_0 is a node at level 1 that results + # from merging a circuit at level 0. + + merged_node = new_node_base_name + str(level) + circuit = circuits[level] + isroot, edgekey = is_root(graphs[level + 1][0], merged_node, edges) + edges.update(circuit) + + if isroot: + minedge = minedge_circuit[level] + if minedge is None: + raise Exception + + # Remove the edge in the cycle with minimum weight + edges.remove(minedge) + else: + # We have identified an edge at the next higher level that + # transitions into the merged node at this level. That edge + # transitions to some corresponding node at the current level. + # + # We want to remove an edge from the cycle that transitions + # into the corresponding node, otherwise the result would not + # be a branching. + + G, G_edge_index = graphs[level] + target = G_edge_index[edgekey][1] + for edgekey in circuit: + u, v, data = G_edge_index[edgekey] + if v == target: + break + else: + raise Exception("Couldn't find edge incoming to merged node.") + + edges.remove(edgekey) + + H.add_nodes_from(G_original) + for edgekey in edges: + u, v, d = graphs[0][1][edgekey] + dd = {attr: d[attr]} + + if preserve_attrs: + for key, value in d.items(): + if key not in [attr, candidate_attr]: + dd[key] = value + + H.add_edge(u, v, **dd) + + ################### + ### END STEP I3 ### + ################### + + return H + + +@nx._dispatch( + edge_attrs={"attr": "default", "partition": None}, + preserve_edge_attrs="preserve_attrs", +) +def minimum_branching( + G, attr="weight", default=1, preserve_attrs=False, partition=None +): + for _, _, d in G.edges(data=True): + d[attr] = -d[attr] + + B = maximum_branching(G, attr, default, preserve_attrs, partition) + + for _, _, d in G.edges(data=True): + d[attr] = -d[attr] + + for _, _, d in B.edges(data=True): + d[attr] = -d[attr] + + return B + + +@nx._dispatch( + edge_attrs={"attr": "default", "partition": None}, + preserve_edge_attrs="preserve_attrs", +) +def minimal_branching( + G, /, *, attr="weight", default=1, preserve_attrs=False, partition=None +): + """ + Returns a minimal branching from `G`. + + A minimal branching is a branching similar to a minimal arborescence but + without the requirement that the result is actually a spanning arborescence. + This allows minimal branchinges to be computed over graphs which may not + have arborescence (such as multiple components). + + Parameters + ---------- + G : (multi)digraph-like + The graph to be searched. + attr : str + The edge attribute used in determining optimality. + default : float + The value of the edge attribute used if an edge does not have + the attribute `attr`. + preserve_attrs : bool + If True, preserve the other attributes of the original graph (that are not + passed to `attr`) + partition : str + The key for the edge attribute containing the partition + data on the graph. Edges can be included, excluded or open using the + `EdgePartition` enum. + + Returns + ------- + B : (multi)digraph-like + A minimal branching. + """ + max_weight = -INF + min_weight = INF + for _, _, w in G.edges(data=attr): + if w > max_weight: + max_weight = w + if w < min_weight: + min_weight = w + + for _, _, d in G.edges(data=True): + # Transform the weights so that the minimum weight is larger than + # the difference between the max and min weights. This is important + # in order to prevent the edge weights from becoming negative during + # computation + d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr] + + B = maximum_branching(G, attr, default, preserve_attrs, partition) + + # Reverse the weight transformations + for _, _, d in G.edges(data=True): + d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr] + + for _, _, d in B.edges(data=True): + d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr] + + return B + + +@nx._dispatch( + edge_attrs={"attr": "default", "partition": None}, + preserve_edge_attrs="preserve_attrs", +) +def maximum_spanning_arborescence( + G, attr="weight", default=1, preserve_attrs=False, partition=None +): + # In order to use the same algorithm is the maximum branching, we need to adjust + # the weights of the graph. The branching algorithm can choose to not include an + # edge if it doesn't help find a branching, mainly triggered by edges with negative + # weights. + # + # To prevent this from happening while trying to find a spanning arborescence, we + # just have to tweak the edge weights so that they are all positive and cannot + # become negative during the branching algorithm, find the maximum branching and + # then return them to their original values. + + min_weight = INF + max_weight = -INF + for _, _, w in G.edges(data=attr): + if w < min_weight: + min_weight = w + if w > max_weight: + max_weight = w + + for _, _, d in G.edges(data=True): + d[attr] = d[attr] - min_weight + 1 - (min_weight - max_weight) + + B = maximum_branching(G, attr, default, preserve_attrs, partition) + + for _, _, d in G.edges(data=True): + d[attr] = d[attr] + min_weight - 1 + (min_weight - max_weight) + + for _, _, d in B.edges(data=True): + d[attr] = d[attr] + min_weight - 1 + (min_weight - max_weight) + + if not is_arborescence(B): + raise nx.exception.NetworkXException("No maximum spanning arborescence in G.") + + return B + + +@nx._dispatch( + edge_attrs={"attr": "default", "partition": None}, + preserve_edge_attrs="preserve_attrs", +) +def minimum_spanning_arborescence( + G, attr="weight", default=1, preserve_attrs=False, partition=None +): + B = minimal_branching( + G, + attr=attr, + default=default, + preserve_attrs=preserve_attrs, + partition=partition, + ) + + if not is_arborescence(B): + raise nx.exception.NetworkXException("No minimum spanning arborescence in G.") + + return B + + +docstring_branching = """ +Returns a {kind} {style} from G. + +Parameters +---------- +G : (multi)digraph-like + The graph to be searched. +attr : str + The edge attribute used to in determining optimality. +default : float + The value of the edge attribute used if an edge does not have + the attribute `attr`. +preserve_attrs : bool + If True, preserve the other attributes of the original graph (that are not + passed to `attr`) +partition : str + The key for the edge attribute containing the partition + data on the graph. Edges can be included, excluded or open using the + `EdgePartition` enum. + +Returns +------- +B : (multi)digraph-like + A {kind} {style}. +""" + +docstring_arborescence = ( + docstring_branching + + """ +Raises +------ +NetworkXException + If the graph does not contain a {kind} {style}. + +""" +) + +maximum_branching.__doc__ = docstring_branching.format( + kind="maximum", style="branching" +) + +minimum_branching.__doc__ = ( + docstring_branching.format(kind="minimum", style="branching") + + """ +See Also +-------- + minimal_branching +""" +) + +maximum_spanning_arborescence.__doc__ = docstring_arborescence.format( + kind="maximum", style="spanning arborescence" +) + +minimum_spanning_arborescence.__doc__ = docstring_arborescence.format( + kind="minimum", style="spanning arborescence" +) + + +class ArborescenceIterator: + """ + Iterate over all spanning arborescences of a graph in either increasing or + decreasing cost. + + Notes + ----- + This iterator uses the partition scheme from [1]_ (included edges, + excluded edges and open edges). It generates minimum spanning + arborescences using a modified Edmonds' Algorithm which respects the + partition of edges. For arborescences with the same weight, ties are + broken arbitrarily. + + References + ---------- + .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning + trees in order of increasing cost, Pesquisa Operacional, 2005-08, + Vol. 25 (2), p. 219-229, + https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en + """ + + @dataclass(order=True) + class Partition: + """ + This dataclass represents a partition and stores a dict with the edge + data and the weight of the minimum spanning arborescence of the + partition dict. + """ + + mst_weight: float + partition_dict: dict = field(compare=False) + + def __copy__(self): + return ArborescenceIterator.Partition( + self.mst_weight, self.partition_dict.copy() + ) + + def __init__(self, G, weight="weight", minimum=True, init_partition=None): + """ + Initialize the iterator + + Parameters + ---------- + G : nx.DiGraph + The directed graph which we need to iterate trees over + + weight : String, default = "weight" + The edge attribute used to store the weight of the edge + + minimum : bool, default = True + Return the trees in increasing order while true and decreasing order + while false. + + init_partition : tuple, default = None + In the case that certain edges have to be included or excluded from + the arborescences, `init_partition` should be in the form + `(included_edges, excluded_edges)` where each edges is a + `(u, v)`-tuple inside an iterable such as a list or set. + + """ + self.G = G.copy() + self.weight = weight + self.minimum = minimum + self.method = ( + minimum_spanning_arborescence if minimum else maximum_spanning_arborescence + ) + # Randomly create a key for an edge attribute to hold the partition data + self.partition_key = ( + "ArborescenceIterators super secret partition attribute name" + ) + if init_partition is not None: + partition_dict = {} + for e in init_partition[0]: + partition_dict[e] = nx.EdgePartition.INCLUDED + for e in init_partition[1]: + partition_dict[e] = nx.EdgePartition.EXCLUDED + self.init_partition = ArborescenceIterator.Partition(0, partition_dict) + else: + self.init_partition = None + + def __iter__(self): + """ + Returns + ------- + ArborescenceIterator + The iterator object for this graph + """ + self.partition_queue = PriorityQueue() + self._clear_partition(self.G) + + # Write the initial partition if it exists. + if self.init_partition is not None: + self._write_partition(self.init_partition) + + mst_weight = self.method( + self.G, + self.weight, + partition=self.partition_key, + preserve_attrs=True, + ).size(weight=self.weight) + + self.partition_queue.put( + self.Partition( + mst_weight if self.minimum else -mst_weight, + {} + if self.init_partition is None + else self.init_partition.partition_dict, + ) + ) + + return self + + def __next__(self): + """ + Returns + ------- + (multi)Graph + The spanning tree of next greatest weight, which ties broken + arbitrarily. + """ + if self.partition_queue.empty(): + del self.G, self.partition_queue + raise StopIteration + + partition = self.partition_queue.get() + self._write_partition(partition) + next_arborescence = self.method( + self.G, + self.weight, + partition=self.partition_key, + preserve_attrs=True, + ) + self._partition(partition, next_arborescence) + + self._clear_partition(next_arborescence) + return next_arborescence + + def _partition(self, partition, partition_arborescence): + """ + Create new partitions based of the minimum spanning tree of the + current minimum partition. + + Parameters + ---------- + partition : Partition + The Partition instance used to generate the current minimum spanning + tree. + partition_arborescence : nx.Graph + The minimum spanning arborescence of the input partition. + """ + # create two new partitions with the data from the input partition dict + p1 = self.Partition(0, partition.partition_dict.copy()) + p2 = self.Partition(0, partition.partition_dict.copy()) + for e in partition_arborescence.edges: + # determine if the edge was open or included + if e not in partition.partition_dict: + # This is an open edge + p1.partition_dict[e] = nx.EdgePartition.EXCLUDED + p2.partition_dict[e] = nx.EdgePartition.INCLUDED + + self._write_partition(p1) + try: + p1_mst = self.method( + self.G, + self.weight, + partition=self.partition_key, + preserve_attrs=True, + ) + + p1_mst_weight = p1_mst.size(weight=self.weight) + p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight + self.partition_queue.put(p1.__copy__()) + except nx.NetworkXException: + pass + + p1.partition_dict = p2.partition_dict.copy() + + def _write_partition(self, partition): + """ + Writes the desired partition into the graph to calculate the minimum + spanning tree. Also, if one incoming edge is included, mark all others + as excluded so that if that vertex is merged during Edmonds' algorithm + we cannot still pick another of that vertex's included edges. + + Parameters + ---------- + partition : Partition + A Partition dataclass describing a partition on the edges of the + graph. + """ + for u, v, d in self.G.edges(data=True): + if (u, v) in partition.partition_dict: + d[self.partition_key] = partition.partition_dict[(u, v)] + else: + d[self.partition_key] = nx.EdgePartition.OPEN + + for n in self.G: + included_count = 0 + excluded_count = 0 + for u, v, d in self.G.in_edges(nbunch=n, data=True): + if d.get(self.partition_key) == nx.EdgePartition.INCLUDED: + included_count += 1 + elif d.get(self.partition_key) == nx.EdgePartition.EXCLUDED: + excluded_count += 1 + # Check that if there is an included edges, all other incoming ones + # are excluded. If not fix it! + if included_count == 1 and excluded_count != self.G.in_degree(n) - 1: + for u, v, d in self.G.in_edges(nbunch=n, data=True): + if d.get(self.partition_key) != nx.EdgePartition.INCLUDED: + d[self.partition_key] = nx.EdgePartition.EXCLUDED + + def _clear_partition(self, G): + """ + Removes partition data from the graph + """ + for u, v, d in G.edges(data=True): + if self.partition_key in d: + del d[self.partition_key] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/coding.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/coding.py new file mode 100644 index 0000000000000000000000000000000000000000..a74fd48cff0d9f304e2a731842e9122b52daa025 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/coding.py @@ -0,0 +1,412 @@ +"""Functions for encoding and decoding trees. + +Since a tree is a highly restricted form of graph, it can be represented +concisely in several ways. This module includes functions for encoding +and decoding trees in the form of nested tuples and Prüfer +sequences. The former requires a rooted tree, whereas the latter can be +applied to unrooted trees. Furthermore, there is a bijection from Prüfer +sequences to labeled trees. + +""" +from collections import Counter +from itertools import chain + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = [ + "from_nested_tuple", + "from_prufer_sequence", + "NotATree", + "to_nested_tuple", + "to_prufer_sequence", +] + + +class NotATree(nx.NetworkXException): + """Raised when a function expects a tree (that is, a connected + undirected graph with no cycles) but gets a non-tree graph as input + instead. + + """ + + +@not_implemented_for("directed") +@nx._dispatch(graphs="T") +def to_nested_tuple(T, root, canonical_form=False): + """Returns a nested tuple representation of the given tree. + + The nested tuple representation of a tree is defined + recursively. The tree with one node and no edges is represented by + the empty tuple, ``()``. A tree with ``k`` subtrees is represented + by a tuple of length ``k`` in which each element is the nested tuple + representation of a subtree. + + Parameters + ---------- + T : NetworkX graph + An undirected graph object representing a tree. + + root : node + The node in ``T`` to interpret as the root of the tree. + + canonical_form : bool + If ``True``, each tuple is sorted so that the function returns + a canonical form for rooted trees. This means "lighter" subtrees + will appear as nested tuples before "heavier" subtrees. In this + way, each isomorphic rooted tree has the same nested tuple + representation. + + Returns + ------- + tuple + A nested tuple representation of the tree. + + Notes + ----- + This function is *not* the inverse of :func:`from_nested_tuple`; the + only guarantee is that the rooted trees are isomorphic. + + See also + -------- + from_nested_tuple + to_prufer_sequence + + Examples + -------- + The tree need not be a balanced binary tree:: + + >>> T = nx.Graph() + >>> T.add_edges_from([(0, 1), (0, 2), (0, 3)]) + >>> T.add_edges_from([(1, 4), (1, 5)]) + >>> T.add_edges_from([(3, 6), (3, 7)]) + >>> root = 0 + >>> nx.to_nested_tuple(T, root) + (((), ()), (), ((), ())) + + Continuing the above example, if ``canonical_form`` is ``True``, the + nested tuples will be sorted:: + + >>> nx.to_nested_tuple(T, root, canonical_form=True) + ((), ((), ()), ((), ())) + + Even the path graph can be interpreted as a tree:: + + >>> T = nx.path_graph(4) + >>> root = 0 + >>> nx.to_nested_tuple(T, root) + ((((),),),) + + """ + + def _make_tuple(T, root, _parent): + """Recursively compute the nested tuple representation of the + given rooted tree. + + ``_parent`` is the parent node of ``root`` in the supertree in + which ``T`` is a subtree, or ``None`` if ``root`` is the root of + the supertree. This argument is used to determine which + neighbors of ``root`` are children and which is the parent. + + """ + # Get the neighbors of `root` that are not the parent node. We + # are guaranteed that `root` is always in `T` by construction. + children = set(T[root]) - {_parent} + if len(children) == 0: + return () + nested = (_make_tuple(T, v, root) for v in children) + if canonical_form: + nested = sorted(nested) + return tuple(nested) + + # Do some sanity checks on the input. + if not nx.is_tree(T): + raise nx.NotATree("provided graph is not a tree") + if root not in T: + raise nx.NodeNotFound(f"Graph {T} contains no node {root}") + + return _make_tuple(T, root, None) + + +@nx._dispatch(graphs=None) +def from_nested_tuple(sequence, sensible_relabeling=False): + """Returns the rooted tree corresponding to the given nested tuple. + + The nested tuple representation of a tree is defined + recursively. The tree with one node and no edges is represented by + the empty tuple, ``()``. A tree with ``k`` subtrees is represented + by a tuple of length ``k`` in which each element is the nested tuple + representation of a subtree. + + Parameters + ---------- + sequence : tuple + A nested tuple representing a rooted tree. + + sensible_relabeling : bool + Whether to relabel the nodes of the tree so that nodes are + labeled in increasing order according to their breadth-first + search order from the root node. + + Returns + ------- + NetworkX graph + The tree corresponding to the given nested tuple, whose root + node is node 0. If ``sensible_labeling`` is ``True``, nodes will + be labeled in breadth-first search order starting from the root + node. + + Notes + ----- + This function is *not* the inverse of :func:`to_nested_tuple`; the + only guarantee is that the rooted trees are isomorphic. + + See also + -------- + to_nested_tuple + from_prufer_sequence + + Examples + -------- + Sensible relabeling ensures that the nodes are labeled from the root + starting at 0:: + + >>> balanced = (((), ()), ((), ())) + >>> T = nx.from_nested_tuple(balanced, sensible_relabeling=True) + >>> edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)] + >>> all((u, v) in T.edges() or (v, u) in T.edges() for (u, v) in edges) + True + + """ + + def _make_tree(sequence): + """Recursively creates a tree from the given sequence of nested + tuples. + + This function employs the :func:`~networkx.tree.join` function + to recursively join subtrees into a larger tree. + + """ + # The empty sequence represents the empty tree, which is the + # (unique) graph with a single node. We mark the single node + # with an attribute that indicates that it is the root of the + # graph. + if len(sequence) == 0: + return nx.empty_graph(1) + # For a nonempty sequence, get the subtrees for each child + # sequence and join all the subtrees at their roots. After + # joining the subtrees, the root is node 0. + return nx.tree.join_trees([(_make_tree(child), 0) for child in sequence]) + + # Make the tree and remove the `is_root` node attribute added by the + # helper function. + T = _make_tree(sequence) + if sensible_relabeling: + # Relabel the nodes according to their breadth-first search + # order, starting from the root node (that is, the node 0). + bfs_nodes = chain([0], (v for u, v in nx.bfs_edges(T, 0))) + labels = {v: i for i, v in enumerate(bfs_nodes)} + # We would like to use `copy=False`, but `relabel_nodes` doesn't + # allow a relabel mapping that can't be topologically sorted. + T = nx.relabel_nodes(T, labels) + return T + + +@not_implemented_for("directed") +@nx._dispatch(graphs="T") +def to_prufer_sequence(T): + r"""Returns the Prüfer sequence of the given tree. + + A *Prüfer sequence* is a list of *n* - 2 numbers between 0 and + *n* - 1, inclusive. The tree corresponding to a given Prüfer + sequence can be recovered by repeatedly joining a node in the + sequence with a node with the smallest potential degree according to + the sequence. + + Parameters + ---------- + T : NetworkX graph + An undirected graph object representing a tree. + + Returns + ------- + list + The Prüfer sequence of the given tree. + + Raises + ------ + NetworkXPointlessConcept + If the number of nodes in `T` is less than two. + + NotATree + If `T` is not a tree. + + KeyError + If the set of nodes in `T` is not {0, …, *n* - 1}. + + Notes + ----- + There is a bijection from labeled trees to Prüfer sequences. This + function is the inverse of the :func:`from_prufer_sequence` + function. + + Sometimes Prüfer sequences use nodes labeled from 1 to *n* instead + of from 0 to *n* - 1. This function requires nodes to be labeled in + the latter form. You can use :func:`~networkx.relabel_nodes` to + relabel the nodes of your tree to the appropriate format. + + This implementation is from [1]_ and has a running time of + $O(n)$. + + See also + -------- + to_nested_tuple + from_prufer_sequence + + References + ---------- + .. [1] Wang, Xiaodong, Lei Wang, and Yingjie Wu. + "An optimal algorithm for Prufer codes." + *Journal of Software Engineering and Applications* 2.02 (2009): 111. + + + Examples + -------- + There is a bijection between Prüfer sequences and labeled trees, so + this function is the inverse of the :func:`from_prufer_sequence` + function: + + >>> edges = [(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)] + >>> tree = nx.Graph(edges) + >>> sequence = nx.to_prufer_sequence(tree) + >>> sequence + [3, 3, 3, 4] + >>> tree2 = nx.from_prufer_sequence(sequence) + >>> list(tree2.edges()) == edges + True + + """ + # Perform some sanity checks on the input. + n = len(T) + if n < 2: + msg = "Prüfer sequence undefined for trees with fewer than two nodes" + raise nx.NetworkXPointlessConcept(msg) + if not nx.is_tree(T): + raise nx.NotATree("provided graph is not a tree") + if set(T) != set(range(n)): + raise KeyError("tree must have node labels {0, ..., n - 1}") + + degree = dict(T.degree()) + + def parents(u): + return next(v for v in T[u] if degree[v] > 1) + + index = u = next(k for k in range(n) if degree[k] == 1) + result = [] + for i in range(n - 2): + v = parents(u) + result.append(v) + degree[v] -= 1 + if v < index and degree[v] == 1: + u = v + else: + index = u = next(k for k in range(index + 1, n) if degree[k] == 1) + return result + + +@nx._dispatch(graphs=None) +def from_prufer_sequence(sequence): + r"""Returns the tree corresponding to the given Prüfer sequence. + + A *Prüfer sequence* is a list of *n* - 2 numbers between 0 and + *n* - 1, inclusive. The tree corresponding to a given Prüfer + sequence can be recovered by repeatedly joining a node in the + sequence with a node with the smallest potential degree according to + the sequence. + + Parameters + ---------- + sequence : list + A Prüfer sequence, which is a list of *n* - 2 integers between + zero and *n* - 1, inclusive. + + Returns + ------- + NetworkX graph + The tree corresponding to the given Prüfer sequence. + + Raises + ------ + NetworkXError + If the Prüfer sequence is not valid. + + Notes + ----- + There is a bijection from labeled trees to Prüfer sequences. This + function is the inverse of the :func:`from_prufer_sequence` function. + + Sometimes Prüfer sequences use nodes labeled from 1 to *n* instead + of from 0 to *n* - 1. This function requires nodes to be labeled in + the latter form. You can use :func:`networkx.relabel_nodes` to + relabel the nodes of your tree to the appropriate format. + + This implementation is from [1]_ and has a running time of + $O(n)$. + + References + ---------- + .. [1] Wang, Xiaodong, Lei Wang, and Yingjie Wu. + "An optimal algorithm for Prufer codes." + *Journal of Software Engineering and Applications* 2.02 (2009): 111. + + + See also + -------- + from_nested_tuple + to_prufer_sequence + + Examples + -------- + There is a bijection between Prüfer sequences and labeled trees, so + this function is the inverse of the :func:`to_prufer_sequence` + function: + + >>> edges = [(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)] + >>> tree = nx.Graph(edges) + >>> sequence = nx.to_prufer_sequence(tree) + >>> sequence + [3, 3, 3, 4] + >>> tree2 = nx.from_prufer_sequence(sequence) + >>> list(tree2.edges()) == edges + True + + """ + n = len(sequence) + 2 + # `degree` stores the remaining degree (plus one) for each node. The + # degree of a node in the decoded tree is one more than the number + # of times it appears in the code. + degree = Counter(chain(sequence, range(n))) + T = nx.empty_graph(n) + # `not_orphaned` is the set of nodes that have a parent in the + # tree. After the loop, there should be exactly two nodes that are + # not in this set. + not_orphaned = set() + index = u = next(k for k in range(n) if degree[k] == 1) + for v in sequence: + # check the validity of the prufer sequence + if v < 0 or v > n - 1: + raise nx.NetworkXError( + f"Invalid Prufer sequence: Values must be between 0 and {n-1}, got {v}" + ) + T.add_edge(u, v) + not_orphaned.add(u) + degree[v] -= 1 + if v < index and degree[v] == 1: + u = v + else: + index = u = next(k for k in range(index + 1, n) if degree[k] == 1) + # At this point, there must be exactly two orphaned nodes; join them. + orphans = set(T) - not_orphaned + u, v = orphans + T.add_edge(u, v) + return T diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/decomposition.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/decomposition.py new file mode 100644 index 0000000000000000000000000000000000000000..0517100016fc909459a222ad9a31388fa2fd3164 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/decomposition.py @@ -0,0 +1,88 @@ +r"""Function for computing a junction tree of a graph.""" + +from itertools import combinations + +import networkx as nx +from networkx.algorithms import chordal_graph_cliques, complete_to_chordal_graph, moral +from networkx.utils import not_implemented_for + +__all__ = ["junction_tree"] + + +@not_implemented_for("multigraph") +@nx._dispatch +def junction_tree(G): + r"""Returns a junction tree of a given graph. + + A junction tree (or clique tree) is constructed from a (un)directed graph G. + The tree is constructed based on a moralized and triangulated version of G. + The tree's nodes consist of maximal cliques and sepsets of the revised graph. + The sepset of two cliques is the intersection of the nodes of these cliques, + e.g. the sepset of (A,B,C) and (A,C,E,F) is (A,C). These nodes are often called + "variables" in this literature. The tree is bipartite with each sepset + connected to its two cliques. + + Junction Trees are not unique as the order of clique consideration determines + which sepsets are included. + + The junction tree algorithm consists of five steps [1]_: + + 1. Moralize the graph + 2. Triangulate the graph + 3. Find maximal cliques + 4. Build the tree from cliques, connecting cliques with shared + nodes, set edge-weight to number of shared variables + 5. Find maximum spanning tree + + + Parameters + ---------- + G : networkx.Graph + Directed or undirected graph. + + Returns + ------- + junction_tree : networkx.Graph + The corresponding junction tree of `G`. + + Raises + ------ + NetworkXNotImplemented + Raised if `G` is an instance of `MultiGraph` or `MultiDiGraph`. + + References + ---------- + .. [1] Junction tree algorithm: + https://en.wikipedia.org/wiki/Junction_tree_algorithm + + .. [2] Finn V. Jensen and Frank Jensen. 1994. Optimal + junction trees. In Proceedings of the Tenth international + conference on Uncertainty in artificial intelligence (UAI’94). + Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 360–366. + """ + + clique_graph = nx.Graph() + + if G.is_directed(): + G = moral.moral_graph(G) + chordal_graph, _ = complete_to_chordal_graph(G) + + cliques = [tuple(sorted(i)) for i in chordal_graph_cliques(chordal_graph)] + clique_graph.add_nodes_from(cliques, type="clique") + + for edge in combinations(cliques, 2): + set_edge_0 = set(edge[0]) + set_edge_1 = set(edge[1]) + if not set_edge_0.isdisjoint(set_edge_1): + sepset = tuple(sorted(set_edge_0.intersection(set_edge_1))) + clique_graph.add_edge(edge[0], edge[1], weight=len(sepset), sepset=sepset) + + junction_tree = nx.maximum_spanning_tree(clique_graph) + + for edge in list(junction_tree.edges(data=True)): + junction_tree.add_node(edge[2]["sepset"], type="sepset") + junction_tree.add_edge(edge[0], edge[2]["sepset"]) + junction_tree.add_edge(edge[1], edge[2]["sepset"]) + junction_tree.remove_edge(edge[0], edge[1]) + + return junction_tree diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/mst.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/mst.py new file mode 100644 index 0000000000000000000000000000000000000000..f4cec03dc30536122e95440f4052f0650e824601 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/mst.py @@ -0,0 +1,1133 @@ +""" +Algorithms for calculating min/max spanning trees/forests. + +""" +from dataclasses import dataclass, field +from enum import Enum +from heapq import heappop, heappush +from itertools import count +from math import isnan +from operator import itemgetter +from queue import PriorityQueue + +import networkx as nx +from networkx.utils import UnionFind, not_implemented_for, py_random_state + +__all__ = [ + "minimum_spanning_edges", + "maximum_spanning_edges", + "minimum_spanning_tree", + "maximum_spanning_tree", + "random_spanning_tree", + "partition_spanning_tree", + "EdgePartition", + "SpanningTreeIterator", +] + + +class EdgePartition(Enum): + """ + An enum to store the state of an edge partition. The enum is written to the + edges of a graph before being pasted to `kruskal_mst_edges`. Options are: + + - EdgePartition.OPEN + - EdgePartition.INCLUDED + - EdgePartition.EXCLUDED + """ + + OPEN = 0 + INCLUDED = 1 + EXCLUDED = 2 + + +@not_implemented_for("multigraph") +@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data") +def boruvka_mst_edges( + G, minimum=True, weight="weight", keys=False, data=True, ignore_nan=False +): + """Iterate over edges of a Borůvka's algorithm min/max spanning tree. + + Parameters + ---------- + G : NetworkX Graph + The edges of `G` must have distinct weights, + otherwise the edges may not form a tree. + + minimum : bool (default: True) + Find the minimum (True) or maximum (False) spanning tree. + + weight : string (default: 'weight') + The name of the edge attribute holding the edge weights. + + keys : bool (default: True) + This argument is ignored since this function is not + implemented for multigraphs; it exists only for consistency + with the other minimum spanning tree functions. + + data : bool (default: True) + Flag for whether to yield edge attribute dicts. + If True, yield edges `(u, v, d)`, where `d` is the attribute dict. + If False, yield edges `(u, v)`. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + """ + # Initialize a forest, assuming initially that it is the discrete + # partition of the nodes of the graph. + forest = UnionFind(G) + + def best_edge(component): + """Returns the optimum (minimum or maximum) edge on the edge + boundary of the given set of nodes. + + A return value of ``None`` indicates an empty boundary. + + """ + sign = 1 if minimum else -1 + minwt = float("inf") + boundary = None + for e in nx.edge_boundary(G, component, data=True): + wt = e[-1].get(weight, 1) * sign + if isnan(wt): + if ignore_nan: + continue + msg = f"NaN found as an edge weight. Edge {e}" + raise ValueError(msg) + if wt < minwt: + minwt = wt + boundary = e + return boundary + + # Determine the optimum edge in the edge boundary of each component + # in the forest. + best_edges = (best_edge(component) for component in forest.to_sets()) + best_edges = [edge for edge in best_edges if edge is not None] + # If each entry was ``None``, that means the graph was disconnected, + # so we are done generating the forest. + while best_edges: + # Determine the optimum edge in the edge boundary of each + # component in the forest. + # + # This must be a sequence, not an iterator. In this list, the + # same edge may appear twice, in different orientations (but + # that's okay, since a union operation will be called on the + # endpoints the first time it is seen, but not the second time). + # + # Any ``None`` indicates that the edge boundary for that + # component was empty, so that part of the forest has been + # completed. + # + # TODO This can be parallelized, both in the outer loop over + # each component in the forest and in the computation of the + # minimum. (Same goes for the identical lines outside the loop.) + best_edges = (best_edge(component) for component in forest.to_sets()) + best_edges = [edge for edge in best_edges if edge is not None] + # Join trees in the forest using the best edges, and yield that + # edge, since it is part of the spanning tree. + # + # TODO This loop can be parallelized, to an extent (the union + # operation must be atomic). + for u, v, d in best_edges: + if forest[u] != forest[v]: + if data: + yield u, v, d + else: + yield u, v + forest.union(u, v) + + +@nx._dispatch( + edge_attrs={"weight": None, "partition": None}, preserve_edge_attrs="data" +) +def kruskal_mst_edges( + G, minimum, weight="weight", keys=True, data=True, ignore_nan=False, partition=None +): + """ + Iterate over edge of a Kruskal's algorithm min/max spanning tree. + + Parameters + ---------- + G : NetworkX Graph + The graph holding the tree of interest. + + minimum : bool (default: True) + Find the minimum (True) or maximum (False) spanning tree. + + weight : string (default: 'weight') + The name of the edge attribute holding the edge weights. + + keys : bool (default: True) + If `G` is a multigraph, `keys` controls whether edge keys ar yielded. + Otherwise `keys` is ignored. + + data : bool (default: True) + Flag for whether to yield edge attribute dicts. + If True, yield edges `(u, v, d)`, where `d` is the attribute dict. + If False, yield edges `(u, v)`. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + partition : string (default: None) + The name of the edge attribute holding the partition data, if it exists. + Partition data is written to the edges using the `EdgePartition` enum. + If a partition exists, all included edges and none of the excluded edges + will appear in the final tree. Open edges may or may not be used. + + Yields + ------ + edge tuple + The edges as discovered by Kruskal's method. Each edge can + take the following forms: `(u, v)`, `(u, v, d)` or `(u, v, k, d)` + depending on the `key` and `data` parameters + """ + subtrees = UnionFind() + if G.is_multigraph(): + edges = G.edges(keys=True, data=True) + else: + edges = G.edges(data=True) + + """ + Sort the edges of the graph with respect to the partition data. + Edges are returned in the following order: + + * Included edges + * Open edges from smallest to largest weight + * Excluded edges + """ + included_edges = [] + open_edges = [] + for e in edges: + d = e[-1] + wt = d.get(weight, 1) + if isnan(wt): + if ignore_nan: + continue + raise ValueError(f"NaN found as an edge weight. Edge {e}") + + edge = (wt,) + e + if d.get(partition) == EdgePartition.INCLUDED: + included_edges.append(edge) + elif d.get(partition) == EdgePartition.EXCLUDED: + continue + else: + open_edges.append(edge) + + if minimum: + sorted_open_edges = sorted(open_edges, key=itemgetter(0)) + else: + sorted_open_edges = sorted(open_edges, key=itemgetter(0), reverse=True) + + # Condense the lists into one + included_edges.extend(sorted_open_edges) + sorted_edges = included_edges + del open_edges, sorted_open_edges, included_edges + + # Multigraphs need to handle edge keys in addition to edge data. + if G.is_multigraph(): + for wt, u, v, k, d in sorted_edges: + if subtrees[u] != subtrees[v]: + if keys: + if data: + yield u, v, k, d + else: + yield u, v, k + else: + if data: + yield u, v, d + else: + yield u, v + subtrees.union(u, v) + else: + for wt, u, v, d in sorted_edges: + if subtrees[u] != subtrees[v]: + if data: + yield u, v, d + else: + yield u, v + subtrees.union(u, v) + + +@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data") +def prim_mst_edges(G, minimum, weight="weight", keys=True, data=True, ignore_nan=False): + """Iterate over edges of Prim's algorithm min/max spanning tree. + + Parameters + ---------- + G : NetworkX Graph + The graph holding the tree of interest. + + minimum : bool (default: True) + Find the minimum (True) or maximum (False) spanning tree. + + weight : string (default: 'weight') + The name of the edge attribute holding the edge weights. + + keys : bool (default: True) + If `G` is a multigraph, `keys` controls whether edge keys ar yielded. + Otherwise `keys` is ignored. + + data : bool (default: True) + Flag for whether to yield edge attribute dicts. + If True, yield edges `(u, v, d)`, where `d` is the attribute dict. + If False, yield edges `(u, v)`. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + """ + is_multigraph = G.is_multigraph() + push = heappush + pop = heappop + + nodes = set(G) + c = count() + + sign = 1 if minimum else -1 + + while nodes: + u = nodes.pop() + frontier = [] + visited = {u} + if is_multigraph: + for v, keydict in G.adj[u].items(): + for k, d in keydict.items(): + wt = d.get(weight, 1) * sign + if isnan(wt): + if ignore_nan: + continue + msg = f"NaN found as an edge weight. Edge {(u, v, k, d)}" + raise ValueError(msg) + push(frontier, (wt, next(c), u, v, k, d)) + else: + for v, d in G.adj[u].items(): + wt = d.get(weight, 1) * sign + if isnan(wt): + if ignore_nan: + continue + msg = f"NaN found as an edge weight. Edge {(u, v, d)}" + raise ValueError(msg) + push(frontier, (wt, next(c), u, v, d)) + while nodes and frontier: + if is_multigraph: + W, _, u, v, k, d = pop(frontier) + else: + W, _, u, v, d = pop(frontier) + if v in visited or v not in nodes: + continue + # Multigraphs need to handle edge keys in addition to edge data. + if is_multigraph and keys: + if data: + yield u, v, k, d + else: + yield u, v, k + else: + if data: + yield u, v, d + else: + yield u, v + # update frontier + visited.add(v) + nodes.discard(v) + if is_multigraph: + for w, keydict in G.adj[v].items(): + if w in visited: + continue + for k2, d2 in keydict.items(): + new_weight = d2.get(weight, 1) * sign + if isnan(new_weight): + if ignore_nan: + continue + msg = f"NaN found as an edge weight. Edge {(v, w, k2, d2)}" + raise ValueError(msg) + push(frontier, (new_weight, next(c), v, w, k2, d2)) + else: + for w, d2 in G.adj[v].items(): + if w in visited: + continue + new_weight = d2.get(weight, 1) * sign + if isnan(new_weight): + if ignore_nan: + continue + msg = f"NaN found as an edge weight. Edge {(v, w, d2)}" + raise ValueError(msg) + push(frontier, (new_weight, next(c), v, w, d2)) + + +ALGORITHMS = { + "boruvka": boruvka_mst_edges, + "borůvka": boruvka_mst_edges, + "kruskal": kruskal_mst_edges, + "prim": prim_mst_edges, +} + + +@not_implemented_for("directed") +@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data") +def minimum_spanning_edges( + G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False +): + """Generate edges in a minimum spanning forest of an undirected + weighted graph. + + A minimum spanning tree is a subgraph of the graph (a tree) + with the minimum sum of edge weights. A spanning forest is a + union of the spanning trees for each connected component of the graph. + + Parameters + ---------- + G : undirected Graph + An undirected graph. If `G` is connected, then the algorithm finds a + spanning tree. Otherwise, a spanning forest is found. + + algorithm : string + The algorithm to use when finding a minimum spanning tree. Valid + choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. + + weight : string + Edge data key to use for weight (default 'weight'). + + keys : bool + Whether to yield edge key in multigraphs in addition to the edge. + If `G` is not a multigraph, this is ignored. + + data : bool, optional + If True yield the edge data along with the edge. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + Returns + ------- + edges : iterator + An iterator over edges in a maximum spanning tree of `G`. + Edges connecting nodes `u` and `v` are represented as tuples: + `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` + + If `G` is a multigraph, `keys` indicates whether the edge key `k` will + be reported in the third position in the edge tuple. `data` indicates + whether the edge datadict `d` will appear at the end of the edge tuple. + + If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True + or `(u, v)` if `data` is False. + + Examples + -------- + >>> from networkx.algorithms import tree + + Find minimum spanning edges by Kruskal's algorithm + + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) + >>> mst = tree.minimum_spanning_edges(G, algorithm="kruskal", data=False) + >>> edgelist = list(mst) + >>> sorted(sorted(e) for e in edgelist) + [[0, 1], [1, 2], [2, 3]] + + Find minimum spanning edges by Prim's algorithm + + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) + >>> mst = tree.minimum_spanning_edges(G, algorithm="prim", data=False) + >>> edgelist = list(mst) + >>> sorted(sorted(e) for e in edgelist) + [[0, 1], [1, 2], [2, 3]] + + Notes + ----- + For Borůvka's algorithm, each edge must have a weight attribute, and + each edge weight must be distinct. + + For the other algorithms, if the graph edges do not have a weight + attribute a default weight of 1 will be used. + + Modified code from David Eppstein, April 2006 + http://www.ics.uci.edu/~eppstein/PADS/ + + """ + try: + algo = ALGORITHMS[algorithm] + except KeyError as err: + msg = f"{algorithm} is not a valid choice for an algorithm." + raise ValueError(msg) from err + + return algo( + G, minimum=True, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan + ) + + +@not_implemented_for("directed") +@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data") +def maximum_spanning_edges( + G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False +): + """Generate edges in a maximum spanning forest of an undirected + weighted graph. + + A maximum spanning tree is a subgraph of the graph (a tree) + with the maximum possible sum of edge weights. A spanning forest is a + union of the spanning trees for each connected component of the graph. + + Parameters + ---------- + G : undirected Graph + An undirected graph. If `G` is connected, then the algorithm finds a + spanning tree. Otherwise, a spanning forest is found. + + algorithm : string + The algorithm to use when finding a maximum spanning tree. Valid + choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. + + weight : string + Edge data key to use for weight (default 'weight'). + + keys : bool + Whether to yield edge key in multigraphs in addition to the edge. + If `G` is not a multigraph, this is ignored. + + data : bool, optional + If True yield the edge data along with the edge. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + Returns + ------- + edges : iterator + An iterator over edges in a maximum spanning tree of `G`. + Edges connecting nodes `u` and `v` are represented as tuples: + `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` + + If `G` is a multigraph, `keys` indicates whether the edge key `k` will + be reported in the third position in the edge tuple. `data` indicates + whether the edge datadict `d` will appear at the end of the edge tuple. + + If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True + or `(u, v)` if `data` is False. + + Examples + -------- + >>> from networkx.algorithms import tree + + Find maximum spanning edges by Kruskal's algorithm + + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) + >>> mst = tree.maximum_spanning_edges(G, algorithm="kruskal", data=False) + >>> edgelist = list(mst) + >>> sorted(sorted(e) for e in edgelist) + [[0, 1], [0, 3], [1, 2]] + + Find maximum spanning edges by Prim's algorithm + + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3 + >>> mst = tree.maximum_spanning_edges(G, algorithm="prim", data=False) + >>> edgelist = list(mst) + >>> sorted(sorted(e) for e in edgelist) + [[0, 1], [0, 3], [2, 3]] + + Notes + ----- + For Borůvka's algorithm, each edge must have a weight attribute, and + each edge weight must be distinct. + + For the other algorithms, if the graph edges do not have a weight + attribute a default weight of 1 will be used. + + Modified code from David Eppstein, April 2006 + http://www.ics.uci.edu/~eppstein/PADS/ + """ + try: + algo = ALGORITHMS[algorithm] + except KeyError as err: + msg = f"{algorithm} is not a valid choice for an algorithm." + raise ValueError(msg) from err + + return algo( + G, minimum=False, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan + ) + + +@nx._dispatch(preserve_all_attrs=True) +def minimum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): + """Returns a minimum spanning tree or forest on an undirected graph `G`. + + Parameters + ---------- + G : undirected graph + An undirected graph. If `G` is connected, then the algorithm finds a + spanning tree. Otherwise, a spanning forest is found. + + weight : str + Data key to use for edge weights. + + algorithm : string + The algorithm to use when finding a minimum spanning tree. Valid + choices are 'kruskal', 'prim', or 'boruvka'. The default is + 'kruskal'. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + Returns + ------- + G : NetworkX Graph + A minimum spanning tree or forest. + + Examples + -------- + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) + >>> T = nx.minimum_spanning_tree(G) + >>> sorted(T.edges(data=True)) + [(0, 1, {}), (1, 2, {}), (2, 3, {})] + + + Notes + ----- + For Borůvka's algorithm, each edge must have a weight attribute, and + each edge weight must be distinct. + + For the other algorithms, if the graph edges do not have a weight + attribute a default weight of 1 will be used. + + There may be more than one tree with the same minimum or maximum weight. + See :mod:`networkx.tree.recognition` for more detailed definitions. + + Isolated nodes with self-loops are in the tree as edgeless isolated nodes. + + """ + edges = minimum_spanning_edges( + G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan + ) + T = G.__class__() # Same graph class as G + T.graph.update(G.graph) + T.add_nodes_from(G.nodes.items()) + T.add_edges_from(edges) + return T + + +@nx._dispatch(preserve_all_attrs=True) +def partition_spanning_tree( + G, minimum=True, weight="weight", partition="partition", ignore_nan=False +): + """ + Find a spanning tree while respecting a partition of edges. + + Edges can be flagged as either `INCLUDED` which are required to be in the + returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`. + + This is used in the SpanningTreeIterator to create new partitions following + the algorithm of Sörensen and Janssens [1]_. + + Parameters + ---------- + G : undirected graph + An undirected graph. + + minimum : bool (default: True) + Determines whether the returned tree is the minimum spanning tree of + the partition of the maximum one. + + weight : str + Data key to use for edge weights. + + partition : str + The key for the edge attribute containing the partition + data on the graph. Edges can be included, excluded or open using the + `EdgePartition` enum. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + + Returns + ------- + G : NetworkX Graph + A minimum spanning tree using all of the included edges in the graph and + none of the excluded edges. + + References + ---------- + .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning + trees in order of increasing cost, Pesquisa Operacional, 2005-08, + Vol. 25 (2), p. 219-229, + https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en + """ + edges = kruskal_mst_edges( + G, + minimum, + weight, + keys=True, + data=True, + ignore_nan=ignore_nan, + partition=partition, + ) + T = G.__class__() # Same graph class as G + T.graph.update(G.graph) + T.add_nodes_from(G.nodes.items()) + T.add_edges_from(edges) + return T + + +@nx._dispatch(preserve_all_attrs=True) +def maximum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): + """Returns a maximum spanning tree or forest on an undirected graph `G`. + + Parameters + ---------- + G : undirected graph + An undirected graph. If `G` is connected, then the algorithm finds a + spanning tree. Otherwise, a spanning forest is found. + + weight : str + Data key to use for edge weights. + + algorithm : string + The algorithm to use when finding a maximum spanning tree. Valid + choices are 'kruskal', 'prim', or 'boruvka'. The default is + 'kruskal'. + + ignore_nan : bool (default: False) + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + + + Returns + ------- + G : NetworkX Graph + A maximum spanning tree or forest. + + + Examples + -------- + >>> G = nx.cycle_graph(4) + >>> G.add_edge(0, 3, weight=2) + >>> T = nx.maximum_spanning_tree(G) + >>> sorted(T.edges(data=True)) + [(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})] + + + Notes + ----- + For Borůvka's algorithm, each edge must have a weight attribute, and + each edge weight must be distinct. + + For the other algorithms, if the graph edges do not have a weight + attribute a default weight of 1 will be used. + + There may be more than one tree with the same minimum or maximum weight. + See :mod:`networkx.tree.recognition` for more detailed definitions. + + Isolated nodes with self-loops are in the tree as edgeless isolated nodes. + + """ + edges = maximum_spanning_edges( + G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan + ) + edges = list(edges) + T = G.__class__() # Same graph class as G + T.graph.update(G.graph) + T.add_nodes_from(G.nodes.items()) + T.add_edges_from(edges) + return T + + +@py_random_state(3) +@nx._dispatch(preserve_edge_attrs=True) +def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None): + """ + Sample a random spanning tree using the edges weights of `G`. + + This function supports two different methods for determining the + probability of the graph. If ``multiplicative=True``, the probability + is based on the product of edge weights, and if ``multiplicative=False`` + it is based on the sum of the edge weight. However, since it is + easier to determine the total weight of all spanning trees for the + multiplicative version, that is significantly faster and should be used if + possible. Additionally, setting `weight` to `None` will cause a spanning tree + to be selected with uniform probability. + + The function uses algorithm A8 in [1]_ . + + Parameters + ---------- + G : nx.Graph + An undirected version of the original graph. + + weight : string + The edge key for the edge attribute holding edge weight. + + multiplicative : bool, default=True + If `True`, the probability of each tree is the product of its edge weight + over the sum of the product of all the spanning trees in the graph. If + `False`, the probability is the sum of its edge weight over the sum of + the sum of weights for all spanning trees in the graph. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + nx.Graph + A spanning tree using the distribution defined by the weight of the tree. + + References + ---------- + .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of + Algorithms, 11 (1990), pp. 185–207 + """ + + def find_node(merged_nodes, node): + """ + We can think of clusters of contracted nodes as having one + representative in the graph. Each node which is not in merged_nodes + is still its own representative. Since a representative can be later + contracted, we need to recursively search though the dict to find + the final representative, but once we know it we can use path + compression to speed up the access of the representative for next time. + + This cannot be replaced by the standard NetworkX union_find since that + data structure will merge nodes with less representing nodes into the + one with more representing nodes but this function requires we merge + them using the order that contract_edges contracts using. + + Parameters + ---------- + merged_nodes : dict + The dict storing the mapping from node to representative + node + The node whose representative we seek + + Returns + ------- + The representative of the `node` + """ + if node not in merged_nodes: + return node + else: + rep = find_node(merged_nodes, merged_nodes[node]) + merged_nodes[node] = rep + return rep + + def prepare_graph(): + """ + For the graph `G`, remove all edges not in the set `V` and then + contract all edges in the set `U`. + + Returns + ------- + A copy of `G` which has had all edges not in `V` removed and all edges + in `U` contracted. + """ + + # The result is a MultiGraph version of G so that parallel edges are + # allowed during edge contraction + result = nx.MultiGraph(incoming_graph_data=G) + + # Remove all edges not in V + edges_to_remove = set(result.edges()).difference(V) + result.remove_edges_from(edges_to_remove) + + # Contract all edges in U + # + # Imagine that you have two edges to contract and they share an + # endpoint like this: + # [0] ----- [1] ----- [2] + # If we contract (0, 1) first, the contraction function will always + # delete the second node it is passed so the resulting graph would be + # [0] ----- [2] + # and edge (1, 2) no longer exists but (0, 2) would need to be contracted + # in its place now. That is why I use the below dict as a merge-find + # data structure with path compression to track how the nodes are merged. + merged_nodes = {} + + for u, v in U: + u_rep = find_node(merged_nodes, u) + v_rep = find_node(merged_nodes, v) + # We cannot contract a node with itself + if u_rep == v_rep: + continue + nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False) + merged_nodes[v_rep] = u_rep + + return merged_nodes, result + + def spanning_tree_total_weight(G, weight): + """ + Find the sum of weights of the spanning trees of `G` using the + appropriate `method`. + + This is easy if the chosen method is 'multiplicative', since we can + use Kirchhoff's Tree Matrix Theorem directly. However, with the + 'additive' method, this process is slightly more complex and less + computationally efficient as we have to find the number of spanning + trees which contain each possible edge in the graph. + + Parameters + ---------- + G : NetworkX Graph + The graph to find the total weight of all spanning trees on. + + weight : string + The key for the weight edge attribute of the graph. + + Returns + ------- + float + The sum of either the multiplicative or additive weight for all + spanning trees in the graph. + """ + if multiplicative: + return nx.total_spanning_tree_weight(G, weight) + else: + # There are two cases for the total spanning tree additive weight. + # 1. There is one edge in the graph. Then the only spanning tree is + # that edge itself, which will have a total weight of that edge + # itself. + if G.number_of_edges() == 1: + return G.edges(data=weight).__iter__().__next__()[2] + # 2. There are more than two edges in the graph. Then, we can find the + # total weight of the spanning trees using the formula in the + # reference paper: take the weight of that edge and multiple it by + # the number of spanning trees which have to include that edge. This + # can be accomplished by contracting the edge and finding the + # multiplicative total spanning tree weight if the weight of each edge + # is assumed to be 1, which is conveniently built into networkx already, + # by calling total_spanning_tree_weight with weight=None + else: + total = 0 + for u, v, w in G.edges(data=weight): + total += w * nx.total_spanning_tree_weight( + nx.contracted_edge(G, edge=(u, v), self_loops=False), None + ) + return total + + U = set() + st_cached_value = 0 + V = set(G.edges()) + shuffled_edges = list(G.edges()) + seed.shuffle(shuffled_edges) + + for u, v in shuffled_edges: + e_weight = G[u][v][weight] if weight is not None else 1 + node_map, prepared_G = prepare_graph() + G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight) + # Add the edge to U so that we can compute the total tree weight + # assuming we include that edge + # Now, if (u, v) cannot exist in G because it is fully contracted out + # of existence, then it by definition cannot influence G_e's Kirchhoff + # value. But, we also cannot pick it. + rep_edge = (find_node(node_map, u), find_node(node_map, v)) + # Check to see if the 'representative edge' for the current edge is + # in prepared_G. If so, then we can pick it. + if rep_edge in prepared_G.edges: + prepared_G_e = nx.contracted_edge( + prepared_G, edge=rep_edge, self_loops=False + ) + G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight) + if multiplicative: + threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight + else: + numerator = ( + st_cached_value + e_weight + ) * nx.total_spanning_tree_weight(prepared_G_e) + G_e_total_tree_weight + denominator = ( + st_cached_value * nx.total_spanning_tree_weight(prepared_G) + + G_total_tree_weight + ) + threshold = numerator / denominator + else: + threshold = 0.0 + z = seed.uniform(0.0, 1.0) + if z > threshold: + # Remove the edge from V since we did not pick it. + V.remove((u, v)) + else: + # Add the edge to U since we picked it. + st_cached_value += e_weight + U.add((u, v)) + # If we decide to keep an edge, it may complete the spanning tree. + if len(U) == G.number_of_nodes() - 1: + spanning_tree = nx.Graph() + spanning_tree.add_edges_from(U) + return spanning_tree + raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!") + + +class SpanningTreeIterator: + """ + Iterate over all spanning trees of a graph in either increasing or + decreasing cost. + + Notes + ----- + This iterator uses the partition scheme from [1]_ (included edges, + excluded edges and open edges) as well as a modified Kruskal's Algorithm + to generate minimum spanning trees which respect the partition of edges. + For spanning trees with the same weight, ties are broken arbitrarily. + + References + ---------- + .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning + trees in order of increasing cost, Pesquisa Operacional, 2005-08, + Vol. 25 (2), p. 219-229, + https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en + """ + + @dataclass(order=True) + class Partition: + """ + This dataclass represents a partition and stores a dict with the edge + data and the weight of the minimum spanning tree of the partition dict. + """ + + mst_weight: float + partition_dict: dict = field(compare=False) + + def __copy__(self): + return SpanningTreeIterator.Partition( + self.mst_weight, self.partition_dict.copy() + ) + + def __init__(self, G, weight="weight", minimum=True, ignore_nan=False): + """ + Initialize the iterator + + Parameters + ---------- + G : nx.Graph + The directed graph which we need to iterate trees over + + weight : String, default = "weight" + The edge attribute used to store the weight of the edge + + minimum : bool, default = True + Return the trees in increasing order while true and decreasing order + while false. + + ignore_nan : bool, default = False + If a NaN is found as an edge weight normally an exception is raised. + If `ignore_nan is True` then that edge is ignored instead. + """ + self.G = G.copy() + self.weight = weight + self.minimum = minimum + self.ignore_nan = ignore_nan + # Randomly create a key for an edge attribute to hold the partition data + self.partition_key = ( + "SpanningTreeIterators super secret partition attribute name" + ) + + def __iter__(self): + """ + Returns + ------- + SpanningTreeIterator + The iterator object for this graph + """ + self.partition_queue = PriorityQueue() + self._clear_partition(self.G) + mst_weight = partition_spanning_tree( + self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan + ).size(weight=self.weight) + + self.partition_queue.put( + self.Partition(mst_weight if self.minimum else -mst_weight, {}) + ) + + return self + + def __next__(self): + """ + Returns + ------- + (multi)Graph + The spanning tree of next greatest weight, which ties broken + arbitrarily. + """ + if self.partition_queue.empty(): + del self.G, self.partition_queue + raise StopIteration + + partition = self.partition_queue.get() + self._write_partition(partition) + next_tree = partition_spanning_tree( + self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan + ) + self._partition(partition, next_tree) + + self._clear_partition(next_tree) + return next_tree + + def _partition(self, partition, partition_tree): + """ + Create new partitions based of the minimum spanning tree of the + current minimum partition. + + Parameters + ---------- + partition : Partition + The Partition instance used to generate the current minimum spanning + tree. + partition_tree : nx.Graph + The minimum spanning tree of the input partition. + """ + # create two new partitions with the data from the input partition dict + p1 = self.Partition(0, partition.partition_dict.copy()) + p2 = self.Partition(0, partition.partition_dict.copy()) + for e in partition_tree.edges: + # determine if the edge was open or included + if e not in partition.partition_dict: + # This is an open edge + p1.partition_dict[e] = EdgePartition.EXCLUDED + p2.partition_dict[e] = EdgePartition.INCLUDED + + self._write_partition(p1) + p1_mst = partition_spanning_tree( + self.G, + self.minimum, + self.weight, + self.partition_key, + self.ignore_nan, + ) + p1_mst_weight = p1_mst.size(weight=self.weight) + if nx.is_connected(p1_mst): + p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight + self.partition_queue.put(p1.__copy__()) + p1.partition_dict = p2.partition_dict.copy() + + def _write_partition(self, partition): + """ + Writes the desired partition into the graph to calculate the minimum + spanning tree. + + Parameters + ---------- + partition : Partition + A Partition dataclass describing a partition on the edges of the + graph. + """ + for u, v, d in self.G.edges(data=True): + if (u, v) in partition.partition_dict: + d[self.partition_key] = partition.partition_dict[(u, v)] + else: + d[self.partition_key] = EdgePartition.OPEN + + def _clear_partition(self, G): + """ + Removes partition data from the graph + """ + for u, v, d in G.edges(data=True): + if self.partition_key in d: + del d[self.partition_key] diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/operations.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/operations.py new file mode 100644 index 0000000000000000000000000000000000000000..df1b4e7bec059b54fa5998cca180bff84e517847 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/operations.py @@ -0,0 +1,128 @@ +"""Operations on trees.""" +from functools import partial +from itertools import accumulate, chain + +import networkx as nx + +__all__ = ["join", "join_trees"] + + +def join(rooted_trees, label_attribute=None): + """A deprecated name for `join_trees` + + Returns a new rooted tree with a root node joined with the roots + of each of the given rooted trees. + + .. deprecated:: 3.2 + + `join` is deprecated in NetworkX v3.2 and will be removed in v3.4. + It has been renamed join_trees with the same syntax/interface. + + """ + import warnings + + warnings.warn( + "The function `join` is deprecated and is renamed `join_trees`.\n" + "The ``join`` function itself will be removed in v3.4", + DeprecationWarning, + stacklevel=2, + ) + + return join_trees(rooted_trees, label_attribute=label_attribute) + + +# Argument types don't match dispatching, but allow manual selection of backend +@nx._dispatch(graphs=None) +def join_trees(rooted_trees, *, label_attribute=None, first_label=0): + """Returns a new rooted tree made by joining `rooted_trees` + + Constructs a new tree by joining each tree in `rooted_trees`. + A new root node is added and connected to each of the roots + of the input trees. While copying the nodes from the trees, + relabeling to integers occurs. If the `label_attribute` is provided, + the old node labels will be stored in the new tree under this attribute. + + Parameters + ---------- + rooted_trees : list + A list of pairs in which each left element is a NetworkX graph + object representing a tree and each right element is the root + node of that tree. The nodes of these trees will be relabeled to + integers. + + label_attribute : str + If provided, the old node labels will be stored in the new tree + under this node attribute. If not provided, the original labels + of the nodes in the input trees are not stored. + + first_label : int, optional (default=0) + Specifies the label for the new root node. If provided, the root node of the joined tree + will have this label. If not provided, the root node will default to a label of 0. + + Returns + ------- + NetworkX graph + The rooted tree resulting from joining the provided `rooted_trees`. The new tree has a root node + labeled as specified by `first_label` (defaulting to 0 if not provided). Subtrees from the input + `rooted_trees` are attached to this new root node. Each non-root node, if the `label_attribute` + is provided, has an attribute that indicates the original label of the node in the input tree. + + Notes + ----- + Trees are stored in NetworkX as NetworkX Graphs. There is no specific + enforcement of the fact that these are trees. Testing for each tree + can be done using :func:`networkx.is_tree`. + + Graph, edge, and node attributes are propagated from the given + rooted trees to the created tree. If there are any overlapping graph + attributes, those from later trees will overwrite those from earlier + trees in the tuple of positional arguments. + + Examples + -------- + Join two full balanced binary trees of height *h* to get a full + balanced binary tree of depth *h* + 1:: + + >>> h = 4 + >>> left = nx.balanced_tree(2, h) + >>> right = nx.balanced_tree(2, h) + >>> joined_tree = nx.join([(left, 0), (right, 0)]) + >>> nx.is_isomorphic(joined_tree, nx.balanced_tree(2, h + 1)) + True + + """ + if not rooted_trees: + return nx.empty_graph(1) + + # Unzip the zipped list of (tree, root) pairs. + trees, roots = zip(*rooted_trees) + + # The join of the trees has the same type as the type of the first tree. + R = type(trees[0])() + + lengths = (len(tree) for tree in trees[:-1]) + first_labels = list(accumulate(lengths, initial=first_label + 1)) + + new_roots = [] + for tree, root, first_node in zip(trees, roots, first_labels): + new_root = first_node + list(tree.nodes()).index(root) + new_roots.append(new_root) + + # Relabel the nodes so that their union is the integers starting at first_label. + relabel = partial( + nx.convert_node_labels_to_integers, label_attribute=label_attribute + ) + new_trees = [ + relabel(tree, first_label=first_label) + for tree, first_label in zip(trees, first_labels) + ] + + # Add all sets of nodes and edges, attributes + for tree in new_trees: + R.update(tree) + + # Finally, join the subtrees at the root. We know first_label is unused by the way we relabeled the subtrees. + R.add_node(first_label) + R.add_edges_from((first_label, root) for root in new_roots) + + return R diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/recognition.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/recognition.py new file mode 100644 index 0000000000000000000000000000000000000000..15bbdf7d83b8a7e1b6061c860f18d118663afbc2 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/recognition.py @@ -0,0 +1,273 @@ +""" +Recognition Tests +================= + +A *forest* is an acyclic, undirected graph, and a *tree* is a connected forest. +Depending on the subfield, there are various conventions for generalizing these +definitions to directed graphs. + +In one convention, directed variants of forest and tree are defined in an +identical manner, except that the direction of the edges is ignored. In effect, +each directed edge is treated as a single undirected edge. Then, additional +restrictions are imposed to define *branchings* and *arborescences*. + +In another convention, directed variants of forest and tree correspond to +the previous convention's branchings and arborescences, respectively. Then two +new terms, *polyforest* and *polytree*, are defined to correspond to the other +convention's forest and tree. + +Summarizing:: + + +-----------------------------+ + | Convention A | Convention B | + +=============================+ + | forest | polyforest | + | tree | polytree | + | branching | forest | + | arborescence | tree | + +-----------------------------+ + +Each convention has its reasons. The first convention emphasizes definitional +similarity in that directed forests and trees are only concerned with +acyclicity and do not have an in-degree constraint, just as their undirected +counterparts do not. The second convention emphasizes functional similarity +in the sense that the directed analog of a spanning tree is a spanning +arborescence. That is, take any spanning tree and choose one node as the root. +Then every edge is assigned a direction such there is a directed path from the +root to every other node. The result is a spanning arborescence. + +NetworkX follows convention "A". Explicitly, these are: + +undirected forest + An undirected graph with no undirected cycles. + +undirected tree + A connected, undirected forest. + +directed forest + A directed graph with no undirected cycles. Equivalently, the underlying + graph structure (which ignores edge orientations) is an undirected forest. + In convention B, this is known as a polyforest. + +directed tree + A weakly connected, directed forest. Equivalently, the underlying graph + structure (which ignores edge orientations) is an undirected tree. In + convention B, this is known as a polytree. + +branching + A directed forest with each node having, at most, one parent. So the maximum + in-degree is equal to 1. In convention B, this is known as a forest. + +arborescence + A directed tree with each node having, at most, one parent. So the maximum + in-degree is equal to 1. In convention B, this is known as a tree. + +For trees and arborescences, the adjective "spanning" may be added to designate +that the graph, when considered as a forest/branching, consists of a single +tree/arborescence that includes all nodes in the graph. It is true, by +definition, that every tree/arborescence is spanning with respect to the nodes +that define the tree/arborescence and so, it might seem redundant to introduce +the notion of "spanning". However, the nodes may represent a subset of +nodes from a larger graph, and it is in this context that the term "spanning" +becomes a useful notion. + +""" + +import networkx as nx + +__all__ = ["is_arborescence", "is_branching", "is_forest", "is_tree"] + + +@nx.utils.not_implemented_for("undirected") +@nx._dispatch +def is_arborescence(G): + """ + Returns True if `G` is an arborescence. + + An arborescence is a directed tree with maximum in-degree equal to 1. + + Parameters + ---------- + G : graph + The graph to test. + + Returns + ------- + b : bool + A boolean that is True if `G` is an arborescence. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (0, 2), (2, 3), (3, 4)]) + >>> nx.is_arborescence(G) + True + >>> G.remove_edge(0, 1) + >>> G.add_edge(1, 2) # maximum in-degree is 2 + >>> nx.is_arborescence(G) + False + + Notes + ----- + In another convention, an arborescence is known as a *tree*. + + See Also + -------- + is_tree + + """ + return is_tree(G) and max(d for n, d in G.in_degree()) <= 1 + + +@nx.utils.not_implemented_for("undirected") +@nx._dispatch +def is_branching(G): + """ + Returns True if `G` is a branching. + + A branching is a directed forest with maximum in-degree equal to 1. + + Parameters + ---------- + G : directed graph + The directed graph to test. + + Returns + ------- + b : bool + A boolean that is True if `G` is a branching. + + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)]) + >>> nx.is_branching(G) + True + >>> G.remove_edge(2, 3) + >>> G.add_edge(3, 1) # maximum in-degree is 2 + >>> nx.is_branching(G) + False + + Notes + ----- + In another convention, a branching is also known as a *forest*. + + See Also + -------- + is_forest + + """ + return is_forest(G) and max(d for n, d in G.in_degree()) <= 1 + + +@nx._dispatch +def is_forest(G): + """ + Returns True if `G` is a forest. + + A forest is a graph with no undirected cycles. + + For directed graphs, `G` is a forest if the underlying graph is a forest. + The underlying graph is obtained by treating each directed edge as a single + undirected edge in a multigraph. + + Parameters + ---------- + G : graph + The graph to test. + + Returns + ------- + b : bool + A boolean that is True if `G` is a forest. + + Raises + ------ + NetworkXPointlessConcept + If `G` is empty. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5)]) + >>> nx.is_forest(G) + True + >>> G.add_edge(4, 1) + >>> nx.is_forest(G) + False + + Notes + ----- + In another convention, a directed forest is known as a *polyforest* and + then *forest* corresponds to a *branching*. + + See Also + -------- + is_branching + + """ + if len(G) == 0: + raise nx.exception.NetworkXPointlessConcept("G has no nodes.") + + if G.is_directed(): + components = (G.subgraph(c) for c in nx.weakly_connected_components(G)) + else: + components = (G.subgraph(c) for c in nx.connected_components(G)) + + return all(len(c) - 1 == c.number_of_edges() for c in components) + + +@nx._dispatch +def is_tree(G): + """ + Returns True if `G` is a tree. + + A tree is a connected graph with no undirected cycles. + + For directed graphs, `G` is a tree if the underlying graph is a tree. The + underlying graph is obtained by treating each directed edge as a single + undirected edge in a multigraph. + + Parameters + ---------- + G : graph + The graph to test. + + Returns + ------- + b : bool + A boolean that is True if `G` is a tree. + + Raises + ------ + NetworkXPointlessConcept + If `G` is empty. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5)]) + >>> nx.is_tree(G) # n-1 edges + True + >>> G.add_edge(3, 4) + >>> nx.is_tree(G) # n edges + False + + Notes + ----- + In another convention, a directed tree is known as a *polytree* and then + *tree* corresponds to an *arborescence*. + + See Also + -------- + is_arborescence + + """ + if len(G) == 0: + raise nx.exception.NetworkXPointlessConcept("G has no nodes.") + + if G.is_directed(): + is_connected = nx.is_weakly_connected + else: + is_connected = nx.is_connected + + # A connected graph with no cycles has n-1 edges. + return len(G) - 1 == G.number_of_edges() and is_connected(G) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__init__.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2142aec3c964b9f5aa1d56c3f6d3750bd65ead2b Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_branchings.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_branchings.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ac3de68c77751b9fe54f3e4448c25db9b80b912 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_branchings.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_coding.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_coding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..250c2bbfa25df6cd59a1a5a23cbe86280f8608e0 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_coding.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_decomposition.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_decomposition.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..11ee015edfce2cbe25ac6400c087d39e60390a6c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_decomposition.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_mst.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_mst.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f7e4e530d3b6ad4e525f7463cbbc84313d2534a7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_mst.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_operations.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_operations.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..609c5764647e0f4859ff469b0765481ea5e264a7 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_operations.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_recognition.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_recognition.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0433b353d348d120c15dba59ae7a0b7d1bddf68 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/__pycache__/test_recognition.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_branchings.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_branchings.py new file mode 100644 index 0000000000000000000000000000000000000000..ad1cc33b9a494577638dc34b45736f9f3d1a23fe --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_branchings.py @@ -0,0 +1,632 @@ +import math +from operator import itemgetter + +import pytest + +np = pytest.importorskip("numpy") + +import networkx as nx +from networkx.algorithms.tree import branchings, recognition + +# +# Explicitly discussed examples from Edmonds paper. +# + +# Used in Figures A-F. +# +# fmt: off +G_array = np.array([ + # 0 1 2 3 4 5 6 7 8 + [0, 0, 12, 0, 12, 0, 0, 0, 0], # 0 + [4, 0, 0, 0, 0, 13, 0, 0, 0], # 1 + [0, 17, 0, 21, 0, 12, 0, 0, 0], # 2 + [5, 0, 0, 0, 17, 0, 18, 0, 0], # 3 + [0, 0, 0, 0, 0, 0, 0, 12, 0], # 4 + [0, 0, 0, 0, 0, 0, 14, 0, 12], # 5 + [0, 0, 21, 0, 0, 0, 0, 0, 15], # 6 + [0, 0, 0, 19, 0, 0, 15, 0, 0], # 7 + [0, 0, 0, 0, 0, 0, 0, 18, 0], # 8 +], dtype=int) + +# Two copies of the graph from the original paper as disconnected components +G_big_array = np.zeros(np.array(G_array.shape) * 2, dtype=int) +G_big_array[:G_array.shape[0], :G_array.shape[1]] = G_array +G_big_array[G_array.shape[0]:, G_array.shape[1]:] = G_array + +# fmt: on + + +def G1(): + G = nx.from_numpy_array(G_array, create_using=nx.MultiDiGraph) + return G + + +def G2(): + # Now we shift all the weights by -10. + # Should not affect optimal arborescence, but does affect optimal branching. + Garr = G_array.copy() + Garr[np.nonzero(Garr)] -= 10 + G = nx.from_numpy_array(Garr, create_using=nx.MultiDiGraph) + return G + + +# An optimal branching for G1 that is also a spanning arborescence. So it is +# also an optimal spanning arborescence. +# +optimal_arborescence_1 = [ + (0, 2, 12), + (2, 1, 17), + (2, 3, 21), + (1, 5, 13), + (3, 4, 17), + (3, 6, 18), + (6, 8, 15), + (8, 7, 18), +] + +# For G2, the optimal branching of G1 (with shifted weights) is no longer +# an optimal branching, but it is still an optimal spanning arborescence +# (just with shifted weights). An optimal branching for G2 is similar to what +# appears in figure G (this is greedy_subopt_branching_1a below), but with the +# edge (3, 0, 5), which is now (3, 0, -5), removed. Thus, the optimal branching +# is not a spanning arborescence. The code finds optimal_branching_2a. +# An alternative and equivalent branching is optimal_branching_2b. We would +# need to modify the code to iterate through all equivalent optimal branchings. +# +# These are maximal branchings or arborescences. +optimal_branching_2a = [ + (5, 6, 4), + (6, 2, 11), + (6, 8, 5), + (8, 7, 8), + (2, 1, 7), + (2, 3, 11), + (3, 4, 7), +] +optimal_branching_2b = [ + (8, 7, 8), + (7, 3, 9), + (3, 4, 7), + (3, 6, 8), + (6, 2, 11), + (2, 1, 7), + (1, 5, 3), +] +optimal_arborescence_2 = [ + (0, 2, 2), + (2, 1, 7), + (2, 3, 11), + (1, 5, 3), + (3, 4, 7), + (3, 6, 8), + (6, 8, 5), + (8, 7, 8), +] + +# Two suboptimal maximal branchings on G1 obtained from a greedy algorithm. +# 1a matches what is shown in Figure G in Edmonds's paper. +greedy_subopt_branching_1a = [ + (5, 6, 14), + (6, 2, 21), + (6, 8, 15), + (8, 7, 18), + (2, 1, 17), + (2, 3, 21), + (3, 0, 5), + (3, 4, 17), +] +greedy_subopt_branching_1b = [ + (8, 7, 18), + (7, 6, 15), + (6, 2, 21), + (2, 1, 17), + (2, 3, 21), + (1, 5, 13), + (3, 0, 5), + (3, 4, 17), +] + + +def build_branching(edges, double=False): + G = nx.DiGraph() + for u, v, weight in edges: + G.add_edge(u, v, weight=weight) + if double: + G.add_edge(u + 9, v + 9, weight=weight) + return G + + +def sorted_edges(G, attr="weight", default=1): + edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)] + edges = sorted(edges, key=lambda x: (x[2], x[1], x[0])) + return edges + + +def assert_equal_branchings(G1, G2, attr="weight", default=1): + edges1 = list(G1.edges(data=True)) + edges2 = list(G2.edges(data=True)) + assert len(edges1) == len(edges2) + + # Grab the weights only. + e1 = sorted_edges(G1, attr, default) + e2 = sorted_edges(G2, attr, default) + + for a, b in zip(e1, e2): + assert a[:2] == b[:2] + np.testing.assert_almost_equal(a[2], b[2]) + + +################ + + +def test_optimal_branching1(): + G = build_branching(optimal_arborescence_1) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 131 + + +def test_optimal_branching2a(): + G = build_branching(optimal_branching_2a) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 53 + + +def test_optimal_branching2b(): + G = build_branching(optimal_branching_2b) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 53 + + +def test_optimal_arborescence2(): + G = build_branching(optimal_arborescence_2) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 51 + + +def test_greedy_suboptimal_branching1a(): + G = build_branching(greedy_subopt_branching_1a) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 128 + + +def test_greedy_suboptimal_branching1b(): + G = build_branching(greedy_subopt_branching_1b) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 127 + + +def test_greedy_max1(): + # Standard test. + # + G = G1() + B = branchings.greedy_branching(G) + # There are only two possible greedy branchings. The sorting is such + # that it should equal the second suboptimal branching: 1b. + B_ = build_branching(greedy_subopt_branching_1b) + assert_equal_branchings(B, B_) + + +def test_greedy_branching_kwarg_kind(): + G = G1() + with pytest.raises(nx.NetworkXException, match="Unknown value for `kind`."): + B = branchings.greedy_branching(G, kind="lol") + + +def test_greedy_branching_for_unsortable_nodes(): + G = nx.DiGraph() + G.add_weighted_edges_from([((2, 3), 5, 1), (3, "a", 1), (2, 4, 5)]) + edges = [(u, v, data.get("weight", 1)) for (u, v, data) in G.edges(data=True)] + with pytest.raises(TypeError): + edges.sort(key=itemgetter(2, 0, 1), reverse=True) + B = branchings.greedy_branching(G, kind="max").edges(data=True) + assert list(B) == [ + ((2, 3), 5, {"weight": 1}), + (3, "a", {"weight": 1}), + (2, 4, {"weight": 5}), + ] + + +def test_greedy_max2(): + # Different default weight. + # + G = G1() + del G[1][0][0]["weight"] + B = branchings.greedy_branching(G, default=6) + # Chosen so that edge (3,0,5) is not selected and (1,0,6) is instead. + + edges = [ + (1, 0, 6), + (1, 5, 13), + (7, 6, 15), + (2, 1, 17), + (3, 4, 17), + (8, 7, 18), + (2, 3, 21), + (6, 2, 21), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_) + + +def test_greedy_max3(): + # All equal weights. + # + G = G1() + B = branchings.greedy_branching(G, attr=None) + + # This is mostly arbitrary...the output was generated by running the algo. + edges = [ + (2, 1, 1), + (3, 0, 1), + (3, 4, 1), + (5, 8, 1), + (6, 2, 1), + (7, 3, 1), + (7, 6, 1), + (8, 7, 1), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_, default=1) + + +def test_greedy_min(): + G = G1() + B = branchings.greedy_branching(G, kind="min") + + edges = [ + (1, 0, 4), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (7, 3, 19), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_) + + +def test_edmonds1_maxbranch(): + G = G1() + x = branchings.maximum_branching(G) + x_ = build_branching(optimal_arborescence_1) + assert_equal_branchings(x, x_) + + +def test_edmonds1_maxarbor(): + G = G1() + x = branchings.maximum_spanning_arborescence(G) + x_ = build_branching(optimal_arborescence_1) + assert_equal_branchings(x, x_) + + +def test_edmonds1_minimal_branching(): + # graph will have something like a minimum arborescence but no spanning one + G = nx.from_numpy_array(G_big_array, create_using=nx.DiGraph) + B = branchings.minimal_branching(G) + edges = [ + (3, 0, 5), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (2, 1, 17), + ] + B_ = build_branching(edges, double=True) + assert_equal_branchings(B, B_) + + +def test_edmonds2_maxbranch(): + G = G2() + x = branchings.maximum_branching(G) + x_ = build_branching(optimal_branching_2a) + assert_equal_branchings(x, x_) + + +def test_edmonds2_maxarbor(): + G = G2() + x = branchings.maximum_spanning_arborescence(G) + x_ = build_branching(optimal_arborescence_2) + assert_equal_branchings(x, x_) + + +def test_edmonds2_minarbor(): + G = G1() + x = branchings.minimum_spanning_arborescence(G) + # This was obtained from algorithm. Need to verify it independently. + # Branch weight is: 96 + edges = [ + (3, 0, 5), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (2, 1, 17), + ] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edmonds3_minbranch1(): + G = G1() + x = branchings.minimum_branching(G) + edges = [] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edmonds3_minbranch2(): + G = G1() + G.add_edge(8, 9, weight=-10) + x = branchings.minimum_branching(G) + edges = [(8, 9, -10)] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +# Need more tests + + +def test_mst(): + # Make sure we get the same results for undirected graphs. + # Example from: https://en.wikipedia.org/wiki/Kruskal's_algorithm + G = nx.Graph() + edgelist = [ + (0, 3, [("weight", 5)]), + (0, 1, [("weight", 7)]), + (1, 3, [("weight", 9)]), + (1, 2, [("weight", 8)]), + (1, 4, [("weight", 7)]), + (3, 4, [("weight", 15)]), + (3, 5, [("weight", 6)]), + (2, 4, [("weight", 5)]), + (4, 5, [("weight", 8)]), + (4, 6, [("weight", 9)]), + (5, 6, [("weight", 11)]), + ] + G.add_edges_from(edgelist) + G = G.to_directed() + x = branchings.minimum_spanning_arborescence(G) + + edges = [ + ({0, 1}, 7), + ({0, 3}, 5), + ({3, 5}, 6), + ({1, 4}, 7), + ({4, 2}, 5), + ({4, 6}, 9), + ] + + assert x.number_of_edges() == len(edges) + for u, v, d in x.edges(data=True): + assert ({u, v}, d["weight"]) in edges + + +def test_mixed_nodetypes(): + # Smoke test to make sure no TypeError is raised for mixed node types. + G = nx.Graph() + edgelist = [(0, 3, [("weight", 5)]), (0, "1", [("weight", 5)])] + G.add_edges_from(edgelist) + G = G.to_directed() + x = branchings.minimum_spanning_arborescence(G) + + +def test_edmonds1_minbranch(): + # Using -G_array and min should give the same as optimal_arborescence_1, + # but with all edges negative. + edges = [(u, v, -w) for (u, v, w) in optimal_arborescence_1] + + G = nx.from_numpy_array(-G_array, create_using=nx.DiGraph) + + # Quickly make sure max branching is empty. + x = branchings.maximum_branching(G) + x_ = build_branching([]) + assert_equal_branchings(x, x_) + + # Now test the min branching. + x = branchings.minimum_branching(G) + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edge_attribute_preservation_normal_graph(): + # Test that edge attributes are preserved when finding an optimum graph + # using the Edmonds class for normal graphs. + G = nx.Graph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist) + + B = branchings.maximum_branching(G, preserve_attrs=True) + + assert B[0][1]["otherattr"] == 1 + assert B[0][1]["otherattr2"] == 3 + + +def test_edge_attribute_preservation_multigraph(): + # Test that edge attributes are preserved when finding an optimum graph + # using the Edmonds class for multigraphs. + G = nx.MultiGraph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist * 2) # Make sure we have duplicate edge paths + + B = branchings.maximum_branching(G, preserve_attrs=True) + + assert B[0][1][0]["otherattr"] == 1 + assert B[0][1][0]["otherattr2"] == 3 + + +# TODO remove with Edmonds +def test_Edmond_kind(): + G = nx.MultiGraph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist * 2) # Make sure we have duplicate edge paths + ed = branchings.Edmonds(G) + with pytest.raises(nx.NetworkXException, match="Unknown value for `kind`."): + ed.find_optimum(kind="lol", preserve_attrs=True) + + +# TODO remove with MultiDiGraph_EdgeKey +def test_MultiDiGraph_EdgeKey(): + # test if more than one edges has the same key + G = branchings.MultiDiGraph_EdgeKey() + G.add_edge(1, 2, "A") + with pytest.raises(Exception, match="Key 'A' is already in use."): + G.add_edge(3, 4, "A") + # test if invalid edge key was specified + with pytest.raises(KeyError, match="Invalid edge key 'B'"): + G.remove_edge_with_key("B") + # test remove_edge_with_key works + if G.remove_edge_with_key("A"): + assert list(G.edges(data=True)) == [] + # test that remove_edges_from doesn't work + G.add_edge(1, 3, "A") + with pytest.raises(NotImplementedError): + G.remove_edges_from([(1, 3)]) + + +def test_edge_attribute_discard(): + # Test that edge attributes are discarded if we do not specify to keep them + G = nx.Graph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist) + + B = branchings.maximum_branching(G, preserve_attrs=False) + + edge_dict = B[0][1] + with pytest.raises(KeyError): + _ = edge_dict["otherattr"] + + +def test_partition_spanning_arborescence(): + """ + Test that we can generate minimum spanning arborescences which respect the + given partition. + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + G[3][0]["partition"] = nx.EdgePartition.EXCLUDED + G[2][3]["partition"] = nx.EdgePartition.INCLUDED + G[7][3]["partition"] = nx.EdgePartition.EXCLUDED + G[0][2]["partition"] = nx.EdgePartition.EXCLUDED + G[6][2]["partition"] = nx.EdgePartition.INCLUDED + + actual_edges = [ + (0, 4, 12), + (1, 0, 4), + (1, 5, 13), + (2, 3, 21), + (4, 7, 12), + (5, 6, 14), + (5, 8, 12), + (6, 2, 21), + ] + + B = branchings.minimum_spanning_arborescence(G, partition="partition") + assert_equal_branchings(build_branching(actual_edges), B) + + +def test_arborescence_iterator_min(): + """ + Tests the arborescence iterator. + + A brute force method found 680 arborescences in this graph. + This test will not verify all of them individually, but will check two + things + + * The iterator returns 680 arborescences + * The weight of the arborescences is non-strictly increasing + + for more information please visit + https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + arborescence_count = 0 + arborescence_weight = -math.inf + for B in branchings.ArborescenceIterator(G): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight >= arborescence_weight + arborescence_weight = new_arborescence_weight + + assert arborescence_count == 680 + + +def test_arborescence_iterator_max(): + """ + Tests the arborescence iterator. + + A brute force method found 680 arborescences in this graph. + This test will not verify all of them individually, but will check two + things + + * The iterator returns 680 arborescences + * The weight of the arborescences is non-strictly decreasing + + for more information please visit + https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + arborescence_count = 0 + arborescence_weight = math.inf + for B in branchings.ArborescenceIterator(G, minimum=False): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight <= arborescence_weight + arborescence_weight = new_arborescence_weight + + assert arborescence_count == 680 + + +def test_arborescence_iterator_initial_partition(): + """ + Tests the arborescence iterator with three included edges and three excluded + in the initial partition. + + A brute force method similar to the one used in the above tests found that + there are 16 arborescences which contain the included edges and not the + excluded edges. + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + included_edges = [(1, 0), (5, 6), (8, 7)] + excluded_edges = [(0, 2), (3, 6), (1, 5)] + + arborescence_count = 0 + arborescence_weight = -math.inf + for B in branchings.ArborescenceIterator( + G, init_partition=(included_edges, excluded_edges) + ): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight >= arborescence_weight + arborescence_weight = new_arborescence_weight + for e in included_edges: + assert e in B.edges + for e in excluded_edges: + assert e not in B.edges + assert arborescence_count == 16 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_coding.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_coding.py new file mode 100644 index 0000000000000000000000000000000000000000..c695fea5fdab4f09f79c69f8837bb07f65d16540 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_coding.py @@ -0,0 +1,113 @@ +"""Unit tests for the :mod:`~networkx.algorithms.tree.coding` module.""" +from itertools import product + +import pytest + +import networkx as nx +from networkx.utils import edges_equal, nodes_equal + + +class TestPruferSequence: + """Unit tests for the Prüfer sequence encoding and decoding + functions. + + """ + + def test_nontree(self): + with pytest.raises(nx.NotATree): + G = nx.cycle_graph(3) + nx.to_prufer_sequence(G) + + def test_null_graph(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.to_prufer_sequence(nx.null_graph()) + + def test_trivial_graph(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.to_prufer_sequence(nx.trivial_graph()) + + def test_bad_integer_labels(self): + with pytest.raises(KeyError): + T = nx.Graph(nx.utils.pairwise("abc")) + nx.to_prufer_sequence(T) + + def test_encoding(self): + """Tests for encoding a tree as a Prüfer sequence using the + iterative strategy. + + """ + # Example from Wikipedia. + tree = nx.Graph([(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)]) + sequence = nx.to_prufer_sequence(tree) + assert sequence == [3, 3, 3, 4] + + def test_decoding(self): + """Tests for decoding a tree from a Prüfer sequence.""" + # Example from Wikipedia. + sequence = [3, 3, 3, 4] + tree = nx.from_prufer_sequence(sequence) + assert nodes_equal(list(tree), list(range(6))) + edges = [(0, 3), (1, 3), (2, 3), (3, 4), (4, 5)] + assert edges_equal(list(tree.edges()), edges) + + def test_decoding2(self): + # Example from "An Optimal Algorithm for Prufer Codes". + sequence = [2, 4, 0, 1, 3, 3] + tree = nx.from_prufer_sequence(sequence) + assert nodes_equal(list(tree), list(range(8))) + edges = [(0, 1), (0, 4), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7)] + assert edges_equal(list(tree.edges()), edges) + + def test_inverse(self): + """Tests that the encoding and decoding functions are inverses.""" + for T in nx.nonisomorphic_trees(4): + T2 = nx.from_prufer_sequence(nx.to_prufer_sequence(T)) + assert nodes_equal(list(T), list(T2)) + assert edges_equal(list(T.edges()), list(T2.edges())) + + for seq in product(range(4), repeat=2): + seq2 = nx.to_prufer_sequence(nx.from_prufer_sequence(seq)) + assert list(seq) == seq2 + + +class TestNestedTuple: + """Unit tests for the nested tuple encoding and decoding functions.""" + + def test_nontree(self): + with pytest.raises(nx.NotATree): + G = nx.cycle_graph(3) + nx.to_nested_tuple(G, 0) + + def test_unknown_root(self): + with pytest.raises(nx.NodeNotFound): + G = nx.path_graph(2) + nx.to_nested_tuple(G, "bogus") + + def test_encoding(self): + T = nx.full_rary_tree(2, 2**3 - 1) + expected = (((), ()), ((), ())) + actual = nx.to_nested_tuple(T, 0) + assert nodes_equal(expected, actual) + + def test_canonical_form(self): + T = nx.Graph() + T.add_edges_from([(0, 1), (0, 2), (0, 3)]) + T.add_edges_from([(1, 4), (1, 5)]) + T.add_edges_from([(3, 6), (3, 7)]) + root = 0 + actual = nx.to_nested_tuple(T, root, canonical_form=True) + expected = ((), ((), ()), ((), ())) + assert actual == expected + + def test_decoding(self): + balanced = (((), ()), ((), ())) + expected = nx.full_rary_tree(2, 2**3 - 1) + actual = nx.from_nested_tuple(balanced) + assert nx.is_isomorphic(expected, actual) + + def test_sensible_relabeling(self): + balanced = (((), ()), ((), ())) + T = nx.from_nested_tuple(balanced, sensible_relabeling=True) + edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)] + assert nodes_equal(list(T), list(range(2**3 - 1))) + assert edges_equal(list(T.edges()), edges) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_decomposition.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_decomposition.py new file mode 100644 index 0000000000000000000000000000000000000000..8c376053794537611f46c038ed074eb92b1ba676 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_decomposition.py @@ -0,0 +1,79 @@ +import networkx as nx +from networkx.algorithms.tree.decomposition import junction_tree + + +def test_junction_tree_directed_confounders(): + B = nx.DiGraph() + B.add_edges_from([("A", "C"), ("B", "C"), ("C", "D"), ("C", "E")]) + + G = junction_tree(B) + J = nx.Graph() + J.add_edges_from( + [ + (("C", "E"), ("C",)), + (("C",), ("A", "B", "C")), + (("A", "B", "C"), ("C",)), + (("C",), ("C", "D")), + ] + ) + + assert nx.is_isomorphic(G, J) + + +def test_junction_tree_directed_unconnected_nodes(): + B = nx.DiGraph() + B.add_nodes_from([("A", "B", "C", "D")]) + G = junction_tree(B) + + J = nx.Graph() + J.add_nodes_from([("A", "B", "C", "D")]) + + assert nx.is_isomorphic(G, J) + + +def test_junction_tree_directed_cascade(): + B = nx.DiGraph() + B.add_edges_from([("A", "B"), ("B", "C"), ("C", "D")]) + G = junction_tree(B) + + J = nx.Graph() + J.add_edges_from( + [ + (("A", "B"), ("B",)), + (("B",), ("B", "C")), + (("B", "C"), ("C",)), + (("C",), ("C", "D")), + ] + ) + assert nx.is_isomorphic(G, J) + + +def test_junction_tree_directed_unconnected_edges(): + B = nx.DiGraph() + B.add_edges_from([("A", "B"), ("C", "D"), ("E", "F")]) + G = junction_tree(B) + + J = nx.Graph() + J.add_nodes_from([("A", "B"), ("C", "D"), ("E", "F")]) + + assert nx.is_isomorphic(G, J) + + +def test_junction_tree_undirected(): + B = nx.Graph() + B.add_edges_from([("A", "C"), ("A", "D"), ("B", "C"), ("C", "E")]) + G = junction_tree(B) + + J = nx.Graph() + J.add_edges_from( + [ + (("A", "D"), ("A",)), + (("A",), ("A", "C")), + (("A", "C"), ("C",)), + (("C",), ("B", "C")), + (("B", "C"), ("C",)), + (("C",), ("C", "E")), + ] + ) + + assert nx.is_isomorphic(G, J) diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_mst.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_mst.py new file mode 100644 index 0000000000000000000000000000000000000000..373f16cf7a016f1ed56ba2826745783568f20b5e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_mst.py @@ -0,0 +1,708 @@ +"""Unit tests for the :mod:`networkx.algorithms.tree.mst` module.""" + +import pytest + +import networkx as nx +from networkx.utils import edges_equal, nodes_equal + + +def test_unknown_algorithm(): + with pytest.raises(ValueError): + nx.minimum_spanning_tree(nx.Graph(), algorithm="random") + with pytest.raises( + ValueError, match="random is not a valid choice for an algorithm." + ): + nx.maximum_spanning_edges(nx.Graph(), algorithm="random") + + +class MinimumSpanningTreeTestBase: + """Base class for test classes for minimum spanning tree algorithms. + This class contains some common tests that will be inherited by + subclasses. Each subclass must have a class attribute + :data:`algorithm` that is a string representing the algorithm to + run, as described under the ``algorithm`` keyword argument for the + :func:`networkx.minimum_spanning_edges` function. Subclasses can + then implement any algorithm-specific tests. + """ + + def setup_method(self, method): + """Creates an example graph and stores the expected minimum and + maximum spanning tree edges. + """ + # This stores the class attribute `algorithm` in an instance attribute. + self.algo = self.algorithm + # This example graph comes from Wikipedia: + # https://en.wikipedia.org/wiki/Kruskal's_algorithm + edges = [ + (0, 1, 7), + (0, 3, 5), + (1, 2, 8), + (1, 3, 9), + (1, 4, 7), + (2, 4, 5), + (3, 4, 15), + (3, 5, 6), + (4, 5, 8), + (4, 6, 9), + (5, 6, 11), + ] + self.G = nx.Graph() + self.G.add_weighted_edges_from(edges) + self.minimum_spanning_edgelist = [ + (0, 1, {"weight": 7}), + (0, 3, {"weight": 5}), + (1, 4, {"weight": 7}), + (2, 4, {"weight": 5}), + (3, 5, {"weight": 6}), + (4, 6, {"weight": 9}), + ] + self.maximum_spanning_edgelist = [ + (0, 1, {"weight": 7}), + (1, 2, {"weight": 8}), + (1, 3, {"weight": 9}), + (3, 4, {"weight": 15}), + (4, 6, {"weight": 9}), + (5, 6, {"weight": 11}), + ] + + def test_minimum_edges(self): + edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo) + # Edges from the spanning edges functions don't come in sorted + # orientation, so we need to sort each edge individually. + actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges) + assert edges_equal(actual, self.minimum_spanning_edgelist) + + def test_maximum_edges(self): + edges = nx.maximum_spanning_edges(self.G, algorithm=self.algo) + # Edges from the spanning edges functions don't come in sorted + # orientation, so we need to sort each edge individually. + actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges) + assert edges_equal(actual, self.maximum_spanning_edgelist) + + def test_without_data(self): + edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo, data=False) + # Edges from the spanning edges functions don't come in sorted + # orientation, so we need to sort each edge individually. + actual = sorted((min(u, v), max(u, v)) for u, v in edges) + expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist] + assert edges_equal(actual, expected) + + def test_nan_weights(self): + # Edge weights NaN never appear in the spanning tree. see #2164 + G = self.G + G.add_edge(0, 12, weight=float("nan")) + edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, data=False, ignore_nan=True + ) + actual = sorted((min(u, v), max(u, v)) for u, v in edges) + expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist] + assert edges_equal(actual, expected) + # Now test for raising exception + edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, data=False, ignore_nan=False + ) + with pytest.raises(ValueError): + list(edges) + # test default for ignore_nan as False + edges = nx.minimum_spanning_edges(G, algorithm=self.algo, data=False) + with pytest.raises(ValueError): + list(edges) + + def test_nan_weights_MultiGraph(self): + G = nx.MultiGraph() + G.add_edge(0, 12, weight=float("nan")) + edges = nx.minimum_spanning_edges( + G, algorithm="prim", data=False, ignore_nan=False + ) + with pytest.raises(ValueError): + list(edges) + # test default for ignore_nan as False + edges = nx.minimum_spanning_edges(G, algorithm="prim", data=False) + with pytest.raises(ValueError): + list(edges) + + def test_nan_weights_order(self): + # now try again with a nan edge at the beginning of G.nodes + edges = [ + (0, 1, 7), + (0, 3, 5), + (1, 2, 8), + (1, 3, 9), + (1, 4, 7), + (2, 4, 5), + (3, 4, 15), + (3, 5, 6), + (4, 5, 8), + (4, 6, 9), + (5, 6, 11), + ] + G = nx.Graph() + G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges]) + G.add_edge(0, 7, weight=float("nan")) + edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, data=False, ignore_nan=True + ) + actual = sorted((min(u, v), max(u, v)) for u, v in edges) + shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist] + assert edges_equal(actual, shift) + + def test_isolated_node(self): + # now try again with an isolated node + edges = [ + (0, 1, 7), + (0, 3, 5), + (1, 2, 8), + (1, 3, 9), + (1, 4, 7), + (2, 4, 5), + (3, 4, 15), + (3, 5, 6), + (4, 5, 8), + (4, 6, 9), + (5, 6, 11), + ] + G = nx.Graph() + G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges]) + G.add_node(0) + edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, data=False, ignore_nan=True + ) + actual = sorted((min(u, v), max(u, v)) for u, v in edges) + shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist] + assert edges_equal(actual, shift) + + def test_minimum_tree(self): + T = nx.minimum_spanning_tree(self.G, algorithm=self.algo) + actual = sorted(T.edges(data=True)) + assert edges_equal(actual, self.minimum_spanning_edgelist) + + def test_maximum_tree(self): + T = nx.maximum_spanning_tree(self.G, algorithm=self.algo) + actual = sorted(T.edges(data=True)) + assert edges_equal(actual, self.maximum_spanning_edgelist) + + def test_disconnected(self): + G = nx.Graph([(0, 1, {"weight": 1}), (2, 3, {"weight": 2})]) + T = nx.minimum_spanning_tree(G, algorithm=self.algo) + assert nodes_equal(list(T), list(range(4))) + assert edges_equal(list(T.edges()), [(0, 1), (2, 3)]) + + def test_empty_graph(self): + G = nx.empty_graph(3) + T = nx.minimum_spanning_tree(G, algorithm=self.algo) + assert nodes_equal(sorted(T), list(range(3))) + assert T.number_of_edges() == 0 + + def test_attributes(self): + G = nx.Graph() + G.add_edge(1, 2, weight=1, color="red", distance=7) + G.add_edge(2, 3, weight=1, color="green", distance=2) + G.add_edge(1, 3, weight=10, color="blue", distance=1) + G.graph["foo"] = "bar" + T = nx.minimum_spanning_tree(G, algorithm=self.algo) + assert T.graph == G.graph + assert nodes_equal(T, G) + for u, v in T.edges(): + assert T.adj[u][v] == G.adj[u][v] + + def test_weight_attribute(self): + G = nx.Graph() + G.add_edge(0, 1, weight=1, distance=7) + G.add_edge(0, 2, weight=30, distance=1) + G.add_edge(1, 2, weight=1, distance=1) + G.add_node(3) + T = nx.minimum_spanning_tree(G, algorithm=self.algo, weight="distance") + assert nodes_equal(sorted(T), list(range(4))) + assert edges_equal(sorted(T.edges()), [(0, 2), (1, 2)]) + T = nx.maximum_spanning_tree(G, algorithm=self.algo, weight="distance") + assert nodes_equal(sorted(T), list(range(4))) + assert edges_equal(sorted(T.edges()), [(0, 1), (0, 2)]) + + +class TestBoruvka(MinimumSpanningTreeTestBase): + """Unit tests for computing a minimum (or maximum) spanning tree + using Borůvka's algorithm. + """ + + algorithm = "boruvka" + + def test_unicode_name(self): + """Tests that using a Unicode string can correctly indicate + Borůvka's algorithm. + """ + edges = nx.minimum_spanning_edges(self.G, algorithm="borůvka") + # Edges from the spanning edges functions don't come in sorted + # orientation, so we need to sort each edge individually. + actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges) + assert edges_equal(actual, self.minimum_spanning_edgelist) + + +class MultigraphMSTTestBase(MinimumSpanningTreeTestBase): + # Abstract class + + def test_multigraph_keys_min(self): + """Tests that the minimum spanning edges of a multigraph + preserves edge keys. + """ + G = nx.MultiGraph() + G.add_edge(0, 1, key="a", weight=2) + G.add_edge(0, 1, key="b", weight=1) + min_edges = nx.minimum_spanning_edges + mst_edges = min_edges(G, algorithm=self.algo, data=False) + assert edges_equal([(0, 1, "b")], list(mst_edges)) + + def test_multigraph_keys_max(self): + """Tests that the maximum spanning edges of a multigraph + preserves edge keys. + """ + G = nx.MultiGraph() + G.add_edge(0, 1, key="a", weight=2) + G.add_edge(0, 1, key="b", weight=1) + max_edges = nx.maximum_spanning_edges + mst_edges = max_edges(G, algorithm=self.algo, data=False) + assert edges_equal([(0, 1, "a")], list(mst_edges)) + + +class TestKruskal(MultigraphMSTTestBase): + """Unit tests for computing a minimum (or maximum) spanning tree + using Kruskal's algorithm. + """ + + algorithm = "kruskal" + + def test_key_data_bool(self): + """Tests that the keys and data values are included in + MST edges based on whether keys and data parameters are + true or false""" + G = nx.MultiGraph() + G.add_edge(1, 2, key=1, weight=2) + G.add_edge(1, 2, key=2, weight=3) + G.add_edge(3, 2, key=1, weight=2) + G.add_edge(3, 1, key=1, weight=4) + + # keys are included and data is not included + mst_edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, keys=True, data=False + ) + assert edges_equal([(1, 2, 1), (2, 3, 1)], list(mst_edges)) + + # keys are not included and data is included + mst_edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, keys=False, data=True + ) + assert edges_equal( + [(1, 2, {"weight": 2}), (2, 3, {"weight": 2})], list(mst_edges) + ) + + # both keys and data are not included + mst_edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, keys=False, data=False + ) + assert edges_equal([(1, 2), (2, 3)], list(mst_edges)) + + # both keys and data are included + mst_edges = nx.minimum_spanning_edges( + G, algorithm=self.algo, keys=True, data=True + ) + assert edges_equal( + [(1, 2, 1, {"weight": 2}), (2, 3, 1, {"weight": 2})], list(mst_edges) + ) + + +class TestPrim(MultigraphMSTTestBase): + """Unit tests for computing a minimum (or maximum) spanning tree + using Prim's algorithm. + """ + + algorithm = "prim" + + def test_prim_mst_edges_simple_graph(self): + H = nx.Graph() + H.add_edge(1, 2, key=2, weight=3) + H.add_edge(3, 2, key=1, weight=2) + H.add_edge(3, 1, key=1, weight=4) + + mst_edges = nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=True) + assert edges_equal( + [(1, 2, {"key": 2, "weight": 3}), (2, 3, {"key": 1, "weight": 2})], + list(mst_edges), + ) + + def test_ignore_nan(self): + """Tests that the edges with NaN weights are ignored or + raise an Error based on ignore_nan is true or false""" + H = nx.MultiGraph() + H.add_edge(1, 2, key=1, weight=float("nan")) + H.add_edge(1, 2, key=2, weight=3) + H.add_edge(3, 2, key=1, weight=2) + H.add_edge(3, 1, key=1, weight=4) + + # NaN weight edges are ignored when ignore_nan=True + mst_edges = nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=True) + assert edges_equal( + [(1, 2, 2, {"weight": 3}), (2, 3, 1, {"weight": 2})], list(mst_edges) + ) + + # NaN weight edges raise Error when ignore_nan=False + with pytest.raises(ValueError): + list(nx.minimum_spanning_edges(H, algorithm=self.algo, ignore_nan=False)) + + def test_multigraph_keys_tree(self): + G = nx.MultiGraph() + G.add_edge(0, 1, key="a", weight=2) + G.add_edge(0, 1, key="b", weight=1) + T = nx.minimum_spanning_tree(G, algorithm=self.algo) + assert edges_equal([(0, 1, 1)], list(T.edges(data="weight"))) + + def test_multigraph_keys_tree_max(self): + G = nx.MultiGraph() + G.add_edge(0, 1, key="a", weight=2) + G.add_edge(0, 1, key="b", weight=1) + T = nx.maximum_spanning_tree(G, algorithm=self.algo) + assert edges_equal([(0, 1, 2)], list(T.edges(data="weight"))) + + +class TestSpanningTreeIterator: + """ + Tests the spanning tree iterator on the example graph in the 2005 Sörensen + and Janssens paper An Algorithm to Generate all Spanning Trees of a Graph in + Order of Increasing Cost + """ + + def setup_method(self): + # Original Graph + edges = [(0, 1, 5), (1, 2, 4), (1, 4, 6), (2, 3, 5), (2, 4, 7), (3, 4, 3)] + self.G = nx.Graph() + self.G.add_weighted_edges_from(edges) + # List of lists of spanning trees in increasing order + self.spanning_trees = [ + # 1, MST, cost = 17 + [ + (0, 1, {"weight": 5}), + (1, 2, {"weight": 4}), + (2, 3, {"weight": 5}), + (3, 4, {"weight": 3}), + ], + # 2, cost = 18 + [ + (0, 1, {"weight": 5}), + (1, 2, {"weight": 4}), + (1, 4, {"weight": 6}), + (3, 4, {"weight": 3}), + ], + # 3, cost = 19 + [ + (0, 1, {"weight": 5}), + (1, 4, {"weight": 6}), + (2, 3, {"weight": 5}), + (3, 4, {"weight": 3}), + ], + # 4, cost = 19 + [ + (0, 1, {"weight": 5}), + (1, 2, {"weight": 4}), + (2, 4, {"weight": 7}), + (3, 4, {"weight": 3}), + ], + # 5, cost = 20 + [ + (0, 1, {"weight": 5}), + (1, 2, {"weight": 4}), + (1, 4, {"weight": 6}), + (2, 3, {"weight": 5}), + ], + # 6, cost = 21 + [ + (0, 1, {"weight": 5}), + (1, 4, {"weight": 6}), + (2, 4, {"weight": 7}), + (3, 4, {"weight": 3}), + ], + # 7, cost = 21 + [ + (0, 1, {"weight": 5}), + (1, 2, {"weight": 4}), + (2, 3, {"weight": 5}), + (2, 4, {"weight": 7}), + ], + # 8, cost = 23 + [ + (0, 1, {"weight": 5}), + (1, 4, {"weight": 6}), + (2, 3, {"weight": 5}), + (2, 4, {"weight": 7}), + ], + ] + + def test_minimum_spanning_tree_iterator(self): + """ + Tests that the spanning trees are correctly returned in increasing order + """ + tree_index = 0 + for tree in nx.SpanningTreeIterator(self.G): + actual = sorted(tree.edges(data=True)) + assert edges_equal(actual, self.spanning_trees[tree_index]) + tree_index += 1 + + def test_maximum_spanning_tree_iterator(self): + """ + Tests that the spanning trees are correctly returned in decreasing order + """ + tree_index = 7 + for tree in nx.SpanningTreeIterator(self.G, minimum=False): + actual = sorted(tree.edges(data=True)) + assert edges_equal(actual, self.spanning_trees[tree_index]) + tree_index -= 1 + + +def test_random_spanning_tree_multiplicative_small(): + """ + Using a fixed seed, sample one tree for repeatability. + """ + from math import exp + + pytest.importorskip("scipy") + + gamma = { + (0, 1): -0.6383, + (0, 2): -0.6827, + (0, 5): 0, + (1, 2): -1.0781, + (1, 4): 0, + (2, 3): 0, + (5, 3): -0.2820, + (5, 4): -0.3327, + (4, 3): -0.9927, + } + + # The undirected support of gamma + G = nx.Graph() + for u, v in gamma: + G.add_edge(u, v, lambda_key=exp(gamma[(u, v)])) + + solution_edges = [(2, 3), (3, 4), (0, 5), (5, 4), (4, 1)] + solution = nx.Graph() + solution.add_edges_from(solution_edges) + + sampled_tree = nx.random_spanning_tree(G, "lambda_key", seed=42) + + assert nx.utils.edges_equal(solution.edges, sampled_tree.edges) + + +@pytest.mark.slow +def test_random_spanning_tree_multiplicative_large(): + """ + Sample many trees from the distribution created in the last test + """ + from math import exp + from random import Random + + pytest.importorskip("numpy") + stats = pytest.importorskip("scipy.stats") + + gamma = { + (0, 1): -0.6383, + (0, 2): -0.6827, + (0, 5): 0, + (1, 2): -1.0781, + (1, 4): 0, + (2, 3): 0, + (5, 3): -0.2820, + (5, 4): -0.3327, + (4, 3): -0.9927, + } + + # The undirected support of gamma + G = nx.Graph() + for u, v in gamma: + G.add_edge(u, v, lambda_key=exp(gamma[(u, v)])) + + # Find the multiplicative weight for each tree. + total_weight = 0 + tree_expected = {} + for t in nx.SpanningTreeIterator(G): + # Find the multiplicative weight of the spanning tree + weight = 1 + for u, v, d in t.edges(data="lambda_key"): + weight *= d + tree_expected[t] = weight + total_weight += weight + + # Assert that every tree has an entry in the expected distribution + assert len(tree_expected) == 75 + + # Set the sample size and then calculate the expected number of times we + # expect to see each tree. This test uses a near minimum sample size where + # the most unlikely tree has an expected frequency of 5.15. + # (Minimum required is 5) + # + # Here we also initialize the tree_actual dict so that we know the keys + # match between the two. We will later take advantage of the fact that since + # python 3.7 dict order is guaranteed so the expected and actual data will + # have the same order. + sample_size = 1200 + tree_actual = {} + for t in tree_expected: + tree_expected[t] = (tree_expected[t] / total_weight) * sample_size + tree_actual[t] = 0 + + # Sample the spanning trees + # + # Assert that they are actually trees and record which of the 75 trees we + # have sampled. + # + # For repeatability, we want to take advantage of the decorators in NetworkX + # to randomly sample the same sample each time. However, if we pass in a + # constant seed to sample_spanning_tree we will get the same tree each time. + # Instead, we can create our own random number generator with a fixed seed + # and pass those into sample_spanning_tree. + rng = Random(37) + for _ in range(sample_size): + sampled_tree = nx.random_spanning_tree(G, "lambda_key", seed=rng) + assert nx.is_tree(sampled_tree) + + for t in tree_expected: + if nx.utils.edges_equal(t.edges, sampled_tree.edges): + tree_actual[t] += 1 + break + + # Conduct a Chi squared test to see if the actual distribution matches the + # expected one at an alpha = 0.05 significance level. + # + # H_0: The distribution of trees in tree_actual matches the normalized product + # of the edge weights in the tree. + # + # H_a: The distribution of trees in tree_actual follows some other + # distribution of spanning trees. + _, p = stats.chisquare(list(tree_actual.values()), list(tree_expected.values())) + + # Assert that p is greater than the significance level so that we do not + # reject the null hypothesis + assert not p < 0.05 + + +def test_random_spanning_tree_additive_small(): + """ + Sample a single spanning tree from the additive method. + """ + pytest.importorskip("scipy") + + edges = { + (0, 1): 1, + (0, 2): 1, + (0, 5): 3, + (1, 2): 2, + (1, 4): 3, + (2, 3): 3, + (5, 3): 4, + (5, 4): 5, + (4, 3): 4, + } + + # Build the graph + G = nx.Graph() + for u, v in edges: + G.add_edge(u, v, weight=edges[(u, v)]) + + solution_edges = [(0, 2), (1, 2), (2, 3), (3, 4), (3, 5)] + solution = nx.Graph() + solution.add_edges_from(solution_edges) + + sampled_tree = nx.random_spanning_tree( + G, weight="weight", multiplicative=False, seed=37 + ) + + assert nx.utils.edges_equal(solution.edges, sampled_tree.edges) + + +@pytest.mark.slow +def test_random_spanning_tree_additive_large(): + """ + Sample many spanning trees from the additive method. + """ + from random import Random + + pytest.importorskip("numpy") + stats = pytest.importorskip("scipy.stats") + + edges = { + (0, 1): 1, + (0, 2): 1, + (0, 5): 3, + (1, 2): 2, + (1, 4): 3, + (2, 3): 3, + (5, 3): 4, + (5, 4): 5, + (4, 3): 4, + } + + # Build the graph + G = nx.Graph() + for u, v in edges: + G.add_edge(u, v, weight=edges[(u, v)]) + + # Find the additive weight for each tree. + total_weight = 0 + tree_expected = {} + for t in nx.SpanningTreeIterator(G): + # Find the multiplicative weight of the spanning tree + weight = 0 + for u, v, d in t.edges(data="weight"): + weight += d + tree_expected[t] = weight + total_weight += weight + + # Assert that every tree has an entry in the expected distribution + assert len(tree_expected) == 75 + + # Set the sample size and then calculate the expected number of times we + # expect to see each tree. This test uses a near minimum sample size where + # the most unlikely tree has an expected frequency of 5.07. + # (Minimum required is 5) + # + # Here we also initialize the tree_actual dict so that we know the keys + # match between the two. We will later take advantage of the fact that since + # python 3.7 dict order is guaranteed so the expected and actual data will + # have the same order. + sample_size = 500 + tree_actual = {} + for t in tree_expected: + tree_expected[t] = (tree_expected[t] / total_weight) * sample_size + tree_actual[t] = 0 + + # Sample the spanning trees + # + # Assert that they are actually trees and record which of the 75 trees we + # have sampled. + # + # For repeatability, we want to take advantage of the decorators in NetworkX + # to randomly sample the same sample each time. However, if we pass in a + # constant seed to sample_spanning_tree we will get the same tree each time. + # Instead, we can create our own random number generator with a fixed seed + # and pass those into sample_spanning_tree. + rng = Random(37) + for _ in range(sample_size): + sampled_tree = nx.random_spanning_tree( + G, "weight", multiplicative=False, seed=rng + ) + assert nx.is_tree(sampled_tree) + + for t in tree_expected: + if nx.utils.edges_equal(t.edges, sampled_tree.edges): + tree_actual[t] += 1 + break + + # Conduct a Chi squared test to see if the actual distribution matches the + # expected one at an alpha = 0.05 significance level. + # + # H_0: The distribution of trees in tree_actual matches the normalized product + # of the edge weights in the tree. + # + # H_a: The distribution of trees in tree_actual follows some other + # distribution of spanning trees. + _, p = stats.chisquare(list(tree_actual.values()), list(tree_expected.values())) + + # Assert that p is greater than the significance level so that we do not + # reject the null hypothesis + assert not p < 0.05 diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_operations.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_operations.py new file mode 100644 index 0000000000000000000000000000000000000000..284d94e2e5059de267b5ea47f6012a42c6ac4639 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_operations.py @@ -0,0 +1,53 @@ +from itertools import chain + +import networkx as nx +from networkx.utils import edges_equal, nodes_equal + + +def _check_custom_label_attribute(input_trees, res_tree, label_attribute): + res_attr_dict = nx.get_node_attributes(res_tree, label_attribute) + res_attr_set = set(res_attr_dict.values()) + input_label = (tree for tree, root in input_trees) + input_label_set = set(chain.from_iterable(input_label)) + return res_attr_set == input_label_set + + +def test_empty_sequence(): + """Joining the empty sequence results in the tree with one node.""" + T = nx.join_trees([]) + assert len(T) == 1 + assert T.number_of_edges() == 0 + + +def test_single(): + """Joining just one tree yields a tree with one more node.""" + T = nx.empty_graph(1) + trees = [(T, 0)] + actual_with_label = nx.join_trees(trees, label_attribute="custom_label") + expected = nx.path_graph(2) + assert nodes_equal(list(expected), list(actual_with_label)) + assert edges_equal(list(expected.edges()), list(actual_with_label.edges())) + + +def test_basic(): + """Joining multiple subtrees at a root node.""" + trees = [(nx.full_rary_tree(2, 2**2 - 1), 0) for i in range(2)] + expected = nx.full_rary_tree(2, 2**3 - 1) + actual = nx.join_trees(trees, label_attribute="old_labels") + assert nx.is_isomorphic(actual, expected) + assert _check_custom_label_attribute(trees, actual, "old_labels") + + actual_without_label = nx.join_trees(trees) + assert nx.is_isomorphic(actual_without_label, expected) + # check that no labels were stored + assert all(not data for _, data in actual_without_label.nodes(data=True)) + + +def test_first_label(): + """Test the functionality of the first_label argument.""" + T1 = nx.path_graph(3) + T2 = nx.path_graph(2) + actual = nx.join_trees([(T1, 0), (T2, 0)], first_label=10) + expected_nodes = set(range(10, 16)) + assert set(actual.nodes()) == expected_nodes + assert set(actual.neighbors(10)) == {11, 14} diff --git a/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_recognition.py b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_recognition.py new file mode 100644 index 0000000000000000000000000000000000000000..a9c6c5aade9f1b3a317541c68affd4b5c2f21752 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/algorithms/tree/tests/test_recognition.py @@ -0,0 +1,162 @@ +import pytest + +import networkx as nx + + +class TestTreeRecognition: + graph = nx.Graph + multigraph = nx.MultiGraph + + @classmethod + def setup_class(cls): + cls.T1 = cls.graph() + + cls.T2 = cls.graph() + cls.T2.add_node(1) + + cls.T3 = cls.graph() + cls.T3.add_nodes_from(range(5)) + edges = [(i, i + 1) for i in range(4)] + cls.T3.add_edges_from(edges) + + cls.T5 = cls.multigraph() + cls.T5.add_nodes_from(range(5)) + edges = [(i, i + 1) for i in range(4)] + cls.T5.add_edges_from(edges) + + cls.T6 = cls.graph() + cls.T6.add_nodes_from([6, 7]) + cls.T6.add_edge(6, 7) + + cls.F1 = nx.compose(cls.T6, cls.T3) + + cls.N4 = cls.graph() + cls.N4.add_node(1) + cls.N4.add_edge(1, 1) + + cls.N5 = cls.graph() + cls.N5.add_nodes_from(range(5)) + + cls.N6 = cls.graph() + cls.N6.add_nodes_from(range(3)) + cls.N6.add_edges_from([(0, 1), (1, 2), (2, 0)]) + + cls.NF1 = nx.compose(cls.T6, cls.N6) + + def test_null_tree(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.is_tree(self.graph()) + + def test_null_tree2(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.is_tree(self.multigraph()) + + def test_null_forest(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.is_forest(self.graph()) + + def test_null_forest2(self): + with pytest.raises(nx.NetworkXPointlessConcept): + nx.is_forest(self.multigraph()) + + def test_is_tree(self): + assert nx.is_tree(self.T2) + assert nx.is_tree(self.T3) + assert nx.is_tree(self.T5) + + def test_is_not_tree(self): + assert not nx.is_tree(self.N4) + assert not nx.is_tree(self.N5) + assert not nx.is_tree(self.N6) + + def test_is_forest(self): + assert nx.is_forest(self.T2) + assert nx.is_forest(self.T3) + assert nx.is_forest(self.T5) + assert nx.is_forest(self.F1) + assert nx.is_forest(self.N5) + + def test_is_not_forest(self): + assert not nx.is_forest(self.N4) + assert not nx.is_forest(self.N6) + assert not nx.is_forest(self.NF1) + + +class TestDirectedTreeRecognition(TestTreeRecognition): + graph = nx.DiGraph + multigraph = nx.MultiDiGraph + + +def test_disconnected_graph(): + # https://github.com/networkx/networkx/issues/1144 + G = nx.Graph() + G.add_edges_from([(0, 1), (1, 2), (2, 0), (3, 4)]) + assert not nx.is_tree(G) + + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 0), (3, 4)]) + assert not nx.is_tree(G) + + +def test_dag_nontree(): + G = nx.DiGraph() + G.add_edges_from([(0, 1), (0, 2), (1, 2)]) + assert not nx.is_tree(G) + assert nx.is_directed_acyclic_graph(G) + + +def test_multicycle(): + G = nx.MultiDiGraph() + G.add_edges_from([(0, 1), (0, 1)]) + assert not nx.is_tree(G) + assert nx.is_directed_acyclic_graph(G) + + +def test_emptybranch(): + G = nx.DiGraph() + G.add_nodes_from(range(10)) + assert nx.is_branching(G) + assert not nx.is_arborescence(G) + + +def test_path(): + G = nx.DiGraph() + nx.add_path(G, range(5)) + assert nx.is_branching(G) + assert nx.is_arborescence(G) + + +def test_notbranching1(): + # Acyclic violation. + G = nx.MultiDiGraph() + G.add_nodes_from(range(10)) + G.add_edges_from([(0, 1), (1, 0)]) + assert not nx.is_branching(G) + assert not nx.is_arborescence(G) + + +def test_notbranching2(): + # In-degree violation. + G = nx.MultiDiGraph() + G.add_nodes_from(range(10)) + G.add_edges_from([(0, 1), (0, 2), (3, 2)]) + assert not nx.is_branching(G) + assert not nx.is_arborescence(G) + + +def test_notarborescence1(): + # Not an arborescence due to not spanning. + G = nx.MultiDiGraph() + G.add_nodes_from(range(10)) + G.add_edges_from([(0, 1), (0, 2), (1, 3), (5, 6)]) + assert nx.is_branching(G) + assert not nx.is_arborescence(G) + + +def test_notarborescence2(): + # Not an arborescence due to in-degree violation. + G = nx.MultiDiGraph() + nx.add_path(G, range(5)) + G.add_edge(6, 4) + assert not nx.is_branching(G) + assert not nx.is_arborescence(G) diff --git a/phivenv/Lib/site-packages/networkx/classes/__init__.py b/phivenv/Lib/site-packages/networkx/classes/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..721fa8b4767233bc2b624f6b2ce4d10533a4d66c --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/__init__.py @@ -0,0 +1,13 @@ +from .graph import Graph +from .digraph import DiGraph +from .multigraph import MultiGraph +from .multidigraph import MultiDiGraph + +from .function import * +from .graphviews import subgraph_view, reverse_view + +from networkx.classes import filters + +from networkx.classes import coreviews +from networkx.classes import graphviews +from networkx.classes import reportviews diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bdce4a776dcc513a1793e1134255068ed5c0c91 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/coreviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/coreviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51922460f78063373bc1925feb114111b308c47d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/coreviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/digraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/digraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0c1b8a16c94c9bd78f2e3c374b697374ac95369d Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/digraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/filters.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/filters.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..235adb8058dcc3857bf055262c7dde154379f37a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/filters.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/function.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/function.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c32baaa2dfe63ca8007ce7d96d9523ed3a83a7b8 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/function.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/graph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/graph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4f93806d1f9b88330043f6eb9a72707304ac4b6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/graph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/graphviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/graphviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91f9446383aaa86e00c36b1118acbddd76e7308f Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/graphviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/multidigraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/multidigraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c40a0de456122df9511ffb32d70f73cdef39f059 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/multidigraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/multigraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/multigraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e5421bcbdc5e95c92f3f50531d793451b2c1d30 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/multigraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/__pycache__/reportviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/__pycache__/reportviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d4448a1b79f4cd7fdbf0879522ec029d99d68ef Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/__pycache__/reportviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/coreviews.py b/phivenv/Lib/site-packages/networkx/classes/coreviews.py new file mode 100644 index 0000000000000000000000000000000000000000..5c4defe94aa14ddbbae4a8b4b796032063fe6df7 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/coreviews.py @@ -0,0 +1,367 @@ +"""Views of core data structures such as nested Mappings (e.g. dict-of-dicts). +These ``Views`` often restrict element access, with either the entire view or +layers of nested mappings being read-only. +""" +from collections.abc import Mapping + +__all__ = [ + "AtlasView", + "AdjacencyView", + "MultiAdjacencyView", + "UnionAtlas", + "UnionAdjacency", + "UnionMultiInner", + "UnionMultiAdjacency", + "FilterAtlas", + "FilterAdjacency", + "FilterMultiInner", + "FilterMultiAdjacency", +] + + +class AtlasView(Mapping): + """An AtlasView is a Read-only Mapping of Mappings. + + It is a View into a dict-of-dict data structure. + The inner level of dict is read-write. But the + outer level is read-only. + + See Also + ======== + AdjacencyView: View into dict-of-dict-of-dict + MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict + """ + + __slots__ = ("_atlas",) + + def __getstate__(self): + return {"_atlas": self._atlas} + + def __setstate__(self, state): + self._atlas = state["_atlas"] + + def __init__(self, d): + self._atlas = d + + def __len__(self): + return len(self._atlas) + + def __iter__(self): + return iter(self._atlas) + + def __getitem__(self, key): + return self._atlas[key] + + def copy(self): + return {n: self[n].copy() for n in self._atlas} + + def __str__(self): + return str(self._atlas) # {nbr: self[nbr] for nbr in self}) + + def __repr__(self): + return f"{self.__class__.__name__}({self._atlas!r})" + + +class AdjacencyView(AtlasView): + """An AdjacencyView is a Read-only Map of Maps of Maps. + + It is a View into a dict-of-dict-of-dict data structure. + The inner level of dict is read-write. But the + outer levels are read-only. + + See Also + ======== + AtlasView: View into dict-of-dict + MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict + """ + + __slots__ = () # Still uses AtlasView slots names _atlas + + def __getitem__(self, name): + return AtlasView(self._atlas[name]) + + def copy(self): + return {n: self[n].copy() for n in self._atlas} + + +class MultiAdjacencyView(AdjacencyView): + """An MultiAdjacencyView is a Read-only Map of Maps of Maps of Maps. + + It is a View into a dict-of-dict-of-dict-of-dict data structure. + The inner level of dict is read-write. But the + outer levels are read-only. + + See Also + ======== + AtlasView: View into dict-of-dict + AdjacencyView: View into dict-of-dict-of-dict + """ + + __slots__ = () # Still uses AtlasView slots names _atlas + + def __getitem__(self, name): + return AdjacencyView(self._atlas[name]) + + def copy(self): + return {n: self[n].copy() for n in self._atlas} + + +class UnionAtlas(Mapping): + """A read-only union of two atlases (dict-of-dict). + + The two dict-of-dicts represent the inner dict of + an Adjacency: `G.succ[node]` and `G.pred[node]`. + The inner level of dict of both hold attribute key:value + pairs and is read-write. But the outer level is read-only. + + See Also + ======== + UnionAdjacency: View into dict-of-dict-of-dict + UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict + """ + + __slots__ = ("_succ", "_pred") + + def __getstate__(self): + return {"_succ": self._succ, "_pred": self._pred} + + def __setstate__(self, state): + self._succ = state["_succ"] + self._pred = state["_pred"] + + def __init__(self, succ, pred): + self._succ = succ + self._pred = pred + + def __len__(self): + return len(self._succ.keys() | self._pred.keys()) + + def __iter__(self): + return iter(set(self._succ.keys()) | set(self._pred.keys())) + + def __getitem__(self, key): + try: + return self._succ[key] + except KeyError: + return self._pred[key] + + def copy(self): + result = {nbr: dd.copy() for nbr, dd in self._succ.items()} + for nbr, dd in self._pred.items(): + if nbr in result: + result[nbr].update(dd) + else: + result[nbr] = dd.copy() + return result + + def __str__(self): + return str({nbr: self[nbr] for nbr in self}) + + def __repr__(self): + return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})" + + +class UnionAdjacency(Mapping): + """A read-only union of dict Adjacencies as a Map of Maps of Maps. + + The two input dict-of-dict-of-dicts represent the union of + `G.succ` and `G.pred`. Return values are UnionAtlas + The inner level of dict is read-write. But the + middle and outer levels are read-only. + + succ : a dict-of-dict-of-dict {node: nbrdict} + pred : a dict-of-dict-of-dict {node: nbrdict} + The keys for the two dicts should be the same + + See Also + ======== + UnionAtlas: View into dict-of-dict + UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict + """ + + __slots__ = ("_succ", "_pred") + + def __getstate__(self): + return {"_succ": self._succ, "_pred": self._pred} + + def __setstate__(self, state): + self._succ = state["_succ"] + self._pred = state["_pred"] + + def __init__(self, succ, pred): + # keys must be the same for two input dicts + assert len(set(succ.keys()) ^ set(pred.keys())) == 0 + self._succ = succ + self._pred = pred + + def __len__(self): + return len(self._succ) # length of each dict should be the same + + def __iter__(self): + return iter(self._succ) + + def __getitem__(self, nbr): + return UnionAtlas(self._succ[nbr], self._pred[nbr]) + + def copy(self): + return {n: self[n].copy() for n in self._succ} + + def __str__(self): + return str({nbr: self[nbr] for nbr in self}) + + def __repr__(self): + return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})" + + +class UnionMultiInner(UnionAtlas): + """A read-only union of two inner dicts of MultiAdjacencies. + + The two input dict-of-dict-of-dicts represent the union of + `G.succ[node]` and `G.pred[node]` for MultiDiGraphs. + Return values are UnionAtlas. + The inner level of dict is read-write. But the outer levels are read-only. + + See Also + ======== + UnionAtlas: View into dict-of-dict + UnionAdjacency: View into dict-of-dict-of-dict + UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict + """ + + __slots__ = () # Still uses UnionAtlas slots names _succ, _pred + + def __getitem__(self, node): + in_succ = node in self._succ + in_pred = node in self._pred + if in_succ: + if in_pred: + return UnionAtlas(self._succ[node], self._pred[node]) + return UnionAtlas(self._succ[node], {}) + return UnionAtlas({}, self._pred[node]) + + def copy(self): + nodes = set(self._succ.keys()) | set(self._pred.keys()) + return {n: self[n].copy() for n in nodes} + + +class UnionMultiAdjacency(UnionAdjacency): + """A read-only union of two dict MultiAdjacencies. + + The two input dict-of-dict-of-dict-of-dicts represent the union of + `G.succ` and `G.pred` for MultiDiGraphs. Return values are UnionAdjacency. + The inner level of dict is read-write. But the outer levels are read-only. + + See Also + ======== + UnionAtlas: View into dict-of-dict + UnionMultiInner: View into dict-of-dict-of-dict + """ + + __slots__ = () # Still uses UnionAdjacency slots names _succ, _pred + + def __getitem__(self, node): + return UnionMultiInner(self._succ[node], self._pred[node]) + + +class FilterAtlas(Mapping): # nodedict, nbrdict, keydict + def __init__(self, d, NODE_OK): + self._atlas = d + self.NODE_OK = NODE_OK + + def __len__(self): + return sum(1 for n in self) + + def __iter__(self): + try: # check that NODE_OK has attr 'nodes' + node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas) + except AttributeError: + node_ok_shorter = False + if node_ok_shorter: + return (n for n in self.NODE_OK.nodes if n in self._atlas) + return (n for n in self._atlas if self.NODE_OK(n)) + + def __getitem__(self, key): + if key in self._atlas and self.NODE_OK(key): + return self._atlas[key] + raise KeyError(f"Key {key} not found") + + def __str__(self): + return str({nbr: self[nbr] for nbr in self}) + + def __repr__(self): + return f"{self.__class__.__name__}({self._atlas!r}, {self.NODE_OK!r})" + + +class FilterAdjacency(Mapping): # edgedict + def __init__(self, d, NODE_OK, EDGE_OK): + self._atlas = d + self.NODE_OK = NODE_OK + self.EDGE_OK = EDGE_OK + + def __len__(self): + return sum(1 for n in self) + + def __iter__(self): + try: # check that NODE_OK has attr 'nodes' + node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas) + except AttributeError: + node_ok_shorter = False + if node_ok_shorter: + return (n for n in self.NODE_OK.nodes if n in self._atlas) + return (n for n in self._atlas if self.NODE_OK(n)) + + def __getitem__(self, node): + if node in self._atlas and self.NODE_OK(node): + + def new_node_ok(nbr): + return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr) + + return FilterAtlas(self._atlas[node], new_node_ok) + raise KeyError(f"Key {node} not found") + + def __str__(self): + return str({nbr: self[nbr] for nbr in self}) + + def __repr__(self): + name = self.__class__.__name__ + return f"{name}({self._atlas!r}, {self.NODE_OK!r}, {self.EDGE_OK!r})" + + +class FilterMultiInner(FilterAdjacency): # muliedge_seconddict + def __iter__(self): + try: # check that NODE_OK has attr 'nodes' + node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas) + except AttributeError: + node_ok_shorter = False + if node_ok_shorter: + my_nodes = (n for n in self.NODE_OK.nodes if n in self._atlas) + else: + my_nodes = (n for n in self._atlas if self.NODE_OK(n)) + for n in my_nodes: + some_keys_ok = False + for key in self._atlas[n]: + if self.EDGE_OK(n, key): + some_keys_ok = True + break + if some_keys_ok is True: + yield n + + def __getitem__(self, nbr): + if nbr in self._atlas and self.NODE_OK(nbr): + + def new_node_ok(key): + return self.EDGE_OK(nbr, key) + + return FilterAtlas(self._atlas[nbr], new_node_ok) + raise KeyError(f"Key {nbr} not found") + + +class FilterMultiAdjacency(FilterAdjacency): # multiedgedict + def __getitem__(self, node): + if node in self._atlas and self.NODE_OK(node): + + def edge_ok(nbr, key): + return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr, key) + + return FilterMultiInner(self._atlas[node], self.NODE_OK, edge_ok) + raise KeyError(f"Key {node} not found") diff --git a/phivenv/Lib/site-packages/networkx/classes/digraph.py b/phivenv/Lib/site-packages/networkx/classes/digraph.py new file mode 100644 index 0000000000000000000000000000000000000000..988ed599892f0991582e222824731b4d46e27ee5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/digraph.py @@ -0,0 +1,1323 @@ +"""Base class for directed graphs.""" +from copy import deepcopy +from functools import cached_property + +import networkx as nx +from networkx import convert +from networkx.classes.coreviews import AdjacencyView +from networkx.classes.graph import Graph +from networkx.classes.reportviews import ( + DiDegreeView, + InDegreeView, + InEdgeView, + OutDegreeView, + OutEdgeView, +) +from networkx.exception import NetworkXError + +__all__ = ["DiGraph"] + + +class _CachedPropertyResetterAdjAndSucc: + """Data Descriptor class that syncs and resets cached properties adj and succ + + The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ` + are set to new objects. In addition, the attributes `_succ` and `_adj` + are synced so these two names point to the same object. + + This object sits on a class and ensures that any instance of that + class clears its cached properties "succ" and "adj" whenever the + underlying instance attributes "_succ" or "_adj" are set to a new object. + It only affects the set process of the obj._adj and obj._succ attribute. + All get/del operations act as they normally would. + + For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html + """ + + def __set__(self, obj, value): + od = obj.__dict__ + od["_adj"] = value + od["_succ"] = value + # reset cached properties + if "adj" in od: + del od["adj"] + if "succ" in od: + del od["succ"] + + +class _CachedPropertyResetterPred: + """Data Descriptor class for _pred that resets ``pred`` cached_property when needed + + This assumes that the ``cached_property`` ``G.pred`` should be reset whenever + ``G._pred`` is set to a new value. + + This object sits on a class and ensures that any instance of that + class clears its cached property "pred" whenever the underlying + instance attribute "_pred" is set to a new object. It only affects + the set process of the obj._pred attribute. All get/del operations + act as they normally would. + + For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html + """ + + def __set__(self, obj, value): + od = obj.__dict__ + od["_pred"] = value + if "pred" in od: + del od["pred"] + + +class DiGraph(Graph): + """ + Base class for directed graphs. + + A DiGraph stores nodes and edges with optional data, or attributes. + + DiGraphs hold directed edges. Self loops are allowed but multiple + (parallel) edges are not. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes. By convention `None` is not used as a node. + + Edges are represented as links between nodes with optional + key/value attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy + sparse matrix, or PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + Graph + MultiGraph + MultiDiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.DiGraph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> G.add_edge(1, 2) + + a list of edges, + + >>> G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. There are no errors when adding + nodes or edges that already exist. + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.DiGraph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time="5pm") + >>> G.add_nodes_from([3], time="2pm") + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]["room"] = 714 + >>> del G.nodes[1]["room"] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> G.add_edge(1, 2, weight=4.7) + >>> G.add_edges_from([(3, 4), (4, 5)], color="red") + >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) + >>> G[1][2]["weight"] = 4.7 + >>> G.edges[1, 2]["weight"] = 4 + + Warning: we protect the graph data structure by making `G.edges[1, 2]` a + read-only dict-like structure. However, you can assign to attributes + in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change + data attributes: `G.edges[1, 2]['weight'] = 4` + (For multigraphs: `MG.edges[u, v, key][name] = value`). + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n < 3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, eattr in nbrsdict.items(): + ... if "weight" in eattr: + ... # Do something useful with the edges + ... pass + + But the edges reporting object is often more convenient: + + >>> for u, v, weight in G.edges(data="weight"): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using object-attributes and methods. + Reporting usually provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes`, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The Graph class uses a dict-of-dict-of-dict data structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information and holds + edge data keyed by neighbor. The inner dict (edge_attr_dict) represents + the edge data and holds edge attribute values keyed by attribute names. + + Each of these three dicts can be replaced in a subclass by a user defined + dict-like object. In general, the dict-like features should be + maintained but extra features can be added. To replace one of the + dicts create a new graph class by changing the class(!) variable + holding the factory for that dict-like structure. The variable names are + node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, + adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, optional (default: dict) + Factory function to be used to create the adjacency list + dict which holds edge data keyed by neighbor. + It should require no arguments and return a dict-like object + + edge_attr_dict_factory : function, optional (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherited without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + **Subclassing Example** + + Create a low memory graph class that effectively disallows edge + attributes by using a single attribute dict for all edges. + This reduces the memory used, but you lose edge attributes. + + >>> class ThinGraph(nx.Graph): + ... all_edge_dict = {"weight": 1} + ... + ... def single_edge_dict(self): + ... return self.all_edge_dict + ... + ... edge_attr_dict_factory = single_edge_dict + >>> G = ThinGraph() + >>> G.add_edge(2, 1) + >>> G[2][1] + {'weight': 1} + >>> G.add_edge(2, 2) + >>> G[2][1] is G[2][2] + True + """ + + _adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment] + _succ = _adj # type: ignore[has-type] + _pred = _CachedPropertyResetterPred() + + def __init__(self, incoming_graph_data=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a 2D NumPy array, a + SciPy sparse array, or a PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G = nx.Graph(name="my graph") + >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.Graph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.Graph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes + self._node = self.node_dict_factory() # dictionary for node attr + # We store two adjacency lists: + # the predecessors of node n are stored in the dict self._pred + # the successors of node n are stored in the dict self._succ=self._adj + self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor + self._pred = self.adjlist_outer_dict_factory() # predecessor + # Note: self._succ = self._adj # successor + + # attempt to load graph with data + if incoming_graph_data is not None: + convert.to_networkx_graph(incoming_graph_data, create_using=self) + # load graph attributes (must be after convert) + self.graph.update(attr) + + @cached_property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return AdjacencyView(self._succ) + + @cached_property + def succ(self): + """Graph adjacency object holding the successors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.succ behaves like a dict. Useful idioms include + `for nbr, datadict in G.succ[n].items():`. A data-view not provided + by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):` + and a default can be set via a `default` argument to the `data` method. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` is identical to `G.succ`. + """ + return AdjacencyView(self._succ) + + @cached_property + def pred(self): + """Graph adjacency object holding the predecessors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.pred behaves like a dict. Useful idioms include + `for nbr, datadict in G.pred[n].items():`. A data-view not provided + by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):` + A default can be set via a `default` argument to the `data` method. + """ + return AdjacencyView(self._pred) + + def add_node(self, node_for_adding, **attr): + """Add a single node `node_for_adding` and update node attributes. + + Parameters + ---------- + node_for_adding : node + A node can be any hashable Python object except None. + attr : keyword arguments, optional + Set or change node attributes using key=value. + + See Also + -------- + add_nodes_from + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_node(1) + >>> G.add_node("Hello") + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_node(K3) + >>> G.number_of_nodes() + 3 + + Use keywords set/change node attributes: + + >>> G.add_node(1, size=10) + >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) + + Notes + ----- + A hashable object is one that can be used as a key in a Python + dictionary. This includes strings, numbers, tuples of strings + and numbers, etc. + + On many platforms hashable items also include mutables such as + NetworkX Graphs, though one should be careful that the hash + doesn't change on mutables. + """ + if node_for_adding not in self._succ: + if node_for_adding is None: + raise ValueError("None cannot be a node") + self._succ[node_for_adding] = self.adjlist_inner_dict_factory() + self._pred[node_for_adding] = self.adjlist_inner_dict_factory() + attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() + attr_dict.update(attr) + else: # update attr even if node already exists + self._node[node_for_adding].update(attr) + + def add_nodes_from(self, nodes_for_adding, **attr): + """Add multiple nodes. + + Parameters + ---------- + nodes_for_adding : iterable container + A container of nodes (list, dict, set, etc.). + OR + A container of (node, attribute dict) tuples. + Node attributes are updated using the attribute dict. + attr : keyword arguments, optional (default= no attributes) + Update attributes for all nodes in nodes. + Node attributes specified in nodes as a tuple take + precedence over attributes specified via keyword arguments. + + See Also + -------- + add_node + + Notes + ----- + When adding nodes from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_nodes)`, and pass this + object to `G.add_nodes_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_nodes_from("Hello") + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_nodes_from(K3) + >>> sorted(G.nodes(), key=str) + [0, 1, 2, 'H', 'e', 'l', 'o'] + + Use keywords to update specific node attributes for every node. + + >>> G.add_nodes_from([1, 2], size=10) + >>> G.add_nodes_from([3, 4], weight=0.4) + + Use (node, attrdict) tuples to update attributes for specific nodes. + + >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) + >>> G.nodes[1]["size"] + 11 + >>> H = nx.Graph() + >>> H.add_nodes_from(G.nodes(data=True)) + >>> H.nodes[1]["size"] + 11 + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) + >>> # wrong way - will raise RuntimeError + >>> # G.add_nodes_from(n + 1 for n in G.nodes) + >>> # correct way + >>> G.add_nodes_from(list(n + 1 for n in G.nodes)) + """ + for n in nodes_for_adding: + try: + newnode = n not in self._node + newdict = attr + except TypeError: + n, ndict = n + newnode = n not in self._node + newdict = attr.copy() + newdict.update(ndict) + if newnode: + if n is None: + raise ValueError("None cannot be a node") + self._succ[n] = self.adjlist_inner_dict_factory() + self._pred[n] = self.adjlist_inner_dict_factory() + self._node[n] = self.node_attr_dict_factory() + self._node[n].update(newdict) + + def remove_node(self, n): + """Remove node n. + + Removes the node n and all adjacent edges. + Attempting to remove a nonexistent node will raise an exception. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------ + NetworkXError + If n is not in the graph. + + See Also + -------- + remove_nodes_from + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> list(G.edges) + [(0, 1), (1, 2)] + >>> G.remove_node(1) + >>> list(G.edges) + [] + + """ + try: + nbrs = self._succ[n] + del self._node[n] + except KeyError as err: # NetworkXError if n not in self + raise NetworkXError(f"The node {n} is not in the digraph.") from err + for u in nbrs: + del self._pred[u][n] # remove all edges n-u in digraph + del self._succ[n] # remove node from succ + for u in self._pred[n]: + del self._succ[u][n] # remove all edges n-u in digraph + del self._pred[n] # remove node from pred + + def remove_nodes_from(self, nodes): + """Remove multiple nodes. + + Parameters + ---------- + nodes : iterable container + A container of nodes (list, dict, set, etc.). If a node + in the container is not in the graph it is silently ignored. + + See Also + -------- + remove_node + + Notes + ----- + When removing nodes from an iterator over the graph you are changing, + a `RuntimeError` will be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_nodes)`, and pass this + object to `G.remove_nodes_from`. + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = list(G.nodes) + >>> e + [0, 1, 2] + >>> G.remove_nodes_from(e) + >>> list(G.nodes) + [] + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) + >>> # this command will fail, as the graph's dict is modified during iteration + >>> # G.remove_nodes_from(n for n in G.nodes if n < 2) + >>> # this command will work, since the dictionary underlying graph is not modified + >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2)) + """ + for n in nodes: + try: + succs = self._succ[n] + del self._node[n] + for u in succs: + del self._pred[u][n] # remove all edges n-u in digraph + del self._succ[n] # now remove node + for u in self._pred[n]: + del self._succ[u][n] # remove all edges n-u in digraph + del self._pred[n] # now remove node + except KeyError: + pass # silent failure on remove + + def add_edge(self, u_of_edge, v_of_edge, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u_of_edge, v_of_edge : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + Adding an edge that already exists updates the edge data. + + Many NetworkX algorithms designed for weighted graphs use + an edge attribute (by default `weight`) to hold a numerical value. + + Examples + -------- + The following all add the edge e=(1, 2) to graph G: + + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = (1, 2) + >>> G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + >>> G.add_edges_from([(1, 2)]) # add edges from iterable container + + Associate data to edges using keywords: + + >>> G.add_edge(1, 2, weight=3) + >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> G.add_edge(1, 2) + >>> G[1][2].update({0: 5}) + >>> G.edges[1, 2].update({0: 5}) + """ + u, v = u_of_edge, v_of_edge + # add nodes + if u not in self._succ: + if u is None: + raise ValueError("None cannot be a node") + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + if v is None: + raise ValueError("None cannot be a node") + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + # add the edge + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + self._succ[u][v] = datadict + self._pred[v][u] = datadict + + def add_edges_from(self, ebunch_to_add, **attr): + """Add all the edges in ebunch_to_add. + + Parameters + ---------- + ebunch_to_add : container of edges + Each edge given in the container will be added to the + graph. The edges must be given as 2-tuples (u, v) or + 3-tuples (u, v, d) where d is a dictionary containing edge data. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edge : add a single edge + add_weighted_edges_from : convenient way to add weighted edges + + Notes + ----- + Adding the same edge twice has no effect but any edge data + will be updated when each duplicate edge is added. + + Edge attributes specified in an ebunch take precedence over + attributes specified via keyword arguments. + + When adding edges from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_edges)`, and pass this + object to `G.add_edges_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples + >>> e = zip(range(0, 3), range(1, 4)) + >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 + + Associate data to edges + + >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) + >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) + >>> # Grow graph by one new node, adding edges to all existing nodes. + >>> # wrong way - will raise RuntimeError + >>> # G.add_edges_from(((5, n) for n in G.nodes)) + >>> # right way - note that there will be no self-edge for node 5 + >>> G.add_edges_from(list((5, n) for n in G.nodes)) + """ + for e in ebunch_to_add: + ne = len(e) + if ne == 3: + u, v, dd = e + elif ne == 2: + u, v = e + dd = {} + else: + raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") + if u not in self._succ: + if u is None: + raise ValueError("None cannot be a node") + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + if v is None: + raise ValueError("None cannot be a node") + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + datadict.update(dd) + self._succ[u][v] = datadict + self._pred[v][u] = datadict + + def remove_edge(self, u, v): + """Remove the edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove the edge between nodes u and v. + + Raises + ------ + NetworkXError + If there is not an edge between u and v. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, etc + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + >>> e = (2, 3, {"weight": 7}) # an edge with attribute data + >>> G.remove_edge(*e[:2]) # select first part of edge tuple + """ + try: + del self._succ[u][v] + del self._pred[v][u] + except KeyError as err: + raise NetworkXError(f"The edge {u}-{v} not in graph.") from err + + def remove_edges_from(self, ebunch): + """Remove all edges specified in ebunch. + + Parameters + ---------- + ebunch: list or container of edge tuples + Each edge given in the list or container will be removed + from the graph. The edges can be: + + - 2-tuples (u, v) edge between u and v. + - 3-tuples (u, v, k) where k is ignored. + + See Also + -------- + remove_edge : remove a single edge + + Notes + ----- + Will fail silently if an edge in ebunch is not in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> ebunch = [(1, 2), (2, 3)] + >>> G.remove_edges_from(ebunch) + """ + for e in ebunch: + u, v = e[:2] # ignore edge data + if u in self._succ and v in self._succ[u]: + del self._succ[u][v] + del self._pred[v][u] + + def has_successor(self, u, v): + """Returns True if node u has successor v. + + This is true if graph has the edge u->v. + """ + return u in self._succ and v in self._succ[u] + + def has_predecessor(self, u, v): + """Returns True if node u has predecessor v. + + This is true if graph has the edge u<-v. + """ + return u in self._pred and v in self._pred[u] + + def successors(self, n): + """Returns an iterator over successor nodes of n. + + A successor of n is a node m such that there exists a directed + edge from n to m. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------ + NetworkXError + If n is not in the graph. + + See Also + -------- + predecessors + + Notes + ----- + neighbors() and successors() are the same. + """ + try: + return iter(self._succ[n]) + except KeyError as err: + raise NetworkXError(f"The node {n} is not in the digraph.") from err + + # digraph definitions + neighbors = successors + + def predecessors(self, n): + """Returns an iterator over predecessor nodes of n. + + A predecessor of n is a node m such that there exists a directed + edge from m to n. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------ + NetworkXError + If n is not in the graph. + + See Also + -------- + successors + """ + try: + return iter(self._pred[n]) + except KeyError as err: + raise NetworkXError(f"The node {n} is not in the digraph.") from err + + @cached_property + def edges(self): + """An OutEdgeView of the DiGraph as G.edges or G.edges(). + + edges(self, nbunch=None, data=False, default=None) + + The OutEdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, `G.edges[u, v]['color']` provides the value of the color + attribute for edge `(u, v)` while + `for (u, v, c) in G.edges.data('color', default='red'):` + iterates through all the edges yielding the color attribute + with default `'red'` if no color attribute exists. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges from these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : OutEdgeView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, d) tuples of edges, but can also be used for + attribute lookup as `edges[u, v]['foo']`. + + See Also + -------- + in_edges, out_edges + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.DiGraph() # or MultiDiGraph, etc + >>> nx.add_path(G, [0, 1, 2]) + >>> G.add_edge(2, 3, weight=5) + >>> [e for e in G.edges] + [(0, 1), (1, 2), (2, 3)] + >>> G.edges.data() # default data is {} (empty dict) + OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) + >>> G.edges.data("weight", default=1) + OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) + >>> G.edges([0, 2]) # only edges originating from these nodes + OutEdgeDataView([(0, 1), (2, 3)]) + >>> G.edges(0) # only edges from node 0 + OutEdgeDataView([(0, 1)]) + + """ + return OutEdgeView(self) + + # alias out_edges to edges + @cached_property + def out_edges(self): + return OutEdgeView(self) + + out_edges.__doc__ = edges.__doc__ + + @cached_property + def in_edges(self): + """A view of the in edges of the graph as G.in_edges or G.in_edges(). + + in_edges(self, nbunch=None, data=False, default=None): + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + in_edges : InEdgeView or InEdgeDataView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, d) tuples of edges, but can also be used for + attribute lookup as `edges[u, v]['foo']`. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge(1, 2, color='blue') + >>> G.in_edges() + InEdgeView([(1, 2)]) + >>> G.in_edges(nbunch=2) + InEdgeDataView([(1, 2)]) + + See Also + -------- + edges + """ + return InEdgeView(self) + + @cached_property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + DiDegreeView or int + If multiple nodes are requested (the default), returns a `DiDegreeView` + mapping nodes to their degree. + If a single node is requested, returns the degree of the node as an integer. + + See Also + -------- + in_degree, out_degree + + Examples + -------- + >>> G = nx.DiGraph() # or MultiDiGraph + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1, 2])) + [(0, 1), (1, 2), (2, 2)] + + """ + return DiDegreeView(self) + + @cached_property + def in_degree(self): + """An InDegreeView for (node, in_degree) or in_degree for single node. + + The node in_degree is the number of edges pointing to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iteration over (node, in_degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + In-degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, in-degree). + + See Also + -------- + degree, out_degree + + Examples + -------- + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.in_degree(0) # node 0 with degree 0 + 0 + >>> list(G.in_degree([0, 1, 2])) + [(0, 0), (1, 1), (2, 1)] + + """ + return InDegreeView(self) + + @cached_property + def out_degree(self): + """An OutDegreeView for (node, out_degree) + + The node out_degree is the number of edges pointing out of the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator over (node, out_degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + Out-degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, out-degree). + + See Also + -------- + degree, in_degree + + Examples + -------- + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.out_degree(0) # node 0 with degree 1 + 1 + >>> list(G.out_degree([0, 1, 2])) + [(0, 1), (1, 1), (2, 1)] + + """ + return OutDegreeView(self) + + def clear(self): + """Remove all nodes and edges from the graph. + + This also removes the name, and all graph, node, and edge attributes. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.clear() + >>> list(G.nodes) + [] + >>> list(G.edges) + [] + + """ + self._succ.clear() + self._pred.clear() + self._node.clear() + self.graph.clear() + + def clear_edges(self): + """Remove all edges from the graph without altering nodes. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.clear_edges() + >>> list(G.nodes) + [0, 1, 2, 3] + >>> list(G.edges) + [] + + """ + for predecessor_dict in self._pred.values(): + predecessor_dict.clear() + for successor_dict in self._succ.values(): + successor_dict.clear() + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return False + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return True + + def to_undirected(self, reciprocal=False, as_view=False): + """Returns an undirected representation of the digraph. + + Parameters + ---------- + reciprocal : bool (optional) + If True only keep edges that appear in both directions + in the original digraph. + as_view : bool (optional, default=False) + If True return an undirected view of the original directed graph. + + Returns + ------- + G : Graph + An undirected graph with the same name and nodes and + with edge (u, v, data) if either (u, v, data) or (v, u, data) + is in the digraph. If both edges exist in digraph and + their edge data is different, only one edge is created + with an arbitrary choice of which edge data to use. + You must check and correct for this manually if desired. + + See Also + -------- + Graph, copy, add_edge, add_edges_from + + Notes + ----- + If edges in both directions (u, v) and (v, u) exist in the + graph, attributes for the new undirected edge will be a combination of + the attributes of the directed edges. The edge data is updated + in the (arbitrary) order that the edges are encountered. For + more customized control of the edge attributes use add_edge(). + + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar G=DiGraph(D) which returns a + shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed DiGraph to use dict-like objects + in the data structure, those changes do not transfer to the + Graph created by this method. + + Examples + -------- + >>> G = nx.path_graph(2) # or MultiGraph, etc + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + if reciprocal is True: + G.add_edges_from( + (u, v, deepcopy(d)) + for u, nbrs in self._adj.items() + for v, d in nbrs.items() + if v in self._pred[u] + ) + else: + G.add_edges_from( + (u, v, deepcopy(d)) + for u, nbrs in self._adj.items() + for v, d in nbrs.items() + ) + return G + + def reverse(self, copy=True): + """Returns the reverse of the graph. + + The reverse is a graph with the same nodes and edges + but with the directions of the edges reversed. + + Parameters + ---------- + copy : bool optional (default=True) + If True, return a new DiGraph holding the reversed edges. + If False, the reverse graph is created using a view of + the original graph. + """ + if copy: + H = self.__class__() + H.graph.update(deepcopy(self.graph)) + H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items()) + H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True)) + return H + return nx.reverse_view(self) diff --git a/phivenv/Lib/site-packages/networkx/classes/filters.py b/phivenv/Lib/site-packages/networkx/classes/filters.py new file mode 100644 index 0000000000000000000000000000000000000000..aefcbdf3f53fd6a5c2a5c6ad82595a4701136282 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/filters.py @@ -0,0 +1,75 @@ +"""Filter factories to hide or show sets of nodes and edges. + +These filters return the function used when creating `SubGraph`. +""" +__all__ = [ + "no_filter", + "hide_nodes", + "hide_edges", + "hide_multiedges", + "hide_diedges", + "hide_multidiedges", + "show_nodes", + "show_edges", + "show_multiedges", + "show_diedges", + "show_multidiedges", +] + + +def no_filter(*items): + return True + + +def hide_nodes(nodes): + nodes = set(nodes) + return lambda node: node not in nodes + + +def hide_diedges(edges): + edges = {(u, v) for u, v in edges} + return lambda u, v: (u, v) not in edges + + +def hide_edges(edges): + alledges = set(edges) | {(v, u) for (u, v) in edges} + return lambda u, v: (u, v) not in alledges + + +def hide_multidiedges(edges): + edges = {(u, v, k) for u, v, k in edges} + return lambda u, v, k: (u, v, k) not in edges + + +def hide_multiedges(edges): + alledges = set(edges) | {(v, u, k) for (u, v, k) in edges} + return lambda u, v, k: (u, v, k) not in alledges + + +# write show_nodes as a class to make SubGraph pickleable +class show_nodes: + def __init__(self, nodes): + self.nodes = set(nodes) + + def __call__(self, node): + return node in self.nodes + + +def show_diedges(edges): + edges = {(u, v) for u, v in edges} + return lambda u, v: (u, v) in edges + + +def show_edges(edges): + alledges = set(edges) | {(v, u) for (u, v) in edges} + return lambda u, v: (u, v) in alledges + + +def show_multidiedges(edges): + edges = {(u, v, k) for u, v, k in edges} + return lambda u, v, k: (u, v, k) in edges + + +def show_multiedges(edges): + alledges = set(edges) | {(v, u, k) for (u, v, k) in edges} + return lambda u, v, k: (u, v, k) in alledges diff --git a/phivenv/Lib/site-packages/networkx/classes/function.py b/phivenv/Lib/site-packages/networkx/classes/function.py new file mode 100644 index 0000000000000000000000000000000000000000..4890044f45649697aae0f2ff929527f18719f038 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/function.py @@ -0,0 +1,1313 @@ +"""Functional interface to graph methods and assorted utilities. +""" + +from collections import Counter +from itertools import chain + +import networkx as nx +from networkx.utils import not_implemented_for, pairwise + +__all__ = [ + "nodes", + "edges", + "degree", + "degree_histogram", + "neighbors", + "number_of_nodes", + "number_of_edges", + "density", + "is_directed", + "freeze", + "is_frozen", + "subgraph", + "induced_subgraph", + "edge_subgraph", + "restricted_view", + "to_directed", + "to_undirected", + "add_star", + "add_path", + "add_cycle", + "create_empty_copy", + "set_node_attributes", + "get_node_attributes", + "set_edge_attributes", + "get_edge_attributes", + "all_neighbors", + "non_neighbors", + "non_edges", + "common_neighbors", + "is_weighted", + "is_negatively_weighted", + "is_empty", + "selfloop_edges", + "nodes_with_selfloops", + "number_of_selfloops", + "path_weight", + "is_path", +] + + +def nodes(G): + """Returns an iterator over the graph nodes.""" + return G.nodes() + + +def edges(G, nbunch=None): + """Returns an edge view of edges incident to nodes in nbunch. + + Return all edges if nbunch is unspecified or nbunch=None. + + For digraphs, edges=out_edges + """ + return G.edges(nbunch) + + +def degree(G, nbunch=None, weight=None): + """Returns a degree view of single node or of nbunch of nodes. + If nbunch is omitted, then return degrees of *all* nodes. + """ + return G.degree(nbunch, weight) + + +def neighbors(G, n): + """Returns a list of nodes connected to node n.""" + return G.neighbors(n) + + +def number_of_nodes(G): + """Returns the number of nodes in the graph.""" + return G.number_of_nodes() + + +def number_of_edges(G): + """Returns the number of edges in the graph.""" + return G.number_of_edges() + + +def density(G): + r"""Returns the density of a graph. + + The density for undirected graphs is + + .. math:: + + d = \frac{2m}{n(n-1)}, + + and for directed graphs is + + .. math:: + + d = \frac{m}{n(n-1)}, + + where `n` is the number of nodes and `m` is the number of edges in `G`. + + Notes + ----- + The density is 0 for a graph without edges and 1 for a complete graph. + The density of multigraphs can be higher than 1. + + Self loops are counted in the total number of edges so graphs with self + loops can have density higher than 1. + """ + n = number_of_nodes(G) + m = number_of_edges(G) + if m == 0 or n <= 1: + return 0 + d = m / (n * (n - 1)) + if not G.is_directed(): + d *= 2 + return d + + +def degree_histogram(G): + """Returns a list of the frequency of each degree value. + + Parameters + ---------- + G : Networkx graph + A graph + + Returns + ------- + hist : list + A list of frequencies of degrees. + The degree values are the index in the list. + + Notes + ----- + Note: the bins are width one, hence len(list) can be large + (Order(number_of_edges)) + """ + counts = Counter(d for n, d in G.degree()) + return [counts.get(i, 0) for i in range(max(counts) + 1)] + + +def is_directed(G): + """Return True if graph is directed.""" + return G.is_directed() + + +def frozen(*args, **kwargs): + """Dummy method for raising errors when trying to modify frozen graphs""" + raise nx.NetworkXError("Frozen graph can't be modified") + + +def freeze(G): + """Modify graph to prevent further change by adding or removing + nodes or edges. + + Node and edge data can still be modified. + + Parameters + ---------- + G : graph + A NetworkX graph + + Examples + -------- + >>> G = nx.path_graph(4) + >>> G = nx.freeze(G) + >>> try: + ... G.add_edge(4, 5) + ... except nx.NetworkXError as err: + ... print(str(err)) + Frozen graph can't be modified + + Notes + ----- + To "unfreeze" a graph you must make a copy by creating a new graph object: + + >>> graph = nx.path_graph(4) + >>> frozen_graph = nx.freeze(graph) + >>> unfrozen_graph = nx.Graph(frozen_graph) + >>> nx.is_frozen(unfrozen_graph) + False + + See Also + -------- + is_frozen + """ + G.add_node = frozen + G.add_nodes_from = frozen + G.remove_node = frozen + G.remove_nodes_from = frozen + G.add_edge = frozen + G.add_edges_from = frozen + G.add_weighted_edges_from = frozen + G.remove_edge = frozen + G.remove_edges_from = frozen + G.clear = frozen + G.clear_edges = frozen + G.frozen = True + return G + + +def is_frozen(G): + """Returns True if graph is frozen. + + Parameters + ---------- + G : graph + A NetworkX graph + + See Also + -------- + freeze + """ + try: + return G.frozen + except AttributeError: + return False + + +def add_star(G_to_add_to, nodes_for_star, **attr): + """Add a star to Graph G_to_add_to. + + The first node in `nodes_for_star` is the middle of the star. + It is connected to all other nodes. + + Parameters + ---------- + G_to_add_to : graph + A NetworkX graph + nodes_for_star : iterable container + A container of nodes. + attr : keyword arguments, optional (default= no attributes) + Attributes to add to every edge in star. + + See Also + -------- + add_path, add_cycle + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_star(G, [0, 1, 2, 3]) + >>> nx.add_star(G, [10, 11, 12], weight=2) + """ + nlist = iter(nodes_for_star) + try: + v = next(nlist) + except StopIteration: + return + G_to_add_to.add_node(v) + edges = ((v, n) for n in nlist) + G_to_add_to.add_edges_from(edges, **attr) + + +def add_path(G_to_add_to, nodes_for_path, **attr): + """Add a path to the Graph G_to_add_to. + + Parameters + ---------- + G_to_add_to : graph + A NetworkX graph + nodes_for_path : iterable container + A container of nodes. A path will be constructed from + the nodes (in order) and added to the graph. + attr : keyword arguments, optional (default= no attributes) + Attributes to add to every edge in path. + + See Also + -------- + add_star, add_cycle + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> nx.add_path(G, [10, 11, 12], weight=7) + """ + nlist = iter(nodes_for_path) + try: + first_node = next(nlist) + except StopIteration: + return + G_to_add_to.add_node(first_node) + G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist)), **attr) + + +def add_cycle(G_to_add_to, nodes_for_cycle, **attr): + """Add a cycle to the Graph G_to_add_to. + + Parameters + ---------- + G_to_add_to : graph + A NetworkX graph + nodes_for_cycle: iterable container + A container of nodes. A cycle will be constructed from + the nodes (in order) and added to the graph. + attr : keyword arguments, optional (default= no attributes) + Attributes to add to every edge in cycle. + + See Also + -------- + add_path, add_star + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> nx.add_cycle(G, [0, 1, 2, 3]) + >>> nx.add_cycle(G, [10, 11, 12], weight=7) + """ + nlist = iter(nodes_for_cycle) + try: + first_node = next(nlist) + except StopIteration: + return + G_to_add_to.add_node(first_node) + G_to_add_to.add_edges_from( + pairwise(chain((first_node,), nlist), cyclic=True), **attr + ) + + +def subgraph(G, nbunch): + """Returns the subgraph induced on nodes in nbunch. + + Parameters + ---------- + G : graph + A NetworkX graph + + nbunch : list, iterable + A container of nodes that will be iterated through once (thus + it should be an iterator or be iterable). Each element of the + container should be a valid node type: any hashable type except + None. If nbunch is None, return all edges data in the graph. + Nodes in nbunch that are not in the graph will be (quietly) + ignored. + + Notes + ----- + subgraph(G) calls G.subgraph() + """ + return G.subgraph(nbunch) + + +def induced_subgraph(G, nbunch): + """Returns a SubGraph view of `G` showing only nodes in nbunch. + + The induced subgraph of a graph on a set of nodes N is the + graph with nodes N and edges from G which have both ends in N. + + Parameters + ---------- + G : NetworkX Graph + nbunch : node, container of nodes or None (for all nodes) + + Returns + ------- + subgraph : SubGraph View + A read-only view of the subgraph in `G` induced by the nodes. + Changes to the graph `G` will be reflected in the view. + + Notes + ----- + To create a mutable subgraph with its own copies of nodes + edges and attributes use `subgraph.copy()` or `Graph(subgraph)` + + For an inplace reduction of a graph to a subgraph you can remove nodes: + `G.remove_nodes_from(n in G if n not in set(nbunch))` + + If you are going to compute subgraphs of your subgraphs you could + end up with a chain of views that can be very slow once the chain + has about 15 views in it. If they are all induced subgraphs, you + can short-cut the chain by making them all subgraphs of the original + graph. The graph class method `G.subgraph` does this when `G` is + a subgraph. In contrast, this function allows you to choose to build + chains or not, as you wish. The returned subgraph is a view on `G`. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> H = nx.induced_subgraph(G, [0, 1, 3]) + >>> list(H.edges) + [(0, 1)] + >>> list(H.nodes) + [0, 1, 3] + """ + induced_nodes = nx.filters.show_nodes(G.nbunch_iter(nbunch)) + return nx.subgraph_view(G, filter_node=induced_nodes) + + +def edge_subgraph(G, edges): + """Returns a view of the subgraph induced by the specified edges. + + The induced subgraph contains each edge in `edges` and each + node incident to any of those edges. + + Parameters + ---------- + G : NetworkX Graph + edges : iterable + An iterable of edges. Edges not present in `G` are ignored. + + Returns + ------- + subgraph : SubGraph View + A read-only edge-induced subgraph of `G`. + Changes to `G` are reflected in the view. + + Notes + ----- + To create a mutable subgraph with its own copies of nodes + edges and attributes use `subgraph.copy()` or `Graph(subgraph)` + + If you create a subgraph of a subgraph recursively you can end up + with a chain of subgraphs that becomes very slow with about 15 + nested subgraph views. Luckily the edge_subgraph filter nests + nicely so you can use the original graph as G in this function + to avoid chains. We do not rule out chains programmatically so + that odd cases like an `edge_subgraph` of a `restricted_view` + can be created. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> H = G.edge_subgraph([(0, 1), (3, 4)]) + >>> list(H.nodes) + [0, 1, 3, 4] + >>> list(H.edges) + [(0, 1), (3, 4)] + """ + nxf = nx.filters + edges = set(edges) + nodes = set() + for e in edges: + nodes.update(e[:2]) + induced_nodes = nxf.show_nodes(nodes) + if G.is_multigraph(): + if G.is_directed(): + induced_edges = nxf.show_multidiedges(edges) + else: + induced_edges = nxf.show_multiedges(edges) + else: + if G.is_directed(): + induced_edges = nxf.show_diedges(edges) + else: + induced_edges = nxf.show_edges(edges) + return nx.subgraph_view(G, filter_node=induced_nodes, filter_edge=induced_edges) + + +def restricted_view(G, nodes, edges): + """Returns a view of `G` with hidden nodes and edges. + + The resulting subgraph filters out node `nodes` and edges `edges`. + Filtered out nodes also filter out any of their edges. + + Parameters + ---------- + G : NetworkX Graph + nodes : iterable + An iterable of nodes. Nodes not present in `G` are ignored. + edges : iterable + An iterable of edges. Edges not present in `G` are ignored. + + Returns + ------- + subgraph : SubGraph View + A read-only restricted view of `G` filtering out nodes and edges. + Changes to `G` are reflected in the view. + + Notes + ----- + To create a mutable subgraph with its own copies of nodes + edges and attributes use `subgraph.copy()` or `Graph(subgraph)` + + If you create a subgraph of a subgraph recursively you may end up + with a chain of subgraph views. Such chains can get quite slow + for lengths near 15. To avoid long chains, try to make your subgraph + based on the original graph. We do not rule out chains programmatically + so that odd cases like an `edge_subgraph` of a `restricted_view` + can be created. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> H = nx.restricted_view(G, [0], [(1, 2), (3, 4)]) + >>> list(H.nodes) + [1, 2, 3, 4] + >>> list(H.edges) + [(2, 3)] + """ + nxf = nx.filters + hide_nodes = nxf.hide_nodes(nodes) + if G.is_multigraph(): + if G.is_directed(): + hide_edges = nxf.hide_multidiedges(edges) + else: + hide_edges = nxf.hide_multiedges(edges) + else: + if G.is_directed(): + hide_edges = nxf.hide_diedges(edges) + else: + hide_edges = nxf.hide_edges(edges) + return nx.subgraph_view(G, filter_node=hide_nodes, filter_edge=hide_edges) + + +def to_directed(graph): + """Returns a directed view of the graph `graph`. + + Identical to graph.to_directed(as_view=True) + Note that graph.to_directed defaults to `as_view=False` + while this function always provides a view. + """ + return graph.to_directed(as_view=True) + + +def to_undirected(graph): + """Returns an undirected view of the graph `graph`. + + Identical to graph.to_undirected(as_view=True) + Note that graph.to_undirected defaults to `as_view=False` + while this function always provides a view. + """ + return graph.to_undirected(as_view=True) + + +def create_empty_copy(G, with_data=True): + """Returns a copy of the graph G with all of the edges removed. + + Parameters + ---------- + G : graph + A NetworkX graph + + with_data : bool (default=True) + Propagate Graph and Nodes data to the new graph. + + See Also + -------- + empty_graph + + """ + H = G.__class__() + H.add_nodes_from(G.nodes(data=with_data)) + if with_data: + H.graph.update(G.graph) + return H + + +def set_node_attributes(G, values, name=None): + """Sets node attributes from a given value or dictionary of values. + + .. Warning:: The call order of arguments `values` and `name` + switched between v1.x & v2.x. + + Parameters + ---------- + G : NetworkX Graph + + values : scalar value, dict-like + What the node attribute should be set to. If `values` is + not a dictionary, then it is treated as a single attribute value + that is then applied to every node in `G`. This means that if + you provide a mutable object, like a list, updates to that object + will be reflected in the node attribute for every node. + The attribute name will be `name`. + + If `values` is a dict or a dict of dict, it should be keyed + by node to either an attribute value or a dict of attribute key/value + pairs used to update the node's attributes. + + name : string (optional, default=None) + Name of the node attribute to set if values is a scalar. + + Examples + -------- + After computing some property of the nodes of a graph, you may want + to assign a node attribute to store the value of that property for + each node:: + + >>> G = nx.path_graph(3) + >>> bb = nx.betweenness_centrality(G) + >>> isinstance(bb, dict) + True + >>> nx.set_node_attributes(G, bb, "betweenness") + >>> G.nodes[1]["betweenness"] + 1.0 + + If you provide a list as the second argument, updates to the list + will be reflected in the node attribute for each node:: + + >>> G = nx.path_graph(3) + >>> labels = [] + >>> nx.set_node_attributes(G, labels, "labels") + >>> labels.append("foo") + >>> G.nodes[0]["labels"] + ['foo'] + >>> G.nodes[1]["labels"] + ['foo'] + >>> G.nodes[2]["labels"] + ['foo'] + + If you provide a dictionary of dictionaries as the second argument, + the outer dictionary is assumed to be keyed by node to an inner + dictionary of node attributes for that node:: + + >>> G = nx.path_graph(3) + >>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}} + >>> nx.set_node_attributes(G, attrs) + >>> G.nodes[0]["attr1"] + 20 + >>> G.nodes[0]["attr2"] + 'nothing' + >>> G.nodes[1]["attr2"] + 3 + >>> G.nodes[2] + {} + + Note that if the dictionary contains nodes that are not in `G`, the + values are silently ignored:: + + >>> G = nx.Graph() + >>> G.add_node(0) + >>> nx.set_node_attributes(G, {0: "red", 1: "blue"}, name="color") + >>> G.nodes[0]["color"] + 'red' + >>> 1 in G.nodes + False + + """ + # Set node attributes based on type of `values` + if name is not None: # `values` must not be a dict of dict + try: # `values` is a dict + for n, v in values.items(): + try: + G.nodes[n][name] = values[n] + except KeyError: + pass + except AttributeError: # `values` is a constant + for n in G: + G.nodes[n][name] = values + else: # `values` must be dict of dict + for n, d in values.items(): + try: + G.nodes[n].update(d) + except KeyError: + pass + + +def get_node_attributes(G, name, default=None): + """Get node attributes from graph + + Parameters + ---------- + G : NetworkX Graph + + name : string + Attribute name + + default: object (default=None) + Default value of the node attribute if there is no value set for that + node in graph. If `None` then nodes without this attribute are not + included in the returned dict. + + Returns + ------- + Dictionary of attributes keyed by node. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_nodes_from([1, 2, 3], color="red") + >>> color = nx.get_node_attributes(G, "color") + >>> color[1] + 'red' + >>> G.add_node(4) + >>> color = nx.get_node_attributes(G, "color", default="yellow") + >>> color[4] + 'yellow' + """ + if default is not None: + return {n: d.get(name, default) for n, d in G.nodes.items()} + return {n: d[name] for n, d in G.nodes.items() if name in d} + + +def set_edge_attributes(G, values, name=None): + """Sets edge attributes from a given value or dictionary of values. + + .. Warning:: The call order of arguments `values` and `name` + switched between v1.x & v2.x. + + Parameters + ---------- + G : NetworkX Graph + + values : scalar value, dict-like + What the edge attribute should be set to. If `values` is + not a dictionary, then it is treated as a single attribute value + that is then applied to every edge in `G`. This means that if + you provide a mutable object, like a list, updates to that object + will be reflected in the edge attribute for each edge. The attribute + name will be `name`. + + If `values` is a dict or a dict of dict, it should be keyed + by edge tuple to either an attribute value or a dict of attribute + key/value pairs used to update the edge's attributes. + For multigraphs, the edge tuples must be of the form ``(u, v, key)``, + where `u` and `v` are nodes and `key` is the edge key. + For non-multigraphs, the keys must be tuples of the form ``(u, v)``. + + name : string (optional, default=None) + Name of the edge attribute to set if values is a scalar. + + Examples + -------- + After computing some property of the edges of a graph, you may want + to assign a edge attribute to store the value of that property for + each edge:: + + >>> G = nx.path_graph(3) + >>> bb = nx.edge_betweenness_centrality(G, normalized=False) + >>> nx.set_edge_attributes(G, bb, "betweenness") + >>> G.edges[1, 2]["betweenness"] + 2.0 + + If you provide a list as the second argument, updates to the list + will be reflected in the edge attribute for each edge:: + + >>> labels = [] + >>> nx.set_edge_attributes(G, labels, "labels") + >>> labels.append("foo") + >>> G.edges[0, 1]["labels"] + ['foo'] + >>> G.edges[1, 2]["labels"] + ['foo'] + + If you provide a dictionary of dictionaries as the second argument, + the entire dictionary will be used to update edge attributes:: + + >>> G = nx.path_graph(3) + >>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}} + >>> nx.set_edge_attributes(G, attrs) + >>> G[0][1]["attr1"] + 20 + >>> G[0][1]["attr2"] + 'nothing' + >>> G[1][2]["attr2"] + 3 + + The attributes of one Graph can be used to set those of another. + + >>> H = nx.path_graph(3) + >>> nx.set_edge_attributes(H, G.edges) + + Note that if the dict contains edges that are not in `G`, they are + silently ignored:: + + >>> G = nx.Graph([(0, 1)]) + >>> nx.set_edge_attributes(G, {(1, 2): {"weight": 2.0}}) + >>> (1, 2) in G.edges() + False + + For multigraphs, the `values` dict is expected to be keyed by 3-tuples + including the edge key:: + + >>> MG = nx.MultiGraph() + >>> edges = [(0, 1), (0, 1)] + >>> MG.add_edges_from(edges) # Returns list of edge keys + [0, 1] + >>> attributes = {(0, 1, 0): {"cost": 21}, (0, 1, 1): {"cost": 7}} + >>> nx.set_edge_attributes(MG, attributes) + >>> MG[0][1][0]["cost"] + 21 + >>> MG[0][1][1]["cost"] + 7 + + If MultiGraph attributes are desired for a Graph, you must convert the 3-tuple + multiedge to a 2-tuple edge and the last multiedge's attribute value will + overwrite the previous values. Continuing from the previous case we get:: + + >>> H = nx.path_graph([0, 1, 2]) + >>> nx.set_edge_attributes(H, {(u, v): ed for u, v, ed in MG.edges.data()}) + >>> nx.get_edge_attributes(H, "cost") + {(0, 1): 7} + + """ + if name is not None: + # `values` does not contain attribute names + try: + # if `values` is a dict using `.items()` => {edge: value} + if G.is_multigraph(): + for (u, v, key), value in values.items(): + try: + G[u][v][key][name] = value + except KeyError: + pass + else: + for (u, v), value in values.items(): + try: + G[u][v][name] = value + except KeyError: + pass + except AttributeError: + # treat `values` as a constant + for u, v, data in G.edges(data=True): + data[name] = values + else: + # `values` consists of doct-of-dict {edge: {attr: value}} shape + if G.is_multigraph(): + for (u, v, key), d in values.items(): + try: + G[u][v][key].update(d) + except KeyError: + pass + else: + for (u, v), d in values.items(): + try: + G[u][v].update(d) + except KeyError: + pass + + +def get_edge_attributes(G, name, default=None): + """Get edge attributes from graph + + Parameters + ---------- + G : NetworkX Graph + + name : string + Attribute name + + default: object (default=None) + Default value of the edge attribute if there is no value set for that + edge in graph. If `None` then edges without this attribute are not + included in the returned dict. + + Returns + ------- + Dictionary of attributes keyed by edge. For (di)graphs, the keys are + 2-tuples of the form: (u, v). For multi(di)graphs, the keys are 3-tuples of + the form: (u, v, key). + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [1, 2, 3], color="red") + >>> color = nx.get_edge_attributes(G, "color") + >>> color[(1, 2)] + 'red' + >>> G.add_edge(3, 4) + >>> color = nx.get_edge_attributes(G, "color", default="yellow") + >>> color[(3, 4)] + 'yellow' + """ + if G.is_multigraph(): + edges = G.edges(keys=True, data=True) + else: + edges = G.edges(data=True) + if default is not None: + return {x[:-1]: x[-1].get(name, default) for x in edges} + return {x[:-1]: x[-1][name] for x in edges if name in x[-1]} + + +def all_neighbors(graph, node): + """Returns all of the neighbors of a node in the graph. + + If the graph is directed returns predecessors as well as successors. + + Parameters + ---------- + graph : NetworkX graph + Graph to find neighbors. + + node : node + The node whose neighbors will be returned. + + Returns + ------- + neighbors : iterator + Iterator of neighbors + """ + if graph.is_directed(): + values = chain(graph.predecessors(node), graph.successors(node)) + else: + values = graph.neighbors(node) + return values + + +def non_neighbors(graph, node): + """Returns the non-neighbors of the node in the graph. + + Parameters + ---------- + graph : NetworkX graph + Graph to find neighbors. + + node : node + The node whose neighbors will be returned. + + Returns + ------- + non_neighbors : iterator + Iterator of nodes in the graph that are not neighbors of the node. + """ + nbors = set(neighbors(graph, node)) | {node} + return (nnode for nnode in graph if nnode not in nbors) + + +def non_edges(graph): + """Returns the nonexistent edges in the graph. + + Parameters + ---------- + graph : NetworkX graph. + Graph to find nonexistent edges. + + Returns + ------- + non_edges : iterator + Iterator of edges that are not in the graph. + """ + if graph.is_directed(): + for u in graph: + for v in non_neighbors(graph, u): + yield (u, v) + else: + nodes = set(graph) + while nodes: + u = nodes.pop() + for v in nodes - set(graph[u]): + yield (u, v) + + +@not_implemented_for("directed") +def common_neighbors(G, u, v): + """Returns the common neighbors of two nodes in a graph. + + Parameters + ---------- + G : graph + A NetworkX undirected graph. + + u, v : nodes + Nodes in the graph. + + Returns + ------- + cnbors : iterator + Iterator of common neighbors of u and v in the graph. + + Raises + ------ + NetworkXError + If u or v is not a node in the graph. + + Examples + -------- + >>> G = nx.complete_graph(5) + >>> sorted(nx.common_neighbors(G, 0, 1)) + [2, 3, 4] + """ + if u not in G: + raise nx.NetworkXError("u is not in the graph.") + if v not in G: + raise nx.NetworkXError("v is not in the graph.") + + # Return a generator explicitly instead of yielding so that the above + # checks are executed eagerly. + return (w for w in G[u] if w in G[v] and w not in (u, v)) + + +def is_weighted(G, edge=None, weight="weight"): + """Returns True if `G` has weighted edges. + + Parameters + ---------- + G : graph + A NetworkX graph. + + edge : tuple, optional + A 2-tuple specifying the only edge in `G` that will be tested. If + None, then every edge in `G` is tested. + + weight: string, optional + The attribute name used to query for edge weights. + + Returns + ------- + bool + A boolean signifying if `G`, or the specified edge, is weighted. + + Raises + ------ + NetworkXError + If the specified edge does not exist. + + Examples + -------- + >>> G = nx.path_graph(4) + >>> nx.is_weighted(G) + False + >>> nx.is_weighted(G, (2, 3)) + False + + >>> G = nx.DiGraph() + >>> G.add_edge(1, 2, weight=1) + >>> nx.is_weighted(G) + True + + """ + if edge is not None: + data = G.get_edge_data(*edge) + if data is None: + msg = f"Edge {edge!r} does not exist." + raise nx.NetworkXError(msg) + return weight in data + + if is_empty(G): + # Special handling required since: all([]) == True + return False + + return all(weight in data for u, v, data in G.edges(data=True)) + + +def is_negatively_weighted(G, edge=None, weight="weight"): + """Returns True if `G` has negatively weighted edges. + + Parameters + ---------- + G : graph + A NetworkX graph. + + edge : tuple, optional + A 2-tuple specifying the only edge in `G` that will be tested. If + None, then every edge in `G` is tested. + + weight: string, optional + The attribute name used to query for edge weights. + + Returns + ------- + bool + A boolean signifying if `G`, or the specified edge, is negatively + weighted. + + Raises + ------ + NetworkXError + If the specified edge does not exist. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([(1, 3), (2, 4), (2, 6)]) + >>> G.add_edge(1, 2, weight=4) + >>> nx.is_negatively_weighted(G, (1, 2)) + False + >>> G[2][4]["weight"] = -2 + >>> nx.is_negatively_weighted(G) + True + >>> G = nx.DiGraph() + >>> edges = [("0", "3", 3), ("0", "1", -5), ("1", "0", -2)] + >>> G.add_weighted_edges_from(edges) + >>> nx.is_negatively_weighted(G) + True + + """ + if edge is not None: + data = G.get_edge_data(*edge) + if data is None: + msg = f"Edge {edge!r} does not exist." + raise nx.NetworkXError(msg) + return weight in data and data[weight] < 0 + + return any(weight in data and data[weight] < 0 for u, v, data in G.edges(data=True)) + + +def is_empty(G): + """Returns True if `G` has no edges. + + Parameters + ---------- + G : graph + A NetworkX graph. + + Returns + ------- + bool + True if `G` has no edges, and False otherwise. + + Notes + ----- + An empty graph can have nodes but not edges. The empty graph with zero + nodes is known as the null graph. This is an $O(n)$ operation where n + is the number of nodes in the graph. + + """ + return not any(G.adj.values()) + + +def nodes_with_selfloops(G): + """Returns an iterator over nodes with self loops. + + A node with a self loop has an edge with both ends adjacent + to that node. + + Returns + ------- + nodelist : iterator + A iterator over nodes with self loops. + + See Also + -------- + selfloop_edges, number_of_selfloops + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edge(1, 1) + >>> G.add_edge(1, 2) + >>> list(nx.nodes_with_selfloops(G)) + [1] + + """ + return (n for n, nbrs in G.adj.items() if n in nbrs) + + +def selfloop_edges(G, data=False, keys=False, default=None): + """Returns an iterator over selfloop edges. + + A selfloop edge has the same node at both ends. + + Parameters + ---------- + G : graph + A NetworkX graph. + data : string or bool, optional (default=False) + Return selfloop edges as two tuples (u, v) (data=False) + or three-tuples (u, v, datadict) (data=True) + or three-tuples (u, v, datavalue) (data='attrname') + keys : bool, optional (default=False) + If True, return edge keys with each edge. + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edgeiter : iterator over edge tuples + An iterator over all selfloop edges. + + See Also + -------- + nodes_with_selfloops, number_of_selfloops + + Examples + -------- + >>> G = nx.MultiGraph() # or Graph, DiGraph, MultiDiGraph, etc + >>> ekey = G.add_edge(1, 1) + >>> ekey = G.add_edge(1, 2) + >>> list(nx.selfloop_edges(G)) + [(1, 1)] + >>> list(nx.selfloop_edges(G, data=True)) + [(1, 1, {})] + >>> list(nx.selfloop_edges(G, keys=True)) + [(1, 1, 0)] + >>> list(nx.selfloop_edges(G, keys=True, data=True)) + [(1, 1, 0, {})] + """ + if data is True: + if G.is_multigraph(): + if keys is True: + return ( + (n, n, k, d) + for n, nbrs in G.adj.items() + if n in nbrs + for k, d in nbrs[n].items() + ) + else: + return ( + (n, n, d) + for n, nbrs in G.adj.items() + if n in nbrs + for d in nbrs[n].values() + ) + else: + return ((n, n, nbrs[n]) for n, nbrs in G.adj.items() if n in nbrs) + elif data is not False: + if G.is_multigraph(): + if keys is True: + return ( + (n, n, k, d.get(data, default)) + for n, nbrs in G.adj.items() + if n in nbrs + for k, d in nbrs[n].items() + ) + else: + return ( + (n, n, d.get(data, default)) + for n, nbrs in G.adj.items() + if n in nbrs + for d in nbrs[n].values() + ) + else: + return ( + (n, n, nbrs[n].get(data, default)) + for n, nbrs in G.adj.items() + if n in nbrs + ) + else: + if G.is_multigraph(): + if keys is True: + return ( + (n, n, k) for n, nbrs in G.adj.items() if n in nbrs for k in nbrs[n] + ) + else: + return ( + (n, n) + for n, nbrs in G.adj.items() + if n in nbrs + for i in range(len(nbrs[n])) # for easy edge removal (#4068) + ) + else: + return ((n, n) for n, nbrs in G.adj.items() if n in nbrs) + + +def number_of_selfloops(G): + """Returns the number of selfloop edges. + + A selfloop edge has the same node at both ends. + + Returns + ------- + nloops : int + The number of selfloops. + + See Also + -------- + nodes_with_selfloops, selfloop_edges + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edge(1, 1) + >>> G.add_edge(1, 2) + >>> nx.number_of_selfloops(G) + 1 + """ + return sum(1 for _ in nx.selfloop_edges(G)) + + +def is_path(G, path): + """Returns whether or not the specified path exists. + + For it to return True, every node on the path must exist and + each consecutive pair must be connected via one or more edges. + + Parameters + ---------- + G : graph + A NetworkX graph. + + path : list + A list of nodes which defines the path to traverse + + Returns + ------- + bool + True if `path` is a valid path in `G` + + """ + return all((node in G and nbr in G[node]) for node, nbr in nx.utils.pairwise(path)) + + +def path_weight(G, path, weight): + """Returns total cost associated with specified path and weight + + Parameters + ---------- + G : graph + A NetworkX graph. + + path: list + A list of node labels which defines the path to traverse + + weight: string + A string indicating which edge attribute to use for path cost + + Returns + ------- + cost: int or float + An integer or a float representing the total cost with respect to the + specified weight of the specified path + + Raises + ------ + NetworkXNoPath + If the specified edge does not exist. + """ + multigraph = G.is_multigraph() + cost = 0 + + if not nx.is_path(G, path): + raise nx.NetworkXNoPath("path does not exist") + for node, nbr in nx.utils.pairwise(path): + if multigraph: + cost += min(v[weight] for v in G[node][nbr].values()) + else: + cost += G[node][nbr][weight] + return cost diff --git a/phivenv/Lib/site-packages/networkx/classes/graph.py b/phivenv/Lib/site-packages/networkx/classes/graph.py new file mode 100644 index 0000000000000000000000000000000000000000..5bbf079a47b231fc8a3c79d4f6d545dc27f51327 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/graph.py @@ -0,0 +1,2030 @@ +"""Base class for undirected graphs. + +The Graph class allows any hashable object as a node +and can associate key/value attribute pairs with each undirected edge. + +Self-loops are allowed but multiple edges are not (see MultiGraph). + +For directed graphs see DiGraph and MultiDiGraph. +""" +from copy import deepcopy +from functools import cached_property + +import networkx as nx +from networkx import convert +from networkx.classes.coreviews import AdjacencyView +from networkx.classes.reportviews import DegreeView, EdgeView, NodeView +from networkx.exception import NetworkXError + +__all__ = ["Graph"] + + +class _CachedPropertyResetterAdj: + """Data Descriptor class for _adj that resets ``adj`` cached_property when needed + + This assumes that the ``cached_property`` ``G.adj`` should be reset whenever + ``G._adj`` is set to a new value. + + This object sits on a class and ensures that any instance of that + class clears its cached property "adj" whenever the underlying + instance attribute "_adj" is set to a new object. It only affects + the set process of the obj._adj attribute. All get/del operations + act as they normally would. + + For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html + """ + + def __set__(self, obj, value): + od = obj.__dict__ + od["_adj"] = value + if "adj" in od: + del od["adj"] + + +class _CachedPropertyResetterNode: + """Data Descriptor class for _node that resets ``nodes`` cached_property when needed + + This assumes that the ``cached_property`` ``G.node`` should be reset whenever + ``G._node`` is set to a new value. + + This object sits on a class and ensures that any instance of that + class clears its cached property "nodes" whenever the underlying + instance attribute "_node" is set to a new object. It only affects + the set process of the obj._adj attribute. All get/del operations + act as they normally would. + + For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html + """ + + def __set__(self, obj, value): + od = obj.__dict__ + od["_node"] = value + if "nodes" in od: + del od["nodes"] + + +class Graph: + """ + Base class for undirected graphs. + + A Graph stores nodes and edges with optional data, or attributes. + + Graphs hold undirected edges. Self loops are allowed but multiple + (parallel) edges are not. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes, except that `None` is not allowed as a node. + + Edges are represented as links between nodes with optional + key/value attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy + sparse matrix, or PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + DiGraph + MultiGraph + MultiDiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.Graph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> G.add_edge(1, 2) + + a list of edges, + + >>> G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. There are no errors when adding + nodes or edges that already exist. + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.Graph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time="5pm") + >>> G.add_nodes_from([3], time="2pm") + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]["room"] = 714 # node must exist already to use G.nodes + >>> del G.nodes[1]["room"] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> G.add_edge(1, 2, weight=4.7) + >>> G.add_edges_from([(3, 4), (4, 5)], color="red") + >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) + >>> G[1][2]["weight"] = 4.7 + >>> G.edges[1, 2]["weight"] = 4 + + Warning: we protect the graph data structure by making `G.edges` a + read-only dict-like structure. However, you can assign to attributes + in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change + data attributes: `G.edges[1, 2]['weight'] = 4` + (For multigraphs: `MG.edges[u, v, key][name] = value`). + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n < 3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, eattr in nbrsdict.items(): + ... if "weight" in eattr: + ... # Do something useful with the edges + ... pass + + But the edges() method is often more convenient: + + >>> for u, v, weight in G.edges.data("weight"): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using object-attributes and methods. + Reporting typically provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes`, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The Graph class uses a dict-of-dict-of-dict data structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information and holds + edge data keyed by neighbor. The inner dict (edge_attr_dict) represents + the edge data and holds edge attribute values keyed by attribute names. + + Each of these three dicts can be replaced in a subclass by a user defined + dict-like object. In general, the dict-like features should be + maintained but extra features can be added. To replace one of the + dicts create a new graph class by changing the class(!) variable + holding the factory for that dict-like structure. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, (default: dict) + Factory function to be used to create the adjacency list + dict which holds edge data keyed by neighbor. + It should require no arguments and return a dict-like object + + edge_attr_dict_factory : function, (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherit without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + **Subclassing Example** + + Create a low memory graph class that effectively disallows edge + attributes by using a single attribute dict for all edges. + This reduces the memory used, but you lose edge attributes. + + >>> class ThinGraph(nx.Graph): + ... all_edge_dict = {"weight": 1} + ... + ... def single_edge_dict(self): + ... return self.all_edge_dict + ... + ... edge_attr_dict_factory = single_edge_dict + >>> G = ThinGraph() + >>> G.add_edge(2, 1) + >>> G[2][1] + {'weight': 1} + >>> G.add_edge(2, 2) + >>> G[2][1] is G[2][2] + True + """ + + _adj = _CachedPropertyResetterAdj() + _node = _CachedPropertyResetterNode() + + node_dict_factory = dict + node_attr_dict_factory = dict + adjlist_outer_dict_factory = dict + adjlist_inner_dict_factory = dict + edge_attr_dict_factory = dict + graph_attr_dict_factory = dict + + def to_directed_class(self): + """Returns the class to use for empty directed copies. + + If you subclass the base classes, use this to designate + what directed class to use for `to_directed()` copies. + """ + return nx.DiGraph + + def to_undirected_class(self): + """Returns the class to use for empty undirected copies. + + If you subclass the base classes, use this to designate + what directed class to use for `to_directed()` copies. + """ + return Graph + + def __init__(self, incoming_graph_data=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a 2D NumPy array, a + SciPy sparse array, or a PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G = nx.Graph(name="my graph") + >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.Graph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.Graph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes + self._node = self.node_dict_factory() # empty node attribute dict + self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict + # attempt to load graph with data + if incoming_graph_data is not None: + convert.to_networkx_graph(incoming_graph_data, create_using=self) + # load graph attributes (must be after convert) + self.graph.update(attr) + + @cached_property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return AdjacencyView(self._adj) + + @property + def name(self): + """String identifier of the graph. + + This graph attribute appears in the attribute dict G.graph + keyed by the string `"name"`. as well as an attribute (technically + a property) `G.name`. This is entirely user controlled. + """ + return self.graph.get("name", "") + + @name.setter + def name(self, s): + self.graph["name"] = s + + def __str__(self): + """Returns a short summary of the graph. + + Returns + ------- + info : string + Graph information including the graph name (if any), graph type, and the + number of nodes and edges. + + Examples + -------- + >>> G = nx.Graph(name="foo") + >>> str(G) + "Graph named 'foo' with 0 nodes and 0 edges" + + >>> G = nx.path_graph(3) + >>> str(G) + 'Graph with 3 nodes and 2 edges' + + """ + return "".join( + [ + type(self).__name__, + f" named {self.name!r}" if self.name else "", + f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges", + ] + ) + + def __iter__(self): + """Iterate over the nodes. Use: 'for n in G'. + + Returns + ------- + niter : iterator + An iterator over all nodes in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> [n for n in G] + [0, 1, 2, 3] + >>> list(G) + [0, 1, 2, 3] + """ + return iter(self._node) + + def __contains__(self, n): + """Returns True if n is a node, False otherwise. Use: 'n in G'. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> 1 in G + True + """ + try: + return n in self._node + except TypeError: + return False + + def __len__(self): + """Returns the number of nodes in the graph. Use: 'len(G)'. + + Returns + ------- + nnodes : int + The number of nodes in the graph. + + See Also + -------- + number_of_nodes: identical method + order: identical method + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> len(G) + 4 + + """ + return len(self._node) + + def __getitem__(self, n): + """Returns a dict of neighbors of node n. Use: 'G[n]'. + + Parameters + ---------- + n : node + A node in the graph. + + Returns + ------- + adj_dict : dictionary + The adjacency dictionary for nodes connected to n. + + Notes + ----- + G[n] is the same as G.adj[n] and similar to G.neighbors(n) + (which is an iterator over G.adj[n]) + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G[0] + AtlasView({1: {}}) + """ + return self.adj[n] + + def add_node(self, node_for_adding, **attr): + """Add a single node `node_for_adding` and update node attributes. + + Parameters + ---------- + node_for_adding : node + A node can be any hashable Python object except None. + attr : keyword arguments, optional + Set or change node attributes using key=value. + + See Also + -------- + add_nodes_from + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_node(1) + >>> G.add_node("Hello") + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_node(K3) + >>> G.number_of_nodes() + 3 + + Use keywords set/change node attributes: + + >>> G.add_node(1, size=10) + >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) + + Notes + ----- + A hashable object is one that can be used as a key in a Python + dictionary. This includes strings, numbers, tuples of strings + and numbers, etc. + + On many platforms hashable items also include mutables such as + NetworkX Graphs, though one should be careful that the hash + doesn't change on mutables. + """ + if node_for_adding not in self._node: + if node_for_adding is None: + raise ValueError("None cannot be a node") + self._adj[node_for_adding] = self.adjlist_inner_dict_factory() + attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() + attr_dict.update(attr) + else: # update attr even if node already exists + self._node[node_for_adding].update(attr) + + def add_nodes_from(self, nodes_for_adding, **attr): + """Add multiple nodes. + + Parameters + ---------- + nodes_for_adding : iterable container + A container of nodes (list, dict, set, etc.). + OR + A container of (node, attribute dict) tuples. + Node attributes are updated using the attribute dict. + attr : keyword arguments, optional (default= no attributes) + Update attributes for all nodes in nodes. + Node attributes specified in nodes as a tuple take + precedence over attributes specified via keyword arguments. + + See Also + -------- + add_node + + Notes + ----- + When adding nodes from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_nodes)`, and pass this + object to `G.add_nodes_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_nodes_from("Hello") + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_nodes_from(K3) + >>> sorted(G.nodes(), key=str) + [0, 1, 2, 'H', 'e', 'l', 'o'] + + Use keywords to update specific node attributes for every node. + + >>> G.add_nodes_from([1, 2], size=10) + >>> G.add_nodes_from([3, 4], weight=0.4) + + Use (node, attrdict) tuples to update attributes for specific nodes. + + >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) + >>> G.nodes[1]["size"] + 11 + >>> H = nx.Graph() + >>> H.add_nodes_from(G.nodes(data=True)) + >>> H.nodes[1]["size"] + 11 + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)]) + >>> # wrong way - will raise RuntimeError + >>> # G.add_nodes_from(n + 1 for n in G.nodes) + >>> # correct way + >>> G.add_nodes_from(list(n + 1 for n in G.nodes)) + """ + for n in nodes_for_adding: + try: + newnode = n not in self._node + newdict = attr + except TypeError: + n, ndict = n + newnode = n not in self._node + newdict = attr.copy() + newdict.update(ndict) + if newnode: + if n is None: + raise ValueError("None cannot be a node") + self._adj[n] = self.adjlist_inner_dict_factory() + self._node[n] = self.node_attr_dict_factory() + self._node[n].update(newdict) + + def remove_node(self, n): + """Remove node n. + + Removes the node n and all adjacent edges. + Attempting to remove a nonexistent node will raise an exception. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------ + NetworkXError + If n is not in the graph. + + See Also + -------- + remove_nodes_from + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> list(G.edges) + [(0, 1), (1, 2)] + >>> G.remove_node(1) + >>> list(G.edges) + [] + + """ + adj = self._adj + try: + nbrs = list(adj[n]) # list handles self-loops (allows mutation) + del self._node[n] + except KeyError as err: # NetworkXError if n not in self + raise NetworkXError(f"The node {n} is not in the graph.") from err + for u in nbrs: + del adj[u][n] # remove all edges n-u in graph + del adj[n] # now remove node + + def remove_nodes_from(self, nodes): + """Remove multiple nodes. + + Parameters + ---------- + nodes : iterable container + A container of nodes (list, dict, set, etc.). If a node + in the container is not in the graph it is silently + ignored. + + See Also + -------- + remove_node + + Notes + ----- + When removing nodes from an iterator over the graph you are changing, + a `RuntimeError` will be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_nodes)`, and pass this + object to `G.remove_nodes_from`. + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = list(G.nodes) + >>> e + [0, 1, 2] + >>> G.remove_nodes_from(e) + >>> list(G.nodes) + [] + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)]) + >>> # this command will fail, as the graph's dict is modified during iteration + >>> # G.remove_nodes_from(n for n in G.nodes if n < 2) + >>> # this command will work, since the dictionary underlying graph is not modified + >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2)) + """ + adj = self._adj + for n in nodes: + try: + del self._node[n] + for u in list(adj[n]): # list handles self-loops + del adj[u][n] # (allows mutation of dict in loop) + del adj[n] + except KeyError: + pass + + @cached_property + def nodes(self): + """A NodeView of the Graph as G.nodes or G.nodes(). + + Can be used as `G.nodes` for data lookup and for set-like operations. + Can also be used as `G.nodes(data='color', default=None)` to return a + NodeDataView which reports specific node data but no set operations. + It presents a dict-like interface as well with `G.nodes.items()` + iterating over `(node, nodedata)` 2-tuples and `G.nodes[3]['foo']` + providing the value of the `foo` attribute for node `3`. In addition, + a view `G.nodes.data('foo')` provides a dict-like interface to the + `foo` attribute of each node. `G.nodes.data('foo', default=1)` + provides a default for nodes that do not have attribute `foo`. + + Parameters + ---------- + data : string or bool, optional (default=False) + The node attribute returned in 2-tuple (n, ddict[data]). + If True, return entire node attribute dict as (n, ddict). + If False, return just the nodes n. + + default : value, optional (default=None) + Value used for nodes that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + NodeView + Allows set-like operations over the nodes as well as node + attribute dict lookup and calling to get a NodeDataView. + A NodeDataView iterates over `(n, data)` and has no set operations. + A NodeView iterates over `n` and includes set operations. + + When called, if data is False, an iterator over nodes. + Otherwise an iterator of 2-tuples (node, attribute value) + where the attribute is specified in `data`. + If data is True then the attribute becomes the + entire data dictionary. + + Notes + ----- + If your node data is not needed, it is simpler and equivalent + to use the expression ``for n in G``, or ``list(G)``. + + Examples + -------- + There are two simple ways of getting a list of all nodes in the graph: + + >>> G = nx.path_graph(3) + >>> list(G.nodes) + [0, 1, 2] + >>> list(G) + [0, 1, 2] + + To get the node data along with the nodes: + + >>> G.add_node(1, time="5pm") + >>> G.nodes[0]["foo"] = "bar" + >>> list(G.nodes(data=True)) + [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] + >>> list(G.nodes.data()) + [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] + + >>> list(G.nodes(data="foo")) + [(0, 'bar'), (1, None), (2, None)] + >>> list(G.nodes.data("foo")) + [(0, 'bar'), (1, None), (2, None)] + + >>> list(G.nodes(data="time")) + [(0, None), (1, '5pm'), (2, None)] + >>> list(G.nodes.data("time")) + [(0, None), (1, '5pm'), (2, None)] + + >>> list(G.nodes(data="time", default="Not Available")) + [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] + >>> list(G.nodes.data("time", default="Not Available")) + [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] + + If some of your nodes have an attribute and the rest are assumed + to have a default attribute value you can create a dictionary + from node/attribute pairs using the `default` keyword argument + to guarantee the value is never None:: + + >>> G = nx.Graph() + >>> G.add_node(0) + >>> G.add_node(1, weight=2) + >>> G.add_node(2, weight=3) + >>> dict(G.nodes(data="weight", default=1)) + {0: 1, 1: 2, 2: 3} + + """ + return NodeView(self) + + def number_of_nodes(self): + """Returns the number of nodes in the graph. + + Returns + ------- + nnodes : int + The number of nodes in the graph. + + See Also + -------- + order: identical method + __len__: identical method + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.number_of_nodes() + 3 + """ + return len(self._node) + + def order(self): + """Returns the number of nodes in the graph. + + Returns + ------- + nnodes : int + The number of nodes in the graph. + + See Also + -------- + number_of_nodes: identical method + __len__: identical method + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.order() + 3 + """ + return len(self._node) + + def has_node(self, n): + """Returns True if the graph contains the node n. + + Identical to `n in G` + + Parameters + ---------- + n : node + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.has_node(0) + True + + It is more readable and simpler to use + + >>> 0 in G + True + + """ + try: + return n in self._node + except TypeError: + return False + + def add_edge(self, u_of_edge, v_of_edge, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u_of_edge, v_of_edge : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + Adding an edge that already exists updates the edge data. + + Many NetworkX algorithms designed for weighted graphs use + an edge attribute (by default `weight`) to hold a numerical value. + + Examples + -------- + The following all add the edge e=(1, 2) to graph G: + + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = (1, 2) + >>> G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + >>> G.add_edges_from([(1, 2)]) # add edges from iterable container + + Associate data to edges using keywords: + + >>> G.add_edge(1, 2, weight=3) + >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> G.add_edge(1, 2) + >>> G[1][2].update({0: 5}) + >>> G.edges[1, 2].update({0: 5}) + """ + u, v = u_of_edge, v_of_edge + # add nodes + if u not in self._node: + if u is None: + raise ValueError("None cannot be a node") + self._adj[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._node: + if v is None: + raise ValueError("None cannot be a node") + self._adj[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + # add the edge + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + self._adj[u][v] = datadict + self._adj[v][u] = datadict + + def add_edges_from(self, ebunch_to_add, **attr): + """Add all the edges in ebunch_to_add. + + Parameters + ---------- + ebunch_to_add : container of edges + Each edge given in the container will be added to the + graph. The edges must be given as 2-tuples (u, v) or + 3-tuples (u, v, d) where d is a dictionary containing edge data. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edge : add a single edge + add_weighted_edges_from : convenient way to add weighted edges + + Notes + ----- + Adding the same edge twice has no effect but any edge data + will be updated when each duplicate edge is added. + + Edge attributes specified in an ebunch take precedence over + attributes specified via keyword arguments. + + When adding edges from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_edges)`, and pass this + object to `G.add_edges_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples + >>> e = zip(range(0, 3), range(1, 4)) + >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 + + Associate data to edges + + >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) + >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + >>> # Grow graph by one new node, adding edges to all existing nodes. + >>> # wrong way - will raise RuntimeError + >>> # G.add_edges_from(((5, n) for n in G.nodes)) + >>> # correct way - note that there will be no self-edge for node 5 + >>> G.add_edges_from(list((5, n) for n in G.nodes)) + """ + for e in ebunch_to_add: + ne = len(e) + if ne == 3: + u, v, dd = e + elif ne == 2: + u, v = e + dd = {} # doesn't need edge_attr_dict_factory + else: + raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") + if u not in self._node: + if u is None: + raise ValueError("None cannot be a node") + self._adj[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._node: + if v is None: + raise ValueError("None cannot be a node") + self._adj[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + datadict.update(dd) + self._adj[u][v] = datadict + self._adj[v][u] = datadict + + def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr): + """Add weighted edges in `ebunch_to_add` with specified weight attr + + Parameters + ---------- + ebunch_to_add : container of edges + Each edge given in the list or container will be added + to the graph. The edges must be given as 3-tuples (u, v, w) + where w is a number. + weight : string, optional (default= 'weight') + The attribute name for the edge weights to be added. + attr : keyword arguments, optional (default= no attributes) + Edge attributes to add/update for all edges. + + See Also + -------- + add_edge : add a single edge + add_edges_from : add multiple edges + + Notes + ----- + Adding the same edge twice for Graph/DiGraph simply updates + the edge data. For MultiGraph/MultiDiGraph, duplicate edges + are stored. + + When adding edges from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_edges)`, and pass this + object to `G.add_weighted_edges_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)]) + + Evaluate an iterator over edges before passing it + + >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)]) + >>> weight = 0.1 + >>> # Grow graph by one new node, adding edges to all existing nodes. + >>> # wrong way - will raise RuntimeError + >>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes)) + >>> # correct way - note that there will be no self-edge for node 5 + >>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes)) + """ + self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr) + + def remove_edge(self, u, v): + """Remove the edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove the edge between nodes u and v. + + Raises + ------ + NetworkXError + If there is not an edge between u and v. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, etc + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + >>> e = (2, 3, {"weight": 7}) # an edge with attribute data + >>> G.remove_edge(*e[:2]) # select first part of edge tuple + """ + try: + del self._adj[u][v] + if u != v: # self-loop needs only one entry removed + del self._adj[v][u] + except KeyError as err: + raise NetworkXError(f"The edge {u}-{v} is not in the graph") from err + + def remove_edges_from(self, ebunch): + """Remove all edges specified in ebunch. + + Parameters + ---------- + ebunch: list or container of edge tuples + Each edge given in the list or container will be removed + from the graph. The edges can be: + + - 2-tuples (u, v) edge between u and v. + - 3-tuples (u, v, k) where k is ignored. + + See Also + -------- + remove_edge : remove a single edge + + Notes + ----- + Will fail silently if an edge in ebunch is not in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> ebunch = [(1, 2), (2, 3)] + >>> G.remove_edges_from(ebunch) + """ + adj = self._adj + for e in ebunch: + u, v = e[:2] # ignore edge data if present + if u in adj and v in adj[u]: + del adj[u][v] + if u != v: # self loop needs only one entry removed + del adj[v][u] + + def update(self, edges=None, nodes=None): + """Update the graph using nodes/edges/graphs as input. + + Like dict.update, this method takes a graph as input, adding the + graph's nodes and edges to this graph. It can also take two inputs: + edges and nodes. Finally it can take either edges or nodes. + To specify only nodes the keyword `nodes` must be used. + + The collections of edges and nodes are treated similarly to + the add_edges_from/add_nodes_from methods. When iterated, they + should yield 2-tuples (u, v) or 3-tuples (u, v, datadict). + + Parameters + ---------- + edges : Graph object, collection of edges, or None + The first parameter can be a graph or some edges. If it has + attributes `nodes` and `edges`, then it is taken to be a + Graph-like object and those attributes are used as collections + of nodes and edges to be added to the graph. + If the first parameter does not have those attributes, it is + treated as a collection of edges and added to the graph. + If the first argument is None, no edges are added. + nodes : collection of nodes, or None + The second parameter is treated as a collection of nodes + to be added to the graph unless it is None. + If `edges is None` and `nodes is None` an exception is raised. + If the first parameter is a Graph, then `nodes` is ignored. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> G.update(nx.complete_graph(range(4, 10))) + >>> from itertools import combinations + >>> edges = ( + ... (u, v, {"power": u * v}) + ... for u, v in combinations(range(10, 20), 2) + ... if u * v < 225 + ... ) + >>> nodes = [1000] # for singleton, use a container + >>> G.update(edges, nodes) + + Notes + ----- + It you want to update the graph using an adjacency structure + it is straightforward to obtain the edges/nodes from adjacency. + The following examples provide common cases, your adjacency may + be slightly different and require tweaks of these examples:: + + >>> # dict-of-set/list/tuple + >>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}} + >>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs] + >>> G.update(edges=e, nodes=adj) + + >>> DG = nx.DiGraph() + >>> # dict-of-dict-of-attribute + >>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}} + >>> e = [ + ... (u, v, {"weight": d}) + ... for u, nbrs in adj.items() + ... for v, d in nbrs.items() + ... ] + >>> DG.update(edges=e, nodes=adj) + + >>> # dict-of-dict-of-dict + >>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}} + >>> e = [ + ... (u, v, {"weight": d}) + ... for u, nbrs in adj.items() + ... for v, d in nbrs.items() + ... ] + >>> DG.update(edges=e, nodes=adj) + + >>> # predecessor adjacency (dict-of-set) + >>> pred = {1: {2, 3}, 2: {3}, 3: {3}} + >>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs] + + >>> # MultiGraph dict-of-dict-of-dict-of-attribute + >>> MDG = nx.MultiDiGraph() + >>> adj = { + ... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}}, + ... 3: {2: {0: {"weight": 0.7}}}, + ... } + >>> e = [ + ... (u, v, ekey, d) + ... for u, nbrs in adj.items() + ... for v, keydict in nbrs.items() + ... for ekey, d in keydict.items() + ... ] + >>> MDG.update(edges=e) + + See Also + -------- + add_edges_from: add multiple edges to a graph + add_nodes_from: add multiple nodes to a graph + """ + if edges is not None: + if nodes is not None: + self.add_nodes_from(nodes) + self.add_edges_from(edges) + else: + # check if edges is a Graph object + try: + graph_nodes = edges.nodes + graph_edges = edges.edges + except AttributeError: + # edge not Graph-like + self.add_edges_from(edges) + else: # edges is Graph-like + self.add_nodes_from(graph_nodes.data()) + self.add_edges_from(graph_edges.data()) + self.graph.update(edges.graph) + elif nodes is not None: + self.add_nodes_from(nodes) + else: + raise NetworkXError("update needs nodes or edges input") + + def has_edge(self, u, v): + """Returns True if the edge (u, v) is in the graph. + + This is the same as `v in G[u]` without KeyError exceptions. + + Parameters + ---------- + u, v : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + + Returns + ------- + edge_ind : bool + True if edge is in the graph, False otherwise. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.has_edge(0, 1) # using two nodes + True + >>> e = (0, 1) + >>> G.has_edge(*e) # e is a 2-tuple (u, v) + True + >>> e = (0, 1, {"weight": 7}) + >>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary) + True + + The following syntax are equivalent: + + >>> G.has_edge(0, 1) + True + >>> 1 in G[0] # though this gives KeyError if 0 not in G + True + + """ + try: + return v in self._adj[u] + except KeyError: + return False + + def neighbors(self, n): + """Returns an iterator over all neighbors of node n. + + This is identical to `iter(G[n])` + + Parameters + ---------- + n : node + A node in the graph + + Returns + ------- + neighbors : iterator + An iterator over all neighbors of node n + + Raises + ------ + NetworkXError + If the node n is not in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> [n for n in G.neighbors(0)] + [1] + + Notes + ----- + Alternate ways to access the neighbors are ``G.adj[n]`` or ``G[n]``: + + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edge("a", "b", weight=7) + >>> G["a"] + AtlasView({'b': {'weight': 7}}) + >>> G = nx.path_graph(4) + >>> [n for n in G[0]] + [1] + """ + try: + return iter(self._adj[n]) + except KeyError as err: + raise NetworkXError(f"The node {n} is not in the graph.") from err + + @cached_property + def edges(self): + """An EdgeView of the Graph as G.edges or G.edges(). + + edges(self, nbunch=None, data=False, default=None) + + The EdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, `G.edges[u, v]['color']` provides the value of the color + attribute for edge `(u, v)` while + `for (u, v, c) in G.edges.data('color', default='red'):` + iterates through all the edges yielding the color attribute + with default `'red'` if no color attribute exists. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges from these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : EdgeView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, d) tuples of edges, but can also be used for + attribute lookup as `edges[u, v]['foo']`. + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.path_graph(3) # or MultiGraph, etc + >>> G.add_edge(2, 3, weight=5) + >>> [e for e in G.edges] + [(0, 1), (1, 2), (2, 3)] + >>> G.edges.data() # default data is {} (empty dict) + EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) + >>> G.edges.data("weight", default=1) + EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) + >>> G.edges([0, 3]) # only edges from these nodes + EdgeDataView([(0, 1), (3, 2)]) + >>> G.edges(0) # only edges from node 0 + EdgeDataView([(0, 1)]) + """ + return EdgeView(self) + + def get_edge_data(self, u, v, default=None): + """Returns the attribute dictionary associated with edge (u, v). + + This is identical to `G[u][v]` except the default is returned + instead of an exception if the edge doesn't exist. + + Parameters + ---------- + u, v : nodes + default: any Python object (default=None) + Value to return if the edge (u, v) is not found. + + Returns + ------- + edge_dict : dictionary + The edge attribute dictionary. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G[0][1] + {} + + Warning: Assigning to `G[u][v]` is not permitted. + But it is safe to assign attributes `G[u][v]['foo']` + + >>> G[0][1]["weight"] = 7 + >>> G[0][1]["weight"] + 7 + >>> G[1][0]["weight"] + 7 + + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.get_edge_data(0, 1) # default edge data is {} + {} + >>> e = (0, 1) + >>> G.get_edge_data(*e) # tuple form + {} + >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0 + 0 + """ + try: + return self._adj[u][v] + except KeyError: + return default + + def adjacency(self): + """Returns an iterator over (node, adjacency dict) tuples for all nodes. + + For directed graphs, only outgoing neighbors/adjacencies are included. + + Returns + ------- + adj_iter : iterator + An iterator over (node, adjacency dictionary) for all nodes in + the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> [(n, nbrdict) for n, nbrdict in G.adjacency()] + [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] + + """ + return iter(self._adj.items()) + + @cached_property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + DegreeView or int + If multiple nodes are requested (the default), returns a `DegreeView` + mapping nodes to their degree. + If a single node is requested, returns the degree of the node as an integer. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.degree[0] # node 0 has degree 1 + 1 + >>> list(G.degree([0, 1, 2])) + [(0, 1), (1, 2), (2, 2)] + """ + return DegreeView(self) + + def clear(self): + """Remove all nodes and edges from the graph. + + This also removes the name, and all graph, node, and edge attributes. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.clear() + >>> list(G.nodes) + [] + >>> list(G.edges) + [] + + """ + self._adj.clear() + self._node.clear() + self.graph.clear() + + def clear_edges(self): + """Remove all edges from the graph without altering nodes. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.clear_edges() + >>> list(G.nodes) + [0, 1, 2, 3] + >>> list(G.edges) + [] + """ + for neighbours_dict in self._adj.values(): + neighbours_dict.clear() + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return False + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return False + + def copy(self, as_view=False): + """Returns a copy of the graph. + + The copy method by default returns an independent shallow copy + of the graph and attributes. That is, if an attribute is a + container, that container is shared by the original an the copy. + Use Python's `copy.deepcopy` for new containers. + + If `as_view` is True then a view is returned instead of a copy. + + Notes + ----- + All copies reproduce the graph structure, but data attributes + may be handled in different ways. There are four types of copies + of a graph that people might want. + + Deepcopy -- A "deepcopy" copies the graph structure as well as + all data attributes and any objects they might contain. + The entire graph object is new so that changes in the copy + do not affect the original object. (see Python's copy.deepcopy) + + Data Reference (Shallow) -- For a shallow copy the graph structure + is copied but the edge, node and graph attribute dicts are + references to those in the original graph. This saves + time and memory but could cause confusion if you change an attribute + in one graph and it changes the attribute in the other. + NetworkX does not provide this level of shallow copy. + + Independent Shallow -- This copy creates new independent attribute + dicts and then does a shallow copy of the attributes. That is, any + attributes that are containers are shared between the new graph + and the original. This is exactly what `dict.copy()` provides. + You can obtain this style copy using: + + >>> G = nx.path_graph(5) + >>> H = G.copy() + >>> H = G.copy(as_view=False) + >>> H = nx.Graph(G) + >>> H = G.__class__(G) + + Fresh Data -- For fresh data, the graph structure is copied while + new empty data attribute dicts are created. The resulting graph + is independent of the original and it has no edge, node or graph + attributes. Fresh copies are not enabled. Instead use: + + >>> H = G.__class__() + >>> H.add_nodes_from(G) + >>> H.add_edges_from(G.edges) + + View -- Inspired by dict-views, graph-views act like read-only + versions of the original graph, providing a copy of the original + structure without requiring any memory for copying the information. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Parameters + ---------- + as_view : bool, optional (default=False) + If True, the returned graph-view provides a read-only view + of the original graph without actually copying any data. + + Returns + ------- + G : Graph + A copy of the graph. + + See Also + -------- + to_directed: return a directed copy of the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> H = G.copy() + + """ + if as_view is True: + return nx.graphviews.generic_graph_view(self) + G = self.__class__() + G.graph.update(self.graph) + G.add_nodes_from((n, d.copy()) for n, d in self._node.items()) + G.add_edges_from( + (u, v, datadict.copy()) + for u, nbrs in self._adj.items() + for v, datadict in nbrs.items() + ) + return G + + def to_directed(self, as_view=False): + """Returns a directed representation of the graph. + + Returns + ------- + G : DiGraph + A directed graph with the same name, same nodes, and with + each edge (u, v, data) replaced by two directed edges + (u, v, data) and (v, u, data). + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar D=DiGraph(G) which returns a + shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed Graph to use dict-like objects + in the data structure, those changes do not transfer to the + DiGraph created by this method. + + Examples + -------- + >>> G = nx.Graph() # or MultiGraph, etc + >>> G.add_edge(0, 1) + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + + If already directed, return a (deep) copy + + >>> G = nx.DiGraph() # or MultiDiGraph, etc + >>> G.add_edge(0, 1) + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1)] + """ + graph_class = self.to_directed_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + G.add_edges_from( + (u, v, deepcopy(data)) + for u, nbrs in self._adj.items() + for v, data in nbrs.items() + ) + return G + + def to_undirected(self, as_view=False): + """Returns an undirected copy of the graph. + + Parameters + ---------- + as_view : bool (optional, default=False) + If True return a view of the original undirected graph. + + Returns + ------- + G : Graph/MultiGraph + A deepcopy of the graph. + + See Also + -------- + Graph, copy, add_edge, add_edges_from + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar `G = nx.DiGraph(D)` which returns a + shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed DiGraph to use dict-like objects + in the data structure, those changes do not transfer to the + Graph created by this method. + + Examples + -------- + >>> G = nx.path_graph(2) # or MultiGraph, etc + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + G.add_edges_from( + (u, v, deepcopy(d)) + for u, nbrs in self._adj.items() + for v, d in nbrs.items() + ) + return G + + def subgraph(self, nodes): + """Returns a SubGraph view of the subgraph induced on `nodes`. + + The induced subgraph of the graph contains the nodes in `nodes` + and the edges between those nodes. + + Parameters + ---------- + nodes : list, iterable + A container of nodes which will be iterated through once. + + Returns + ------- + G : SubGraph View + A subgraph view of the graph. The graph structure cannot be + changed but node/edge attributes can and are shared with the + original graph. + + Notes + ----- + The graph, edge and node attributes are shared with the original graph. + Changes to the graph structure is ruled out by the view, but changes + to attributes are reflected in the original graph. + + To create a subgraph with its own copy of the edge/node attributes use: + G.subgraph(nodes).copy() + + For an inplace reduction of a graph to a subgraph you can remove nodes: + G.remove_nodes_from([n for n in G if n not in set(nodes)]) + + Subgraph views are sometimes NOT what you want. In most cases where + you want to do more than simply look at the induced edges, it makes + more sense to just create the subgraph as its own graph with code like: + + :: + + # Create a subgraph SG based on a (possibly multigraph) G + SG = G.__class__() + SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc) + if SG.is_multigraph(): + SG.add_edges_from((n, nbr, key, d) + for n, nbrs in G.adj.items() if n in largest_wcc + for nbr, keydict in nbrs.items() if nbr in largest_wcc + for key, d in keydict.items()) + else: + SG.add_edges_from((n, nbr, d) + for n, nbrs in G.adj.items() if n in largest_wcc + for nbr, d in nbrs.items() if nbr in largest_wcc) + SG.graph.update(G.graph) + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> H = G.subgraph([0, 1, 2]) + >>> list(H.edges) + [(0, 1), (1, 2)] + """ + induced_nodes = nx.filters.show_nodes(self.nbunch_iter(nodes)) + # if already a subgraph, don't make a chain + subgraph = nx.subgraph_view + if hasattr(self, "_NODE_OK"): + return subgraph( + self._graph, filter_node=induced_nodes, filter_edge=self._EDGE_OK + ) + return subgraph(self, filter_node=induced_nodes) + + def edge_subgraph(self, edges): + """Returns the subgraph induced by the specified edges. + + The induced subgraph contains each edge in `edges` and each + node incident to any one of those edges. + + Parameters + ---------- + edges : iterable + An iterable of edges in this graph. + + Returns + ------- + G : Graph + An edge-induced subgraph of this graph with the same edge + attributes. + + Notes + ----- + The graph, edge, and node attributes in the returned subgraph + view are references to the corresponding attributes in the original + graph. The view is read-only. + + To create a full graph version of the subgraph with its own copy + of the edge or node attributes, use:: + + G.edge_subgraph(edges).copy() + + Examples + -------- + >>> G = nx.path_graph(5) + >>> H = G.edge_subgraph([(0, 1), (3, 4)]) + >>> list(H.nodes) + [0, 1, 3, 4] + >>> list(H.edges) + [(0, 1), (3, 4)] + + """ + return nx.edge_subgraph(self, edges) + + def size(self, weight=None): + """Returns the number of edges or total of all edge weights. + + Parameters + ---------- + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + + Returns + ------- + size : numeric + The number of edges or + (if weight keyword is provided) the total weight sum. + + If weight is None, returns an int. Otherwise a float + (or more general numeric if the weights are more general). + + See Also + -------- + number_of_edges + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.size() + 3 + + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edge("a", "b", weight=2) + >>> G.add_edge("b", "c", weight=4) + >>> G.size() + 2 + >>> G.size(weight="weight") + 6.0 + """ + s = sum(d for v, d in self.degree(weight=weight)) + # If `weight` is None, the sum of the degrees is guaranteed to be + # even, so we can perform integer division and hence return an + # integer. Otherwise, the sum of the weighted degrees is not + # guaranteed to be an integer, so we perform "real" division. + return s // 2 if weight is None else s / 2 + + def number_of_edges(self, u=None, v=None): + """Returns the number of edges between two nodes. + + Parameters + ---------- + u, v : nodes, optional (default=all edges) + If u and v are specified, return the number of edges between + u and v. Otherwise return the total number of all edges. + + Returns + ------- + nedges : int + The number of edges in the graph. If nodes `u` and `v` are + specified return the number of edges between those nodes. If + the graph is directed, this only returns the number of edges + from `u` to `v`. + + See Also + -------- + size + + Examples + -------- + For undirected graphs, this method counts the total number of + edges in the graph: + + >>> G = nx.path_graph(4) + >>> G.number_of_edges() + 3 + + If you specify two nodes, this counts the total number of edges + joining the two nodes: + + >>> G.number_of_edges(0, 1) + 1 + + For directed graphs, this method can count the total number of + directed edges from `u` to `v`: + + >>> G = nx.DiGraph() + >>> G.add_edge(0, 1) + >>> G.add_edge(1, 0) + >>> G.number_of_edges(0, 1) + 1 + + """ + if u is None: + return int(self.size()) + if v in self._adj[u]: + return 1 + return 0 + + def nbunch_iter(self, nbunch=None): + """Returns an iterator over nodes contained in nbunch that are + also in the graph. + + The nodes in nbunch are checked for membership in the graph + and if not are silently ignored. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + Returns + ------- + niter : iterator + An iterator over nodes in nbunch that are also in the graph. + If nbunch is None, iterate over all nodes in the graph. + + Raises + ------ + NetworkXError + If nbunch is not a node or sequence of nodes. + If a node in nbunch is not hashable. + + See Also + -------- + Graph.__iter__ + + Notes + ----- + When nbunch is an iterator, the returned iterator yields values + directly from nbunch, becoming exhausted when nbunch is exhausted. + + To test whether nbunch is a single node, one can use + "if nbunch in self:", even after processing with this routine. + + If nbunch is not a node or a (possibly empty) sequence/iterator + or None, a :exc:`NetworkXError` is raised. Also, if any object in + nbunch is not hashable, a :exc:`NetworkXError` is raised. + """ + if nbunch is None: # include all nodes via iterator + bunch = iter(self._adj) + elif nbunch in self: # if nbunch is a single node + bunch = iter([nbunch]) + else: # if nbunch is a sequence of nodes + + def bunch_iter(nlist, adj): + try: + for n in nlist: + if n in adj: + yield n + except TypeError as err: + exc, message = err, err.args[0] + # capture error for non-sequence/iterator nbunch. + if "iter" in message: + exc = NetworkXError( + "nbunch is not a node or a sequence of nodes." + ) + # capture error for unhashable node. + if "hashable" in message: + exc = NetworkXError( + f"Node {n} in sequence nbunch is not a valid node." + ) + raise exc + + bunch = bunch_iter(nbunch, self._adj) + return bunch diff --git a/phivenv/Lib/site-packages/networkx/classes/graphviews.py b/phivenv/Lib/site-packages/networkx/classes/graphviews.py new file mode 100644 index 0000000000000000000000000000000000000000..3fb08df08e384498cc29f03f60db0274c2eb2d1d --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/graphviews.py @@ -0,0 +1,267 @@ +"""View of Graphs as SubGraph, Reverse, Directed, Undirected. + +In some algorithms it is convenient to temporarily morph +a graph to exclude some nodes or edges. It should be better +to do that via a view than to remove and then re-add. +In other algorithms it is convenient to temporarily morph +a graph to reverse directed edges, or treat a directed graph +as undirected, etc. This module provides those graph views. + +The resulting views are essentially read-only graphs that +report data from the original graph object. We provide an +attribute G._graph which points to the underlying graph object. + +Note: Since graphviews look like graphs, one can end up with +view-of-view-of-view chains. Be careful with chains because +they become very slow with about 15 nested views. +For the common simple case of node induced subgraphs created +from the graph class, we short-cut the chain by returning a +subgraph of the original graph directly rather than a subgraph +of a subgraph. We are careful not to disrupt any edge filter in +the middle subgraph. In general, determining how to short-cut +the chain is tricky and much harder with restricted_views than +with induced subgraphs. +Often it is easiest to use .copy() to avoid chains. +""" +import networkx as nx +from networkx.classes.coreviews import ( + FilterAdjacency, + FilterAtlas, + FilterMultiAdjacency, + UnionAdjacency, + UnionMultiAdjacency, +) +from networkx.classes.filters import no_filter +from networkx.exception import NetworkXError +from networkx.utils import deprecate_positional_args, not_implemented_for + +__all__ = ["generic_graph_view", "subgraph_view", "reverse_view"] + + +def generic_graph_view(G, create_using=None): + """Returns a read-only view of `G`. + + The graph `G` and its attributes are not copied but viewed through the new graph object + of the same class as `G` (or of the class specified in `create_using`). + + Parameters + ---------- + G : graph + A directed/undirected graph/multigraph. + + create_using : NetworkX graph constructor, optional (default=None) + Graph type to create. If graph instance, then cleared before populated. + If `None`, then the appropriate Graph type is inferred from `G`. + + Returns + ------- + newG : graph + A view of the input graph `G` and its attributes as viewed through + the `create_using` class. + + Raises + ------ + NetworkXError + If `G` is a multigraph (or multidigraph) but `create_using` is not, or vice versa. + + Notes + ----- + The returned graph view is read-only (cannot modify the graph). + Yet the view reflects any changes in `G`. The intent is to mimic dict views. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edge(1, 2, weight=0.3) + >>> G.add_edge(2, 3, weight=0.5) + >>> G.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})]) + + The view exposes the attributes from the original graph. + + >>> viewG = nx.graphviews.generic_graph_view(G) + >>> viewG.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})]) + + Changes to `G` are reflected in `viewG`. + + >>> G.remove_edge(2, 3) + >>> G.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3})]) + + >>> viewG.edges(data=True) + EdgeDataView([(1, 2, {'weight': 0.3})]) + + We can change the graph type with the `create_using` parameter. + + >>> type(G) + + >>> viewDG = nx.graphviews.generic_graph_view(G, create_using=nx.DiGraph) + >>> type(viewDG) + + """ + if create_using is None: + newG = G.__class__() + else: + newG = nx.empty_graph(0, create_using) + if G.is_multigraph() != newG.is_multigraph(): + raise NetworkXError("Multigraph for G must agree with create_using") + newG = nx.freeze(newG) + + # create view by assigning attributes from G + newG._graph = G + newG.graph = G.graph + + newG._node = G._node + if newG.is_directed(): + if G.is_directed(): + newG._succ = G._succ + newG._pred = G._pred + # newG._adj is synced with _succ + else: + newG._succ = G._adj + newG._pred = G._adj + # newG._adj is synced with _succ + elif G.is_directed(): + if G.is_multigraph(): + newG._adj = UnionMultiAdjacency(G._succ, G._pred) + else: + newG._adj = UnionAdjacency(G._succ, G._pred) + else: + newG._adj = G._adj + return newG + + +@deprecate_positional_args(version="3.4") +def subgraph_view(G, *, filter_node=no_filter, filter_edge=no_filter): + """View of `G` applying a filter on nodes and edges. + + `subgraph_view` provides a read-only view of the input graph that excludes + nodes and edges based on the outcome of two filter functions `filter_node` + and `filter_edge`. + + The `filter_node` function takes one argument --- the node --- and returns + `True` if the node should be included in the subgraph, and `False` if it + should not be included. + + The `filter_edge` function takes two (or three arguments if `G` is a + multi-graph) --- the nodes describing an edge, plus the edge-key if + parallel edges are possible --- and returns `True` if the edge should be + included in the subgraph, and `False` if it should not be included. + + Both node and edge filter functions are called on graph elements as they + are queried, meaning there is no up-front cost to creating the view. + + Parameters + ---------- + G : networkx.Graph + A directed/undirected graph/multigraph + + filter_node : callable, optional + A function taking a node as input, which returns `True` if the node + should appear in the view. + + filter_edge : callable, optional + A function taking as input the two nodes describing an edge (plus the + edge-key if `G` is a multi-graph), which returns `True` if the edge + should appear in the view. + + Returns + ------- + graph : networkx.Graph + A read-only graph view of the input graph. + + Examples + -------- + >>> G = nx.path_graph(6) + + Filter functions operate on the node, and return `True` if the node should + appear in the view: + + >>> def filter_node(n1): + ... return n1 != 5 + ... + >>> view = nx.subgraph_view(G, filter_node=filter_node) + >>> view.nodes() + NodeView((0, 1, 2, 3, 4)) + + We can use a closure pattern to filter graph elements based on additional + data --- for example, filtering on edge data attached to the graph: + + >>> G[3][4]["cross_me"] = False + >>> def filter_edge(n1, n2): + ... return G[n1][n2].get("cross_me", True) + ... + >>> view = nx.subgraph_view(G, filter_edge=filter_edge) + >>> view.edges() + EdgeView([(0, 1), (1, 2), (2, 3), (4, 5)]) + + >>> view = nx.subgraph_view(G, filter_node=filter_node, filter_edge=filter_edge,) + >>> view.nodes() + NodeView((0, 1, 2, 3, 4)) + >>> view.edges() + EdgeView([(0, 1), (1, 2), (2, 3)]) + """ + newG = nx.freeze(G.__class__()) + newG._NODE_OK = filter_node + newG._EDGE_OK = filter_edge + + # create view by assigning attributes from G + newG._graph = G + newG.graph = G.graph + + newG._node = FilterAtlas(G._node, filter_node) + if G.is_multigraph(): + Adj = FilterMultiAdjacency + + def reverse_edge(u, v, k=None): + return filter_edge(v, u, k) + + else: + Adj = FilterAdjacency + + def reverse_edge(u, v, k=None): + return filter_edge(v, u) + + if G.is_directed(): + newG._succ = Adj(G._succ, filter_node, filter_edge) + newG._pred = Adj(G._pred, filter_node, reverse_edge) + # newG._adj is synced with _succ + else: + newG._adj = Adj(G._adj, filter_node, filter_edge) + return newG + + +@not_implemented_for("undirected") +def reverse_view(G): + """View of `G` with edge directions reversed + + `reverse_view` returns a read-only view of the input graph where + edge directions are reversed. + + Identical to digraph.reverse(copy=False) + + Parameters + ---------- + G : networkx.DiGraph + + Returns + ------- + graph : networkx.DiGraph + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_edge(1, 2) + >>> G.add_edge(2, 3) + >>> G.edges() + OutEdgeView([(1, 2), (2, 3)]) + + >>> view = nx.reverse_view(G) + >>> view.edges() + OutEdgeView([(2, 1), (3, 2)]) + """ + newG = generic_graph_view(G) + newG._succ, newG._pred = G._pred, G._succ + # newG._adj is synced with _succ + return newG diff --git a/phivenv/Lib/site-packages/networkx/classes/multidigraph.py b/phivenv/Lib/site-packages/networkx/classes/multidigraph.py new file mode 100644 index 0000000000000000000000000000000000000000..fb8b1a35c401ae9371fd0eec7a3d437b9b917269 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/multidigraph.py @@ -0,0 +1,963 @@ +"""Base class for MultiDiGraph.""" +from copy import deepcopy +from functools import cached_property + +import networkx as nx +from networkx import convert +from networkx.classes.coreviews import MultiAdjacencyView +from networkx.classes.digraph import DiGraph +from networkx.classes.multigraph import MultiGraph +from networkx.classes.reportviews import ( + DiMultiDegreeView, + InMultiDegreeView, + InMultiEdgeView, + OutMultiDegreeView, + OutMultiEdgeView, +) +from networkx.exception import NetworkXError + +__all__ = ["MultiDiGraph"] + + +class MultiDiGraph(MultiGraph, DiGraph): + """A directed graph class that can store multiedges. + + Multiedges are multiple edges between two nodes. Each edge + can hold optional data or attributes. + + A MultiDiGraph holds directed edges. Self loops are allowed. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes. By convention `None` is not used as a node. + + Edges are represented as links between nodes with optional + key/value attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy + sparse matrix, or PyGraphviz graph. + + multigraph_input : bool or None (default None) + Note: Only used when `incoming_graph_data` is a dict. + If True, `incoming_graph_data` is assumed to be a + dict-of-dict-of-dict-of-dict structure keyed by + node to neighbor to edge keys to edge data for multi-edges. + A NetworkXError is raised if this is not the case. + If False, :func:`to_networkx_graph` is used to try to determine + the dict's graph data structure as either a dict-of-dict-of-dict + keyed by node to neighbor to edge data, or a dict-of-iterable + keyed by node to neighbors. + If None, the treatment for True is tried, but if it fails, + the treatment for False is tried. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + Graph + DiGraph + MultiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.MultiDiGraph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> key = G.add_edge(1, 2) + + a list of edges, + + >>> keys = G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> keys = G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. If an edge already exists, an additional + edge is created and stored using a key to identify the edge. + By default the key is the lowest unused integer. + + >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))]) + >>> G[4] + AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}) + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.MultiDiGraph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time="5pm") + >>> G.add_nodes_from([3], time="2pm") + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]["room"] = 714 + >>> del G.nodes[1]["room"] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> key = G.add_edge(1, 2, weight=4.7) + >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red") + >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) + >>> G[1][2][0]["weight"] = 4.7 + >>> G.edges[1, 2, 0]["weight"] = 4 + + Warning: we protect the graph data structure by making `G.edges[1, + 2, 0]` a read-only dict-like structure. However, you can assign to + attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets + to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4` + (for multigraphs the edge key is required: `MG.edges[u, v, + key][name] = value`). + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n < 3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes + AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are available as an adjacency-view `G.adj` object or via + the method `G.adjacency()`. + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, keydict in nbrsdict.items(): + ... for key, eattr in keydict.items(): + ... if "weight" in eattr: + ... # Do something useful with the edges + ... pass + + But the edges() method is often more convenient: + + >>> for u, v, keys, weight in G.edges(data="weight", keys=True): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using methods and object-attributes. + Reporting usually provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes`, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information + and holds edge_key dicts keyed by neighbor. The edge_key dict holds + each edge_attr dict keyed by edge key. The inner dict + (edge_attr_dict) represents the edge data and holds edge attribute + values keyed by attribute names. + + Each of these four dicts in the dict-of-dict-of-dict-of-dict + structure can be replaced by a user defined dict-like object. + In general, the dict-like features should be maintained but + extra features can be added. To replace one of the dicts create + a new graph class by changing the class(!) variable holding the + factory for that dict-like structure. The variable names are + node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, + adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory + and graph_attr_dict_factory. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, (default: dict) + Factory function to be used to create the adjacency list + dict which holds multiedge key dicts keyed by neighbor. + It should require no arguments and return a dict-like object. + + edge_key_dict_factory : function, (default: dict) + Factory function to be used to create the edge key dict + which holds edge data keyed by edge key. + It should require no arguments and return a dict-like object. + + edge_attr_dict_factory : function, (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherited without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + **Subclassing Example** + + Create a low memory graph class that effectively disallows edge + attributes by using a single attribute dict for all edges. + This reduces the memory used, but you lose edge attributes. + + >>> class ThinGraph(nx.Graph): + ... all_edge_dict = {"weight": 1} + ... + ... def single_edge_dict(self): + ... return self.all_edge_dict + ... + ... edge_attr_dict_factory = single_edge_dict + >>> G = ThinGraph() + >>> G.add_edge(2, 1) + >>> G[2][1] + {'weight': 1} + >>> G.add_edge(2, 2) + >>> G[2][1] is G[2][2] + True + """ + + # node_dict_factory = dict # already assigned in Graph + # adjlist_outer_dict_factory = dict + # adjlist_inner_dict_factory = dict + edge_key_dict_factory = dict + # edge_attr_dict_factory = dict + + def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph + Data to initialize graph. If incoming_graph_data=None (default) + an empty graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a 2D NumPy array, a + SciPy sparse array, or a PyGraphviz graph. + + multigraph_input : bool or None (default None) + Note: Only used when `incoming_graph_data` is a dict. + If True, `incoming_graph_data` is assumed to be a + dict-of-dict-of-dict-of-dict structure keyed by + node to neighbor to edge keys to edge data for multi-edges. + A NetworkXError is raised if this is not the case. + If False, :func:`to_networkx_graph` is used to try to determine + the dict's graph data structure as either a dict-of-dict-of-dict + keyed by node to neighbor to edge data, or a dict-of-iterable + keyed by node to neighbors. + If None, the treatment for True is tried, but if it fails, + the treatment for False is tried. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G = nx.Graph(name="my graph") + >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.Graph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.Graph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + # multigraph_input can be None/True/False. So check "is not False" + if isinstance(incoming_graph_data, dict) and multigraph_input is not False: + DiGraph.__init__(self) + try: + convert.from_dict_of_dicts( + incoming_graph_data, create_using=self, multigraph_input=True + ) + self.graph.update(attr) + except Exception as err: + if multigraph_input is True: + raise nx.NetworkXError( + f"converting multigraph_input raised:\n{type(err)}: {err}" + ) + DiGraph.__init__(self, incoming_graph_data, **attr) + else: + DiGraph.__init__(self, incoming_graph_data, **attr) + + @cached_property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return MultiAdjacencyView(self._succ) + + @cached_property + def succ(self): + """Graph adjacency object holding the successors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.succ` is identical to `G.adj`. + """ + return MultiAdjacencyView(self._succ) + + @cached_property + def pred(self): + """Graph adjacency object holding the predecessors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + """ + return MultiAdjacencyView(self._pred) + + def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u_for_edge, v_for_edge : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + key : hashable identifier, optional (default=lowest unused integer) + Used to distinguish multiedges between a pair of nodes. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + Returns + ------- + The edge key assigned to the edge. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + To replace/update edge data, use the optional key argument + to identify a unique edge. Otherwise a new edge will be created. + + NetworkX algorithms designed for weighted graphs cannot use + multigraphs directly because it is not clear how to handle + multiedge weights. Convert to Graph using edge attribute + 'weight' to enable weighted graph algorithms. + + Default keys are generated using the method `new_edge_key()`. + This method can be overridden by subclassing the base class and + providing a custom `new_edge_key()` method. + + Examples + -------- + The following all add the edge e=(1, 2) to graph G: + + >>> G = nx.MultiDiGraph() + >>> e = (1, 2) + >>> key = G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + 1 + >>> G.add_edges_from([(1, 2)]) # add edges from iterable container + [2] + + Associate data to edges using keywords: + + >>> key = G.add_edge(1, 2, weight=3) + >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 + >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> ekey = G.add_edge(1, 2) + >>> G[1][2][0].update({0: 5}) + >>> G.edges[1, 2, 0].update({0: 5}) + """ + u, v = u_for_edge, v_for_edge + # add nodes + if u not in self._succ: + if u is None: + raise ValueError("None cannot be a node") + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + if v is None: + raise ValueError("None cannot be a node") + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + if key is None: + key = self.new_edge_key(u, v) + if v in self._succ[u]: + keydict = self._adj[u][v] + datadict = keydict.get(key, self.edge_attr_dict_factory()) + datadict.update(attr) + keydict[key] = datadict + else: + # selfloops work this way without special treatment + datadict = self.edge_attr_dict_factory() + datadict.update(attr) + keydict = self.edge_key_dict_factory() + keydict[key] = datadict + self._succ[u][v] = keydict + self._pred[v][u] = keydict + return key + + def remove_edge(self, u, v, key=None): + """Remove an edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove an edge between nodes u and v. + key : hashable identifier, optional (default=None) + Used to distinguish multiple edges between a pair of nodes. + If None, remove a single edge between u and v. If there are + multiple edges, removes the last edge added in terms of + insertion order. + + Raises + ------ + NetworkXError + If there is not an edge between u and v, or + if there is no edge with the specified key. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + + For multiple edges + + >>> G = nx.MultiDiGraph() + >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned + [0, 1, 2] + + When ``key=None`` (the default), edges are removed in the opposite + order that they were added: + + >>> G.remove_edge(1, 2) + >>> G.edges(keys=True) + OutMultiEdgeView([(1, 2, 0), (1, 2, 1)]) + + For edges with keys + + >>> G = nx.MultiDiGraph() + >>> G.add_edge(1, 2, key="first") + 'first' + >>> G.add_edge(1, 2, key="second") + 'second' + >>> G.remove_edge(1, 2, key="first") + >>> G.edges(keys=True) + OutMultiEdgeView([(1, 2, 'second')]) + + """ + try: + d = self._adj[u][v] + except KeyError as err: + raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err + # remove the edge with specified data + if key is None: + d.popitem() + else: + try: + del d[key] + except KeyError as err: + msg = f"The edge {u}-{v} with key {key} is not in the graph." + raise NetworkXError(msg) from err + if len(d) == 0: + # remove the key entries if last edge + del self._succ[u][v] + del self._pred[v][u] + + @cached_property + def edges(self): + """An OutMultiEdgeView of the Graph as G.edges or G.edges(). + + edges(self, nbunch=None, data=False, keys=False, default=None) + + The OutMultiEdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, ``G.edges[u, v, k]['color']`` provides the value of the color + attribute for the edge from ``u`` to ``v`` with key ``k`` while + ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):`` + iterates through all the edges yielding the color attribute with + default `'red'` if no color attribute exists. + + Edges are returned as tuples with optional data and keys + in the order (node, neighbor, key, data). If ``keys=True`` is not + provided, the tuples will just be (node, neighbor, data), but + multiple tuples with the same node and neighbor will be + generated when multiple edges between two nodes exist. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges from these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + keys : bool, optional (default=False) + If True, return edge keys with each edge, creating (u, v, k, + d) tuples when data is also requested (the default) and (u, + v, k) tuples when data is not requested. + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : OutMultiEdgeView + A view of edge attributes, usually it iterates over (u, v) + (u, v, k) or (u, v, k, d) tuples of edges, but can also be + used for attribute lookup as ``edges[u, v, k]['foo']``. + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2]) + >>> key = G.add_edge(2, 3, weight=5) + >>> key2 = G.add_edge(1, 2) # second edge between these nodes + >>> [e for e in G.edges()] + [(0, 1), (1, 2), (1, 2), (2, 3)] + >>> list(G.edges(data=True)) # default data is {} (empty dict) + [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})] + >>> list(G.edges(data="weight", default=1)) + [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)] + >>> list(G.edges(keys=True)) # default keys are integers + [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)] + >>> list(G.edges(data=True, keys=True)) + [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})] + >>> list(G.edges(data="weight", default=1, keys=True)) + [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)] + >>> list(G.edges([0, 2])) + [(0, 1), (2, 3)] + >>> list(G.edges(0)) + [(0, 1)] + >>> list(G.edges(1)) + [(1, 2), (1, 2)] + + See Also + -------- + in_edges, out_edges + """ + return OutMultiEdgeView(self) + + # alias out_edges to edges + @cached_property + def out_edges(self): + return OutMultiEdgeView(self) + + out_edges.__doc__ = edges.__doc__ + + @cached_property + def in_edges(self): + """A view of the in edges of the graph as G.in_edges or G.in_edges(). + + in_edges(self, nbunch=None, data=False, keys=False, default=None) + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + keys : bool, optional (default=False) + If True, return edge keys with each edge, creating 3-tuples + (u, v, k) or with data, 4-tuples (u, v, k, d). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + in_edges : InMultiEdgeView or InMultiEdgeDataView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, k) or (u, v, k, d) tuples of edges, but can also be + used for attribute lookup as `edges[u, v, k]['foo']`. + + See Also + -------- + edges + """ + return InMultiEdgeView(self) + + @cached_property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + DiMultiDegreeView or int + If multiple nodes are requested (the default), returns a `DiMultiDegreeView` + mapping nodes to their degree. + If a single node is requested, returns the degree of the node as an integer. + + See Also + -------- + out_degree, in_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1, 2])) + [(0, 1), (1, 2), (2, 2)] + >>> G.add_edge(0, 1) # parallel edge + 1 + >>> list(G.degree([0, 1, 2])) # parallel edges are counted + [(0, 2), (1, 3), (2, 2)] + + """ + return DiMultiDegreeView(self) + + @cached_property + def in_degree(self): + """A DegreeView for (node, in_degree) or in_degree for single node. + + The node in-degree is the number of edges pointing into the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, in-degree). + + See Also + -------- + degree, out_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.in_degree(0) # node 0 with degree 0 + 0 + >>> list(G.in_degree([0, 1, 2])) + [(0, 0), (1, 1), (2, 1)] + >>> G.add_edge(0, 1) # parallel edge + 1 + >>> list(G.in_degree([0, 1, 2])) # parallel edges counted + [(0, 0), (1, 2), (2, 1)] + + """ + return InMultiDegreeView(self) + + @cached_property + def out_degree(self): + """Returns an iterator for (node, out-degree) or out-degree for single node. + + out_degree(self, nbunch=None, weight=None) + + The node out-degree is the number of edges pointing out of the node. + This function returns the out-degree for a single node or an iterator + for a bunch of nodes or if nothing is passed as argument. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights. + + Returns + ------- + If a single node is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, out-degree). + + See Also + -------- + degree, in_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.out_degree(0) # node 0 with degree 1 + 1 + >>> list(G.out_degree([0, 1, 2])) + [(0, 1), (1, 1), (2, 1)] + >>> G.add_edge(0, 1) # parallel edge + 1 + >>> list(G.out_degree([0, 1, 2])) # counts parallel edges + [(0, 2), (1, 1), (2, 1)] + + """ + return OutMultiDegreeView(self) + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return True + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return True + + def to_undirected(self, reciprocal=False, as_view=False): + """Returns an undirected representation of the digraph. + + Parameters + ---------- + reciprocal : bool (optional) + If True only keep edges that appear in both directions + in the original digraph. + as_view : bool (optional, default=False) + If True return an undirected view of the original directed graph. + + Returns + ------- + G : MultiGraph + An undirected graph with the same name and nodes and + with edge (u, v, data) if either (u, v, data) or (v, u, data) + is in the digraph. If both edges exist in digraph and + their edge data is different, only one edge is created + with an arbitrary choice of which edge data to use. + You must check and correct for this manually if desired. + + See Also + -------- + MultiGraph, copy, add_edge, add_edges_from + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar D=MultiDiGraph(G) which + returns a shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed MultiDiGraph to use dict-like + objects in the data structure, those changes do not transfer + to the MultiGraph created by this method. + + Examples + -------- + >>> G = nx.path_graph(2) # or MultiGraph, etc + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + if reciprocal is True: + G.add_edges_from( + (u, v, key, deepcopy(data)) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, data in keydict.items() + if v in self._pred[u] and key in self._pred[u][v] + ) + else: + G.add_edges_from( + (u, v, key, deepcopy(data)) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, data in keydict.items() + ) + return G + + def reverse(self, copy=True): + """Returns the reverse of the graph. + + The reverse is a graph with the same nodes and edges + but with the directions of the edges reversed. + + Parameters + ---------- + copy : bool optional (default=True) + If True, return a new DiGraph holding the reversed edges. + If False, the reverse graph is created using a view of + the original graph. + """ + if copy: + H = self.__class__() + H.graph.update(deepcopy(self.graph)) + H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + H.add_edges_from( + (v, u, k, deepcopy(d)) + for u, v, k, d in self.edges(keys=True, data=True) + ) + return H + return nx.reverse_view(self) diff --git a/phivenv/Lib/site-packages/networkx/classes/multigraph.py b/phivenv/Lib/site-packages/networkx/classes/multigraph.py new file mode 100644 index 0000000000000000000000000000000000000000..bbf2ce241360d1108f98be8cb14e7598388fc472 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/multigraph.py @@ -0,0 +1,1278 @@ +"""Base class for MultiGraph.""" +from copy import deepcopy +from functools import cached_property + +import networkx as nx +from networkx import NetworkXError, convert +from networkx.classes.coreviews import MultiAdjacencyView +from networkx.classes.graph import Graph +from networkx.classes.reportviews import MultiDegreeView, MultiEdgeView + +__all__ = ["MultiGraph"] + + +class MultiGraph(Graph): + """ + An undirected graph class that can store multiedges. + + Multiedges are multiple edges between two nodes. Each edge + can hold optional data or attributes. + + A MultiGraph holds undirected edges. Self loops are allowed. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes. By convention `None` is not used as a node. + + Edges are represented as links between nodes with optional + key/value attributes, in a MultiGraph each edge has a key to + distinguish between multiple edges that have the same source and + destination nodes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, + SciPy sparse array, or PyGraphviz graph. + + multigraph_input : bool or None (default None) + Note: Only used when `incoming_graph_data` is a dict. + If True, `incoming_graph_data` is assumed to be a + dict-of-dict-of-dict-of-dict structure keyed by + node to neighbor to edge keys to edge data for multi-edges. + A NetworkXError is raised if this is not the case. + If False, :func:`to_networkx_graph` is used to try to determine + the dict's graph data structure as either a dict-of-dict-of-dict + keyed by node to neighbor to edge data, or a dict-of-iterable + keyed by node to neighbors. + If None, the treatment for True is tried, but if it fails, + the treatment for False is tried. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + Graph + DiGraph + MultiDiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.MultiGraph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> key = G.add_edge(1, 2) + + a list of edges, + + >>> keys = G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> keys = G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. If an edge already exists, an additional + edge is created and stored using a key to identify the edge. + By default the key is the lowest unused integer. + + >>> keys = G.add_edges_from([(4, 5, {"route": 28}), (4, 5, {"route": 37})]) + >>> G[4] + AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}}) + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.MultiGraph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time="5pm") + >>> G.add_nodes_from([3], time="2pm") + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]["room"] = 714 + >>> del G.nodes[1]["room"] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> key = G.add_edge(1, 2, weight=4.7) + >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red") + >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) + >>> G[1][2][0]["weight"] = 4.7 + >>> G.edges[1, 2, 0]["weight"] = 4 + + Warning: we protect the graph data structure by making `G.edges[1, + 2, 0]` a read-only dict-like structure. However, you can assign to + attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets + to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`. + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n < 3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes + AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`. + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, keydict in nbrsdict.items(): + ... for key, eattr in keydict.items(): + ... if "weight" in eattr: + ... # Do something useful with the edges + ... pass + + But the edges() method is often more convenient: + + >>> for u, v, keys, weight in G.edges(data="weight", keys=True): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using methods and object-attributes. + Reporting usually provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes`, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information + and holds edge_key dicts keyed by neighbor. The edge_key dict holds + each edge_attr dict keyed by edge key. The inner dict + (edge_attr_dict) represents the edge data and holds edge attribute + values keyed by attribute names. + + Each of these four dicts in the dict-of-dict-of-dict-of-dict + structure can be replaced by a user defined dict-like object. + In general, the dict-like features should be maintained but + extra features can be added. To replace one of the dicts create + a new graph class by changing the class(!) variable holding the + factory for that dict-like structure. The variable names are + node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, + adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory + and graph_attr_dict_factory. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, (default: dict) + Factory function to be used to create the adjacency list + dict which holds multiedge key dicts keyed by neighbor. + It should require no arguments and return a dict-like object. + + edge_key_dict_factory : function, (default: dict) + Factory function to be used to create the edge key dict + which holds edge data keyed by edge key. + It should require no arguments and return a dict-like object. + + edge_attr_dict_factory : function, (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherited without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + **Subclassing Example** + + Create a low memory graph class that effectively disallows edge + attributes by using a single attribute dict for all edges. + This reduces the memory used, but you lose edge attributes. + + >>> class ThinGraph(nx.Graph): + ... all_edge_dict = {"weight": 1} + ... + ... def single_edge_dict(self): + ... return self.all_edge_dict + ... + ... edge_attr_dict_factory = single_edge_dict + >>> G = ThinGraph() + >>> G.add_edge(2, 1) + >>> G[2][1] + {'weight': 1} + >>> G.add_edge(2, 2) + >>> G[2][1] is G[2][2] + True + """ + + # node_dict_factory = dict # already assigned in Graph + # adjlist_outer_dict_factory = dict + # adjlist_inner_dict_factory = dict + edge_key_dict_factory = dict + # edge_attr_dict_factory = dict + + def to_directed_class(self): + """Returns the class to use for empty directed copies. + + If you subclass the base classes, use this to designate + what directed class to use for `to_directed()` copies. + """ + return nx.MultiDiGraph + + def to_undirected_class(self): + """Returns the class to use for empty undirected copies. + + If you subclass the base classes, use this to designate + what directed class to use for `to_directed()` copies. + """ + return MultiGraph + + def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph + Data to initialize graph. If incoming_graph_data=None (default) + an empty graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a 2D NumPy array, a + SciPy sparse array, or a PyGraphviz graph. + + multigraph_input : bool or None (default None) + Note: Only used when `incoming_graph_data` is a dict. + If True, `incoming_graph_data` is assumed to be a + dict-of-dict-of-dict-of-dict structure keyed by + node to neighbor to edge keys to edge data for multi-edges. + A NetworkXError is raised if this is not the case. + If False, :func:`to_networkx_graph` is used to try to determine + the dict's graph data structure as either a dict-of-dict-of-dict + keyed by node to neighbor to edge data, or a dict-of-iterable + keyed by node to neighbors. + If None, the treatment for True is tried, but if it fails, + the treatment for False is tried. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.MultiGraph() + >>> G = nx.MultiGraph(name="my graph") + >>> e = [(1, 2), (1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.MultiGraph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.MultiGraph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + # multigraph_input can be None/True/False. So check "is not False" + if isinstance(incoming_graph_data, dict) and multigraph_input is not False: + Graph.__init__(self) + try: + convert.from_dict_of_dicts( + incoming_graph_data, create_using=self, multigraph_input=True + ) + self.graph.update(attr) + except Exception as err: + if multigraph_input is True: + raise nx.NetworkXError( + f"converting multigraph_input raised:\n{type(err)}: {err}" + ) + Graph.__init__(self, incoming_graph_data, **attr) + else: + Graph.__init__(self, incoming_graph_data, **attr) + + @cached_property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-data-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, edgesdict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + + Examples + -------- + >>> e = [(1, 2), (1, 2), (1, 3), (3, 4)] # list of edges + >>> G = nx.MultiGraph(e) + >>> G.edges[1, 2, 0]["weight"] = 3 + >>> result = set() + >>> for edgekey, data in G[1][2].items(): + ... result.add(data.get('weight', 1)) + >>> result + {1, 3} + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return MultiAdjacencyView(self._adj) + + def new_edge_key(self, u, v): + """Returns an unused key for edges between nodes `u` and `v`. + + The nodes `u` and `v` do not need to be already in the graph. + + Notes + ----- + In the standard MultiGraph class the new key is the number of existing + edges between `u` and `v` (increased if necessary to ensure unused). + The first edge will have key 0, then 1, etc. If an edge is removed + further new_edge_keys may not be in this order. + + Parameters + ---------- + u, v : nodes + + Returns + ------- + key : int + """ + try: + keydict = self._adj[u][v] + except KeyError: + return 0 + key = len(keydict) + while key in keydict: + key += 1 + return key + + def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u_for_edge, v_for_edge : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + key : hashable identifier, optional (default=lowest unused integer) + Used to distinguish multiedges between a pair of nodes. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + Returns + ------- + The edge key assigned to the edge. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + To replace/update edge data, use the optional key argument + to identify a unique edge. Otherwise a new edge will be created. + + NetworkX algorithms designed for weighted graphs cannot use + multigraphs directly because it is not clear how to handle + multiedge weights. Convert to Graph using edge attribute + 'weight' to enable weighted graph algorithms. + + Default keys are generated using the method `new_edge_key()`. + This method can be overridden by subclassing the base class and + providing a custom `new_edge_key()` method. + + Examples + -------- + The following each add an additional edge e=(1, 2) to graph G: + + >>> G = nx.MultiGraph() + >>> e = (1, 2) + >>> ekey = G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + 1 + >>> G.add_edges_from([(1, 2)]) # add edges from iterable container + [2] + + Associate data to edges using keywords: + + >>> ekey = G.add_edge(1, 2, weight=3) + >>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 + >>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> ekey = G.add_edge(1, 2) + >>> G[1][2][0].update({0: 5}) + >>> G.edges[1, 2, 0].update({0: 5}) + """ + u, v = u_for_edge, v_for_edge + # add nodes + if u not in self._adj: + if u is None: + raise ValueError("None cannot be a node") + self._adj[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._adj: + if v is None: + raise ValueError("None cannot be a node") + self._adj[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + if key is None: + key = self.new_edge_key(u, v) + if v in self._adj[u]: + keydict = self._adj[u][v] + datadict = keydict.get(key, self.edge_attr_dict_factory()) + datadict.update(attr) + keydict[key] = datadict + else: + # selfloops work this way without special treatment + datadict = self.edge_attr_dict_factory() + datadict.update(attr) + keydict = self.edge_key_dict_factory() + keydict[key] = datadict + self._adj[u][v] = keydict + self._adj[v][u] = keydict + return key + + def add_edges_from(self, ebunch_to_add, **attr): + """Add all the edges in ebunch_to_add. + + Parameters + ---------- + ebunch_to_add : container of edges + Each edge given in the container will be added to the + graph. The edges can be: + + - 2-tuples (u, v) or + - 3-tuples (u, v, d) for an edge data dict d, or + - 3-tuples (u, v, k) for not iterable key k, or + - 4-tuples (u, v, k, d) for an edge with data and key k + + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + Returns + ------- + A list of edge keys assigned to the edges in `ebunch`. + + See Also + -------- + add_edge : add a single edge + add_weighted_edges_from : convenient way to add weighted edges + + Notes + ----- + Adding the same edge twice has no effect but any edge data + will be updated when each duplicate edge is added. + + Edge attributes specified in an ebunch take precedence over + attributes specified via keyword arguments. + + Default keys are generated using the method ``new_edge_key()``. + This method can be overridden by subclassing the base class and + providing a custom ``new_edge_key()`` method. + + When adding edges from an iterator over the graph you are changing, + a `RuntimeError` can be raised with message: + `RuntimeError: dictionary changed size during iteration`. This + happens when the graph's underlying dictionary is modified during + iteration. To avoid this error, evaluate the iterator into a separate + object, e.g. by using `list(iterator_of_edges)`, and pass this + object to `G.add_edges_from`. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples + >>> e = zip(range(0, 3), range(1, 4)) + >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 + + Associate data to edges + + >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) + >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") + + Evaluate an iterator over a graph if using it to modify the same graph + + >>> G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)]) + >>> # Grow graph by one new node, adding edges to all existing nodes. + >>> # wrong way - will raise RuntimeError + >>> # G.add_edges_from(((5, n) for n in G.nodes)) + >>> # right way - note that there will be no self-edge for node 5 + >>> assigned_keys = G.add_edges_from(list((5, n) for n in G.nodes)) + """ + keylist = [] + for e in ebunch_to_add: + ne = len(e) + if ne == 4: + u, v, key, dd = e + elif ne == 3: + u, v, dd = e + key = None + elif ne == 2: + u, v = e + dd = {} + key = None + else: + msg = f"Edge tuple {e} must be a 2-tuple, 3-tuple or 4-tuple." + raise NetworkXError(msg) + ddd = {} + ddd.update(attr) + try: + ddd.update(dd) + except (TypeError, ValueError): + if ne != 3: + raise + key = dd # ne == 3 with 3rd value not dict, must be a key + key = self.add_edge(u, v, key) + self[u][v][key].update(ddd) + keylist.append(key) + return keylist + + def remove_edge(self, u, v, key=None): + """Remove an edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove an edge between nodes u and v. + key : hashable identifier, optional (default=None) + Used to distinguish multiple edges between a pair of nodes. + If None, remove a single edge between u and v. If there are + multiple edges, removes the last edge added in terms of + insertion order. + + Raises + ------ + NetworkXError + If there is not an edge between u and v, or + if there is no edge with the specified key. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.MultiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + + For multiple edges + + >>> G = nx.MultiGraph() # or MultiDiGraph, etc + >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned + [0, 1, 2] + + When ``key=None`` (the default), edges are removed in the opposite + order that they were added: + + >>> G.remove_edge(1, 2) + >>> G.edges(keys=True) + MultiEdgeView([(1, 2, 0), (1, 2, 1)]) + >>> G.remove_edge(2, 1) # edges are not directed + >>> G.edges(keys=True) + MultiEdgeView([(1, 2, 0)]) + + For edges with keys + + >>> G = nx.MultiGraph() + >>> G.add_edge(1, 2, key="first") + 'first' + >>> G.add_edge(1, 2, key="second") + 'second' + >>> G.remove_edge(1, 2, key="first") + >>> G.edges(keys=True) + MultiEdgeView([(1, 2, 'second')]) + + """ + try: + d = self._adj[u][v] + except KeyError as err: + raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err + # remove the edge with specified data + if key is None: + d.popitem() + else: + try: + del d[key] + except KeyError as err: + msg = f"The edge {u}-{v} with key {key} is not in the graph." + raise NetworkXError(msg) from err + if len(d) == 0: + # remove the key entries if last edge + del self._adj[u][v] + if u != v: # check for selfloop + del self._adj[v][u] + + def remove_edges_from(self, ebunch): + """Remove all edges specified in ebunch. + + Parameters + ---------- + ebunch: list or container of edge tuples + Each edge given in the list or container will be removed + from the graph. The edges can be: + + - 2-tuples (u, v) A single edge between u and v is removed. + - 3-tuples (u, v, key) The edge identified by key is removed. + - 4-tuples (u, v, key, data) where data is ignored. + + See Also + -------- + remove_edge : remove a single edge + + Notes + ----- + Will fail silently if an edge in ebunch is not in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> ebunch = [(1, 2), (2, 3)] + >>> G.remove_edges_from(ebunch) + + Removing multiple copies of edges + + >>> G = nx.MultiGraph() + >>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)]) + >>> G.remove_edges_from([(1, 2), (2, 1)]) # edges aren't directed + >>> list(G.edges()) + [(1, 2)] + >>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy + >>> list(G.edges) # now empty graph + [] + + When the edge is a 2-tuple ``(u, v)`` but there are multiple edges between + u and v in the graph, the most recent edge (in terms of insertion + order) is removed. + + >>> G = nx.MultiGraph() + >>> for key in ("x", "y", "a"): + ... k = G.add_edge(0, 1, key=key) + >>> G.edges(keys=True) + MultiEdgeView([(0, 1, 'x'), (0, 1, 'y'), (0, 1, 'a')]) + >>> G.remove_edges_from([(0, 1)]) + >>> G.edges(keys=True) + MultiEdgeView([(0, 1, 'x'), (0, 1, 'y')]) + + """ + for e in ebunch: + try: + self.remove_edge(*e[:3]) + except NetworkXError: + pass + + def has_edge(self, u, v, key=None): + """Returns True if the graph has an edge between nodes u and v. + + This is the same as `v in G[u] or key in G[u][v]` + without KeyError exceptions. + + Parameters + ---------- + u, v : nodes + Nodes can be, for example, strings or numbers. + + key : hashable identifier, optional (default=None) + If specified return True only if the edge with + key is found. + + Returns + ------- + edge_ind : bool + True if edge is in the graph, False otherwise. + + Examples + -------- + Can be called either using two nodes u, v, an edge tuple (u, v), + or an edge tuple (u, v, key). + + >>> G = nx.MultiGraph() # or MultiDiGraph + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.has_edge(0, 1) # using two nodes + True + >>> e = (0, 1) + >>> G.has_edge(*e) # e is a 2-tuple (u, v) + True + >>> G.add_edge(0, 1, key="a") + 'a' + >>> G.has_edge(0, 1, key="a") # specify key + True + >>> G.has_edge(1, 0, key="a") # edges aren't directed + True + >>> e = (0, 1, "a") + >>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a') + True + + The following syntax are equivalent: + + >>> G.has_edge(0, 1) + True + >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G + True + >>> 0 in G[1] # other order; also gives :exc:`KeyError` if 0 not in G + True + + """ + try: + if key is None: + return v in self._adj[u] + else: + return key in self._adj[u][v] + except KeyError: + return False + + @cached_property + def edges(self): + """Returns an iterator over the edges. + + edges(self, nbunch=None, data=False, keys=False, default=None) + + The MultiEdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, ``G.edges[u, v, k]['color']`` provides the value of the color + attribute for the edge from ``u`` to ``v`` with key ``k`` while + ``for (u, v, k, c) in G.edges(data='color', keys=True, default="red"):`` + iterates through all the edges yielding the color attribute with + default `'red'` if no color attribute exists. + + Edges are returned as tuples with optional data and keys + in the order (node, neighbor, key, data). If ``keys=True`` is not + provided, the tuples will just be (node, neighbor, data), but + multiple tuples with the same node and neighbor will be generated + when multiple edges exist between two nodes. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges from these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + keys : bool, optional (default=False) + If True, return edge keys with each edge, creating (u, v, k) + tuples or (u, v, k, d) tuples if data is also requested. + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : MultiEdgeView + A view of edge attributes, usually it iterates over (u, v) + (u, v, k) or (u, v, k, d) tuples of edges, but can also be + used for attribute lookup as ``edges[u, v, k]['foo']``. + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.MultiGraph() + >>> nx.add_path(G, [0, 1, 2]) + >>> key = G.add_edge(2, 3, weight=5) + >>> key2 = G.add_edge(2, 1, weight=2) # multi-edge + >>> [e for e in G.edges()] + [(0, 1), (1, 2), (1, 2), (2, 3)] + >>> G.edges.data() # default data is {} (empty dict) + MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (1, 2, {'weight': 2}), (2, 3, {'weight': 5})]) + >>> G.edges.data("weight", default=1) + MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (1, 2, 2), (2, 3, 5)]) + >>> G.edges(keys=True) # default keys are integers + MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]) + >>> G.edges.data(keys=True) + MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {'weight': 2}), (2, 3, 0, {'weight': 5})]) + >>> G.edges.data("weight", default=1, keys=True) + MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 2), (2, 3, 0, 5)]) + >>> G.edges([0, 3]) # Note ordering of tuples from listed sources + MultiEdgeDataView([(0, 1), (3, 2)]) + >>> G.edges([0, 3, 2, 1]) # Note ordering of tuples + MultiEdgeDataView([(0, 1), (3, 2), (2, 1), (2, 1)]) + >>> G.edges(0) + MultiEdgeDataView([(0, 1)]) + """ + return MultiEdgeView(self) + + def get_edge_data(self, u, v, key=None, default=None): + """Returns the attribute dictionary associated with edge (u, v, + key). + + If a key is not provided, returns a dictionary mapping edge keys + to attribute dictionaries for each edge between u and v. + + This is identical to `G[u][v][key]` except the default is returned + instead of an exception is the edge doesn't exist. + + Parameters + ---------- + u, v : nodes + + default : any Python object (default=None) + Value to return if the specific edge (u, v, key) is not + found, OR if there are no edges between u and v and no key + is specified. + + key : hashable identifier, optional (default=None) + Return data only for the edge with specified key, as an + attribute dictionary (rather than a dictionary mapping keys + to attribute dictionaries). + + Returns + ------- + edge_dict : dictionary + The edge attribute dictionary, OR a dictionary mapping edge + keys to attribute dictionaries for each of those edges if no + specific key is provided (even if there's only one edge + between u and v). + + Examples + -------- + >>> G = nx.MultiGraph() # or MultiDiGraph + >>> key = G.add_edge(0, 1, key="a", weight=7) + >>> G[0][1]["a"] # key='a' + {'weight': 7} + >>> G.edges[0, 1, "a"] # key='a' + {'weight': 7} + + Warning: we protect the graph data structure by making + `G.edges` and `G[1][2]` read-only dict-like structures. + However, you can assign values to attributes in e.g. + `G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional + bracket as shown next. You need to specify all edge info + to assign to the edge data associated with an edge. + + >>> G[0][1]["a"]["weight"] = 10 + >>> G.edges[0, 1, "a"]["weight"] = 10 + >>> G[0][1]["a"]["weight"] + 10 + >>> G.edges[1, 0, "a"]["weight"] + 10 + + >>> G = nx.MultiGraph() # or MultiDiGraph + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.edges[0, 1, 0]["weight"] = 5 + >>> G.get_edge_data(0, 1) + {0: {'weight': 5}} + >>> e = (0, 1) + >>> G.get_edge_data(*e) # tuple form + {0: {'weight': 5}} + >>> G.get_edge_data(3, 0) # edge not in graph, returns None + >>> G.get_edge_data(3, 0, default=0) # edge not in graph, return default + 0 + >>> G.get_edge_data(1, 0, 0) # specific key gives back + {'weight': 5} + """ + try: + if key is None: + return self._adj[u][v] + else: + return self._adj[u][v][key] + except KeyError: + return default + + @cached_property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + MultiDegreeView or int + If multiple nodes are requested (the default), returns a `MultiDegreeView` + mapping nodes to their degree. + If a single node is requested, returns the degree of the node as an integer. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1])) + [(0, 1), (1, 2)] + + """ + return MultiDegreeView(self) + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return True + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return False + + def copy(self, as_view=False): + """Returns a copy of the graph. + + The copy method by default returns an independent shallow copy + of the graph and attributes. That is, if an attribute is a + container, that container is shared by the original an the copy. + Use Python's `copy.deepcopy` for new containers. + + If `as_view` is True then a view is returned instead of a copy. + + Notes + ----- + All copies reproduce the graph structure, but data attributes + may be handled in different ways. There are four types of copies + of a graph that people might want. + + Deepcopy -- A "deepcopy" copies the graph structure as well as + all data attributes and any objects they might contain. + The entire graph object is new so that changes in the copy + do not affect the original object. (see Python's copy.deepcopy) + + Data Reference (Shallow) -- For a shallow copy the graph structure + is copied but the edge, node and graph attribute dicts are + references to those in the original graph. This saves + time and memory but could cause confusion if you change an attribute + in one graph and it changes the attribute in the other. + NetworkX does not provide this level of shallow copy. + + Independent Shallow -- This copy creates new independent attribute + dicts and then does a shallow copy of the attributes. That is, any + attributes that are containers are shared between the new graph + and the original. This is exactly what `dict.copy()` provides. + You can obtain this style copy using: + + >>> G = nx.path_graph(5) + >>> H = G.copy() + >>> H = G.copy(as_view=False) + >>> H = nx.Graph(G) + >>> H = G.__class__(G) + + Fresh Data -- For fresh data, the graph structure is copied while + new empty data attribute dicts are created. The resulting graph + is independent of the original and it has no edge, node or graph + attributes. Fresh copies are not enabled. Instead use: + + >>> H = G.__class__() + >>> H.add_nodes_from(G) + >>> H.add_edges_from(G.edges) + + View -- Inspired by dict-views, graph-views act like read-only + versions of the original graph, providing a copy of the original + structure without requiring any memory for copying the information. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Parameters + ---------- + as_view : bool, optional (default=False) + If True, the returned graph-view provides a read-only view + of the original graph without actually copying any data. + + Returns + ------- + G : Graph + A copy of the graph. + + See Also + -------- + to_directed: return a directed copy of the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> H = G.copy() + + """ + if as_view is True: + return nx.graphviews.generic_graph_view(self) + G = self.__class__() + G.graph.update(self.graph) + G.add_nodes_from((n, d.copy()) for n, d in self._node.items()) + G.add_edges_from( + (u, v, key, datadict.copy()) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + return G + + def to_directed(self, as_view=False): + """Returns a directed representation of the graph. + + Returns + ------- + G : MultiDiGraph + A directed graph with the same name, same nodes, and with + each edge (u, v, k, data) replaced by two directed edges + (u, v, k, data) and (v, u, k, data). + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar D=MultiDiGraph(G) which + returns a shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed MultiGraph to use dict-like objects + in the data structure, those changes do not transfer to the + MultiDiGraph created by this method. + + Examples + -------- + >>> G = nx.MultiGraph() + >>> G.add_edge(0, 1) + 0 + >>> G.add_edge(0, 1) + 1 + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)] + + If already directed, return a (deep) copy + + >>> G = nx.MultiDiGraph() + >>> G.add_edge(0, 1) + 0 + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1, 0)] + """ + graph_class = self.to_directed_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + G.add_edges_from( + (u, v, key, deepcopy(datadict)) + for u, nbrs in self.adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + return G + + def to_undirected(self, as_view=False): + """Returns an undirected copy of the graph. + + Returns + ------- + G : Graph/MultiGraph + A deepcopy of the graph. + + See Also + -------- + copy, add_edge, add_edges_from + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar `G = nx.MultiGraph(D)` + which returns a shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/3/library/copy.html. + + Warning: If you have subclassed MultiGraph to use dict-like + objects in the data structure, those changes do not transfer + to the MultiGraph created by this method. + + Examples + -------- + >>> G = nx.MultiGraph([(0, 1), (0, 1), (1, 2)]) + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (2, 1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1, 0), (0, 1, 1), (1, 2, 0)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + G.add_edges_from( + (u, v, key, deepcopy(datadict)) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + return G + + def number_of_edges(self, u=None, v=None): + """Returns the number of edges between two nodes. + + Parameters + ---------- + u, v : nodes, optional (Default=all edges) + If u and v are specified, return the number of edges between + u and v. Otherwise return the total number of all edges. + + Returns + ------- + nedges : int + The number of edges in the graph. If nodes `u` and `v` are + specified return the number of edges between those nodes. If + the graph is directed, this only returns the number of edges + from `u` to `v`. + + See Also + -------- + size + + Examples + -------- + For undirected multigraphs, this method counts the total number + of edges in the graph:: + + >>> G = nx.MultiGraph() + >>> G.add_edges_from([(0, 1), (0, 1), (1, 2)]) + [0, 1, 0] + >>> G.number_of_edges() + 3 + + If you specify two nodes, this counts the total number of edges + joining the two nodes:: + + >>> G.number_of_edges(0, 1) + 2 + + For directed multigraphs, this method can count the total number + of directed edges from `u` to `v`:: + + >>> G = nx.MultiDiGraph() + >>> G.add_edges_from([(0, 1), (0, 1), (1, 0)]) + [0, 1, 0] + >>> G.number_of_edges(0, 1) + 2 + >>> G.number_of_edges(1, 0) + 1 + + """ + if u is None: + return self.size() + try: + edgedata = self._adj[u][v] + except KeyError: + return 0 # no such edge + return len(edgedata) diff --git a/phivenv/Lib/site-packages/networkx/classes/reportviews.py b/phivenv/Lib/site-packages/networkx/classes/reportviews.py new file mode 100644 index 0000000000000000000000000000000000000000..59a16243f9863f6b8981b6b2758348370d0a2b6e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/reportviews.py @@ -0,0 +1,1431 @@ +""" +View Classes provide node, edge and degree "views" of a graph. + +Views for nodes, edges and degree are provided for all base graph classes. +A view means a read-only object that is quick to create, automatically +updated when the graph changes, and provides basic access like `n in V`, +`for n in V`, `V[n]` and sometimes set operations. + +The views are read-only iterable containers that are updated as the +graph is updated. As with dicts, the graph should not be updated +while iterating through the view. Views can be iterated multiple times. + +Edge and Node views also allow data attribute lookup. +The resulting attribute dict is writable as `G.edges[3, 4]['color']='red'` +Degree views allow lookup of degree values for single nodes. +Weighted degree is supported with the `weight` argument. + +NodeView +======== + + `V = G.nodes` (or `V = G.nodes()`) allows `len(V)`, `n in V`, set + operations e.g. "G.nodes & H.nodes", and `dd = G.nodes[n]`, where + `dd` is the node data dict. Iteration is over the nodes by default. + +NodeDataView +============ + + To iterate over (node, data) pairs, use arguments to `G.nodes()` + to create a DataView e.g. `DV = G.nodes(data='color', default='red')`. + The DataView iterates as `for n, color in DV` and allows + `(n, 'red') in DV`. Using `DV = G.nodes(data=True)`, the DataViews + use the full datadict in writeable form also allowing contain testing as + `(n, {'color': 'red'}) in VD`. DataViews allow set operations when + data attributes are hashable. + +DegreeView +========== + + `V = G.degree` allows iteration over (node, degree) pairs as well + as lookup: `deg=V[n]`. There are many flavors of DegreeView + for In/Out/Directed/Multi. For Directed Graphs, `G.degree` + counts both in and out going edges. `G.out_degree` and + `G.in_degree` count only specific directions. + Weighted degree using edge data attributes is provide via + `V = G.degree(weight='attr_name')` where any string with the + attribute name can be used. `weight=None` is the default. + No set operations are implemented for degrees, use NodeView. + + The argument `nbunch` restricts iteration to nodes in nbunch. + The DegreeView can still lookup any node even if nbunch is specified. + +EdgeView +======== + + `V = G.edges` or `V = G.edges()` allows iteration over edges as well as + `e in V`, set operations and edge data lookup `dd = G.edges[2, 3]`. + Iteration is over 2-tuples `(u, v)` for Graph/DiGraph. For multigraphs + edges 3-tuples `(u, v, key)` are the default but 2-tuples can be obtained + via `V = G.edges(keys=False)`. + + Set operations for directed graphs treat the edges as a set of 2-tuples. + For undirected graphs, 2-tuples are not a unique representation of edges. + So long as the set being compared to contains unique representations + of its edges, the set operations will act as expected. If the other + set contains both `(0, 1)` and `(1, 0)` however, the result of set + operations may contain both representations of the same edge. + +EdgeDataView +============ + + Edge data can be reported using an EdgeDataView typically created + by calling an EdgeView: `DV = G.edges(data='weight', default=1)`. + The EdgeDataView allows iteration over edge tuples, membership checking + but no set operations. + + Iteration depends on `data` and `default` and for multigraph `keys` + If `data is False` (the default) then iterate over 2-tuples `(u, v)`. + If `data is True` iterate over 3-tuples `(u, v, datadict)`. + Otherwise iterate over `(u, v, datadict.get(data, default))`. + For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` + to create 3-tuples and 4-tuples. + + The argument `nbunch` restricts edges to those incident to nodes in nbunch. +""" +from collections.abc import Mapping, Set + +import networkx as nx + +__all__ = [ + "NodeView", + "NodeDataView", + "EdgeView", + "OutEdgeView", + "InEdgeView", + "EdgeDataView", + "OutEdgeDataView", + "InEdgeDataView", + "MultiEdgeView", + "OutMultiEdgeView", + "InMultiEdgeView", + "MultiEdgeDataView", + "OutMultiEdgeDataView", + "InMultiEdgeDataView", + "DegreeView", + "DiDegreeView", + "InDegreeView", + "OutDegreeView", + "MultiDegreeView", + "DiMultiDegreeView", + "InMultiDegreeView", + "OutMultiDegreeView", +] + + +# NodeViews +class NodeView(Mapping, Set): + """A NodeView class to act as G.nodes for a NetworkX Graph + + Set operations act on the nodes without considering data. + Iteration is over nodes. Node data can be looked up like a dict. + Use NodeDataView to iterate over node data or to specify a data + attribute for lookup. NodeDataView is created by calling the NodeView. + + Parameters + ---------- + graph : NetworkX graph-like class + + Examples + -------- + >>> G = nx.path_graph(3) + >>> NV = G.nodes() + >>> 2 in NV + True + >>> for n in NV: + ... print(n) + 0 + 1 + 2 + >>> assert NV & {1, 2, 3} == {1, 2} + + >>> G.add_node(2, color="blue") + >>> NV[2] + {'color': 'blue'} + >>> G.add_node(8, color="red") + >>> NDV = G.nodes(data=True) + >>> (2, NV[2]) in NDV + True + >>> for n, dd in NDV: + ... print((n, dd.get("color", "aqua"))) + (0, 'aqua') + (1, 'aqua') + (2, 'blue') + (8, 'red') + >>> NDV[2] == NV[2] + True + + >>> NVdata = G.nodes(data="color", default="aqua") + >>> (2, NVdata[2]) in NVdata + True + >>> for n, dd in NVdata: + ... print((n, dd)) + (0, 'aqua') + (1, 'aqua') + (2, 'blue') + (8, 'red') + >>> NVdata[2] == NV[2] # NVdata gets 'color', NV gets datadict + False + """ + + __slots__ = ("_nodes",) + + def __getstate__(self): + return {"_nodes": self._nodes} + + def __setstate__(self, state): + self._nodes = state["_nodes"] + + def __init__(self, graph): + self._nodes = graph._node + + # Mapping methods + def __len__(self): + return len(self._nodes) + + def __iter__(self): + return iter(self._nodes) + + def __getitem__(self, n): + if isinstance(n, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.nodes)[{n.start}:{n.stop}:{n.step}]" + ) + return self._nodes[n] + + # Set methods + def __contains__(self, n): + return n in self._nodes + + @classmethod + def _from_iterable(cls, it): + return set(it) + + # DataView method + def __call__(self, data=False, default=None): + if data is False: + return self + return NodeDataView(self._nodes, data, default) + + def data(self, data=True, default=None): + """ + Return a read-only view of node data. + + Parameters + ---------- + data : bool or node data key, default=True + If ``data=True`` (the default), return a `NodeDataView` object that + maps each node to *all* of its attributes. `data` may also be an + arbitrary key, in which case the `NodeDataView` maps each node to + the value for the keyed attribute. In this case, if a node does + not have the `data` attribute, the `default` value is used. + default : object, default=None + The value used when a node does not have a specific attribute. + + Returns + ------- + NodeDataView + The layout of the returned NodeDataView depends on the value of the + `data` parameter. + + Notes + ----- + If ``data=False``, returns a `NodeView` object without data. + + See Also + -------- + NodeDataView + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_nodes_from([ + ... (0, {"color": "red", "weight": 10}), + ... (1, {"color": "blue"}), + ... (2, {"color": "yellow", "weight": 2}) + ... ]) + + Accessing node data with ``data=True`` (the default) returns a + NodeDataView mapping each node to all of its attributes: + + >>> G.nodes.data() + NodeDataView({0: {'color': 'red', 'weight': 10}, 1: {'color': 'blue'}, 2: {'color': 'yellow', 'weight': 2}}) + + If `data` represents a key in the node attribute dict, a NodeDataView mapping + the nodes to the value for that specific key is returned: + + >>> G.nodes.data("color") + NodeDataView({0: 'red', 1: 'blue', 2: 'yellow'}, data='color') + + If a specific key is not found in an attribute dict, the value specified + by `default` is returned: + + >>> G.nodes.data("weight", default=-999) + NodeDataView({0: 10, 1: -999, 2: 2}, data='weight') + + Note that there is no check that the `data` key is in any of the + node attribute dictionaries: + + >>> G.nodes.data("height") + NodeDataView({0: None, 1: None, 2: None}, data='height') + """ + if data is False: + return self + return NodeDataView(self._nodes, data, default) + + def __str__(self): + return str(list(self)) + + def __repr__(self): + return f"{self.__class__.__name__}({tuple(self)})" + + +class NodeDataView(Set): + """A DataView class for nodes of a NetworkX Graph + + The main use for this class is to iterate through node-data pairs. + The data can be the entire data-dictionary for each node, or it + can be a specific attribute (with default) for each node. + Set operations are enabled with NodeDataView, but don't work in + cases where the data is not hashable. Use with caution. + Typically, set operations on nodes use NodeView, not NodeDataView. + That is, they use `G.nodes` instead of `G.nodes(data='foo')`. + + Parameters + ========== + graph : NetworkX graph-like class + data : bool or string (default=False) + default : object (default=None) + """ + + __slots__ = ("_nodes", "_data", "_default") + + def __getstate__(self): + return {"_nodes": self._nodes, "_data": self._data, "_default": self._default} + + def __setstate__(self, state): + self._nodes = state["_nodes"] + self._data = state["_data"] + self._default = state["_default"] + + def __init__(self, nodedict, data=False, default=None): + self._nodes = nodedict + self._data = data + self._default = default + + @classmethod + def _from_iterable(cls, it): + try: + return set(it) + except TypeError as err: + if "unhashable" in str(err): + msg = " : Could be b/c data=True or your values are unhashable" + raise TypeError(str(err) + msg) from err + raise + + def __len__(self): + return len(self._nodes) + + def __iter__(self): + data = self._data + if data is False: + return iter(self._nodes) + if data is True: + return iter(self._nodes.items()) + return ( + (n, dd[data] if data in dd else self._default) + for n, dd in self._nodes.items() + ) + + def __contains__(self, n): + try: + node_in = n in self._nodes + except TypeError: + n, d = n + return n in self._nodes and self[n] == d + if node_in is True: + return node_in + try: + n, d = n + except (TypeError, ValueError): + return False + return n in self._nodes and self[n] == d + + def __getitem__(self, n): + if isinstance(n, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.nodes.data())[{n.start}:{n.stop}:{n.step}]" + ) + ddict = self._nodes[n] + data = self._data + if data is False or data is True: + return ddict + return ddict[data] if data in ddict else self._default + + def __str__(self): + return str(list(self)) + + def __repr__(self): + name = self.__class__.__name__ + if self._data is False: + return f"{name}({tuple(self)})" + if self._data is True: + return f"{name}({dict(self)})" + return f"{name}({dict(self)}, data={self._data!r})" + + +# DegreeViews +class DiDegreeView: + """A View class for degree of nodes in a NetworkX Graph + + The functionality is like dict.items() with (node, degree) pairs. + Additional functionality includes read-only lookup of node degree, + and calling with optional features nbunch (for only a subset of nodes) + and weight (use edge weights to compute degree). + + Parameters + ========== + graph : NetworkX graph-like class + nbunch : node, container of nodes, or None meaning all nodes (default=None) + weight : bool or string (default=None) + + Notes + ----- + DegreeView can still lookup any node even if nbunch is specified. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> DV = G.degree() + >>> assert DV[2] == 1 + >>> assert sum(deg for n, deg in DV) == 4 + + >>> DVweight = G.degree(weight="span") + >>> G.add_edge(1, 2, span=34) + >>> DVweight[2] + 34 + >>> DVweight[0] # default edge weight is 1 + 1 + >>> sum(span for n, span in DVweight) # sum weighted degrees + 70 + + >>> DVnbunch = G.degree(nbunch=(1, 2)) + >>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only + """ + + def __init__(self, G, nbunch=None, weight=None): + self._graph = G + self._succ = G._succ if hasattr(G, "_succ") else G._adj + self._pred = G._pred if hasattr(G, "_pred") else G._adj + self._nodes = self._succ if nbunch is None else list(G.nbunch_iter(nbunch)) + self._weight = weight + + def __call__(self, nbunch=None, weight=None): + if nbunch is None: + if weight == self._weight: + return self + return self.__class__(self._graph, None, weight) + try: + if nbunch in self._nodes: + if weight == self._weight: + return self[nbunch] + return self.__class__(self._graph, None, weight)[nbunch] + except TypeError: + pass + return self.__class__(self._graph, nbunch, weight) + + def __getitem__(self, n): + weight = self._weight + succs = self._succ[n] + preds = self._pred[n] + if weight is None: + return len(succs) + len(preds) + return sum(dd.get(weight, 1) for dd in succs.values()) + sum( + dd.get(weight, 1) for dd in preds.values() + ) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + succs = self._succ[n] + preds = self._pred[n] + yield (n, len(succs) + len(preds)) + else: + for n in self._nodes: + succs = self._succ[n] + preds = self._pred[n] + deg = sum(dd.get(weight, 1) for dd in succs.values()) + sum( + dd.get(weight, 1) for dd in preds.values() + ) + yield (n, deg) + + def __len__(self): + return len(self._nodes) + + def __str__(self): + return str(list(self)) + + def __repr__(self): + return f"{self.__class__.__name__}({dict(self)})" + + +class DegreeView(DiDegreeView): + """A DegreeView class to act as G.degree for a NetworkX Graph + + Typical usage focuses on iteration over `(node, degree)` pairs. + The degree is by default the number of edges incident to the node. + Optional argument `weight` enables weighted degree using the edge + attribute named in the `weight` argument. Reporting and iteration + can also be restricted to a subset of nodes using `nbunch`. + + Additional functionality include node lookup so that `G.degree[n]` + reported the (possibly weighted) degree of node `n`. Calling the + view creates a view with different arguments `nbunch` or `weight`. + + Parameters + ========== + graph : NetworkX graph-like class + nbunch : node, container of nodes, or None meaning all nodes (default=None) + weight : string or None (default=None) + + Notes + ----- + DegreeView can still lookup any node even if nbunch is specified. + + Examples + -------- + >>> G = nx.path_graph(3) + >>> DV = G.degree() + >>> assert DV[2] == 1 + >>> assert G.degree[2] == 1 + >>> assert sum(deg for n, deg in DV) == 4 + + >>> DVweight = G.degree(weight="span") + >>> G.add_edge(1, 2, span=34) + >>> DVweight[2] + 34 + >>> DVweight[0] # default edge weight is 1 + 1 + >>> sum(span for n, span in DVweight) # sum weighted degrees + 70 + + >>> DVnbunch = G.degree(nbunch=(1, 2)) + >>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only + """ + + def __getitem__(self, n): + weight = self._weight + nbrs = self._succ[n] + if weight is None: + return len(nbrs) + (n in nbrs) + return sum(dd.get(weight, 1) for dd in nbrs.values()) + ( + n in nbrs and nbrs[n].get(weight, 1) + ) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + nbrs = self._succ[n] + yield (n, len(nbrs) + (n in nbrs)) + else: + for n in self._nodes: + nbrs = self._succ[n] + deg = sum(dd.get(weight, 1) for dd in nbrs.values()) + ( + n in nbrs and nbrs[n].get(weight, 1) + ) + yield (n, deg) + + +class OutDegreeView(DiDegreeView): + """A DegreeView class to report out_degree for a DiGraph; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + nbrs = self._succ[n] + if self._weight is None: + return len(nbrs) + return sum(dd.get(self._weight, 1) for dd in nbrs.values()) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + succs = self._succ[n] + yield (n, len(succs)) + else: + for n in self._nodes: + succs = self._succ[n] + deg = sum(dd.get(weight, 1) for dd in succs.values()) + yield (n, deg) + + +class InDegreeView(DiDegreeView): + """A DegreeView class to report in_degree for a DiGraph; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + nbrs = self._pred[n] + if weight is None: + return len(nbrs) + return sum(dd.get(weight, 1) for dd in nbrs.values()) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + preds = self._pred[n] + yield (n, len(preds)) + else: + for n in self._nodes: + preds = self._pred[n] + deg = sum(dd.get(weight, 1) for dd in preds.values()) + yield (n, deg) + + +class MultiDegreeView(DiDegreeView): + """A DegreeView class for undirected multigraphs; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + nbrs = self._succ[n] + if weight is None: + return sum(len(keys) for keys in nbrs.values()) + ( + n in nbrs and len(nbrs[n]) + ) + # edge weighted graph - degree is sum of nbr edge weights + deg = sum( + d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() + ) + if n in nbrs: + deg += sum(d.get(weight, 1) for d in nbrs[n].values()) + return deg + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + nbrs = self._succ[n] + deg = sum(len(keys) for keys in nbrs.values()) + ( + n in nbrs and len(nbrs[n]) + ) + yield (n, deg) + else: + for n in self._nodes: + nbrs = self._succ[n] + deg = sum( + d.get(weight, 1) + for key_dict in nbrs.values() + for d in key_dict.values() + ) + if n in nbrs: + deg += sum(d.get(weight, 1) for d in nbrs[n].values()) + yield (n, deg) + + +class DiMultiDegreeView(DiDegreeView): + """A DegreeView class for MultiDiGraph; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + succs = self._succ[n] + preds = self._pred[n] + if weight is None: + return sum(len(keys) for keys in succs.values()) + sum( + len(keys) for keys in preds.values() + ) + # edge weighted graph - degree is sum of nbr edge weights + deg = sum( + d.get(weight, 1) for key_dict in succs.values() for d in key_dict.values() + ) + sum( + d.get(weight, 1) for key_dict in preds.values() for d in key_dict.values() + ) + return deg + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + succs = self._succ[n] + preds = self._pred[n] + deg = sum(len(keys) for keys in succs.values()) + sum( + len(keys) for keys in preds.values() + ) + yield (n, deg) + else: + for n in self._nodes: + succs = self._succ[n] + preds = self._pred[n] + deg = sum( + d.get(weight, 1) + for key_dict in succs.values() + for d in key_dict.values() + ) + sum( + d.get(weight, 1) + for key_dict in preds.values() + for d in key_dict.values() + ) + yield (n, deg) + + +class InMultiDegreeView(DiDegreeView): + """A DegreeView class for inward degree of MultiDiGraph; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + nbrs = self._pred[n] + if weight is None: + return sum(len(data) for data in nbrs.values()) + # edge weighted graph - degree is sum of nbr edge weights + return sum( + d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() + ) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + nbrs = self._pred[n] + deg = sum(len(data) for data in nbrs.values()) + yield (n, deg) + else: + for n in self._nodes: + nbrs = self._pred[n] + deg = sum( + d.get(weight, 1) + for key_dict in nbrs.values() + for d in key_dict.values() + ) + yield (n, deg) + + +class OutMultiDegreeView(DiDegreeView): + """A DegreeView class for outward degree of MultiDiGraph; See DegreeView""" + + def __getitem__(self, n): + weight = self._weight + nbrs = self._succ[n] + if weight is None: + return sum(len(data) for data in nbrs.values()) + # edge weighted graph - degree is sum of nbr edge weights + return sum( + d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() + ) + + def __iter__(self): + weight = self._weight + if weight is None: + for n in self._nodes: + nbrs = self._succ[n] + deg = sum(len(data) for data in nbrs.values()) + yield (n, deg) + else: + for n in self._nodes: + nbrs = self._succ[n] + deg = sum( + d.get(weight, 1) + for key_dict in nbrs.values() + for d in key_dict.values() + ) + yield (n, deg) + + +# EdgeDataViews +class OutEdgeDataView: + """EdgeDataView for outward edges of DiGraph; See EdgeDataView""" + + __slots__ = ( + "_viewer", + "_nbunch", + "_data", + "_default", + "_adjdict", + "_nodes_nbrs", + "_report", + ) + + def __getstate__(self): + return { + "viewer": self._viewer, + "nbunch": self._nbunch, + "data": self._data, + "default": self._default, + } + + def __setstate__(self, state): + self.__init__(**state) + + def __init__(self, viewer, nbunch=None, data=False, *, default=None): + self._viewer = viewer + adjdict = self._adjdict = viewer._adjdict + if nbunch is None: + self._nodes_nbrs = adjdict.items + else: + # dict retains order of nodes but acts like a set + nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch)) + self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch] + self._nbunch = nbunch + self._data = data + self._default = default + # Set _report based on data and default + if data is True: + self._report = lambda n, nbr, dd: (n, nbr, dd) + elif data is False: + self._report = lambda n, nbr, dd: (n, nbr) + else: # data is attribute name + self._report = ( + lambda n, nbr, dd: (n, nbr, dd[data]) + if data in dd + else (n, nbr, default) + ) + + def __len__(self): + return sum(len(nbrs) for n, nbrs in self._nodes_nbrs()) + + def __iter__(self): + return ( + self._report(n, nbr, dd) + for n, nbrs in self._nodes_nbrs() + for nbr, dd in nbrs.items() + ) + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and u not in self._nbunch: + return False # this edge doesn't start in nbunch + try: + ddict = self._adjdict[u][v] + except KeyError: + return False + return e == self._report(u, v, ddict) + + def __str__(self): + return str(list(self)) + + def __repr__(self): + return f"{self.__class__.__name__}({list(self)})" + + +class EdgeDataView(OutEdgeDataView): + """A EdgeDataView class for edges of Graph + + This view is primarily used to iterate over the edges reporting + edges as node-tuples with edge data optionally reported. The + argument `nbunch` allows restriction to edges incident to nodes + in that container/singleton. The default (nbunch=None) + reports all edges. The arguments `data` and `default` control + what edge data is reported. The default `data is False` reports + only node-tuples for each edge. If `data is True` the entire edge + data dict is returned. Otherwise `data` is assumed to hold the name + of the edge attribute to report with default `default` if that + edge attribute is not present. + + Parameters + ---------- + nbunch : container of nodes, node or None (default None) + data : False, True or string (default False) + default : default value (default None) + + Examples + -------- + >>> G = nx.path_graph(3) + >>> G.add_edge(1, 2, foo="bar") + >>> list(G.edges(data="foo", default="biz")) + [(0, 1, 'biz'), (1, 2, 'bar')] + >>> assert (0, 1, "biz") in G.edges(data="foo", default="biz") + """ + + __slots__ = () + + def __len__(self): + return sum(1 for e in self) + + def __iter__(self): + seen = {} + for n, nbrs in self._nodes_nbrs(): + for nbr, dd in nbrs.items(): + if nbr not in seen: + yield self._report(n, nbr, dd) + seen[n] = 1 + del seen + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch: + return False # this edge doesn't start and it doesn't end in nbunch + try: + ddict = self._adjdict[u][v] + except KeyError: + return False + return e == self._report(u, v, ddict) + + +class InEdgeDataView(OutEdgeDataView): + """An EdgeDataView class for outward edges of DiGraph; See EdgeDataView""" + + __slots__ = () + + def __iter__(self): + return ( + self._report(nbr, n, dd) + for n, nbrs in self._nodes_nbrs() + for nbr, dd in nbrs.items() + ) + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and v not in self._nbunch: + return False # this edge doesn't end in nbunch + try: + ddict = self._adjdict[v][u] + except KeyError: + return False + return e == self._report(u, v, ddict) + + +class OutMultiEdgeDataView(OutEdgeDataView): + """An EdgeDataView for outward edges of MultiDiGraph; See EdgeDataView""" + + __slots__ = ("keys",) + + def __getstate__(self): + return { + "viewer": self._viewer, + "nbunch": self._nbunch, + "keys": self.keys, + "data": self._data, + "default": self._default, + } + + def __setstate__(self, state): + self.__init__(**state) + + def __init__(self, viewer, nbunch=None, data=False, *, default=None, keys=False): + self._viewer = viewer + adjdict = self._adjdict = viewer._adjdict + self.keys = keys + if nbunch is None: + self._nodes_nbrs = adjdict.items + else: + # dict retains order of nodes but acts like a set + nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch)) + self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch] + self._nbunch = nbunch + self._data = data + self._default = default + # Set _report based on data and default + if data is True: + if keys is True: + self._report = lambda n, nbr, k, dd: (n, nbr, k, dd) + else: + self._report = lambda n, nbr, k, dd: (n, nbr, dd) + elif data is False: + if keys is True: + self._report = lambda n, nbr, k, dd: (n, nbr, k) + else: + self._report = lambda n, nbr, k, dd: (n, nbr) + else: # data is attribute name + if keys is True: + self._report = ( + lambda n, nbr, k, dd: (n, nbr, k, dd[data]) + if data in dd + else (n, nbr, k, default) + ) + else: + self._report = ( + lambda n, nbr, k, dd: (n, nbr, dd[data]) + if data in dd + else (n, nbr, default) + ) + + def __len__(self): + return sum(1 for e in self) + + def __iter__(self): + return ( + self._report(n, nbr, k, dd) + for n, nbrs in self._nodes_nbrs() + for nbr, kd in nbrs.items() + for k, dd in kd.items() + ) + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and u not in self._nbunch: + return False # this edge doesn't start in nbunch + try: + kdict = self._adjdict[u][v] + except KeyError: + return False + if self.keys is True: + k = e[2] + try: + dd = kdict[k] + except KeyError: + return False + return e == self._report(u, v, k, dd) + return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) + + +class MultiEdgeDataView(OutMultiEdgeDataView): + """An EdgeDataView class for edges of MultiGraph; See EdgeDataView""" + + __slots__ = () + + def __iter__(self): + seen = {} + for n, nbrs in self._nodes_nbrs(): + for nbr, kd in nbrs.items(): + if nbr not in seen: + for k, dd in kd.items(): + yield self._report(n, nbr, k, dd) + seen[n] = 1 + del seen + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch: + return False # this edge doesn't start and doesn't end in nbunch + try: + kdict = self._adjdict[u][v] + except KeyError: + try: + kdict = self._adjdict[v][u] + except KeyError: + return False + if self.keys is True: + k = e[2] + try: + dd = kdict[k] + except KeyError: + return False + return e == self._report(u, v, k, dd) + return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) + + +class InMultiEdgeDataView(OutMultiEdgeDataView): + """An EdgeDataView for inward edges of MultiDiGraph; See EdgeDataView""" + + __slots__ = () + + def __iter__(self): + return ( + self._report(nbr, n, k, dd) + for n, nbrs in self._nodes_nbrs() + for nbr, kd in nbrs.items() + for k, dd in kd.items() + ) + + def __contains__(self, e): + u, v = e[:2] + if self._nbunch is not None and v not in self._nbunch: + return False # this edge doesn't end in nbunch + try: + kdict = self._adjdict[v][u] + except KeyError: + return False + if self.keys is True: + k = e[2] + dd = kdict[k] + return e == self._report(u, v, k, dd) + return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) + + +# EdgeViews have set operations and no data reported +class OutEdgeView(Set, Mapping): + """A EdgeView class for outward edges of a DiGraph""" + + __slots__ = ("_adjdict", "_graph", "_nodes_nbrs") + + def __getstate__(self): + return {"_graph": self._graph, "_adjdict": self._adjdict} + + def __setstate__(self, state): + self._graph = state["_graph"] + self._adjdict = state["_adjdict"] + self._nodes_nbrs = self._adjdict.items + + @classmethod + def _from_iterable(cls, it): + return set(it) + + dataview = OutEdgeDataView + + def __init__(self, G): + self._graph = G + self._adjdict = G._succ if hasattr(G, "succ") else G._adj + self._nodes_nbrs = self._adjdict.items + + # Set methods + def __len__(self): + return sum(len(nbrs) for n, nbrs in self._nodes_nbrs()) + + def __iter__(self): + for n, nbrs in self._nodes_nbrs(): + for nbr in nbrs: + yield (n, nbr) + + def __contains__(self, e): + try: + u, v = e + return v in self._adjdict[u] + except KeyError: + return False + + # Mapping Methods + def __getitem__(self, e): + if isinstance(e, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]" + ) + u, v = e + return self._adjdict[u][v] + + # EdgeDataView methods + def __call__(self, nbunch=None, data=False, *, default=None): + if nbunch is None and data is False: + return self + return self.dataview(self, nbunch, data, default=default) + + def data(self, data=True, default=None, nbunch=None): + """ + Return a read-only view of edge data. + + Parameters + ---------- + data : bool or edge attribute key + If ``data=True``, then the data view maps each edge to a dictionary + containing all of its attributes. If `data` is a key in the edge + dictionary, then the data view maps each edge to its value for + the keyed attribute. In this case, if the edge doesn't have the + attribute, the `default` value is returned. + default : object, default=None + The value used when an edge does not have a specific attribute + nbunch : container of nodes, optional (default=None) + Allows restriction to edges only involving certain nodes. All edges + are considered by default. + + Returns + ------- + dataview + Returns an `EdgeDataView` for undirected Graphs, `OutEdgeDataView` + for DiGraphs, `MultiEdgeDataView` for MultiGraphs and + `OutMultiEdgeDataView` for MultiDiGraphs. + + Notes + ----- + If ``data=False``, returns an `EdgeView` without any edge data. + + See Also + -------- + EdgeDataView + OutEdgeDataView + MultiEdgeDataView + OutMultiEdgeDataView + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([ + ... (0, 1, {"dist": 3, "capacity": 20}), + ... (1, 2, {"dist": 4}), + ... (2, 0, {"dist": 5}) + ... ]) + + Accessing edge data with ``data=True`` (the default) returns an + edge data view object listing each edge with all of its attributes: + + >>> G.edges.data() + EdgeDataView([(0, 1, {'dist': 3, 'capacity': 20}), (0, 2, {'dist': 5}), (1, 2, {'dist': 4})]) + + If `data` represents a key in the edge attribute dict, a dataview listing + each edge with its value for that specific key is returned: + + >>> G.edges.data("dist") + EdgeDataView([(0, 1, 3), (0, 2, 5), (1, 2, 4)]) + + `nbunch` can be used to limit the edges: + + >>> G.edges.data("dist", nbunch=[0]) + EdgeDataView([(0, 1, 3), (0, 2, 5)]) + + If a specific key is not found in an edge attribute dict, the value + specified by `default` is used: + + >>> G.edges.data("capacity") + EdgeDataView([(0, 1, 20), (0, 2, None), (1, 2, None)]) + + Note that there is no check that the `data` key is present in any of + the edge attribute dictionaries: + + >>> G.edges.data("speed") + EdgeDataView([(0, 1, None), (0, 2, None), (1, 2, None)]) + """ + if nbunch is None and data is False: + return self + return self.dataview(self, nbunch, data, default=default) + + # String Methods + def __str__(self): + return str(list(self)) + + def __repr__(self): + return f"{self.__class__.__name__}({list(self)})" + + +class EdgeView(OutEdgeView): + """A EdgeView class for edges of a Graph + + This densely packed View allows iteration over edges, data lookup + like a dict and set operations on edges represented by node-tuples. + In addition, edge data can be controlled by calling this object + possibly creating an EdgeDataView. Typically edges are iterated over + and reported as `(u, v)` node tuples or `(u, v, key)` node/key tuples + for multigraphs. Those edge representations can also be using to + lookup the data dict for any edge. Set operations also are available + where those tuples are the elements of the set. + Calling this object with optional arguments `data`, `default` and `keys` + controls the form of the tuple (see EdgeDataView). Optional argument + `nbunch` allows restriction to edges only involving certain nodes. + + If `data is False` (the default) then iterate over 2-tuples `(u, v)`. + If `data is True` iterate over 3-tuples `(u, v, datadict)`. + Otherwise iterate over `(u, v, datadict.get(data, default))`. + For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` above. + + Parameters + ========== + graph : NetworkX graph-like class + nbunch : (default= all nodes in graph) only report edges with these nodes + keys : (only for MultiGraph. default=False) report edge key in tuple + data : bool or string (default=False) see above + default : object (default=None) + + Examples + ======== + >>> G = nx.path_graph(4) + >>> EV = G.edges() + >>> (2, 3) in EV + True + >>> for u, v in EV: + ... print((u, v)) + (0, 1) + (1, 2) + (2, 3) + >>> assert EV & {(1, 2), (3, 4)} == {(1, 2)} + + >>> EVdata = G.edges(data="color", default="aqua") + >>> G.add_edge(2, 3, color="blue") + >>> assert (2, 3, "blue") in EVdata + >>> for u, v, c in EVdata: + ... print(f"({u}, {v}) has color: {c}") + (0, 1) has color: aqua + (1, 2) has color: aqua + (2, 3) has color: blue + + >>> EVnbunch = G.edges(nbunch=2) + >>> assert (2, 3) in EVnbunch + >>> assert (0, 1) not in EVnbunch + >>> for u, v in EVnbunch: + ... assert u == 2 or v == 2 + + >>> MG = nx.path_graph(4, create_using=nx.MultiGraph) + >>> EVmulti = MG.edges(keys=True) + >>> (2, 3, 0) in EVmulti + True + >>> (2, 3) in EVmulti # 2-tuples work even when keys is True + True + >>> key = MG.add_edge(2, 3) + >>> for u, v, k in EVmulti: + ... print((u, v, k)) + (0, 1, 0) + (1, 2, 0) + (2, 3, 0) + (2, 3, 1) + """ + + __slots__ = () + + dataview = EdgeDataView + + def __len__(self): + num_nbrs = (len(nbrs) + (n in nbrs) for n, nbrs in self._nodes_nbrs()) + return sum(num_nbrs) // 2 + + def __iter__(self): + seen = {} + for n, nbrs in self._nodes_nbrs(): + for nbr in list(nbrs): + if nbr not in seen: + yield (n, nbr) + seen[n] = 1 + del seen + + def __contains__(self, e): + try: + u, v = e[:2] + return v in self._adjdict[u] or u in self._adjdict[v] + except (KeyError, ValueError): + return False + + +class InEdgeView(OutEdgeView): + """A EdgeView class for inward edges of a DiGraph""" + + __slots__ = () + + def __setstate__(self, state): + self._graph = state["_graph"] + self._adjdict = state["_adjdict"] + self._nodes_nbrs = self._adjdict.items + + dataview = InEdgeDataView + + def __init__(self, G): + self._graph = G + self._adjdict = G._pred if hasattr(G, "pred") else G._adj + self._nodes_nbrs = self._adjdict.items + + def __iter__(self): + for n, nbrs in self._nodes_nbrs(): + for nbr in nbrs: + yield (nbr, n) + + def __contains__(self, e): + try: + u, v = e + return u in self._adjdict[v] + except KeyError: + return False + + def __getitem__(self, e): + if isinstance(e, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]" + ) + u, v = e + return self._adjdict[v][u] + + +class OutMultiEdgeView(OutEdgeView): + """A EdgeView class for outward edges of a MultiDiGraph""" + + __slots__ = () + + dataview = OutMultiEdgeDataView + + def __len__(self): + return sum( + len(kdict) for n, nbrs in self._nodes_nbrs() for nbr, kdict in nbrs.items() + ) + + def __iter__(self): + for n, nbrs in self._nodes_nbrs(): + for nbr, kdict in nbrs.items(): + for key in kdict: + yield (n, nbr, key) + + def __contains__(self, e): + N = len(e) + if N == 3: + u, v, k = e + elif N == 2: + u, v = e + k = 0 + else: + raise ValueError("MultiEdge must have length 2 or 3") + try: + return k in self._adjdict[u][v] + except KeyError: + return False + + def __getitem__(self, e): + if isinstance(e, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]" + ) + u, v, k = e + return self._adjdict[u][v][k] + + def __call__(self, nbunch=None, data=False, *, default=None, keys=False): + if nbunch is None and data is False and keys is True: + return self + return self.dataview(self, nbunch, data, default=default, keys=keys) + + def data(self, data=True, default=None, nbunch=None, keys=False): + if nbunch is None and data is False and keys is True: + return self + return self.dataview(self, nbunch, data, default=default, keys=keys) + + +class MultiEdgeView(OutMultiEdgeView): + """A EdgeView class for edges of a MultiGraph""" + + __slots__ = () + + dataview = MultiEdgeDataView + + def __len__(self): + return sum(1 for e in self) + + def __iter__(self): + seen = {} + for n, nbrs in self._nodes_nbrs(): + for nbr, kd in nbrs.items(): + if nbr not in seen: + for k, dd in kd.items(): + yield (n, nbr, k) + seen[n] = 1 + del seen + + +class InMultiEdgeView(OutMultiEdgeView): + """A EdgeView class for inward edges of a MultiDiGraph""" + + __slots__ = () + + def __setstate__(self, state): + self._graph = state["_graph"] + self._adjdict = state["_adjdict"] + self._nodes_nbrs = self._adjdict.items + + dataview = InMultiEdgeDataView + + def __init__(self, G): + self._graph = G + self._adjdict = G._pred if hasattr(G, "pred") else G._adj + self._nodes_nbrs = self._adjdict.items + + def __iter__(self): + for n, nbrs in self._nodes_nbrs(): + for nbr, kdict in nbrs.items(): + for key in kdict: + yield (nbr, n, key) + + def __contains__(self, e): + N = len(e) + if N == 3: + u, v, k = e + elif N == 2: + u, v = e + k = 0 + else: + raise ValueError("MultiEdge must have length 2 or 3") + try: + return k in self._adjdict[v][u] + except KeyError: + return False + + def __getitem__(self, e): + if isinstance(e, slice): + raise nx.NetworkXError( + f"{type(self).__name__} does not support slicing, " + f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]" + ) + u, v, k = e + return self._adjdict[v][u][k] diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__init__.py b/phivenv/Lib/site-packages/networkx/classes/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d936dddb81f1137999aa8a33a092521436c369a Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..311a1b1612a6a0a23aa440a79b613bf48b6ff0d6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..261eba244aa719f499b7bd531e3f0d7e5d096575 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_backends.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_backends.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe166dd5e0038917a349d601aff4d31c0dfd7104 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_backends.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..92c5fd907cfa63968ca1fc8c1bd6fa186c4c43ae Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2abbb25caa18f7694403d7e4213fb41860d0ea37 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c3bec3c2d825163189392eccc9b5f49ff5b5575 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3ef793fb1b1623b9dcaeb4bd731d834f6e60d02 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..252b5b7b32c6e21b35a1405e735db28bf873b404 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1dba857b0e4e4a11e9c937b42307d75f39303384 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d2b8140567676f74e0af0b16937069757c1cbe38 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dbfaaf189ab4324b620ac10f0c58dff50b1f2d64 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48f30b703007431ab0312793e27af97fbe1d32c1 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d4277fa072199895777e312beb3f545f7d829d46 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d89973c95f721f23017111cbde8f82e88f76515 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..163909111c96143ab5aeedaa263c5c4f4eb84732 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..117df3b2cbab43f5c97167dccbd7e9f19f3b4226 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/dispatch_interface.py b/phivenv/Lib/site-packages/networkx/classes/tests/dispatch_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..5cef755241b312d0a3fa8e4364297dd457653790 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/dispatch_interface.py @@ -0,0 +1,194 @@ +# This file contains utilities for testing the dispatching feature + +# A full test of all dispatchable algorithms is performed by +# modifying the pytest invocation and setting an environment variable +# NETWORKX_TEST_BACKEND=nx-loopback pytest +# This is comprehensive, but only tests the `test_override_dispatch` +# function in networkx.classes.backends. + +# To test the `_dispatch` function directly, several tests scattered throughout +# NetworkX have been augmented to test normal and dispatch mode. +# Searching for `dispatch_interface` should locate the specific tests. + +import networkx as nx +from networkx import DiGraph, Graph, MultiDiGraph, MultiGraph, PlanarEmbedding +from networkx.classes.reportviews import NodeView + + +class LoopbackGraph(Graph): + __networkx_backend__ = "nx-loopback" + + +class LoopbackDiGraph(DiGraph): + __networkx_backend__ = "nx-loopback" + + +class LoopbackMultiGraph(MultiGraph): + __networkx_backend__ = "nx-loopback" + + +class LoopbackMultiDiGraph(MultiDiGraph): + __networkx_backend__ = "nx-loopback" + + +class LoopbackPlanarEmbedding(PlanarEmbedding): + __networkx_backend__ = "nx-loopback" + + +def convert(graph): + if isinstance(graph, PlanarEmbedding): + return LoopbackPlanarEmbedding(graph) + if isinstance(graph, MultiDiGraph): + return LoopbackMultiDiGraph(graph) + if isinstance(graph, MultiGraph): + return LoopbackMultiGraph(graph) + if isinstance(graph, DiGraph): + return LoopbackDiGraph(graph) + if isinstance(graph, Graph): + return LoopbackGraph(graph) + raise TypeError(f"Unsupported type of graph: {type(graph)}") + + +class LoopbackDispatcher: + def __getattr__(self, item): + try: + return nx.utils.backends._registered_algorithms[item].orig_func + except KeyError: + raise AttributeError(item) from None + + @staticmethod + def convert_from_nx( + graph, + *, + edge_attrs=None, + node_attrs=None, + preserve_edge_attrs=None, + preserve_node_attrs=None, + preserve_graph_attrs=None, + name=None, + graph_name=None, + ): + if name in { + # Raise if input graph changes + "lexicographical_topological_sort", + "topological_generations", + "topological_sort", + # Sensitive tests (iteration order matters) + "dfs_labeled_edges", + }: + return graph + if isinstance(graph, NodeView): + # Convert to a Graph with only nodes (no edges) + new_graph = Graph() + new_graph.add_nodes_from(graph.items()) + graph = new_graph + G = LoopbackGraph() + elif not isinstance(graph, Graph): + raise TypeError( + f"Bad type for graph argument {graph_name} in {name}: {type(graph)}" + ) + elif graph.__class__ in {Graph, LoopbackGraph}: + G = LoopbackGraph() + elif graph.__class__ in {DiGraph, LoopbackDiGraph}: + G = LoopbackDiGraph() + elif graph.__class__ in {MultiGraph, LoopbackMultiGraph}: + G = LoopbackMultiGraph() + elif graph.__class__ in {MultiDiGraph, LoopbackMultiDiGraph}: + G = LoopbackMultiDiGraph() + elif graph.__class__ in {PlanarEmbedding, LoopbackPlanarEmbedding}: + G = LoopbackDiGraph() # or LoopbackPlanarEmbedding + else: + # It would be nice to be able to convert _AntiGraph to a regular Graph + # nx.algorithms.approximation.kcomponents._AntiGraph + # nx.algorithms.tree.branchings.MultiDiGraph_EdgeKey + # nx.classes.tests.test_multidigraph.MultiDiGraphSubClass + # nx.classes.tests.test_multigraph.MultiGraphSubClass + G = graph.__class__() + + if preserve_graph_attrs: + G.graph.update(graph.graph) + + if preserve_node_attrs: + G.add_nodes_from(graph.nodes(data=True)) + elif node_attrs: + G.add_nodes_from( + ( + node, + { + k: datadict.get(k, default) + for k, default in node_attrs.items() + if default is not None or k in datadict + }, + ) + for node, datadict in graph.nodes(data=True) + ) + else: + G.add_nodes_from(graph) + + if graph.is_multigraph(): + if preserve_edge_attrs: + G.add_edges_from( + (u, v, key, datadict) + for u, nbrs in graph._adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + elif edge_attrs: + G.add_edges_from( + ( + u, + v, + key, + { + k: datadict.get(k, default) + for k, default in edge_attrs.items() + if default is not None or k in datadict + }, + ) + for u, nbrs in graph._adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + else: + G.add_edges_from( + (u, v, key, {}) + for u, nbrs in graph._adj.items() + for v, keydict in nbrs.items() + for key, datadict in keydict.items() + ) + elif preserve_edge_attrs: + G.add_edges_from(graph.edges(data=True)) + elif edge_attrs: + G.add_edges_from( + ( + u, + v, + { + k: datadict.get(k, default) + for k, default in edge_attrs.items() + if default is not None or k in datadict + }, + ) + for u, v, datadict in graph.edges(data=True) + ) + else: + G.add_edges_from(graph.edges) + return G + + @staticmethod + def convert_to_nx(obj, *, name=None): + return obj + + @staticmethod + def on_start_tests(items): + # Verify that items can be xfailed + for item in items: + assert hasattr(item, "add_marker") + + def can_run(self, name, args, kwargs): + # It is unnecessary to define this function if algorithms are fully supported. + # We include it for illustration purposes. + return hasattr(self, name) + + +dispatcher = LoopbackDispatcher() diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/historical_tests.py b/phivenv/Lib/site-packages/networkx/classes/tests/historical_tests.py new file mode 100644 index 0000000000000000000000000000000000000000..68089ba203eecb16d887bfb7934b38cb5b971a46 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/historical_tests.py @@ -0,0 +1,474 @@ +"""Original NetworkX graph tests""" +import pytest + +import networkx as nx +from networkx import convert_node_labels_to_integers as cnlti +from networkx.utils import edges_equal, nodes_equal + + +class HistoricalTests: + @classmethod + def setup_class(cls): + cls.null = nx.null_graph() + cls.P1 = cnlti(nx.path_graph(1), first_label=1) + cls.P3 = cnlti(nx.path_graph(3), first_label=1) + cls.P10 = cnlti(nx.path_graph(10), first_label=1) + cls.K1 = cnlti(nx.complete_graph(1), first_label=1) + cls.K3 = cnlti(nx.complete_graph(3), first_label=1) + cls.K4 = cnlti(nx.complete_graph(4), first_label=1) + cls.K5 = cnlti(nx.complete_graph(5), first_label=1) + cls.K10 = cnlti(nx.complete_graph(10), first_label=1) + cls.G = nx.Graph + + def test_name(self): + G = self.G(name="test") + assert G.name == "test" + H = self.G() + assert H.name == "" + + # Nodes + + def test_add_remove_node(self): + G = self.G() + G.add_node("A") + assert G.has_node("A") + G.remove_node("A") + assert not G.has_node("A") + + def test_nonhashable_node(self): + # Test if a non-hashable object is in the Graph. A python dict will + # raise a TypeError, but for a Graph class a simple False should be + # returned (see Graph __contains__). If it cannot be a node then it is + # not a node. + G = self.G() + assert not G.has_node(["A"]) + assert not G.has_node({"A": 1}) + + def test_add_nodes_from(self): + G = self.G() + G.add_nodes_from(list("ABCDEFGHIJKL")) + assert G.has_node("L") + G.remove_nodes_from(["H", "I", "J", "K", "L"]) + G.add_nodes_from([1, 2, 3, 4]) + assert sorted(G.nodes(), key=str) == [ + 1, + 2, + 3, + 4, + "A", + "B", + "C", + "D", + "E", + "F", + "G", + ] + # test __iter__ + assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"] + + def test_contains(self): + G = self.G() + G.add_node("A") + assert "A" in G + assert [] not in G # never raise a Key or TypeError in this test + assert {1: 1} not in G + + def test_add_remove(self): + # Test add_node and remove_node acting for various nbunch + G = self.G() + G.add_node("m") + assert G.has_node("m") + G.add_node("m") # no complaints + pytest.raises(nx.NetworkXError, G.remove_node, "j") + G.remove_node("m") + assert list(G) == [] + + def test_nbunch_is_list(self): + G = self.G() + G.add_nodes_from(list("ABCD")) + G.add_nodes_from(self.P3) # add nbunch of nodes (nbunch=Graph) + assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"] + G.remove_nodes_from(self.P3) # remove nbunch of nodes (nbunch=Graph) + assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"] + + def test_nbunch_is_set(self): + G = self.G() + nbunch = set("ABCDEFGHIJKL") + G.add_nodes_from(nbunch) + assert G.has_node("L") + + def test_nbunch_dict(self): + # nbunch is a dict with nodes as keys + G = self.G() + nbunch = set("ABCDEFGHIJKL") + G.add_nodes_from(nbunch) + nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"} + G.remove_nodes_from(nbunch) + assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"] + + def test_nbunch_iterator(self): + G = self.G() + G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"]) + n_iter = self.P3.nodes() + G.add_nodes_from(n_iter) + assert sorted(G.nodes(), key=str) == [ + 1, + 2, + 3, + "A", + "B", + "C", + "D", + "E", + "F", + "G", + "H", + ] + n_iter = self.P3.nodes() # rebuild same iterator + G.remove_nodes_from(n_iter) # remove nbunch of nodes (nbunch=iterator) + assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"] + + def test_nbunch_graph(self): + G = self.G() + G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"]) + nbunch = self.K3 + G.add_nodes_from(nbunch) + assert sorted(G.nodes(), key=str), [ + 1, + 2, + 3, + "A", + "B", + "C", + "D", + "E", + "F", + "G", + "H", + ] + + # Edges + + def test_add_edge(self): + G = self.G() + pytest.raises(TypeError, G.add_edge, "A") + + G.add_edge("A", "B") # testing add_edge() + G.add_edge("A", "B") # should fail silently + assert G.has_edge("A", "B") + assert not G.has_edge("A", "C") + assert G.has_edge(*("A", "B")) + if G.is_directed(): + assert not G.has_edge("B", "A") + else: + # G is undirected, so B->A is an edge + assert G.has_edge("B", "A") + + G.add_edge("A", "C") # test directedness + G.add_edge("C", "A") + G.remove_edge("C", "A") + if G.is_directed(): + assert G.has_edge("A", "C") + else: + assert not G.has_edge("A", "C") + assert not G.has_edge("C", "A") + + def test_self_loop(self): + G = self.G() + G.add_edge("A", "A") # test self loops + assert G.has_edge("A", "A") + G.remove_edge("A", "A") + G.add_edge("X", "X") + assert G.has_node("X") + G.remove_node("X") + G.add_edge("A", "Z") # should add the node silently + assert G.has_node("Z") + + def test_add_edges_from(self): + G = self.G() + G.add_edges_from([("B", "C")]) # test add_edges_from() + assert G.has_edge("B", "C") + if G.is_directed(): + assert not G.has_edge("C", "B") + else: + assert G.has_edge("C", "B") # undirected + + G.add_edges_from([("D", "F"), ("B", "D")]) + assert G.has_edge("D", "F") + assert G.has_edge("B", "D") + + if G.is_directed(): + assert not G.has_edge("D", "B") + else: + assert G.has_edge("D", "B") # undirected + + def test_add_edges_from2(self): + G = self.G() + # after failing silently, should add 2nd edge + G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")]) + assert G.has_edge(*("I", "J")) + assert G.has_edge(*("K", "K")) + assert G.has_edge(*("J", "K")) + if G.is_directed(): + assert not G.has_edge(*("K", "J")) + else: + assert G.has_edge(*("K", "J")) + + def test_add_edges_from3(self): + G = self.G() + G.add_edges_from(zip(list("ACD"), list("CDE"))) + assert G.has_edge("D", "E") + assert not G.has_edge("E", "C") + + def test_remove_edge(self): + G = self.G() + G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"]) + + G.add_edges_from(zip(list("MNOP"), list("NOPM"))) + assert G.has_edge("O", "P") + assert G.has_edge("P", "M") + G.remove_node("P") # tests remove_node()'s handling of edges. + assert not G.has_edge("P", "M") + pytest.raises(TypeError, G.remove_edge, "M") + + G.add_edge("N", "M") + assert G.has_edge("M", "N") + G.remove_edge("M", "N") + assert not G.has_edge("M", "N") + + # self loop fails silently + G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")]) + assert not G.has_edge("H", "I") + assert not G.has_edge("J", "K") + G.remove_edges_from([list("IJ"), list("KK"), list("JK")]) + assert not G.has_edge("I", "J") + G.remove_nodes_from(set("ZEFHIMNO")) + G.add_edge("J", "K") + + def test_edges_nbunch(self): + # Test G.edges(nbunch) with various forms of nbunch + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + # node not in nbunch should be quietly ignored + pytest.raises(nx.NetworkXError, G.edges, 6) + assert list(G.edges("Z")) == [] # iterable non-node + # nbunch can be an empty list + assert list(G.edges([])) == [] + if G.is_directed(): + elist = [("A", "B"), ("A", "C"), ("B", "D")] + else: + elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")] + # nbunch can be a list + assert edges_equal(list(G.edges(["A", "B"])), elist) + # nbunch can be a set + assert edges_equal(G.edges({"A", "B"}), elist) + # nbunch can be a graph + G1 = self.G() + G1.add_nodes_from("AB") + assert edges_equal(G.edges(G1), elist) + # nbunch can be a dict with nodes as keys + ndict = {"A": "thing1", "B": "thing2"} + assert edges_equal(G.edges(ndict), elist) + # nbunch can be a single node + assert edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")]) + assert nodes_equal(sorted(G), ["A", "B", "C", "D"]) + + # nbunch can be nothing (whole graph) + assert edges_equal( + list(G.edges()), + [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")], + ) + + def test_degree(self): + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + assert G.degree("A") == 2 + + # degree of single node in iterable container must return dict + assert list(G.degree(["A"])) == [("A", 2)] + assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3] + assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3] + + def test_degree2(self): + H = self.G() + H.add_edges_from([(1, 24), (1, 2)]) + assert sorted(d for n, d in H.degree([1, 24])) == [1, 2] + + def test_degree_graph(self): + P3 = nx.path_graph(3) + P5 = nx.path_graph(5) + # silently ignore nodes not in P3 + assert dict(d for n, d in P3.degree(["A", "B"])) == {} + # nbunch can be a graph + assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2] + # nbunch can be a graph that's way too big + assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2] + assert list(P5.degree([])) == [] + assert dict(P5.degree([])) == {} + + def test_null(self): + null = nx.null_graph() + assert list(null.degree()) == [] + assert dict(null.degree()) == {} + + def test_order_size(self): + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + assert G.order() == 4 + assert G.size() == 5 + assert G.number_of_edges() == 5 + assert G.number_of_edges("A", "B") == 1 + assert G.number_of_edges("A", "D") == 0 + + def test_copy(self): + G = self.G() + H = G.copy() # copy + assert H.adj == G.adj + assert H.name == G.name + assert H is not G + + def test_subgraph(self): + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + SG = G.subgraph(["A", "B", "D"]) + assert nodes_equal(list(SG), ["A", "B", "D"]) + assert edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")]) + + def test_to_directed(self): + G = self.G() + if not G.is_directed(): + G.add_edges_from( + [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] + ) + + DG = G.to_directed() + assert DG is not G # directed copy or copy + + assert DG.is_directed() + assert DG.name == G.name + assert DG.adj == G.adj + assert sorted(DG.out_edges(list("AB"))) == [ + ("A", "B"), + ("A", "C"), + ("B", "A"), + ("B", "C"), + ("B", "D"), + ] + DG.remove_edge("A", "B") + assert DG.has_edge("B", "A") # this removes B-A but not A-B + assert not DG.has_edge("A", "B") + + def test_to_undirected(self): + G = self.G() + if G.is_directed(): + G.add_edges_from( + [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] + ) + UG = G.to_undirected() # to_undirected + assert UG is not G + assert not UG.is_directed() + assert G.is_directed() + assert UG.name == G.name + assert UG.adj != G.adj + assert sorted(UG.edges(list("AB"))) == [ + ("A", "B"), + ("A", "C"), + ("B", "C"), + ("B", "D"), + ] + assert sorted(UG.edges(["A", "B"])) == [ + ("A", "B"), + ("A", "C"), + ("B", "C"), + ("B", "D"), + ] + UG.remove_edge("A", "B") + assert not UG.has_edge("B", "A") + assert not UG.has_edge("A", "B") + + def test_neighbors(self): + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + G.add_nodes_from("GJK") + assert sorted(G["A"]) == ["B", "C"] + assert sorted(G.neighbors("A")) == ["B", "C"] + assert sorted(G.neighbors("A")) == ["B", "C"] + assert sorted(G.neighbors("G")) == [] + pytest.raises(nx.NetworkXError, G.neighbors, "j") + + def test_iterators(self): + G = self.G() + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) + G.add_nodes_from("GJK") + assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"] + assert edges_equal( + G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] + ) + + assert sorted(v for k, v in G.degree()) == [0, 0, 0, 2, 2, 3, 3] + assert sorted(G.degree(), key=str) == [ + ("A", 2), + ("B", 3), + ("C", 3), + ("D", 2), + ("G", 0), + ("J", 0), + ("K", 0), + ] + assert sorted(G.neighbors("A")) == ["B", "C"] + pytest.raises(nx.NetworkXError, G.neighbors, "X") + G.clear() + assert nx.number_of_nodes(G) == 0 + assert nx.number_of_edges(G) == 0 + + def test_null_subgraph(self): + # Subgraph of a null graph is a null graph + nullgraph = nx.null_graph() + G = nx.null_graph() + H = G.subgraph([]) + assert nx.is_isomorphic(H, nullgraph) + + def test_empty_subgraph(self): + # Subgraph of an empty graph is an empty graph. test 1 + nullgraph = nx.null_graph() + E5 = nx.empty_graph(5) + E10 = nx.empty_graph(10) + H = E10.subgraph([]) + assert nx.is_isomorphic(H, nullgraph) + H = E10.subgraph([1, 2, 3, 4, 5]) + assert nx.is_isomorphic(H, E5) + + def test_complete_subgraph(self): + # Subgraph of a complete graph is a complete graph + K1 = nx.complete_graph(1) + K3 = nx.complete_graph(3) + K5 = nx.complete_graph(5) + H = K5.subgraph([1, 2, 3]) + assert nx.is_isomorphic(H, K3) + + def test_subgraph_nbunch(self): + nullgraph = nx.null_graph() + K1 = nx.complete_graph(1) + K3 = nx.complete_graph(3) + K5 = nx.complete_graph(5) + # Test G.subgraph(nbunch), where nbunch is a single node + H = K5.subgraph(1) + assert nx.is_isomorphic(H, K1) + # Test G.subgraph(nbunch), where nbunch is a set + H = K5.subgraph({1}) + assert nx.is_isomorphic(H, K1) + # Test G.subgraph(nbunch), where nbunch is an iterator + H = K5.subgraph(iter(K3)) + assert nx.is_isomorphic(H, K3) + # Test G.subgraph(nbunch), where nbunch is another graph + H = K5.subgraph(K3) + assert nx.is_isomorphic(H, K3) + H = K5.subgraph([9]) + assert nx.is_isomorphic(H, nullgraph) + + def test_node_tuple_issue(self): + H = self.G() + # Test error handling of tuple as a node + pytest.raises(nx.NetworkXError, H.remove_node, (1, 2)) + H.remove_nodes_from([(1, 2)]) # no error + pytest.raises(nx.NetworkXError, H.neighbors, (1, 2)) diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_backends.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_backends.py new file mode 100644 index 0000000000000000000000000000000000000000..2a3f72a8737bd2a4c3f823ee5c4860ca0535b651 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_backends.py @@ -0,0 +1,76 @@ +import pickle + +import pytest + +import networkx as nx + +sp = pytest.importorskip("scipy") +pytest.importorskip("numpy") + + +def test_dispatch_kwds_vs_args(): + G = nx.path_graph(4) + nx.pagerank(G) + nx.pagerank(G=G) + with pytest.raises(TypeError): + nx.pagerank() + + +def test_pickle(): + for name, func in nx.utils.backends._registered_algorithms.items(): + assert pickle.loads(pickle.dumps(func)) is func + assert pickle.loads(pickle.dumps(nx.inverse_line_graph)) is nx.inverse_line_graph + + +@pytest.mark.skipif( + "not nx._dispatch._automatic_backends " + "or nx._dispatch._automatic_backends[0] != 'nx-loopback'" +) +def test_graph_converter_needs_backend(): + # When testing, `nx.from_scipy_sparse_array` will *always* call the backend + # implementation if it's implemented. If `backend=` isn't given, then the result + # will be converted back to NetworkX via `convert_to_nx`. + # If not testing, then calling `nx.from_scipy_sparse_array` w/o `backend=` will + # always call the original version. `backend=` is *required* to call the backend. + from networkx.classes.tests.dispatch_interface import ( + LoopbackDispatcher, + LoopbackGraph, + ) + + A = sp.sparse.coo_array([[0, 3, 2], [3, 0, 1], [2, 1, 0]]) + + side_effects = [] + + def from_scipy_sparse_array(self, *args, **kwargs): + side_effects.append(1) # Just to prove this was called + return self.convert_from_nx( + self.__getattr__("from_scipy_sparse_array")(*args, **kwargs), + preserve_edge_attrs=None, + preserve_node_attrs=None, + preserve_graph_attrs=None, + ) + + @staticmethod + def convert_to_nx(obj, *, name=None): + if type(obj) is nx.Graph: + return obj + return nx.Graph(obj) + + # *This mutates LoopbackDispatcher!* + orig_convert_to_nx = LoopbackDispatcher.convert_to_nx + LoopbackDispatcher.convert_to_nx = convert_to_nx + LoopbackDispatcher.from_scipy_sparse_array = from_scipy_sparse_array + + try: + assert side_effects == [] + assert type(nx.from_scipy_sparse_array(A)) is nx.Graph + assert side_effects == [1] + assert ( + type(nx.from_scipy_sparse_array(A, backend="nx-loopback")) is LoopbackGraph + ) + assert side_effects == [1, 1] + finally: + LoopbackDispatcher.convert_to_nx = staticmethod(orig_convert_to_nx) + del LoopbackDispatcher.from_scipy_sparse_array + with pytest.raises(ImportError, match="Unable to load"): + nx.from_scipy_sparse_array(A, backend="bad-backend-name") diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_coreviews.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_coreviews.py new file mode 100644 index 0000000000000000000000000000000000000000..24de7f2f1115b864682b261daa256eff0deef696 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_coreviews.py @@ -0,0 +1,362 @@ +import pickle + +import pytest + +import networkx as nx + + +class TestAtlasView: + # node->data + def setup_method(self): + self.d = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}} + self.av = nx.classes.coreviews.AtlasView(self.d) + + def test_pickle(self): + view = self.av + pview = pickle.loads(pickle.dumps(view, -1)) + assert view == pview + assert view.__slots__ == pview.__slots__ + pview = pickle.loads(pickle.dumps(view)) + assert view == pview + assert view.__slots__ == pview.__slots__ + + def test_len(self): + assert len(self.av) == len(self.d) + + def test_iter(self): + assert list(self.av) == list(self.d) + + def test_getitem(self): + assert self.av[1] is self.d[1] + assert self.av[2]["color"] == 1 + pytest.raises(KeyError, self.av.__getitem__, 3) + + def test_copy(self): + avcopy = self.av.copy() + assert avcopy[0] == self.av[0] + assert avcopy == self.av + assert avcopy[0] is not self.av[0] + assert avcopy is not self.av + avcopy[5] = {} + assert avcopy != self.av + + avcopy[0]["ht"] = 4 + assert avcopy[0] != self.av[0] + self.av[0]["ht"] = 4 + assert avcopy[0] == self.av[0] + del self.av[0]["ht"] + + assert not hasattr(self.av, "__setitem__") + + def test_items(self): + assert sorted(self.av.items()) == sorted(self.d.items()) + + def test_str(self): + out = str(self.d) + assert str(self.av) == out + + def test_repr(self): + out = "AtlasView(" + str(self.d) + ")" + assert repr(self.av) == out + + +class TestAdjacencyView: + # node->nbr->data + def setup_method(self): + dd = {"color": "blue", "weight": 1.2} + self.nd = {0: dd, 1: {}, 2: {"color": 1}} + self.adj = {3: self.nd, 0: {3: dd}, 1: {}, 2: {3: {"color": 1}}} + self.adjview = nx.classes.coreviews.AdjacencyView(self.adj) + + def test_pickle(self): + view = self.adjview + pview = pickle.loads(pickle.dumps(view, -1)) + assert view == pview + assert view.__slots__ == pview.__slots__ + + def test_len(self): + assert len(self.adjview) == len(self.adj) + + def test_iter(self): + assert list(self.adjview) == list(self.adj) + + def test_getitem(self): + assert self.adjview[1] is not self.adj[1] + assert self.adjview[3][0] is self.adjview[0][3] + assert self.adjview[2][3]["color"] == 1 + pytest.raises(KeyError, self.adjview.__getitem__, 4) + + def test_copy(self): + avcopy = self.adjview.copy() + assert avcopy[0] == self.adjview[0] + assert avcopy[0] is not self.adjview[0] + + avcopy[2][3]["ht"] = 4 + assert avcopy[2] != self.adjview[2] + self.adjview[2][3]["ht"] = 4 + assert avcopy[2] == self.adjview[2] + del self.adjview[2][3]["ht"] + + assert not hasattr(self.adjview, "__setitem__") + + def test_items(self): + view_items = sorted((n, dict(d)) for n, d in self.adjview.items()) + assert view_items == sorted(self.adj.items()) + + def test_str(self): + out = str(dict(self.adj)) + assert str(self.adjview) == out + + def test_repr(self): + out = self.adjview.__class__.__name__ + "(" + str(self.adj) + ")" + assert repr(self.adjview) == out + + +class TestMultiAdjacencyView(TestAdjacencyView): + # node->nbr->key->data + def setup_method(self): + dd = {"color": "blue", "weight": 1.2} + self.kd = {0: dd, 1: {}, 2: {"color": 1}} + self.nd = {3: self.kd, 0: {3: dd}, 1: {0: {}}, 2: {3: {"color": 1}}} + self.adj = {3: self.nd, 0: {3: {3: dd}}, 1: {}, 2: {3: {8: {}}}} + self.adjview = nx.classes.coreviews.MultiAdjacencyView(self.adj) + + def test_getitem(self): + assert self.adjview[1] is not self.adj[1] + assert self.adjview[3][0][3] is self.adjview[0][3][3] + assert self.adjview[3][2][3]["color"] == 1 + pytest.raises(KeyError, self.adjview.__getitem__, 4) + + def test_copy(self): + avcopy = self.adjview.copy() + assert avcopy[0] == self.adjview[0] + assert avcopy[0] is not self.adjview[0] + + avcopy[2][3][8]["ht"] = 4 + assert avcopy[2] != self.adjview[2] + self.adjview[2][3][8]["ht"] = 4 + assert avcopy[2] == self.adjview[2] + del self.adjview[2][3][8]["ht"] + + assert not hasattr(self.adjview, "__setitem__") + + +class TestUnionAtlas: + # node->data + def setup_method(self): + self.s = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}} + self.p = {3: {"color": "blue", "weight": 1.2}, 4: {}, 2: {"watch": 2}} + self.av = nx.classes.coreviews.UnionAtlas(self.s, self.p) + + def test_pickle(self): + view = self.av + pview = pickle.loads(pickle.dumps(view, -1)) + assert view == pview + assert view.__slots__ == pview.__slots__ + + def test_len(self): + assert len(self.av) == len(self.s.keys() | self.p.keys()) == 5 + + def test_iter(self): + assert set(self.av) == set(self.s) | set(self.p) + + def test_getitem(self): + assert self.av[0] is self.s[0] + assert self.av[4] is self.p[4] + assert self.av[2]["color"] == 1 + pytest.raises(KeyError, self.av[2].__getitem__, "watch") + pytest.raises(KeyError, self.av.__getitem__, 8) + + def test_copy(self): + avcopy = self.av.copy() + assert avcopy[0] == self.av[0] + assert avcopy[0] is not self.av[0] + assert avcopy is not self.av + avcopy[5] = {} + assert avcopy != self.av + + avcopy[0]["ht"] = 4 + assert avcopy[0] != self.av[0] + self.av[0]["ht"] = 4 + assert avcopy[0] == self.av[0] + del self.av[0]["ht"] + + assert not hasattr(self.av, "__setitem__") + + def test_items(self): + expected = dict(self.p.items()) + expected.update(self.s) + assert sorted(self.av.items()) == sorted(expected.items()) + + def test_str(self): + out = str(dict(self.av)) + assert str(self.av) == out + + def test_repr(self): + out = f"{self.av.__class__.__name__}({self.s}, {self.p})" + assert repr(self.av) == out + + +class TestUnionAdjacency: + # node->nbr->data + def setup_method(self): + dd = {"color": "blue", "weight": 1.2} + self.nd = {0: dd, 1: {}, 2: {"color": 1}} + self.s = {3: self.nd, 0: {}, 1: {}, 2: {3: {"color": 1}}} + self.p = {3: {}, 0: {3: dd}, 1: {0: {}}, 2: {1: {"color": 1}}} + self.adjview = nx.classes.coreviews.UnionAdjacency(self.s, self.p) + + def test_pickle(self): + view = self.adjview + pview = pickle.loads(pickle.dumps(view, -1)) + assert view == pview + assert view.__slots__ == pview.__slots__ + + def test_len(self): + assert len(self.adjview) == len(self.s) + + def test_iter(self): + assert sorted(self.adjview) == sorted(self.s) + + def test_getitem(self): + assert self.adjview[1] is not self.s[1] + assert self.adjview[3][0] is self.adjview[0][3] + assert self.adjview[2][3]["color"] == 1 + pytest.raises(KeyError, self.adjview.__getitem__, 4) + + def test_copy(self): + avcopy = self.adjview.copy() + assert avcopy[0] == self.adjview[0] + assert avcopy[0] is not self.adjview[0] + + avcopy[2][3]["ht"] = 4 + assert avcopy[2] != self.adjview[2] + self.adjview[2][3]["ht"] = 4 + assert avcopy[2] == self.adjview[2] + del self.adjview[2][3]["ht"] + + assert not hasattr(self.adjview, "__setitem__") + + def test_str(self): + out = str(dict(self.adjview)) + assert str(self.adjview) == out + + def test_repr(self): + clsname = self.adjview.__class__.__name__ + out = f"{clsname}({self.s}, {self.p})" + assert repr(self.adjview) == out + + +class TestUnionMultiInner(TestUnionAdjacency): + # nbr->key->data + def setup_method(self): + dd = {"color": "blue", "weight": 1.2} + self.kd = {7: {}, "ekey": {}, 9: {"color": 1}} + self.s = {3: self.kd, 0: {7: dd}, 1: {}, 2: {"key": {"color": 1}}} + self.p = {3: {}, 0: {3: dd}, 1: {}, 2: {1: {"span": 2}}} + self.adjview = nx.classes.coreviews.UnionMultiInner(self.s, self.p) + + def test_len(self): + assert len(self.adjview) == len(self.s.keys() | self.p.keys()) == 4 + + def test_getitem(self): + assert self.adjview[1] is not self.s[1] + assert self.adjview[0][7] is self.adjview[0][3] + assert self.adjview[2]["key"]["color"] == 1 + assert self.adjview[2][1]["span"] == 2 + pytest.raises(KeyError, self.adjview.__getitem__, 4) + pytest.raises(KeyError, self.adjview[1].__getitem__, "key") + + def test_copy(self): + avcopy = self.adjview.copy() + assert avcopy[0] == self.adjview[0] + assert avcopy[0] is not self.adjview[0] + + avcopy[2][1]["width"] = 8 + assert avcopy[2] != self.adjview[2] + self.adjview[2][1]["width"] = 8 + assert avcopy[2] == self.adjview[2] + del self.adjview[2][1]["width"] + + assert not hasattr(self.adjview, "__setitem__") + assert hasattr(avcopy, "__setitem__") + + +class TestUnionMultiAdjacency(TestUnionAdjacency): + # node->nbr->key->data + def setup_method(self): + dd = {"color": "blue", "weight": 1.2} + self.kd = {7: {}, 8: {}, 9: {"color": 1}} + self.nd = {3: self.kd, 0: {9: dd}, 1: {8: {}}, 2: {9: {"color": 1}}} + self.s = {3: self.nd, 0: {3: {7: dd}}, 1: {}, 2: {3: {8: {}}}} + self.p = {3: {}, 0: {3: {9: dd}}, 1: {}, 2: {1: {8: {}}}} + self.adjview = nx.classes.coreviews.UnionMultiAdjacency(self.s, self.p) + + def test_getitem(self): + assert self.adjview[1] is not self.s[1] + assert self.adjview[3][0][9] is self.adjview[0][3][9] + assert self.adjview[3][2][9]["color"] == 1 + pytest.raises(KeyError, self.adjview.__getitem__, 4) + + def test_copy(self): + avcopy = self.adjview.copy() + assert avcopy[0] == self.adjview[0] + assert avcopy[0] is not self.adjview[0] + + avcopy[2][3][8]["ht"] = 4 + assert avcopy[2] != self.adjview[2] + self.adjview[2][3][8]["ht"] = 4 + assert avcopy[2] == self.adjview[2] + del self.adjview[2][3][8]["ht"] + + assert not hasattr(self.adjview, "__setitem__") + assert hasattr(avcopy, "__setitem__") + + +class TestFilteredGraphs: + def setup_method(self): + self.Graphs = [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] + + def test_hide_show_nodes(self): + SubGraph = nx.subgraph_view + for Graph in self.Graphs: + G = nx.path_graph(4, Graph) + SG = G.subgraph([2, 3]) + RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1])) + assert SG.nodes == RG.nodes + assert SG.edges == RG.edges + SGC = SG.copy() + RGC = RG.copy() + assert SGC.nodes == RGC.nodes + assert SGC.edges == RGC.edges + + def test_str_repr(self): + SubGraph = nx.subgraph_view + for Graph in self.Graphs: + G = nx.path_graph(4, Graph) + SG = G.subgraph([2, 3]) + RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1])) + str(SG.adj) + str(RG.adj) + repr(SG.adj) + repr(RG.adj) + str(SG.adj[2]) + str(RG.adj[2]) + repr(SG.adj[2]) + repr(RG.adj[2]) + + def test_copy(self): + SubGraph = nx.subgraph_view + for Graph in self.Graphs: + G = nx.path_graph(4, Graph) + SG = G.subgraph([2, 3]) + RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1])) + RsG = SubGraph(G, filter_node=nx.filters.show_nodes([2, 3])) + assert G.adj.copy() == G.adj + assert G.adj[2].copy() == G.adj[2] + assert SG.adj.copy() == SG.adj + assert SG.adj[2].copy() == SG.adj[2] + assert RG.adj.copy() == RG.adj + assert RG.adj[2].copy() == RG.adj[2] + assert RsG.adj.copy() == RsG.adj + assert RsG.adj[2].copy() == RsG.adj[2] diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph.py new file mode 100644 index 0000000000000000000000000000000000000000..b9972f9a5f1ab101b9f6f2f9a1584ddafccd2ff3 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph.py @@ -0,0 +1,331 @@ +import pytest + +import networkx as nx +from networkx.utils import nodes_equal + +from .test_graph import BaseAttrGraphTester, BaseGraphTester +from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph +from .test_graph import TestGraph as _TestGraph + + +class BaseDiGraphTester(BaseGraphTester): + def test_has_successor(self): + G = self.K3 + assert G.has_successor(0, 1) + assert not G.has_successor(0, -1) + + def test_successors(self): + G = self.K3 + assert sorted(G.successors(0)) == [1, 2] + with pytest.raises(nx.NetworkXError): + G.successors(-1) + + def test_has_predecessor(self): + G = self.K3 + assert G.has_predecessor(0, 1) + assert not G.has_predecessor(0, -1) + + def test_predecessors(self): + G = self.K3 + assert sorted(G.predecessors(0)) == [1, 2] + with pytest.raises(nx.NetworkXError): + G.predecessors(-1) + + def test_edges(self): + G = self.K3 + assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.edges(0)) == [(0, 1), (0, 2)] + assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)] + with pytest.raises(nx.NetworkXError): + G.edges(-1) + + def test_out_edges(self): + G = self.K3 + assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)] + with pytest.raises(nx.NetworkXError): + G.out_edges(-1) + + def test_out_edges_dir(self): + G = self.P3 + assert sorted(G.out_edges()) == [(0, 1), (1, 2)] + assert sorted(G.out_edges(0)) == [(0, 1)] + assert sorted(G.out_edges(2)) == [] + + def test_out_edges_data(self): + G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})]) + assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})] + assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})] + assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)] + assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)] + + def test_in_edges_dir(self): + G = self.P3 + assert sorted(G.in_edges()) == [(0, 1), (1, 2)] + assert sorted(G.in_edges(0)) == [] + assert sorted(G.in_edges(2)) == [(1, 2)] + + def test_in_edges_data(self): + G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})]) + assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})] + assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})] + assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)] + assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)] + + def test_degree(self): + G = self.K3 + assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)] + assert dict(G.degree()) == {0: 4, 1: 4, 2: 4} + assert G.degree(0) == 4 + assert list(G.degree(iter([0]))) == [(0, 4)] # run through iterator + + def test_in_degree(self): + G = self.K3 + assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)] + assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2} + assert G.in_degree(0) == 2 + assert list(G.in_degree(iter([0]))) == [(0, 2)] # run through iterator + + def test_out_degree(self): + G = self.K3 + assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)] + assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2} + assert G.out_degree(0) == 2 + assert list(G.out_degree(iter([0]))) == [(0, 2)] + + def test_size(self): + G = self.K3 + assert G.size() == 6 + assert G.number_of_edges() == 6 + + def test_to_undirected_reciprocal(self): + G = self.Graph() + G.add_edge(1, 2) + assert G.to_undirected().has_edge(1, 2) + assert not G.to_undirected(reciprocal=True).has_edge(1, 2) + G.add_edge(2, 1) + assert G.to_undirected(reciprocal=True).has_edge(1, 2) + + def test_reverse_copy(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + R = G.reverse() + assert sorted(R.edges()) == [(1, 0), (2, 1)] + R.remove_edge(1, 0) + assert sorted(R.edges()) == [(2, 1)] + assert sorted(G.edges()) == [(0, 1), (1, 2)] + + def test_reverse_nocopy(self): + G = nx.DiGraph([(0, 1), (1, 2)]) + R = G.reverse(copy=False) + assert sorted(R.edges()) == [(1, 0), (2, 1)] + with pytest.raises(nx.NetworkXError): + R.remove_edge(1, 0) + + def test_reverse_hashable(self): + class Foo: + pass + + x = Foo() + y = Foo() + G = nx.DiGraph() + G.add_edge(x, y) + assert nodes_equal(G.nodes(), G.reverse().nodes()) + assert [(y, x)] == list(G.reverse().edges()) + + def test_di_cache_reset(self): + G = self.K3.copy() + old_succ = G.succ + assert id(G.succ) == id(old_succ) + old_adj = G.adj + assert id(G.adj) == id(old_adj) + + G._succ = {} + assert id(G.succ) != id(old_succ) + assert id(G.adj) != id(old_adj) + + old_pred = G.pred + assert id(G.pred) == id(old_pred) + G._pred = {} + assert id(G.pred) != id(old_pred) + + def test_di_attributes_cached(self): + G = self.K3.copy() + assert id(G.in_edges) == id(G.in_edges) + assert id(G.out_edges) == id(G.out_edges) + assert id(G.in_degree) == id(G.in_degree) + assert id(G.out_degree) == id(G.out_degree) + assert id(G.succ) == id(G.succ) + assert id(G.pred) == id(G.pred) + + +class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester): + def test_edges_data(self): + G = self.K3 + all_edges = [ + (0, 1, {}), + (0, 2, {}), + (1, 0, {}), + (1, 2, {}), + (2, 0, {}), + (2, 1, {}), + ] + assert sorted(G.edges(data=True)) == all_edges + assert sorted(G.edges(0, data=True)) == all_edges[:2] + assert sorted(G.edges([0, 1], data=True)) == all_edges[:4] + with pytest.raises(nx.NetworkXError): + G.edges(-1, True) + + def test_in_degree_weighted(self): + G = self.K3.copy() + G.add_edge(0, 1, weight=0.3, other=1.2) + assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)] + assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2} + assert G.in_degree(1, weight="weight") == 1.3 + assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)] + assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2} + assert G.in_degree(1, weight="other") == 2.2 + assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)] + + def test_out_degree_weighted(self): + G = self.K3.copy() + G.add_edge(0, 1, weight=0.3, other=1.2) + assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)] + assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2} + assert G.out_degree(0, weight="weight") == 1.3 + assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)] + assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2} + assert G.out_degree(0, weight="other") == 2.2 + assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)] + + +class TestDiGraph(BaseAttrDiGraphTester, _TestGraph): + """Tests specific to dict-of-dict-of-dict digraph data structure""" + + def setup_method(self): + self.Graph = nx.DiGraph + # build dict-of-dict-of-dict K3 + ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {}) + self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}} + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._succ = self.k3adj # K3._adj is synced with K3._succ + self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}} + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + ed1, ed2 = ({}, {}) + self.P3 = self.Graph() + self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}} + self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}} + # P3._adj is synced with P3._succ + self.P3._node = {} + self.P3._node[0] = {} + self.P3._node[1] = {} + self.P3._node[2] = {} + + def test_data_input(self): + G = self.Graph({1: [2], 2: [1]}, name="test") + assert G.name == "test" + assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})] + assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})] + assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})] + + def test_add_edge(self): + G = self.Graph() + G.add_edge(0, 1) + assert G.adj == {0: {1: {}}, 1: {}} + assert G.succ == {0: {1: {}}, 1: {}} + assert G.pred == {0: {}, 1: {0: {}}} + G = self.Graph() + G.add_edge(*(0, 1)) + assert G.adj == {0: {1: {}}, 1: {}} + assert G.succ == {0: {1: {}}, 1: {}} + assert G.pred == {0: {}, 1: {0: {}}} + with pytest.raises(ValueError, match="None cannot be a node"): + G.add_edge(None, 3) + + def test_add_edges_from(self): + G = self.Graph() + G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2) + assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}} + assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}} + assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}} + + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0,)]) # too few in tuple + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple + with pytest.raises(TypeError): + G.add_edges_from([0]) # not a tuple + with pytest.raises(ValueError, match="None cannot be a node"): + G.add_edges_from([(None, 3), (3, 2)]) + + def test_remove_edge(self): + G = self.K3.copy() + G.remove_edge(0, 1) + assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}} + assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}} + with pytest.raises(nx.NetworkXError): + G.remove_edge(-1, 0) + + def test_remove_edges_from(self): + G = self.K3.copy() + G.remove_edges_from([(0, 1)]) + assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}} + assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}} + G.remove_edges_from([(0, 0)]) # silent fail + + def test_clear(self): + G = self.K3 + G.graph["name"] = "K3" + G.clear() + assert list(G.nodes) == [] + assert G.succ == {} + assert G.pred == {} + assert G.graph == {} + + def test_clear_edges(self): + G = self.K3 + G.graph["name"] = "K3" + nodes = list(G.nodes) + G.clear_edges() + assert list(G.nodes) == nodes + expected = {0: {}, 1: {}, 2: {}} + assert G.succ == expected + assert G.pred == expected + assert list(G.edges) == [] + assert G.graph["name"] == "K3" + + +class TestEdgeSubgraph(_TestGraphEdgeSubgraph): + """Unit tests for the :meth:`DiGraph.edge_subgraph` method.""" + + def setup_method(self): + # Create a doubly-linked path graph on five nodes. + G = nx.DiGraph(nx.path_graph(5)) + # Add some node, edge, and graph attributes. + for i in range(5): + G.nodes[i]["name"] = f"node{i}" + G.edges[0, 1]["name"] = "edge01" + G.edges[3, 4]["name"] = "edge34" + G.graph["name"] = "graph" + # Get the subgraph induced by the first and last edges. + self.G = G + self.H = G.edge_subgraph([(0, 1), (3, 4)]) + + def test_pred_succ(self): + """Test that nodes are added to predecessors and successors. + + For more information, see GitHub issue #2370. + + """ + G = nx.DiGraph() + G.add_edge(0, 1) + H = G.edge_subgraph([(0, 1)]) + assert list(H.predecessors(0)) == [] + assert list(H.successors(0)) == [1] + assert list(H.predecessors(1)) == [0] + assert list(H.successors(1)) == [] diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph_historical.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph_historical.py new file mode 100644 index 0000000000000000000000000000000000000000..665fc267f5fb253fbc875604a251a9f93e0d3836 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_digraph_historical.py @@ -0,0 +1,110 @@ +"""Original NetworkX graph tests""" +import pytest + +import networkx +import networkx as nx + +from .historical_tests import HistoricalTests + + +class TestDiGraphHistorical(HistoricalTests): + @classmethod + def setup_class(cls): + HistoricalTests.setup_class() + cls.G = nx.DiGraph + + def test_in_degree(self): + G = self.G() + G.add_nodes_from("GJK") + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")]) + + assert sorted(d for n, d in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2] + assert dict(G.in_degree()) == { + "A": 0, + "C": 2, + "B": 1, + "D": 2, + "G": 0, + "K": 0, + "J": 0, + } + + def test_out_degree(self): + G = self.G() + G.add_nodes_from("GJK") + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")]) + assert sorted(v for k, v in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2] + assert dict(G.out_degree()) == { + "A": 2, + "C": 1, + "B": 2, + "D": 0, + "G": 0, + "K": 0, + "J": 0, + } + + def test_degree_digraph(self): + H = nx.DiGraph() + H.add_edges_from([(1, 24), (1, 2)]) + assert sorted(d for n, d in H.in_degree([1, 24])) == [0, 1] + assert sorted(d for n, d in H.out_degree([1, 24])) == [0, 2] + assert sorted(d for n, d in H.degree([1, 24])) == [1, 2] + + def test_neighbors(self): + G = self.G() + G.add_nodes_from("GJK") + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")]) + + assert sorted(G.neighbors("C")) == ["D"] + assert sorted(G["C"]) == ["D"] + assert sorted(G.neighbors("A")) == ["B", "C"] + pytest.raises(nx.NetworkXError, G.neighbors, "j") + pytest.raises(nx.NetworkXError, G.neighbors, "j") + + def test_successors(self): + G = self.G() + G.add_nodes_from("GJK") + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")]) + assert sorted(G.successors("A")) == ["B", "C"] + assert sorted(G.successors("A")) == ["B", "C"] + assert sorted(G.successors("G")) == [] + assert sorted(G.successors("D")) == [] + assert sorted(G.successors("G")) == [] + pytest.raises(nx.NetworkXError, G.successors, "j") + pytest.raises(nx.NetworkXError, G.successors, "j") + + def test_predecessors(self): + G = self.G() + G.add_nodes_from("GJK") + G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")]) + assert sorted(G.predecessors("C")) == ["A", "B"] + assert sorted(G.predecessors("C")) == ["A", "B"] + assert sorted(G.predecessors("G")) == [] + assert sorted(G.predecessors("A")) == [] + assert sorted(G.predecessors("G")) == [] + assert sorted(G.predecessors("A")) == [] + assert sorted(G.successors("D")) == [] + + pytest.raises(nx.NetworkXError, G.predecessors, "j") + pytest.raises(nx.NetworkXError, G.predecessors, "j") + + def test_reverse(self): + G = nx.complete_graph(10) + H = G.to_directed() + HR = H.reverse() + assert nx.is_isomorphic(H, HR) + assert sorted(H.edges()) == sorted(HR.edges()) + + def test_reverse2(self): + H = nx.DiGraph() + foo = [H.add_edge(u, u + 1) for u in range(5)] + HR = H.reverse() + for u in range(5): + assert HR.has_edge(u + 1, u) + + def test_reverse3(self): + H = nx.DiGraph() + H.add_nodes_from([1, 2, 3, 4]) + HR = H.reverse() + assert sorted(HR.nodes()) == [1, 2, 3, 4] diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_filters.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_filters.py new file mode 100644 index 0000000000000000000000000000000000000000..2da59117cad0d72d5830b53c8d19c6e0ca988d54 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_filters.py @@ -0,0 +1,177 @@ +import pytest + +import networkx as nx + + +class TestFilterFactory: + def test_no_filter(self): + nf = nx.filters.no_filter + assert nf() + assert nf(1) + assert nf(2, 1) + + def test_hide_nodes(self): + f = nx.classes.filters.hide_nodes([1, 2, 3]) + assert not f(1) + assert not f(2) + assert not f(3) + assert f(4) + assert f(0) + assert f("a") + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f) + + def test_show_nodes(self): + f = nx.classes.filters.show_nodes([1, 2, 3]) + assert f(1) + assert f(2) + assert f(3) + assert not f(4) + assert not f(0) + assert not f("a") + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f) + + def test_hide_edges(self): + factory = nx.classes.filters.hide_edges + f = factory([(1, 2), (3, 4)]) + assert not f(1, 2) + assert not f(3, 4) + assert not f(4, 3) + assert f(2, 3) + assert f(0, -1) + assert f("a", "b") + pytest.raises(TypeError, f, 1, 2, 3) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2, 3)]) + + def test_show_edges(self): + factory = nx.classes.filters.show_edges + f = factory([(1, 2), (3, 4)]) + assert f(1, 2) + assert f(3, 4) + assert f(4, 3) + assert not f(2, 3) + assert not f(0, -1) + assert not f("a", "b") + pytest.raises(TypeError, f, 1, 2, 3) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2, 3)]) + + def test_hide_diedges(self): + factory = nx.classes.filters.hide_diedges + f = factory([(1, 2), (3, 4)]) + assert not f(1, 2) + assert not f(3, 4) + assert f(4, 3) + assert f(2, 3) + assert f(0, -1) + assert f("a", "b") + pytest.raises(TypeError, f, 1, 2, 3) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2, 3)]) + + def test_show_diedges(self): + factory = nx.classes.filters.show_diedges + f = factory([(1, 2), (3, 4)]) + assert f(1, 2) + assert f(3, 4) + assert not f(4, 3) + assert not f(2, 3) + assert not f(0, -1) + assert not f("a", "b") + pytest.raises(TypeError, f, 1, 2, 3) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2, 3)]) + + def test_hide_multiedges(self): + factory = nx.classes.filters.hide_multiedges + f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) + assert not f(1, 2, 0) + assert not f(1, 2, 1) + assert f(1, 2, 2) + assert f(3, 4, 0) + assert not f(3, 4, 1) + assert not f(4, 3, 1) + assert f(4, 3, 0) + assert f(2, 3, 0) + assert f(0, -1, 0) + assert f("a", "b", 0) + pytest.raises(TypeError, f, 1, 2, 3, 4) + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2)]) + pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) + + def test_show_multiedges(self): + factory = nx.classes.filters.show_multiedges + f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) + assert f(1, 2, 0) + assert f(1, 2, 1) + assert not f(1, 2, 2) + assert not f(3, 4, 0) + assert f(3, 4, 1) + assert f(4, 3, 1) + assert not f(4, 3, 0) + assert not f(2, 3, 0) + assert not f(0, -1, 0) + assert not f("a", "b", 0) + pytest.raises(TypeError, f, 1, 2, 3, 4) + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2)]) + pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) + + def test_hide_multidiedges(self): + factory = nx.classes.filters.hide_multidiedges + f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) + assert not f(1, 2, 0) + assert not f(1, 2, 1) + assert f(1, 2, 2) + assert f(3, 4, 0) + assert not f(3, 4, 1) + assert f(4, 3, 1) + assert f(4, 3, 0) + assert f(2, 3, 0) + assert f(0, -1, 0) + assert f("a", "b", 0) + pytest.raises(TypeError, f, 1, 2, 3, 4) + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2)]) + pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) + + def test_show_multidiedges(self): + factory = nx.classes.filters.show_multidiedges + f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)]) + assert f(1, 2, 0) + assert f(1, 2, 1) + assert not f(1, 2, 2) + assert not f(3, 4, 0) + assert f(3, 4, 1) + assert not f(4, 3, 1) + assert not f(4, 3, 0) + assert not f(2, 3, 0) + assert not f(0, -1, 0) + assert not f("a", "b", 0) + pytest.raises(TypeError, f, 1, 2, 3, 4) + pytest.raises(TypeError, f, 1, 2) + pytest.raises(TypeError, f, 1) + pytest.raises(TypeError, f) + pytest.raises(TypeError, factory, [1, 2, 3]) + pytest.raises(ValueError, factory, [(1, 2)]) + pytest.raises(ValueError, factory, [(1, 2, 3, 4)]) diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_function.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_function.py new file mode 100644 index 0000000000000000000000000000000000000000..61b73c2d256064ba4c34f9a9d95160bd272c8e3e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_function.py @@ -0,0 +1,782 @@ +import random + +import pytest + +import networkx as nx +from networkx.utils import edges_equal, nodes_equal + + +class TestFunction: + def setup_method(self): + self.G = nx.Graph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}, name="Test") + self.Gdegree = {0: 3, 1: 2, 2: 2, 3: 1, 4: 0} + self.Gnodes = list(range(5)) + self.Gedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)] + self.DG = nx.DiGraph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}) + self.DGin_degree = {0: 1, 1: 2, 2: 2, 3: 1, 4: 0} + self.DGout_degree = {0: 3, 1: 3, 2: 0, 3: 0, 4: 0} + self.DGnodes = list(range(5)) + self.DGedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)] + + def test_nodes(self): + assert nodes_equal(self.G.nodes(), list(nx.nodes(self.G))) + assert nodes_equal(self.DG.nodes(), list(nx.nodes(self.DG))) + + def test_edges(self): + assert edges_equal(self.G.edges(), list(nx.edges(self.G))) + assert sorted(self.DG.edges()) == sorted(nx.edges(self.DG)) + assert edges_equal( + self.G.edges(nbunch=[0, 1, 3]), list(nx.edges(self.G, nbunch=[0, 1, 3])) + ) + assert sorted(self.DG.edges(nbunch=[0, 1, 3])) == sorted( + nx.edges(self.DG, nbunch=[0, 1, 3]) + ) + + def test_degree(self): + assert edges_equal(self.G.degree(), list(nx.degree(self.G))) + assert sorted(self.DG.degree()) == sorted(nx.degree(self.DG)) + assert edges_equal( + self.G.degree(nbunch=[0, 1]), list(nx.degree(self.G, nbunch=[0, 1])) + ) + assert sorted(self.DG.degree(nbunch=[0, 1])) == sorted( + nx.degree(self.DG, nbunch=[0, 1]) + ) + assert edges_equal( + self.G.degree(weight="weight"), list(nx.degree(self.G, weight="weight")) + ) + assert sorted(self.DG.degree(weight="weight")) == sorted( + nx.degree(self.DG, weight="weight") + ) + + def test_neighbors(self): + assert list(self.G.neighbors(1)) == list(nx.neighbors(self.G, 1)) + assert list(self.DG.neighbors(1)) == list(nx.neighbors(self.DG, 1)) + + def test_number_of_nodes(self): + assert self.G.number_of_nodes() == nx.number_of_nodes(self.G) + assert self.DG.number_of_nodes() == nx.number_of_nodes(self.DG) + + def test_number_of_edges(self): + assert self.G.number_of_edges() == nx.number_of_edges(self.G) + assert self.DG.number_of_edges() == nx.number_of_edges(self.DG) + + def test_is_directed(self): + assert self.G.is_directed() == nx.is_directed(self.G) + assert self.DG.is_directed() == nx.is_directed(self.DG) + + def test_add_star(self): + G = self.G.copy() + nlist = [12, 13, 14, 15] + nx.add_star(G, nlist) + assert edges_equal(G.edges(nlist), [(12, 13), (12, 14), (12, 15)]) + + G = self.G.copy() + nx.add_star(G, nlist, weight=2.0) + assert edges_equal( + G.edges(nlist, data=True), + [ + (12, 13, {"weight": 2.0}), + (12, 14, {"weight": 2.0}), + (12, 15, {"weight": 2.0}), + ], + ) + + G = self.G.copy() + nlist = [12] + nx.add_star(G, nlist) + assert nodes_equal(G, list(self.G) + nlist) + + G = self.G.copy() + nlist = [] + nx.add_star(G, nlist) + assert nodes_equal(G.nodes, self.Gnodes) + assert edges_equal(G.edges, self.G.edges) + + def test_add_path(self): + G = self.G.copy() + nlist = [12, 13, 14, 15] + nx.add_path(G, nlist) + assert edges_equal(G.edges(nlist), [(12, 13), (13, 14), (14, 15)]) + G = self.G.copy() + nx.add_path(G, nlist, weight=2.0) + assert edges_equal( + G.edges(nlist, data=True), + [ + (12, 13, {"weight": 2.0}), + (13, 14, {"weight": 2.0}), + (14, 15, {"weight": 2.0}), + ], + ) + + G = self.G.copy() + nlist = ["node"] + nx.add_path(G, nlist) + assert edges_equal(G.edges(nlist), []) + assert nodes_equal(G, list(self.G) + ["node"]) + + G = self.G.copy() + nlist = iter(["node"]) + nx.add_path(G, nlist) + assert edges_equal(G.edges(["node"]), []) + assert nodes_equal(G, list(self.G) + ["node"]) + + G = self.G.copy() + nlist = [12] + nx.add_path(G, nlist) + assert edges_equal(G.edges(nlist), []) + assert nodes_equal(G, list(self.G) + [12]) + + G = self.G.copy() + nlist = iter([12]) + nx.add_path(G, nlist) + assert edges_equal(G.edges([12]), []) + assert nodes_equal(G, list(self.G) + [12]) + + G = self.G.copy() + nlist = [] + nx.add_path(G, nlist) + assert edges_equal(G.edges, self.G.edges) + assert nodes_equal(G, list(self.G)) + + G = self.G.copy() + nlist = iter([]) + nx.add_path(G, nlist) + assert edges_equal(G.edges, self.G.edges) + assert nodes_equal(G, list(self.G)) + + def test_add_cycle(self): + G = self.G.copy() + nlist = [12, 13, 14, 15] + oklists = [ + [(12, 13), (12, 15), (13, 14), (14, 15)], + [(12, 13), (13, 14), (14, 15), (15, 12)], + ] + nx.add_cycle(G, nlist) + assert sorted(G.edges(nlist)) in oklists + G = self.G.copy() + oklists = [ + [ + (12, 13, {"weight": 1.0}), + (12, 15, {"weight": 1.0}), + (13, 14, {"weight": 1.0}), + (14, 15, {"weight": 1.0}), + ], + [ + (12, 13, {"weight": 1.0}), + (13, 14, {"weight": 1.0}), + (14, 15, {"weight": 1.0}), + (15, 12, {"weight": 1.0}), + ], + ] + nx.add_cycle(G, nlist, weight=1.0) + assert sorted(G.edges(nlist, data=True)) in oklists + + G = self.G.copy() + nlist = [12] + nx.add_cycle(G, nlist) + assert nodes_equal(G, list(self.G) + nlist) + + G = self.G.copy() + nlist = [] + nx.add_cycle(G, nlist) + assert nodes_equal(G.nodes, self.Gnodes) + assert edges_equal(G.edges, self.G.edges) + + def test_subgraph(self): + assert ( + self.G.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.G, [0, 1, 2, 4]).adj + ) + assert ( + self.DG.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.DG, [0, 1, 2, 4]).adj + ) + assert ( + self.G.subgraph([0, 1, 2, 4]).adj + == nx.induced_subgraph(self.G, [0, 1, 2, 4]).adj + ) + assert ( + self.DG.subgraph([0, 1, 2, 4]).adj + == nx.induced_subgraph(self.DG, [0, 1, 2, 4]).adj + ) + # subgraph-subgraph chain is allowed in function interface + H = nx.induced_subgraph(self.G.subgraph([0, 1, 2, 4]), [0, 1, 4]) + assert H._graph is not self.G + assert H.adj == self.G.subgraph([0, 1, 4]).adj + + def test_edge_subgraph(self): + assert ( + self.G.edge_subgraph([(1, 2), (0, 3)]).adj + == nx.edge_subgraph(self.G, [(1, 2), (0, 3)]).adj + ) + assert ( + self.DG.edge_subgraph([(1, 2), (0, 3)]).adj + == nx.edge_subgraph(self.DG, [(1, 2), (0, 3)]).adj + ) + + def test_create_empty_copy(self): + G = nx.create_empty_copy(self.G, with_data=False) + assert nodes_equal(G, list(self.G)) + assert G.graph == {} + assert G._node == {}.fromkeys(self.G.nodes(), {}) + assert G._adj == {}.fromkeys(self.G.nodes(), {}) + G = nx.create_empty_copy(self.G) + assert nodes_equal(G, list(self.G)) + assert G.graph == self.G.graph + assert G._node == self.G._node + assert G._adj == {}.fromkeys(self.G.nodes(), {}) + + def test_degree_histogram(self): + assert nx.degree_histogram(self.G) == [1, 1, 1, 1, 1] + + def test_density(self): + assert nx.density(self.G) == 0.5 + assert nx.density(self.DG) == 0.3 + G = nx.Graph() + G.add_node(1) + assert nx.density(G) == 0.0 + + def test_density_selfloop(self): + G = nx.Graph() + G.add_edge(1, 1) + assert nx.density(G) == 0.0 + G.add_edge(1, 2) + assert nx.density(G) == 2.0 + + def test_freeze(self): + G = nx.freeze(self.G) + assert G.frozen + pytest.raises(nx.NetworkXError, G.add_node, 1) + pytest.raises(nx.NetworkXError, G.add_nodes_from, [1]) + pytest.raises(nx.NetworkXError, G.remove_node, 1) + pytest.raises(nx.NetworkXError, G.remove_nodes_from, [1]) + pytest.raises(nx.NetworkXError, G.add_edge, 1, 2) + pytest.raises(nx.NetworkXError, G.add_edges_from, [(1, 2)]) + pytest.raises(nx.NetworkXError, G.remove_edge, 1, 2) + pytest.raises(nx.NetworkXError, G.remove_edges_from, [(1, 2)]) + pytest.raises(nx.NetworkXError, G.clear_edges) + pytest.raises(nx.NetworkXError, G.clear) + + def test_is_frozen(self): + assert not nx.is_frozen(self.G) + G = nx.freeze(self.G) + assert G.frozen == nx.is_frozen(self.G) + assert G.frozen + + def test_node_attributes_are_still_mutable_on_frozen_graph(self): + G = nx.freeze(nx.path_graph(3)) + node = G.nodes[0] + node["node_attribute"] = True + assert node["node_attribute"] == True + + def test_edge_attributes_are_still_mutable_on_frozen_graph(self): + G = nx.freeze(nx.path_graph(3)) + edge = G.edges[(0, 1)] + edge["edge_attribute"] = True + assert edge["edge_attribute"] == True + + def test_neighbors_complete_graph(self): + graph = nx.complete_graph(100) + pop = random.sample(list(graph), 1) + nbors = list(nx.neighbors(graph, pop[0])) + # should be all the other vertices in the graph + assert len(nbors) == len(graph) - 1 + + graph = nx.path_graph(100) + node = random.sample(list(graph), 1)[0] + nbors = list(nx.neighbors(graph, node)) + # should be all the other vertices in the graph + if node != 0 and node != 99: + assert len(nbors) == 2 + else: + assert len(nbors) == 1 + + # create a star graph with 99 outer nodes + graph = nx.star_graph(99) + nbors = list(nx.neighbors(graph, 0)) + assert len(nbors) == 99 + + def test_non_neighbors(self): + graph = nx.complete_graph(100) + pop = random.sample(list(graph), 1) + nbors = list(nx.non_neighbors(graph, pop[0])) + # should be all the other vertices in the graph + assert len(nbors) == 0 + + graph = nx.path_graph(100) + node = random.sample(list(graph), 1)[0] + nbors = list(nx.non_neighbors(graph, node)) + # should be all the other vertices in the graph + if node != 0 and node != 99: + assert len(nbors) == 97 + else: + assert len(nbors) == 98 + + # create a star graph with 99 outer nodes + graph = nx.star_graph(99) + nbors = list(nx.non_neighbors(graph, 0)) + assert len(nbors) == 0 + + # disconnected graph + graph = nx.Graph() + graph.add_nodes_from(range(10)) + nbors = list(nx.non_neighbors(graph, 0)) + assert len(nbors) == 9 + + def test_non_edges(self): + # All possible edges exist + graph = nx.complete_graph(5) + nedges = list(nx.non_edges(graph)) + assert len(nedges) == 0 + + graph = nx.path_graph(4) + expected = [(0, 2), (0, 3), (1, 3)] + nedges = list(nx.non_edges(graph)) + for u, v in expected: + assert (u, v) in nedges or (v, u) in nedges + + graph = nx.star_graph(4) + expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + nedges = list(nx.non_edges(graph)) + for u, v in expected: + assert (u, v) in nedges or (v, u) in nedges + + # Directed graphs + graph = nx.DiGraph() + graph.add_edges_from([(0, 2), (2, 0), (2, 1)]) + expected = [(0, 1), (1, 0), (1, 2)] + nedges = list(nx.non_edges(graph)) + for e in expected: + assert e in nedges + + def test_is_weighted(self): + G = nx.Graph() + assert not nx.is_weighted(G) + + G = nx.path_graph(4) + assert not nx.is_weighted(G) + assert not nx.is_weighted(G, (2, 3)) + + G.add_node(4) + G.add_edge(3, 4, weight=4) + assert not nx.is_weighted(G) + assert nx.is_weighted(G, (3, 4)) + + G = nx.DiGraph() + G.add_weighted_edges_from( + [ + ("0", "3", 3), + ("0", "1", -5), + ("1", "0", -5), + ("0", "2", 2), + ("1", "2", 4), + ("2", "3", 1), + ] + ) + assert nx.is_weighted(G) + assert nx.is_weighted(G, ("1", "0")) + + G = G.to_undirected() + assert nx.is_weighted(G) + assert nx.is_weighted(G, ("1", "0")) + + pytest.raises(nx.NetworkXError, nx.is_weighted, G, (1, 2)) + + def test_is_negatively_weighted(self): + G = nx.Graph() + assert not nx.is_negatively_weighted(G) + + G.add_node(1) + G.add_nodes_from([2, 3, 4, 5]) + assert not nx.is_negatively_weighted(G) + + G.add_edge(1, 2, weight=4) + assert not nx.is_negatively_weighted(G, (1, 2)) + + G.add_edges_from([(1, 3), (2, 4), (2, 6)]) + G[1][3]["color"] = "blue" + assert not nx.is_negatively_weighted(G) + assert not nx.is_negatively_weighted(G, (1, 3)) + + G[2][4]["weight"] = -2 + assert nx.is_negatively_weighted(G, (2, 4)) + assert nx.is_negatively_weighted(G) + + G = nx.DiGraph() + G.add_weighted_edges_from( + [ + ("0", "3", 3), + ("0", "1", -5), + ("1", "0", -2), + ("0", "2", 2), + ("1", "2", -3), + ("2", "3", 1), + ] + ) + assert nx.is_negatively_weighted(G) + assert not nx.is_negatively_weighted(G, ("0", "3")) + assert nx.is_negatively_weighted(G, ("1", "0")) + + pytest.raises(nx.NetworkXError, nx.is_negatively_weighted, G, (1, 4)) + + +class TestCommonNeighbors: + @classmethod + def setup_class(cls): + cls.func = staticmethod(nx.common_neighbors) + + def test_func(G, u, v, expected): + result = sorted(cls.func(G, u, v)) + assert result == expected + + cls.test = staticmethod(test_func) + + def test_K5(self): + G = nx.complete_graph(5) + self.test(G, 0, 1, [2, 3, 4]) + + def test_P3(self): + G = nx.path_graph(3) + self.test(G, 0, 2, [1]) + + def test_S4(self): + G = nx.star_graph(4) + self.test(G, 1, 2, [0]) + + def test_digraph(self): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2)]) + self.func(G, 0, 2) + + def test_nonexistent_nodes(self): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 4) + pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 4, 5) + pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 6) + + def test_custom1(self): + """Case of no common neighbors.""" + G = nx.Graph() + G.add_nodes_from([0, 1]) + self.test(G, 0, 1, []) + + def test_custom2(self): + """Case of equal nodes.""" + G = nx.complete_graph(4) + self.test(G, 0, 0, [1, 2, 3]) + + +@pytest.mark.parametrize( + "graph_type", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph) +) +def test_set_node_attributes(graph_type): + # Test single value + G = nx.path_graph(3, create_using=graph_type) + vals = 100 + attr = "hello" + nx.set_node_attributes(G, vals, attr) + assert G.nodes[0][attr] == vals + assert G.nodes[1][attr] == vals + assert G.nodes[2][attr] == vals + + # Test dictionary + G = nx.path_graph(3, create_using=graph_type) + vals = dict(zip(sorted(G.nodes()), range(len(G)))) + attr = "hi" + nx.set_node_attributes(G, vals, attr) + assert G.nodes[0][attr] == 0 + assert G.nodes[1][attr] == 1 + assert G.nodes[2][attr] == 2 + + # Test dictionary of dictionaries + G = nx.path_graph(3, create_using=graph_type) + d = {"hi": 0, "hello": 200} + vals = dict.fromkeys(G.nodes(), d) + vals.pop(0) + nx.set_node_attributes(G, vals) + assert G.nodes[0] == {} + assert G.nodes[1]["hi"] == 0 + assert G.nodes[2]["hello"] == 200 + + +@pytest.mark.parametrize( + ("values", "name"), + ( + ({0: "red", 1: "blue"}, "color"), # values dictionary + ({0: {"color": "red"}, 1: {"color": "blue"}}, None), # dict-of-dict + ), +) +def test_set_node_attributes_ignores_extra_nodes(values, name): + """ + When `values` is a dict or dict-of-dict keyed by nodes, ensure that keys + that correspond to nodes not in G are ignored. + """ + G = nx.Graph() + G.add_node(0) + nx.set_node_attributes(G, values, name) + assert G.nodes[0]["color"] == "red" + assert 1 not in G.nodes + + +@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) +def test_set_edge_attributes(graph_type): + # Test single value + G = nx.path_graph(3, create_using=graph_type) + attr = "hello" + vals = 3 + nx.set_edge_attributes(G, vals, attr) + assert G[0][1][attr] == vals + assert G[1][2][attr] == vals + + # Test multiple values + G = nx.path_graph(3, create_using=graph_type) + attr = "hi" + edges = [(0, 1), (1, 2)] + vals = dict(zip(edges, range(len(edges)))) + nx.set_edge_attributes(G, vals, attr) + assert G[0][1][attr] == 0 + assert G[1][2][attr] == 1 + + # Test dictionary of dictionaries + G = nx.path_graph(3, create_using=graph_type) + d = {"hi": 0, "hello": 200} + edges = [(0, 1)] + vals = dict.fromkeys(edges, d) + nx.set_edge_attributes(G, vals) + assert G[0][1]["hi"] == 0 + assert G[0][1]["hello"] == 200 + assert G[1][2] == {} + + +@pytest.mark.parametrize( + ("values", "name"), + ( + ({(0, 1): 1.0, (0, 2): 2.0}, "weight"), # values dict + ({(0, 1): {"weight": 1.0}, (0, 2): {"weight": 2.0}}, None), # values dod + ), +) +def test_set_edge_attributes_ignores_extra_edges(values, name): + """If `values` is a dict or dict-of-dicts containing edges that are not in + G, data associate with these edges should be ignored. + """ + G = nx.Graph([(0, 1)]) + nx.set_edge_attributes(G, values, name) + assert G[0][1]["weight"] == 1.0 + assert (0, 2) not in G.edges + + +@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph)) +def test_set_edge_attributes_multi(graph_type): + # Test single value + G = nx.path_graph(3, create_using=graph_type) + attr = "hello" + vals = 3 + nx.set_edge_attributes(G, vals, attr) + assert G[0][1][0][attr] == vals + assert G[1][2][0][attr] == vals + + # Test multiple values + G = nx.path_graph(3, create_using=graph_type) + attr = "hi" + edges = [(0, 1, 0), (1, 2, 0)] + vals = dict(zip(edges, range(len(edges)))) + nx.set_edge_attributes(G, vals, attr) + assert G[0][1][0][attr] == 0 + assert G[1][2][0][attr] == 1 + + # Test dictionary of dictionaries + G = nx.path_graph(3, create_using=graph_type) + d = {"hi": 0, "hello": 200} + edges = [(0, 1, 0)] + vals = dict.fromkeys(edges, d) + nx.set_edge_attributes(G, vals) + assert G[0][1][0]["hi"] == 0 + assert G[0][1][0]["hello"] == 200 + assert G[1][2][0] == {} + + +@pytest.mark.parametrize( + ("values", "name"), + ( + ({(0, 1, 0): 1.0, (0, 2, 0): 2.0}, "weight"), # values dict + ({(0, 1, 0): {"weight": 1.0}, (0, 2, 0): {"weight": 2.0}}, None), # values dod + ), +) +def test_set_edge_attributes_multi_ignores_extra_edges(values, name): + """If `values` is a dict or dict-of-dicts containing edges that are not in + G, data associate with these edges should be ignored. + """ + G = nx.MultiGraph([(0, 1, 0), (0, 1, 1)]) + nx.set_edge_attributes(G, values, name) + assert G[0][1][0]["weight"] == 1.0 + assert G[0][1][1] == {} + assert (0, 2) not in G.edges() + + +def test_get_node_attributes(): + graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] + for G in graphs: + G = nx.path_graph(3, create_using=G) + attr = "hello" + vals = 100 + nx.set_node_attributes(G, vals, attr) + attrs = nx.get_node_attributes(G, attr) + assert attrs[0] == vals + assert attrs[1] == vals + assert attrs[2] == vals + default_val = 1 + G.add_node(4) + attrs = nx.get_node_attributes(G, attr, default=default_val) + assert attrs[4] == default_val + + +def test_get_edge_attributes(): + graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] + for G in graphs: + G = nx.path_graph(3, create_using=G) + attr = "hello" + vals = 100 + nx.set_edge_attributes(G, vals, attr) + attrs = nx.get_edge_attributes(G, attr) + assert len(attrs) == 2 + + for edge in G.edges: + assert attrs[edge] == vals + + default_val = vals + G.add_edge(4, 5) + deafult_attrs = nx.get_edge_attributes(G, attr, default=default_val) + assert len(deafult_attrs) == 3 + + for edge in G.edges: + assert deafult_attrs[edge] == vals + + +def test_is_empty(): + graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] + for G in graphs: + assert nx.is_empty(G) + G.add_nodes_from(range(5)) + assert nx.is_empty(G) + G.add_edges_from([(1, 2), (3, 4)]) + assert not nx.is_empty(G) + + +@pytest.mark.parametrize( + "graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] +) +def test_selfloops(graph_type): + G = nx.complete_graph(3, create_using=graph_type) + G.add_edge(0, 0) + assert nodes_equal(nx.nodes_with_selfloops(G), [0]) + assert edges_equal(nx.selfloop_edges(G), [(0, 0)]) + assert edges_equal(nx.selfloop_edges(G, data=True), [(0, 0, {})]) + assert nx.number_of_selfloops(G) == 1 + + +@pytest.mark.parametrize( + "graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] +) +def test_selfloop_edges_attr(graph_type): + G = nx.complete_graph(3, create_using=graph_type) + G.add_edge(0, 0) + G.add_edge(1, 1, weight=2) + assert edges_equal( + nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})] + ) + assert edges_equal(nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)]) + + +def test_selfloop_edges_multi_with_data_and_keys(): + G = nx.complete_graph(3, create_using=nx.MultiGraph) + G.add_edge(0, 0, weight=10) + G.add_edge(0, 0, weight=100) + assert edges_equal( + nx.selfloop_edges(G, data="weight", keys=True), [(0, 0, 0, 10), (0, 0, 1, 100)] + ) + + +@pytest.mark.parametrize("graph_type", [nx.Graph, nx.DiGraph]) +def test_selfloops_removal(graph_type): + G = nx.complete_graph(3, create_using=graph_type) + G.add_edge(0, 0) + G.remove_edges_from(nx.selfloop_edges(G, keys=True)) + G.add_edge(0, 0) + G.remove_edges_from(nx.selfloop_edges(G, data=True)) + G.add_edge(0, 0) + G.remove_edges_from(nx.selfloop_edges(G, keys=True, data=True)) + + +@pytest.mark.parametrize("graph_type", [nx.MultiGraph, nx.MultiDiGraph]) +def test_selfloops_removal_multi(graph_type): + """test removing selfloops behavior vis-a-vis altering a dict while iterating. + cf. gh-4068""" + G = nx.complete_graph(3, create_using=graph_type) + # Defaults - see gh-4080 + G.add_edge(0, 0) + G.add_edge(0, 0) + G.remove_edges_from(nx.selfloop_edges(G)) + assert (0, 0) not in G.edges() + # With keys + G.add_edge(0, 0) + G.add_edge(0, 0) + with pytest.raises(RuntimeError): + G.remove_edges_from(nx.selfloop_edges(G, keys=True)) + # With data + G.add_edge(0, 0) + G.add_edge(0, 0) + with pytest.raises(TypeError): + G.remove_edges_from(nx.selfloop_edges(G, data=True)) + # With keys and data + G.add_edge(0, 0) + G.add_edge(0, 0) + with pytest.raises(RuntimeError): + G.remove_edges_from(nx.selfloop_edges(G, data=True, keys=True)) + + +def test_pathweight(): + valid_path = [1, 2, 3] + invalid_path = [1, 3, 2] + graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] + edges = [ + (1, 2, {"cost": 5, "dist": 6}), + (2, 3, {"cost": 3, "dist": 4}), + (1, 2, {"cost": 1, "dist": 2}), + ] + for graph in graphs: + graph.add_edges_from(edges) + assert nx.path_weight(graph, valid_path, "cost") == 4 + assert nx.path_weight(graph, valid_path, "dist") == 6 + pytest.raises(nx.NetworkXNoPath, nx.path_weight, graph, invalid_path, "cost") + + +@pytest.mark.parametrize( + "G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()) +) +def test_ispath(G): + G.add_edges_from([(1, 2), (2, 3), (1, 2), (3, 4)]) + valid_path = [1, 2, 3, 4] + invalid_path = [1, 2, 4, 3] # wrong node order + another_invalid_path = [1, 2, 3, 4, 5] # contains node not in G + assert nx.is_path(G, valid_path) + assert not nx.is_path(G, invalid_path) + assert not nx.is_path(G, another_invalid_path) + + +@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) +def test_restricted_view(G): + G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]) + G.add_node(4) + H = nx.restricted_view(G, [0, 2, 5], [(1, 2), (3, 4)]) + assert set(H.nodes()) == {1, 3, 4} + assert set(H.edges()) == {(1, 1)} + + +@pytest.mark.parametrize("G", (nx.MultiGraph(), nx.MultiDiGraph())) +def test_restricted_view_multi(G): + G.add_edges_from( + [(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 2, 0)] + ) + G.add_node(4) + H = nx.restricted_view(G, [0, 2, 5], [(1, 2, 0), (3, 4, 0)]) + assert set(H.nodes()) == {1, 3, 4} + assert set(H.edges()) == {(1, 1)} diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_graph.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..b0048a31f04eb583f4bcfc32385c2335b94467ad --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_graph.py @@ -0,0 +1,920 @@ +import gc +import pickle +import platform +import weakref + +import pytest + +import networkx as nx +from networkx.utils import edges_equal, graphs_equal, nodes_equal + + +class BaseGraphTester: + """Tests for data-structure independent graph class features.""" + + def test_contains(self): + G = self.K3 + assert 1 in G + assert 4 not in G + assert "b" not in G + assert [] not in G # no exception for nonhashable + assert {1: 1} not in G # no exception for nonhashable + + def test_order(self): + G = self.K3 + assert len(G) == 3 + assert G.order() == 3 + assert G.number_of_nodes() == 3 + + def test_nodes(self): + G = self.K3 + assert isinstance(G._node, G.node_dict_factory) + assert isinstance(G._adj, G.adjlist_outer_dict_factory) + assert all( + isinstance(adj, G.adjlist_inner_dict_factory) for adj in G._adj.values() + ) + assert sorted(G.nodes()) == self.k3nodes + assert sorted(G.nodes(data=True)) == [(0, {}), (1, {}), (2, {})] + + def test_none_node(self): + G = self.Graph() + with pytest.raises(ValueError): + G.add_node(None) + with pytest.raises(ValueError): + G.add_nodes_from([None]) + with pytest.raises(ValueError): + G.add_edge(0, None) + with pytest.raises(ValueError): + G.add_edges_from([(0, None)]) + + def test_has_node(self): + G = self.K3 + assert G.has_node(1) + assert not G.has_node(4) + assert not G.has_node([]) # no exception for nonhashable + assert not G.has_node({1: 1}) # no exception for nonhashable + + def test_has_edge(self): + G = self.K3 + assert G.has_edge(0, 1) + assert not G.has_edge(0, -1) + + def test_neighbors(self): + G = self.K3 + assert sorted(G.neighbors(0)) == [1, 2] + with pytest.raises(nx.NetworkXError): + G.neighbors(-1) + + @pytest.mark.skipif( + platform.python_implementation() == "PyPy", reason="PyPy gc is different" + ) + def test_memory_leak(self): + G = self.Graph() + + def count_objects_of_type(_type): + # Iterating over all objects tracked by gc can include weak references + # whose weakly-referenced objects may no longer exist. Calling `isinstance` + # on such a weak reference will raise ReferenceError. There are at least + # three workarounds for this: one is to compare type names instead of using + # `isinstance` such as `type(obj).__name__ == typename`, another is to use + # `type(obj) == _type`, and the last is to ignore ProxyTypes as we do below. + # NOTE: even if this safeguard is deemed unnecessary to pass NetworkX tests, + # we should still keep it for maximum safety for other NetworkX backends. + return sum( + 1 + for obj in gc.get_objects() + if not isinstance(obj, weakref.ProxyTypes) and isinstance(obj, _type) + ) + + gc.collect() + before = count_objects_of_type(self.Graph) + G.copy() + gc.collect() + after = count_objects_of_type(self.Graph) + assert before == after + + # test a subgraph of the base class + class MyGraph(self.Graph): + pass + + gc.collect() + G = MyGraph() + before = count_objects_of_type(MyGraph) + G.copy() + gc.collect() + after = count_objects_of_type(MyGraph) + assert before == after + + def test_edges(self): + G = self.K3 + assert isinstance(G._adj, G.adjlist_outer_dict_factory) + assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)]) + assert edges_equal(G.edges(0), [(0, 1), (0, 2)]) + assert edges_equal(G.edges([0, 1]), [(0, 1), (0, 2), (1, 2)]) + with pytest.raises(nx.NetworkXError): + G.edges(-1) + + def test_degree(self): + G = self.K3 + assert sorted(G.degree()) == [(0, 2), (1, 2), (2, 2)] + assert dict(G.degree()) == {0: 2, 1: 2, 2: 2} + assert G.degree(0) == 2 + with pytest.raises(nx.NetworkXError): + G.degree(-1) # node not in graph + + def test_size(self): + G = self.K3 + assert G.size() == 3 + assert G.number_of_edges() == 3 + + def test_nbunch_iter(self): + G = self.K3 + assert nodes_equal(G.nbunch_iter(), self.k3nodes) # all nodes + assert nodes_equal(G.nbunch_iter(0), [0]) # single node + assert nodes_equal(G.nbunch_iter([0, 1]), [0, 1]) # sequence + # sequence with none in graph + assert nodes_equal(G.nbunch_iter([-1]), []) + # string sequence with none in graph + assert nodes_equal(G.nbunch_iter("foo"), []) + # node not in graph doesn't get caught upon creation of iterator + bunch = G.nbunch_iter(-1) + # but gets caught when iterator used + with pytest.raises(nx.NetworkXError, match="is not a node or a sequence"): + list(bunch) + # unhashable doesn't get caught upon creation of iterator + bunch = G.nbunch_iter([0, 1, 2, {}]) + # but gets caught when iterator hits the unhashable + with pytest.raises( + nx.NetworkXError, match="in sequence nbunch is not a valid node" + ): + list(bunch) + + def test_nbunch_iter_node_format_raise(self): + # Tests that a node that would have failed string formatting + # doesn't cause an error when attempting to raise a + # :exc:`nx.NetworkXError`. + + # For more information, see pull request #1813. + G = self.Graph() + nbunch = [("x", set())] + with pytest.raises(nx.NetworkXError): + list(G.nbunch_iter(nbunch)) + + def test_selfloop_degree(self): + G = self.Graph() + G.add_edge(1, 1) + assert sorted(G.degree()) == [(1, 2)] + assert dict(G.degree()) == {1: 2} + assert G.degree(1) == 2 + assert sorted(G.degree([1])) == [(1, 2)] + assert G.degree(1, weight="weight") == 2 + + def test_selfloops(self): + G = self.K3.copy() + G.add_edge(0, 0) + assert nodes_equal(nx.nodes_with_selfloops(G), [0]) + assert edges_equal(nx.selfloop_edges(G), [(0, 0)]) + assert nx.number_of_selfloops(G) == 1 + G.remove_edge(0, 0) + G.add_edge(0, 0) + G.remove_edges_from([(0, 0)]) + G.add_edge(1, 1) + G.remove_node(1) + G.add_edge(0, 0) + G.add_edge(1, 1) + G.remove_nodes_from([0, 1]) + + def test_cache_reset(self): + G = self.K3.copy() + old_adj = G.adj + assert id(G.adj) == id(old_adj) + G._adj = {} + assert id(G.adj) != id(old_adj) + + old_nodes = G.nodes + assert id(G.nodes) == id(old_nodes) + G._node = {} + assert id(G.nodes) != id(old_nodes) + + def test_attributes_cached(self): + G = self.K3.copy() + assert id(G.nodes) == id(G.nodes) + assert id(G.edges) == id(G.edges) + assert id(G.degree) == id(G.degree) + assert id(G.adj) == id(G.adj) + + +class BaseAttrGraphTester(BaseGraphTester): + """Tests of graph class attribute features.""" + + def test_weighted_degree(self): + G = self.Graph() + G.add_edge(1, 2, weight=2, other=3) + G.add_edge(2, 3, weight=3, other=4) + assert sorted(d for n, d in G.degree(weight="weight")) == [2, 3, 5] + assert dict(G.degree(weight="weight")) == {1: 2, 2: 5, 3: 3} + assert G.degree(1, weight="weight") == 2 + assert nodes_equal((G.degree([1], weight="weight")), [(1, 2)]) + + assert nodes_equal((d for n, d in G.degree(weight="other")), [3, 7, 4]) + assert dict(G.degree(weight="other")) == {1: 3, 2: 7, 3: 4} + assert G.degree(1, weight="other") == 3 + assert edges_equal((G.degree([1], weight="other")), [(1, 3)]) + + def add_attributes(self, G): + G.graph["foo"] = [] + G.nodes[0]["foo"] = [] + G.remove_edge(1, 2) + ll = [] + G.add_edge(1, 2, foo=ll) + G.add_edge(2, 1, foo=ll) + + def test_name(self): + G = self.Graph(name="") + assert G.name == "" + G = self.Graph(name="test") + assert G.name == "test" + + def test_str_unnamed(self): + G = self.Graph() + G.add_edges_from([(1, 2), (2, 3)]) + assert str(G) == f"{type(G).__name__} with 3 nodes and 2 edges" + + def test_str_named(self): + G = self.Graph(name="foo") + G.add_edges_from([(1, 2), (2, 3)]) + assert str(G) == f"{type(G).__name__} named 'foo' with 3 nodes and 2 edges" + + def test_graph_chain(self): + G = self.Graph([(0, 1), (1, 2)]) + DG = G.to_directed(as_view=True) + SDG = DG.subgraph([0, 1]) + RSDG = SDG.reverse(copy=False) + assert G is DG._graph + assert DG is SDG._graph + assert SDG is RSDG._graph + + def test_copy(self): + G = self.Graph() + G.add_node(0) + G.add_edge(1, 2) + self.add_attributes(G) + # copy edge datadict but any container attr are same + H = G.copy() + self.graphs_equal(H, G) + self.different_attrdict(H, G) + self.shallow_copy_attrdict(H, G) + + def test_class_copy(self): + G = self.Graph() + G.add_node(0) + G.add_edge(1, 2) + self.add_attributes(G) + # copy edge datadict but any container attr are same + H = G.__class__(G) + self.graphs_equal(H, G) + self.different_attrdict(H, G) + self.shallow_copy_attrdict(H, G) + + def test_fresh_copy(self): + G = self.Graph() + G.add_node(0) + G.add_edge(1, 2) + self.add_attributes(G) + # copy graph structure but use fresh datadict + H = G.__class__() + H.add_nodes_from(G) + H.add_edges_from(G.edges()) + assert len(G.nodes[0]) == 1 + ddict = G.adj[1][2][0] if G.is_multigraph() else G.adj[1][2] + assert len(ddict) == 1 + assert len(H.nodes[0]) == 0 + ddict = H.adj[1][2][0] if H.is_multigraph() else H.adj[1][2] + assert len(ddict) == 0 + + def is_deepcopy(self, H, G): + self.graphs_equal(H, G) + self.different_attrdict(H, G) + self.deep_copy_attrdict(H, G) + + def deep_copy_attrdict(self, H, G): + self.deepcopy_graph_attr(H, G) + self.deepcopy_node_attr(H, G) + self.deepcopy_edge_attr(H, G) + + def deepcopy_graph_attr(self, H, G): + assert G.graph["foo"] == H.graph["foo"] + G.graph["foo"].append(1) + assert G.graph["foo"] != H.graph["foo"] + + def deepcopy_node_attr(self, H, G): + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + G.nodes[0]["foo"].append(1) + assert G.nodes[0]["foo"] != H.nodes[0]["foo"] + + def deepcopy_edge_attr(self, H, G): + assert G[1][2]["foo"] == H[1][2]["foo"] + G[1][2]["foo"].append(1) + assert G[1][2]["foo"] != H[1][2]["foo"] + + def is_shallow_copy(self, H, G): + self.graphs_equal(H, G) + self.shallow_copy_attrdict(H, G) + + def shallow_copy_attrdict(self, H, G): + self.shallow_copy_graph_attr(H, G) + self.shallow_copy_node_attr(H, G) + self.shallow_copy_edge_attr(H, G) + + def shallow_copy_graph_attr(self, H, G): + assert G.graph["foo"] == H.graph["foo"] + G.graph["foo"].append(1) + assert G.graph["foo"] == H.graph["foo"] + + def shallow_copy_node_attr(self, H, G): + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + G.nodes[0]["foo"].append(1) + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + + def shallow_copy_edge_attr(self, H, G): + assert G[1][2]["foo"] == H[1][2]["foo"] + G[1][2]["foo"].append(1) + assert G[1][2]["foo"] == H[1][2]["foo"] + + def same_attrdict(self, H, G): + old_foo = H[1][2]["foo"] + H.adj[1][2]["foo"] = "baz" + assert G.edges == H.edges + H.adj[1][2]["foo"] = old_foo + assert G.edges == H.edges + + old_foo = H.nodes[0]["foo"] + H.nodes[0]["foo"] = "baz" + assert G.nodes == H.nodes + H.nodes[0]["foo"] = old_foo + assert G.nodes == H.nodes + + def different_attrdict(self, H, G): + old_foo = H[1][2]["foo"] + H.adj[1][2]["foo"] = "baz" + assert G._adj != H._adj + H.adj[1][2]["foo"] = old_foo + assert G._adj == H._adj + + old_foo = H.nodes[0]["foo"] + H.nodes[0]["foo"] = "baz" + assert G._node != H._node + H.nodes[0]["foo"] = old_foo + assert G._node == H._node + + def graphs_equal(self, H, G): + assert G._adj == H._adj + assert G._node == H._node + assert G.graph == H.graph + assert G.name == H.name + if not G.is_directed() and not H.is_directed(): + assert H._adj[1][2] is H._adj[2][1] + assert G._adj[1][2] is G._adj[2][1] + else: # at least one is directed + if not G.is_directed(): + G._pred = G._adj + G._succ = G._adj + if not H.is_directed(): + H._pred = H._adj + H._succ = H._adj + assert G._pred == H._pred + assert G._succ == H._succ + assert H._succ[1][2] is H._pred[2][1] + assert G._succ[1][2] is G._pred[2][1] + + def test_graph_attr(self): + G = self.K3.copy() + G.graph["foo"] = "bar" + assert isinstance(G.graph, G.graph_attr_dict_factory) + assert G.graph["foo"] == "bar" + del G.graph["foo"] + assert G.graph == {} + H = self.Graph(foo="bar") + assert H.graph["foo"] == "bar" + + def test_node_attr(self): + G = self.K3.copy() + G.add_node(1, foo="bar") + assert all( + isinstance(d, G.node_attr_dict_factory) for u, d in G.nodes(data=True) + ) + assert nodes_equal(G.nodes(), [0, 1, 2]) + assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "bar"}), (2, {})]) + G.nodes[1]["foo"] = "baz" + assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "baz"}), (2, {})]) + assert nodes_equal(G.nodes(data="foo"), [(0, None), (1, "baz"), (2, None)]) + assert nodes_equal( + G.nodes(data="foo", default="bar"), [(0, "bar"), (1, "baz"), (2, "bar")] + ) + + def test_node_attr2(self): + G = self.K3.copy() + a = {"foo": "bar"} + G.add_node(3, **a) + assert nodes_equal(G.nodes(), [0, 1, 2, 3]) + assert nodes_equal( + G.nodes(data=True), [(0, {}), (1, {}), (2, {}), (3, {"foo": "bar"})] + ) + + def test_edge_lookup(self): + G = self.Graph() + G.add_edge(1, 2, foo="bar") + assert edges_equal(G.edges[1, 2], {"foo": "bar"}) + + def test_edge_attr(self): + G = self.Graph() + G.add_edge(1, 2, foo="bar") + assert all( + isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True) + ) + assert edges_equal(G.edges(data=True), [(1, 2, {"foo": "bar"})]) + assert edges_equal(G.edges(data="foo"), [(1, 2, "bar")]) + + def test_edge_attr2(self): + G = self.Graph() + G.add_edges_from([(1, 2), (3, 4)], foo="foo") + assert edges_equal( + G.edges(data=True), [(1, 2, {"foo": "foo"}), (3, 4, {"foo": "foo"})] + ) + assert edges_equal(G.edges(data="foo"), [(1, 2, "foo"), (3, 4, "foo")]) + + def test_edge_attr3(self): + G = self.Graph() + G.add_edges_from([(1, 2, {"weight": 32}), (3, 4, {"weight": 64})], foo="foo") + assert edges_equal( + G.edges(data=True), + [ + (1, 2, {"foo": "foo", "weight": 32}), + (3, 4, {"foo": "foo", "weight": 64}), + ], + ) + + G.remove_edges_from([(1, 2), (3, 4)]) + G.add_edge(1, 2, data=7, spam="bar", bar="foo") + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})] + ) + + def test_edge_attr4(self): + G = self.Graph() + G.add_edge(1, 2, data=7, spam="bar", bar="foo") + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})] + ) + G[1][2]["data"] = 10 # OK to set data like this + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})] + ) + + G.adj[1][2]["data"] = 20 + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})] + ) + G.edges[1, 2]["data"] = 21 # another spelling, "edge" + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})] + ) + G.adj[1][2]["listdata"] = [20, 200] + G.adj[1][2]["weight"] = 20 + dd = { + "data": 21, + "spam": "bar", + "bar": "foo", + "listdata": [20, 200], + "weight": 20, + } + assert edges_equal(G.edges(data=True), [(1, 2, dd)]) + + def test_to_undirected(self): + G = self.K3 + self.add_attributes(G) + H = nx.Graph(G) + self.is_shallow_copy(H, G) + self.different_attrdict(H, G) + H = G.to_undirected() + self.is_deepcopy(H, G) + + def test_to_directed_as_view(self): + H = nx.path_graph(2, create_using=self.Graph) + H2 = H.to_directed(as_view=True) + assert H is H2._graph + assert H2.has_edge(0, 1) + assert H2.has_edge(1, 0) or H.is_directed() + pytest.raises(nx.NetworkXError, H2.add_node, -1) + pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2) + H.add_edge(1, 2) + assert H2.has_edge(1, 2) + assert H2.has_edge(2, 1) or H.is_directed() + + def test_to_undirected_as_view(self): + H = nx.path_graph(2, create_using=self.Graph) + H2 = H.to_undirected(as_view=True) + assert H is H2._graph + assert H2.has_edge(0, 1) + assert H2.has_edge(1, 0) + pytest.raises(nx.NetworkXError, H2.add_node, -1) + pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2) + H.add_edge(1, 2) + assert H2.has_edge(1, 2) + assert H2.has_edge(2, 1) + + def test_directed_class(self): + G = self.Graph() + + class newGraph(G.to_undirected_class()): + def to_directed_class(self): + return newDiGraph + + def to_undirected_class(self): + return newGraph + + class newDiGraph(G.to_directed_class()): + def to_directed_class(self): + return newDiGraph + + def to_undirected_class(self): + return newGraph + + G = newDiGraph() if G.is_directed() else newGraph() + H = G.to_directed() + assert isinstance(H, newDiGraph) + H = G.to_undirected() + assert isinstance(H, newGraph) + + def test_to_directed(self): + G = self.K3 + self.add_attributes(G) + H = nx.DiGraph(G) + self.is_shallow_copy(H, G) + self.different_attrdict(H, G) + H = G.to_directed() + self.is_deepcopy(H, G) + + def test_subgraph(self): + G = self.K3 + self.add_attributes(G) + H = G.subgraph([0, 1, 2, 5]) + self.graphs_equal(H, G) + self.same_attrdict(H, G) + self.shallow_copy_attrdict(H, G) + + H = G.subgraph(0) + assert H.adj == {0: {}} + H = G.subgraph([]) + assert H.adj == {} + assert G.adj != {} + + def test_selfloops_attr(self): + G = self.K3.copy() + G.add_edge(0, 0) + G.add_edge(1, 1, weight=2) + assert edges_equal( + nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})] + ) + assert edges_equal( + nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)] + ) + + +class TestGraph(BaseAttrGraphTester): + """Tests specific to dict-of-dict-of-dict graph data structure""" + + def setup_method(self): + self.Graph = nx.Graph + # build dict-of-dict-of-dict K3 + ed1, ed2, ed3 = ({}, {}, {}) + self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}} + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._adj = self.k3adj + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + def test_pickle(self): + G = self.K3 + pg = pickle.loads(pickle.dumps(G, -1)) + self.graphs_equal(pg, G) + pg = pickle.loads(pickle.dumps(G)) + self.graphs_equal(pg, G) + + def test_data_input(self): + G = self.Graph({1: [2], 2: [1]}, name="test") + assert G.name == "test" + assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})] + + def test_adjacency(self): + G = self.K3 + assert dict(G.adjacency()) == { + 0: {1: {}, 2: {}}, + 1: {0: {}, 2: {}}, + 2: {0: {}, 1: {}}, + } + + def test_getitem(self): + G = self.K3 + assert G.adj[0] == {1: {}, 2: {}} + assert G[0] == {1: {}, 2: {}} + with pytest.raises(KeyError): + G.__getitem__("j") + with pytest.raises(TypeError): + G.__getitem__(["A"]) + + def test_add_node(self): + G = self.Graph() + G.add_node(0) + assert G.adj == {0: {}} + # test add attributes + G.add_node(1, c="red") + G.add_node(2, c="blue") + G.add_node(3, c="red") + assert G.nodes[1]["c"] == "red" + assert G.nodes[2]["c"] == "blue" + assert G.nodes[3]["c"] == "red" + # test updating attributes + G.add_node(1, c="blue") + G.add_node(2, c="red") + G.add_node(3, c="blue") + assert G.nodes[1]["c"] == "blue" + assert G.nodes[2]["c"] == "red" + assert G.nodes[3]["c"] == "blue" + + def test_add_nodes_from(self): + G = self.Graph() + G.add_nodes_from([0, 1, 2]) + assert G.adj == {0: {}, 1: {}, 2: {}} + # test add attributes + G.add_nodes_from([0, 1, 2], c="red") + assert G.nodes[0]["c"] == "red" + assert G.nodes[2]["c"] == "red" + # test that attribute dicts are not the same + assert G.nodes[0] is not G.nodes[1] + # test updating attributes + G.add_nodes_from([0, 1, 2], c="blue") + assert G.nodes[0]["c"] == "blue" + assert G.nodes[2]["c"] == "blue" + assert G.nodes[0] is not G.nodes[1] + # test tuple input + H = self.Graph() + H.add_nodes_from(G.nodes(data=True)) + assert H.nodes[0]["c"] == "blue" + assert H.nodes[2]["c"] == "blue" + assert H.nodes[0] is not H.nodes[1] + # specific overrides general + H.add_nodes_from([0, (1, {"c": "green"}), (3, {"c": "cyan"})], c="red") + assert H.nodes[0]["c"] == "red" + assert H.nodes[1]["c"] == "green" + assert H.nodes[2]["c"] == "blue" + assert H.nodes[3]["c"] == "cyan" + + def test_remove_node(self): + G = self.K3.copy() + G.remove_node(0) + assert G.adj == {1: {2: {}}, 2: {1: {}}} + with pytest.raises(nx.NetworkXError): + G.remove_node(-1) + + # generator here to implement list,set,string... + + def test_remove_nodes_from(self): + G = self.K3.copy() + G.remove_nodes_from([0, 1]) + assert G.adj == {2: {}} + G.remove_nodes_from([-1]) # silent fail + + def test_add_edge(self): + G = self.Graph() + G.add_edge(0, 1) + assert G.adj == {0: {1: {}}, 1: {0: {}}} + G = self.Graph() + G.add_edge(*(0, 1)) + assert G.adj == {0: {1: {}}, 1: {0: {}}} + G = self.Graph() + with pytest.raises(ValueError): + G.add_edge(None, "anything") + + def test_add_edges_from(self): + G = self.Graph() + G.add_edges_from([(0, 1), (0, 2, {"weight": 3})]) + assert G.adj == { + 0: {1: {}, 2: {"weight": 3}}, + 1: {0: {}}, + 2: {0: {"weight": 3}}, + } + G = self.Graph() + G.add_edges_from([(0, 1), (0, 2, {"weight": 3}), (1, 2, {"data": 4})], data=2) + assert G.adj == { + 0: {1: {"data": 2}, 2: {"weight": 3, "data": 2}}, + 1: {0: {"data": 2}, 2: {"data": 4}}, + 2: {0: {"weight": 3, "data": 2}, 1: {"data": 4}}, + } + + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0,)]) # too few in tuple + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple + with pytest.raises(TypeError): + G.add_edges_from([0]) # not a tuple + with pytest.raises(ValueError): + G.add_edges_from([(None, 3), (3, 2)]) # None cannot be a node + + def test_remove_edge(self): + G = self.K3.copy() + G.remove_edge(0, 1) + assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}} + with pytest.raises(nx.NetworkXError): + G.remove_edge(-1, 0) + + def test_remove_edges_from(self): + G = self.K3.copy() + G.remove_edges_from([(0, 1)]) + assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}} + G.remove_edges_from([(0, 0)]) # silent fail + + def test_clear(self): + G = self.K3.copy() + G.graph["name"] = "K3" + G.clear() + assert list(G.nodes) == [] + assert G.adj == {} + assert G.graph == {} + + def test_clear_edges(self): + G = self.K3.copy() + G.graph["name"] = "K3" + nodes = list(G.nodes) + G.clear_edges() + assert list(G.nodes) == nodes + assert G.adj == {0: {}, 1: {}, 2: {}} + assert list(G.edges) == [] + assert G.graph["name"] == "K3" + + def test_edges_data(self): + G = self.K3 + all_edges = [(0, 1, {}), (0, 2, {}), (1, 2, {})] + assert edges_equal(G.edges(data=True), all_edges) + assert edges_equal(G.edges(0, data=True), [(0, 1, {}), (0, 2, {})]) + assert edges_equal(G.edges([0, 1], data=True), all_edges) + with pytest.raises(nx.NetworkXError): + G.edges(-1, True) + + def test_get_edge_data(self): + G = self.K3.copy() + assert G.get_edge_data(0, 1) == {} + assert G[0][1] == {} + assert G.get_edge_data(10, 20) is None + assert G.get_edge_data(-1, 0) is None + assert G.get_edge_data(-1, 0, default=1) == 1 + + def test_update(self): + # specify both edges and nodes + G = self.K3.copy() + G.update(nodes=[3, (4, {"size": 2})], edges=[(4, 5), (6, 7, {"weight": 2})]) + nlist = [ + (0, {}), + (1, {}), + (2, {}), + (3, {}), + (4, {"size": 2}), + (5, {}), + (6, {}), + (7, {}), + ] + assert sorted(G.nodes.data()) == nlist + if G.is_directed(): + elist = [ + (0, 1, {}), + (0, 2, {}), + (1, 0, {}), + (1, 2, {}), + (2, 0, {}), + (2, 1, {}), + (4, 5, {}), + (6, 7, {"weight": 2}), + ] + else: + elist = [ + (0, 1, {}), + (0, 2, {}), + (1, 2, {}), + (4, 5, {}), + (6, 7, {"weight": 2}), + ] + assert sorted(G.edges.data()) == elist + assert G.graph == {} + + # no keywords -- order is edges, nodes + G = self.K3.copy() + G.update([(4, 5), (6, 7, {"weight": 2})], [3, (4, {"size": 2})]) + assert sorted(G.nodes.data()) == nlist + assert sorted(G.edges.data()) == elist + assert G.graph == {} + + # update using only a graph + G = self.Graph() + G.graph["foo"] = "bar" + G.add_node(2, data=4) + G.add_edge(0, 1, weight=0.5) + GG = G.copy() + H = self.Graph() + GG.update(H) + assert graphs_equal(G, GG) + H.update(G) + assert graphs_equal(H, G) + + # update nodes only + H = self.Graph() + H.update(nodes=[3, 4]) + assert H.nodes ^ {3, 4} == set() + assert H.size() == 0 + + # update edges only + H = self.Graph() + H.update(edges=[(3, 4)]) + assert sorted(H.edges.data()) == [(3, 4, {})] + assert H.size() == 1 + + # No inputs -> exception + with pytest.raises(nx.NetworkXError): + nx.Graph().update() + + +class TestEdgeSubgraph: + """Unit tests for the :meth:`Graph.edge_subgraph` method.""" + + def setup_method(self): + # Create a path graph on five nodes. + G = nx.path_graph(5) + # Add some node, edge, and graph attributes. + for i in range(5): + G.nodes[i]["name"] = f"node{i}" + G.edges[0, 1]["name"] = "edge01" + G.edges[3, 4]["name"] = "edge34" + G.graph["name"] = "graph" + # Get the subgraph induced by the first and last edges. + self.G = G + self.H = G.edge_subgraph([(0, 1), (3, 4)]) + + def test_correct_nodes(self): + """Tests that the subgraph has the correct nodes.""" + assert [0, 1, 3, 4] == sorted(self.H.nodes()) + + def test_correct_edges(self): + """Tests that the subgraph has the correct edges.""" + assert [(0, 1, "edge01"), (3, 4, "edge34")] == sorted(self.H.edges(data="name")) + + def test_add_node(self): + """Tests that adding a node to the original graph does not + affect the nodes of the subgraph. + + """ + self.G.add_node(5) + assert [0, 1, 3, 4] == sorted(self.H.nodes()) + + def test_remove_node(self): + """Tests that removing a node in the original graph does + affect the nodes of the subgraph. + + """ + self.G.remove_node(0) + assert [1, 3, 4] == sorted(self.H.nodes()) + + def test_node_attr_dict(self): + """Tests that the node attribute dictionary of the two graphs is + the same object. + + """ + for v in self.H: + assert self.G.nodes[v] == self.H.nodes[v] + # Making a change to G should make a change in H and vice versa. + self.G.nodes[0]["name"] = "foo" + assert self.G.nodes[0] == self.H.nodes[0] + self.H.nodes[1]["name"] = "bar" + assert self.G.nodes[1] == self.H.nodes[1] + + def test_edge_attr_dict(self): + """Tests that the edge attribute dictionary of the two graphs is + the same object. + + """ + for u, v in self.H.edges(): + assert self.G.edges[u, v] == self.H.edges[u, v] + # Making a change to G should make a change in H and vice versa. + self.G.edges[0, 1]["name"] = "foo" + assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"] + self.H.edges[3, 4]["name"] = "bar" + assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"] + + def test_graph_attr_dict(self): + """Tests that the graph attribute dictionary of the two graphs + is the same object. + + """ + assert self.G.graph is self.H.graph diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_graph_historical.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_graph_historical.py new file mode 100644 index 0000000000000000000000000000000000000000..7af081c4871e1e3435668cd62200080c72719955 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_graph_historical.py @@ -0,0 +1,12 @@ +"""Original NetworkX graph tests""" +import networkx +import networkx as nx + +from .historical_tests import HistoricalTests + + +class TestGraphHistorical(HistoricalTests): + @classmethod + def setup_class(cls): + HistoricalTests.setup_class() + cls.G = nx.Graph diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_graphviews.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_graphviews.py new file mode 100644 index 0000000000000000000000000000000000000000..591c760c9bdfa61984dd7b87e938b1c15c04be0e --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_graphviews.py @@ -0,0 +1,350 @@ +import pytest + +import networkx as nx +from networkx.utils import edges_equal, nodes_equal + +# Note: SubGraph views are not tested here. They have their own testing file + + +class TestReverseView: + def setup_method(self): + self.G = nx.path_graph(9, create_using=nx.DiGraph()) + self.rv = nx.reverse_view(self.G) + + def test_pickle(self): + import pickle + + rv = self.rv + prv = pickle.loads(pickle.dumps(rv, -1)) + assert rv._node == prv._node + assert rv._adj == prv._adj + assert rv.graph == prv.graph + + def test_contains(self): + assert (2, 3) in self.G.edges + assert (3, 2) not in self.G.edges + assert (2, 3) not in self.rv.edges + assert (3, 2) in self.rv.edges + + def test_iter(self): + expected = sorted(tuple(reversed(e)) for e in self.G.edges) + assert sorted(self.rv.edges) == expected + + def test_exceptions(self): + G = nx.Graph() + pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, G) + + def test_subclass(self): + class MyGraph(nx.DiGraph): + def my_method(self): + return "me" + + def to_directed_class(self): + return MyGraph() + + M = MyGraph() + M.add_edge(1, 2) + RM = nx.reverse_view(M) + print("RM class", RM.__class__) + RMC = RM.copy() + print("RMC class", RMC.__class__) + print(RMC.edges) + assert RMC.has_edge(2, 1) + assert RMC.my_method() == "me" + + +class TestMultiReverseView: + def setup_method(self): + self.G = nx.path_graph(9, create_using=nx.MultiDiGraph()) + self.G.add_edge(4, 5) + self.rv = nx.reverse_view(self.G) + + def test_pickle(self): + import pickle + + rv = self.rv + prv = pickle.loads(pickle.dumps(rv, -1)) + assert rv._node == prv._node + assert rv._adj == prv._adj + assert rv.graph == prv.graph + + def test_contains(self): + assert (2, 3, 0) in self.G.edges + assert (3, 2, 0) not in self.G.edges + assert (2, 3, 0) not in self.rv.edges + assert (3, 2, 0) in self.rv.edges + assert (5, 4, 1) in self.rv.edges + assert (4, 5, 1) not in self.rv.edges + + def test_iter(self): + expected = sorted((v, u, k) for u, v, k in self.G.edges) + assert sorted(self.rv.edges) == expected + + def test_exceptions(self): + MG = nx.MultiGraph(self.G) + pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, MG) + + +def test_generic_multitype(): + nxg = nx.graphviews + G = nx.DiGraph([(1, 2)]) + with pytest.raises(nx.NetworkXError): + nxg.generic_graph_view(G, create_using=nx.MultiGraph) + G = nx.MultiDiGraph([(1, 2)]) + with pytest.raises(nx.NetworkXError): + nxg.generic_graph_view(G, create_using=nx.DiGraph) + + +class TestToDirected: + def setup_method(self): + self.G = nx.path_graph(9) + self.dv = nx.to_directed(self.G) + self.MG = nx.path_graph(9, create_using=nx.MultiGraph()) + self.Mdv = nx.to_directed(self.MG) + + def test_directed(self): + assert not self.G.is_directed() + assert self.dv.is_directed() + + def test_already_directed(self): + dd = nx.to_directed(self.dv) + Mdd = nx.to_directed(self.Mdv) + assert edges_equal(dd.edges, self.dv.edges) + assert edges_equal(Mdd.edges, self.Mdv.edges) + + def test_pickle(self): + import pickle + + dv = self.dv + pdv = pickle.loads(pickle.dumps(dv, -1)) + assert dv._node == pdv._node + assert dv._succ == pdv._succ + assert dv._pred == pdv._pred + assert dv.graph == pdv.graph + + def test_contains(self): + assert (2, 3) in self.G.edges + assert (3, 2) in self.G.edges + assert (2, 3) in self.dv.edges + assert (3, 2) in self.dv.edges + + def test_iter(self): + revd = [tuple(reversed(e)) for e in self.G.edges] + expected = sorted(list(self.G.edges) + revd) + assert sorted(self.dv.edges) == expected + + +class TestToUndirected: + def setup_method(self): + self.DG = nx.path_graph(9, create_using=nx.DiGraph()) + self.uv = nx.to_undirected(self.DG) + self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph()) + self.Muv = nx.to_undirected(self.MDG) + + def test_directed(self): + assert self.DG.is_directed() + assert not self.uv.is_directed() + + def test_already_directed(self): + uu = nx.to_undirected(self.uv) + Muu = nx.to_undirected(self.Muv) + assert edges_equal(uu.edges, self.uv.edges) + assert edges_equal(Muu.edges, self.Muv.edges) + + def test_pickle(self): + import pickle + + uv = self.uv + puv = pickle.loads(pickle.dumps(uv, -1)) + assert uv._node == puv._node + assert uv._adj == puv._adj + assert uv.graph == puv.graph + assert hasattr(uv, "_graph") + + def test_contains(self): + assert (2, 3) in self.DG.edges + assert (3, 2) not in self.DG.edges + assert (2, 3) in self.uv.edges + assert (3, 2) in self.uv.edges + + def test_iter(self): + expected = sorted(self.DG.edges) + assert sorted(self.uv.edges) == expected + + +class TestChainsOfViews: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.DG = nx.path_graph(9, create_using=nx.DiGraph()) + cls.MG = nx.path_graph(9, create_using=nx.MultiGraph()) + cls.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph()) + cls.Gv = nx.to_undirected(cls.DG) + cls.DGv = nx.to_directed(cls.G) + cls.MGv = nx.to_undirected(cls.MDG) + cls.MDGv = nx.to_directed(cls.MG) + cls.Rv = cls.DG.reverse() + cls.MRv = cls.MDG.reverse() + cls.graphs = [ + cls.G, + cls.DG, + cls.MG, + cls.MDG, + cls.Gv, + cls.DGv, + cls.MGv, + cls.MDGv, + cls.Rv, + cls.MRv, + ] + for G in cls.graphs: + G.edges, G.nodes, G.degree + + def test_pickle(self): + import pickle + + for G in self.graphs: + H = pickle.loads(pickle.dumps(G, -1)) + assert edges_equal(H.edges, G.edges) + assert nodes_equal(H.nodes, G.nodes) + + def test_subgraph_of_subgraph(self): + SGv = nx.subgraph(self.G, range(3, 7)) + SDGv = nx.subgraph(self.DG, range(3, 7)) + SMGv = nx.subgraph(self.MG, range(3, 7)) + SMDGv = nx.subgraph(self.MDG, range(3, 7)) + for G in self.graphs + [SGv, SDGv, SMGv, SMDGv]: + SG = nx.induced_subgraph(G, [4, 5, 6]) + assert list(SG) == [4, 5, 6] + SSG = SG.subgraph([6, 7]) + assert list(SSG) == [6] + # subgraph-subgraph chain is short-cut in base class method + assert SSG._graph is G + + def test_restricted_induced_subgraph_chains(self): + """Test subgraph chains that both restrict and show nodes/edges. + + A restricted_view subgraph should allow induced subgraphs using + G.subgraph that automagically without a chain (meaning the result + is a subgraph view of the original graph not a subgraph-of-subgraph. + """ + hide_nodes = [3, 4, 5] + hide_edges = [(6, 7)] + RG = nx.restricted_view(self.G, hide_nodes, hide_edges) + nodes = [4, 5, 6, 7, 8] + SG = nx.induced_subgraph(RG, nodes) + SSG = RG.subgraph(nodes) + assert RG._graph is self.G + assert SSG._graph is self.G + assert SG._graph is RG + assert edges_equal(SG.edges, SSG.edges) + # should be same as morphing the graph + CG = self.G.copy() + CG.remove_nodes_from(hide_nodes) + CG.remove_edges_from(hide_edges) + assert edges_equal(CG.edges(nodes), SSG.edges) + CG.remove_nodes_from([0, 1, 2, 3]) + assert edges_equal(CG.edges, SSG.edges) + # switch order: subgraph first, then restricted view + SSSG = self.G.subgraph(nodes) + RSG = nx.restricted_view(SSSG, hide_nodes, hide_edges) + assert RSG._graph is not self.G + assert edges_equal(RSG.edges, CG.edges) + + def test_subgraph_copy(self): + for origG in self.graphs: + G = nx.Graph(origG) + SG = G.subgraph([4, 5, 6]) + H = SG.copy() + assert type(G) == type(H) + + def test_subgraph_todirected(self): + SG = nx.induced_subgraph(self.G, [4, 5, 6]) + SSG = SG.to_directed() + assert sorted(SSG) == [4, 5, 6] + assert sorted(SSG.edges) == [(4, 5), (5, 4), (5, 6), (6, 5)] + + def test_subgraph_toundirected(self): + SG = nx.induced_subgraph(self.G, [4, 5, 6]) + SSG = SG.to_undirected() + assert list(SSG) == [4, 5, 6] + assert sorted(SSG.edges) == [(4, 5), (5, 6)] + + def test_reverse_subgraph_toundirected(self): + G = self.DG.reverse(copy=False) + SG = G.subgraph([4, 5, 6]) + SSG = SG.to_undirected() + assert list(SSG) == [4, 5, 6] + assert sorted(SSG.edges) == [(4, 5), (5, 6)] + + def test_reverse_reverse_copy(self): + G = self.DG.reverse(copy=False) + H = G.reverse(copy=True) + assert H.nodes == self.DG.nodes + assert H.edges == self.DG.edges + G = self.MDG.reverse(copy=False) + H = G.reverse(copy=True) + assert H.nodes == self.MDG.nodes + assert H.edges == self.MDG.edges + + def test_subgraph_edgesubgraph_toundirected(self): + G = self.G.copy() + SG = G.subgraph([4, 5, 6]) + SSG = SG.edge_subgraph([(4, 5), (5, 4)]) + USSG = SSG.to_undirected() + assert list(USSG) == [4, 5] + assert sorted(USSG.edges) == [(4, 5)] + + def test_copy_subgraph(self): + G = self.G.copy() + SG = G.subgraph([4, 5, 6]) + CSG = SG.copy(as_view=True) + DCSG = SG.copy(as_view=False) + assert hasattr(CSG, "_graph") # is a view + assert not hasattr(DCSG, "_graph") # not a view + + def test_copy_disubgraph(self): + G = self.DG.copy() + SG = G.subgraph([4, 5, 6]) + CSG = SG.copy(as_view=True) + DCSG = SG.copy(as_view=False) + assert hasattr(CSG, "_graph") # is a view + assert not hasattr(DCSG, "_graph") # not a view + + def test_copy_multidisubgraph(self): + G = self.MDG.copy() + SG = G.subgraph([4, 5, 6]) + CSG = SG.copy(as_view=True) + DCSG = SG.copy(as_view=False) + assert hasattr(CSG, "_graph") # is a view + assert not hasattr(DCSG, "_graph") # not a view + + def test_copy_multisubgraph(self): + G = self.MG.copy() + SG = G.subgraph([4, 5, 6]) + CSG = SG.copy(as_view=True) + DCSG = SG.copy(as_view=False) + assert hasattr(CSG, "_graph") # is a view + assert not hasattr(DCSG, "_graph") # not a view + + def test_copy_of_view(self): + G = nx.MultiGraph(self.MGv) + assert G.__class__.__name__ == "MultiGraph" + G = G.copy(as_view=True) + assert G.__class__.__name__ == "MultiGraph" + + def test_subclass(self): + class MyGraph(nx.DiGraph): + def my_method(self): + return "me" + + def to_directed_class(self): + return MyGraph() + + for origG in self.graphs: + G = MyGraph(origG) + SG = G.subgraph([4, 5, 6]) + H = SG.copy() + assert SG.my_method() == "me" + assert H.my_method() == "me" + assert 3 not in H or 3 in SG diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_multidigraph.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_multidigraph.py new file mode 100644 index 0000000000000000000000000000000000000000..fc0bd5467d0a62dc8f533af7a6c5bbc0a57fc010 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_multidigraph.py @@ -0,0 +1,459 @@ +from collections import UserDict + +import pytest + +import networkx as nx +from networkx.utils import edges_equal + +from .test_multigraph import BaseMultiGraphTester +from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph +from .test_multigraph import TestMultiGraph as _TestMultiGraph + + +class BaseMultiDiGraphTester(BaseMultiGraphTester): + def test_edges(self): + G = self.K3 + edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.edges()) == edges + assert sorted(G.edges(0)) == [(0, 1), (0, 2)] + pytest.raises((KeyError, nx.NetworkXError), G.edges, -1) + + def test_edges_data(self): + G = self.K3 + edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})] + assert sorted(G.edges(data=True)) == edges + assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})] + pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1) + + def test_edges_multi(self): + G = self.K3 + assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.edges(0)) == [(0, 1), (0, 2)] + G.add_edge(0, 1) + assert sorted(G.edges()) == [ + (0, 1), + (0, 1), + (0, 2), + (1, 0), + (1, 2), + (2, 0), + (2, 1), + ] + + def test_out_edges(self): + G = self.K3 + assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)] + pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1) + assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)] + + def test_out_edges_multi(self): + G = self.K3 + assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)] + G.add_edge(0, 1, 2) + assert sorted(G.out_edges()) == [ + (0, 1), + (0, 1), + (0, 2), + (1, 0), + (1, 2), + (2, 0), + (2, 1), + ] + + def test_out_edges_data(self): + G = self.K3 + assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})] + G.remove_edge(0, 1) + G.add_edge(0, 1, data=1) + assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})] + assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)] + assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)] + + def test_in_edges(self): + G = self.K3 + assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)] + pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1) + G.add_edge(0, 1, 2) + assert sorted(G.in_edges()) == [ + (0, 1), + (0, 1), + (0, 2), + (1, 0), + (1, 2), + (2, 0), + (2, 1), + ] + assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)] + + def test_in_edges_no_keys(self): + G = self.K3 + assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)] + G.add_edge(0, 1, 2) + assert sorted(G.in_edges()) == [ + (0, 1), + (0, 1), + (0, 2), + (1, 0), + (1, 2), + (2, 0), + (2, 1), + ] + + assert sorted(G.in_edges(data=True, keys=False)) == [ + (0, 1, {}), + (0, 1, {}), + (0, 2, {}), + (1, 0, {}), + (1, 2, {}), + (2, 0, {}), + (2, 1, {}), + ] + + def test_in_edges_data(self): + G = self.K3 + assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})] + G.remove_edge(1, 0) + G.add_edge(1, 0, data=1) + assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})] + assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)] + assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)] + + def is_shallow(self, H, G): + # graph + assert G.graph["foo"] == H.graph["foo"] + G.graph["foo"].append(1) + assert G.graph["foo"] == H.graph["foo"] + # node + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + G.nodes[0]["foo"].append(1) + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + # edge + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + G[1][2][0]["foo"].append(1) + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + + def is_deep(self, H, G): + # graph + assert G.graph["foo"] == H.graph["foo"] + G.graph["foo"].append(1) + assert G.graph["foo"] != H.graph["foo"] + # node + assert G.nodes[0]["foo"] == H.nodes[0]["foo"] + G.nodes[0]["foo"].append(1) + assert G.nodes[0]["foo"] != H.nodes[0]["foo"] + # edge + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + G[1][2][0]["foo"].append(1) + assert G[1][2][0]["foo"] != H[1][2][0]["foo"] + + def test_to_undirected(self): + # MultiDiGraph -> MultiGraph changes number of edges so it is + # not a copy operation... use is_shallow, not is_shallow_copy + G = self.K3 + self.add_attributes(G) + H = nx.MultiGraph(G) + # self.is_shallow(H,G) + # the result is traversal order dependent so we + # can't use the is_shallow() test here. + try: + assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)]) + except AssertionError: + assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)]) + H = G.to_undirected() + self.is_deep(H, G) + + def test_has_successor(self): + G = self.K3 + assert G.has_successor(0, 1) + assert not G.has_successor(0, -1) + + def test_successors(self): + G = self.K3 + assert sorted(G.successors(0)) == [1, 2] + pytest.raises((KeyError, nx.NetworkXError), G.successors, -1) + + def test_has_predecessor(self): + G = self.K3 + assert G.has_predecessor(0, 1) + assert not G.has_predecessor(0, -1) + + def test_predecessors(self): + G = self.K3 + assert sorted(G.predecessors(0)) == [1, 2] + pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1) + + def test_degree(self): + G = self.K3 + assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)] + assert dict(G.degree()) == {0: 4, 1: 4, 2: 4} + assert G.degree(0) == 4 + assert list(G.degree(iter([0]))) == [(0, 4)] + G.add_edge(0, 1, weight=0.3, other=1.2) + assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)] + assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)] + + def test_in_degree(self): + G = self.K3 + assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)] + assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2} + assert G.in_degree(0) == 2 + assert list(G.in_degree(iter([0]))) == [(0, 2)] + assert G.in_degree(0, weight="weight") == 2 + + def test_out_degree(self): + G = self.K3 + assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)] + assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2} + assert G.out_degree(0) == 2 + assert list(G.out_degree(iter([0]))) == [(0, 2)] + assert G.out_degree(0, weight="weight") == 2 + + def test_size(self): + G = self.K3 + assert G.size() == 6 + assert G.number_of_edges() == 6 + G.add_edge(0, 1, weight=0.3, other=1.2) + assert round(G.size(weight="weight"), 2) == 6.3 + assert round(G.size(weight="other"), 2) == 7.2 + + def test_to_undirected_reciprocal(self): + G = self.Graph() + G.add_edge(1, 2) + assert G.to_undirected().has_edge(1, 2) + assert not G.to_undirected(reciprocal=True).has_edge(1, 2) + G.add_edge(2, 1) + assert G.to_undirected(reciprocal=True).has_edge(1, 2) + + def test_reverse_copy(self): + G = nx.MultiDiGraph([(0, 1), (0, 1)]) + R = G.reverse() + assert sorted(R.edges()) == [(1, 0), (1, 0)] + R.remove_edge(1, 0) + assert sorted(R.edges()) == [(1, 0)] + assert sorted(G.edges()) == [(0, 1), (0, 1)] + + def test_reverse_nocopy(self): + G = nx.MultiDiGraph([(0, 1), (0, 1)]) + R = G.reverse(copy=False) + assert sorted(R.edges()) == [(1, 0), (1, 0)] + pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0) + + def test_di_attributes_cached(self): + G = self.K3.copy() + assert id(G.in_edges) == id(G.in_edges) + assert id(G.out_edges) == id(G.out_edges) + assert id(G.in_degree) == id(G.in_degree) + assert id(G.out_degree) == id(G.out_degree) + assert id(G.succ) == id(G.succ) + assert id(G.pred) == id(G.pred) + + +class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph): + def setup_method(self): + self.Graph = nx.MultiDiGraph + # build K3 + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._succ = {0: {}, 1: {}, 2: {}} + # K3._adj is synced with K3._succ + self.K3._pred = {0: {}, 1: {}, 2: {}} + for u in self.k3nodes: + for v in self.k3nodes: + if u == v: + continue + d = {0: {}} + self.K3._succ[u][v] = d + self.K3._pred[v][u] = d + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + def test_add_edge(self): + G = self.Graph() + G.add_edge(0, 1) + assert G._adj == {0: {1: {0: {}}}, 1: {}} + assert G._succ == {0: {1: {0: {}}}, 1: {}} + assert G._pred == {0: {}, 1: {0: {0: {}}}} + G = self.Graph() + G.add_edge(*(0, 1)) + assert G._adj == {0: {1: {0: {}}}, 1: {}} + assert G._succ == {0: {1: {0: {}}}, 1: {}} + assert G._pred == {0: {}, 1: {0: {0: {}}}} + with pytest.raises(ValueError, match="None cannot be a node"): + G.add_edge(None, 3) + + def test_add_edges_from(self): + G = self.Graph() + G.add_edges_from([(0, 1), (0, 1, {"weight": 3})]) + assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}} + assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}} + assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}} + + G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2) + assert G._succ == { + 0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, + 1: {}, + } + assert G._pred == { + 0: {}, + 1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, + } + + G = self.Graph() + edges = [ + (0, 1, {"weight": 3}), + (0, 1, (("weight", 2),)), + (0, 1, 5), + (0, 1, "s"), + ] + G.add_edges_from(edges) + keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}} + assert G._succ == {0: {1: keydict}, 1: {}} + assert G._pred == {1: {0: keydict}, 0: {}} + + # too few in tuple + pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)]) + # too many in tuple + pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)]) + # not a tuple + pytest.raises(TypeError, G.add_edges_from, [0]) + with pytest.raises(ValueError, match="None cannot be a node"): + G.add_edges_from([(None, 3), (3, 2)]) + + def test_remove_edge(self): + G = self.K3 + G.remove_edge(0, 1) + assert G._succ == { + 0: {2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + assert G._pred == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0) + pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1) + + def test_remove_multiedge(self): + G = self.K3 + G.add_edge(0, 1, key="parallel edge") + G.remove_edge(0, 1, key="parallel edge") + assert G._adj == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + + assert G._succ == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + + assert G._pred == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + G.remove_edge(0, 1) + assert G._succ == { + 0: {2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + assert G._pred == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0) + + def test_remove_edges_from(self): + G = self.K3 + G.remove_edges_from([(0, 1)]) + assert G._succ == { + 0: {2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + assert G._pred == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + G.remove_edges_from([(0, 0)]) # silent fail + + +class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph): + """Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method.""" + + def setup_method(self): + # Create a quadruply-linked path graph on five nodes. + G = nx.MultiDiGraph() + nx.add_path(G, range(5)) + nx.add_path(G, range(5)) + nx.add_path(G, reversed(range(5))) + nx.add_path(G, reversed(range(5))) + # Add some node, edge, and graph attributes. + for i in range(5): + G.nodes[i]["name"] = f"node{i}" + G.adj[0][1][0]["name"] = "edge010" + G.adj[0][1][1]["name"] = "edge011" + G.adj[3][4][0]["name"] = "edge340" + G.adj[3][4][1]["name"] = "edge341" + G.graph["name"] = "graph" + # Get the subgraph induced by one of the first edges and one of + # the last edges. + self.G = G + self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)]) + + +class CustomDictClass(UserDict): + pass + + +class MultiDiGraphSubClass(nx.MultiDiGraph): + node_dict_factory = CustomDictClass # type: ignore[assignment] + node_attr_dict_factory = CustomDictClass # type: ignore[assignment] + adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment] + adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment] + edge_key_dict_factory = CustomDictClass # type: ignore[assignment] + edge_attr_dict_factory = CustomDictClass # type: ignore[assignment] + graph_attr_dict_factory = CustomDictClass # type: ignore[assignment] + + +class TestMultiDiGraphSubclass(TestMultiDiGraph): + def setup_method(self): + self.Graph = MultiDiGraphSubClass + # build K3 + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._succ = self.K3.adjlist_outer_dict_factory( + { + 0: self.K3.adjlist_inner_dict_factory(), + 1: self.K3.adjlist_inner_dict_factory(), + 2: self.K3.adjlist_inner_dict_factory(), + } + ) + # K3._adj is synced with K3._succ + self.K3._pred = {0: {}, 1: {}, 2: {}} + for u in self.k3nodes: + for v in self.k3nodes: + if u == v: + continue + d = {0: {}} + self.K3._succ[u][v] = d + self.K3._pred[v][u] = d + self.K3._node = self.K3.node_dict_factory() + self.K3._node[0] = self.K3.node_attr_dict_factory() + self.K3._node[1] = self.K3.node_attr_dict_factory() + self.K3._node[2] = self.K3.node_attr_dict_factory() diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_multigraph.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_multigraph.py new file mode 100644 index 0000000000000000000000000000000000000000..cd912d1d7c33c056b3c9808221bf7b72cd10fcac --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_multigraph.py @@ -0,0 +1,528 @@ +from collections import UserDict + +import pytest + +import networkx as nx +from networkx.utils import edges_equal + +from .test_graph import BaseAttrGraphTester +from .test_graph import TestGraph as _TestGraph + + +class BaseMultiGraphTester(BaseAttrGraphTester): + def test_has_edge(self): + G = self.K3 + assert G.has_edge(0, 1) + assert not G.has_edge(0, -1) + assert G.has_edge(0, 1, 0) + assert not G.has_edge(0, 1, 1) + + def test_get_edge_data(self): + G = self.K3 + assert G.get_edge_data(0, 1) == {0: {}} + assert G[0][1] == {0: {}} + assert G[0][1][0] == {} + assert G.get_edge_data(10, 20) is None + assert G.get_edge_data(0, 1, 0) == {} + + def test_adjacency(self): + G = self.K3 + assert dict(G.adjacency()) == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + + def deepcopy_edge_attr(self, H, G): + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + G[1][2][0]["foo"].append(1) + assert G[1][2][0]["foo"] != H[1][2][0]["foo"] + + def shallow_copy_edge_attr(self, H, G): + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + G[1][2][0]["foo"].append(1) + assert G[1][2][0]["foo"] == H[1][2][0]["foo"] + + def graphs_equal(self, H, G): + assert G._adj == H._adj + assert G._node == H._node + assert G.graph == H.graph + assert G.name == H.name + if not G.is_directed() and not H.is_directed(): + assert H._adj[1][2][0] is H._adj[2][1][0] + assert G._adj[1][2][0] is G._adj[2][1][0] + else: # at least one is directed + if not G.is_directed(): + G._pred = G._adj + G._succ = G._adj + if not H.is_directed(): + H._pred = H._adj + H._succ = H._adj + assert G._pred == H._pred + assert G._succ == H._succ + assert H._succ[1][2][0] is H._pred[2][1][0] + assert G._succ[1][2][0] is G._pred[2][1][0] + + def same_attrdict(self, H, G): + # same attrdict in the edgedata + old_foo = H[1][2][0]["foo"] + H.adj[1][2][0]["foo"] = "baz" + assert G._adj == H._adj + H.adj[1][2][0]["foo"] = old_foo + assert G._adj == H._adj + + old_foo = H.nodes[0]["foo"] + H.nodes[0]["foo"] = "baz" + assert G._node == H._node + H.nodes[0]["foo"] = old_foo + assert G._node == H._node + + def different_attrdict(self, H, G): + # used by graph_equal_but_different + old_foo = H[1][2][0]["foo"] + H.adj[1][2][0]["foo"] = "baz" + assert G._adj != H._adj + H.adj[1][2][0]["foo"] = old_foo + assert G._adj == H._adj + + old_foo = H.nodes[0]["foo"] + H.nodes[0]["foo"] = "baz" + assert G._node != H._node + H.nodes[0]["foo"] = old_foo + assert G._node == H._node + + def test_to_undirected(self): + G = self.K3 + self.add_attributes(G) + H = nx.MultiGraph(G) + self.is_shallow_copy(H, G) + H = G.to_undirected() + self.is_deepcopy(H, G) + + def test_to_directed(self): + G = self.K3 + self.add_attributes(G) + H = nx.MultiDiGraph(G) + self.is_shallow_copy(H, G) + H = G.to_directed() + self.is_deepcopy(H, G) + + def test_number_of_edges_selfloops(self): + G = self.K3 + G.add_edge(0, 0) + G.add_edge(0, 0) + G.add_edge(0, 0, key="parallel edge") + G.remove_edge(0, 0, key="parallel edge") + assert G.number_of_edges(0, 0) == 2 + G.remove_edge(0, 0) + assert G.number_of_edges(0, 0) == 1 + + def test_edge_lookup(self): + G = self.Graph() + G.add_edge(1, 2, foo="bar") + G.add_edge(1, 2, "key", foo="biz") + assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"}) + assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"}) + + def test_edge_attr(self): + G = self.Graph() + G.add_edge(1, 2, key="k1", foo="bar") + G.add_edge(1, 2, key="k2", foo="baz") + assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory) + assert all( + isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True) + ) + assert edges_equal( + G.edges(keys=True, data=True), + [(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})], + ) + assert edges_equal( + G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")] + ) + + def test_edge_attr4(self): + G = self.Graph() + G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo") + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})] + ) + G[1][2][0]["data"] = 10 # OK to set data like this + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})] + ) + + G.adj[1][2][0]["data"] = 20 + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})] + ) + G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge" + assert edges_equal( + G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})] + ) + G.adj[1][2][0]["listdata"] = [20, 200] + G.adj[1][2][0]["weight"] = 20 + assert edges_equal( + G.edges(data=True), + [ + ( + 1, + 2, + { + "data": 21, + "spam": "bar", + "bar": "foo", + "listdata": [20, 200], + "weight": 20, + }, + ) + ], + ) + + +class TestMultiGraph(BaseMultiGraphTester, _TestGraph): + def setup_method(self): + self.Graph = nx.MultiGraph + # build K3 + ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}}) + self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}} + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._adj = self.k3adj + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + def test_data_input(self): + G = self.Graph({1: [2], 2: [1]}, name="test") + assert G.name == "test" + expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})] + assert sorted(G.adj.items()) == expected + + def test_data_multigraph_input(self): + # standard case with edge keys and edge data + edata0 = {"w": 200, "s": "foo"} + edata1 = {"w": 201, "s": "bar"} + keydict = {0: edata0, 1: edata1} + dododod = {"a": {"b": keydict}} + + multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)] + single_edge = [("a", "b", 0, keydict)] + + G = self.Graph(dododod, multigraph_input=True) + assert list(G.edges(keys=True, data=True)) == multiple_edge + G = self.Graph(dododod, multigraph_input=None) + assert list(G.edges(keys=True, data=True)) == multiple_edge + G = self.Graph(dododod, multigraph_input=False) + assert list(G.edges(keys=True, data=True)) == single_edge + + # test round-trip to_dict_of_dict and MultiGraph constructor + G = self.Graph(dododod, multigraph_input=True) + H = self.Graph(nx.to_dict_of_dicts(G)) + assert nx.is_isomorphic(G, H) is True # test that default is True + for mgi in [True, False]: + H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi) + assert nx.is_isomorphic(G, H) == mgi + + # Set up cases for when incoming_graph_data is not multigraph_input + etraits = {"w": 200, "s": "foo"} + egraphics = {"color": "blue", "shape": "box"} + edata = {"traits": etraits, "graphics": egraphics} + dodod1 = {"a": {"b": edata}} + dodod2 = {"a": {"b": etraits}} + dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}} + dol = {"a": ["b"]} + + multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)] + single_edge = [("a", "b", 0, {})] # type: ignore[var-annotated] + single_edge1 = [("a", "b", 0, edata)] + single_edge2 = [("a", "b", 0, etraits)] + single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})] + + cases = [ # (dod, mgi, edges) + (dodod1, True, multiple_edge), + (dodod1, False, single_edge1), + (dodod2, False, single_edge2), + (dodod3, False, single_edge3), + (dol, False, single_edge), + ] + + @pytest.mark.parametrize("dod, mgi, edges", cases) + def test_non_multigraph_input(self, dod, mgi, edges): + G = self.Graph(dod, multigraph_input=mgi) + assert list(G.edges(keys=True, data=True)) == edges + G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi) + assert list(G.edges(keys=True, data=True)) == edges + + mgi_none_cases = [ + (dodod1, multiple_edge), + (dodod2, single_edge2), + (dodod3, single_edge3), + ] + + @pytest.mark.parametrize("dod, edges", mgi_none_cases) + def test_non_multigraph_input_mgi_none(self, dod, edges): + # test constructor without to_networkx_graph for mgi=None + G = self.Graph(dod) + assert list(G.edges(keys=True, data=True)) == edges + + raise_cases = [dodod2, dodod3, dol] + + @pytest.mark.parametrize("dod", raise_cases) + def test_non_multigraph_input_raise(self, dod): + # cases where NetworkXError is raised + pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True) + pytest.raises( + nx.NetworkXError, + nx.to_networkx_graph, + dod, + create_using=self.Graph, + multigraph_input=True, + ) + + def test_getitem(self): + G = self.K3 + assert G[0] == {1: {0: {}}, 2: {0: {}}} + with pytest.raises(KeyError): + G.__getitem__("j") + with pytest.raises(TypeError): + G.__getitem__(["A"]) + + def test_remove_node(self): + G = self.K3 + G.remove_node(0) + assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}} + with pytest.raises(nx.NetworkXError): + G.remove_node(-1) + + def test_add_edge(self): + G = self.Graph() + G.add_edge(0, 1) + assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}} + G = self.Graph() + G.add_edge(*(0, 1)) + assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}} + G = self.Graph() + with pytest.raises(ValueError): + G.add_edge(None, "anything") + + def test_add_edge_conflicting_key(self): + G = self.Graph() + G.add_edge(0, 1, key=1) + G.add_edge(0, 1) + assert G.number_of_edges() == 2 + G = self.Graph() + G.add_edges_from([(0, 1, 1, {})]) + G.add_edges_from([(0, 1)]) + assert G.number_of_edges() == 2 + + def test_add_edges_from(self): + G = self.Graph() + G.add_edges_from([(0, 1), (0, 1, {"weight": 3})]) + assert G.adj == { + 0: {1: {0: {}, 1: {"weight": 3}}}, + 1: {0: {0: {}, 1: {"weight": 3}}}, + } + G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2) + assert G.adj == { + 0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, + 1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}}, + } + G = self.Graph() + edges = [ + (0, 1, {"weight": 3}), + (0, 1, (("weight", 2),)), + (0, 1, 5), + (0, 1, "s"), + ] + G.add_edges_from(edges) + keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}} + assert G._adj == {0: {1: keydict}, 1: {0: keydict}} + + # too few in tuple + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0,)]) + # too many in tuple + with pytest.raises(nx.NetworkXError): + G.add_edges_from([(0, 1, 2, 3, 4)]) + # not a tuple + with pytest.raises(TypeError): + G.add_edges_from([0]) + + def test_multigraph_add_edges_from_four_tuple_misordered(self): + """add_edges_from expects 4-tuples of the format (u, v, key, data_dict). + + Ensure 4-tuples of form (u, v, data_dict, key) raise exception. + """ + G = nx.MultiGraph() + with pytest.raises(TypeError): + # key/data values flipped in 4-tuple + G.add_edges_from([(0, 1, {"color": "red"}, 0)]) + + def test_remove_edge(self): + G = self.K3 + G.remove_edge(0, 1) + assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}} + + with pytest.raises(nx.NetworkXError): + G.remove_edge(-1, 0) + with pytest.raises(nx.NetworkXError): + G.remove_edge(0, 2, key=1) + + def test_remove_edges_from(self): + G = self.K3.copy() + G.remove_edges_from([(0, 1)]) + kd = {0: {}} + assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}} + G.remove_edges_from([(0, 0)]) # silent fail + self.K3.add_edge(0, 1) + G = self.K3.copy() + G.remove_edges_from(list(G.edges(data=True, keys=True))) + assert G.adj == {0: {}, 1: {}, 2: {}} + G = self.K3.copy() + G.remove_edges_from(list(G.edges(data=False, keys=True))) + assert G.adj == {0: {}, 1: {}, 2: {}} + G = self.K3.copy() + G.remove_edges_from(list(G.edges(data=False, keys=False))) + assert G.adj == {0: {}, 1: {}, 2: {}} + G = self.K3.copy() + G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)]) + assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}} + + def test_remove_multiedge(self): + G = self.K3 + G.add_edge(0, 1, key="parallel edge") + G.remove_edge(0, 1, key="parallel edge") + assert G.adj == { + 0: {1: {0: {}}, 2: {0: {}}}, + 1: {0: {0: {}}, 2: {0: {}}}, + 2: {0: {0: {}}, 1: {0: {}}}, + } + G.remove_edge(0, 1) + kd = {0: {}} + assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}} + with pytest.raises(nx.NetworkXError): + G.remove_edge(-1, 0) + + +class TestEdgeSubgraph: + """Unit tests for the :meth:`MultiGraph.edge_subgraph` method.""" + + def setup_method(self): + # Create a doubly-linked path graph on five nodes. + G = nx.MultiGraph() + nx.add_path(G, range(5)) + nx.add_path(G, range(5)) + # Add some node, edge, and graph attributes. + for i in range(5): + G.nodes[i]["name"] = f"node{i}" + G.adj[0][1][0]["name"] = "edge010" + G.adj[0][1][1]["name"] = "edge011" + G.adj[3][4][0]["name"] = "edge340" + G.adj[3][4][1]["name"] = "edge341" + G.graph["name"] = "graph" + # Get the subgraph induced by one of the first edges and one of + # the last edges. + self.G = G + self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)]) + + def test_correct_nodes(self): + """Tests that the subgraph has the correct nodes.""" + assert [0, 1, 3, 4] == sorted(self.H.nodes()) + + def test_correct_edges(self): + """Tests that the subgraph has the correct edges.""" + assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted( + self.H.edges(keys=True, data="name") + ) + + def test_add_node(self): + """Tests that adding a node to the original graph does not + affect the nodes of the subgraph. + + """ + self.G.add_node(5) + assert [0, 1, 3, 4] == sorted(self.H.nodes()) + + def test_remove_node(self): + """Tests that removing a node in the original graph does + affect the nodes of the subgraph. + + """ + self.G.remove_node(0) + assert [1, 3, 4] == sorted(self.H.nodes()) + + def test_node_attr_dict(self): + """Tests that the node attribute dictionary of the two graphs is + the same object. + + """ + for v in self.H: + assert self.G.nodes[v] == self.H.nodes[v] + # Making a change to G should make a change in H and vice versa. + self.G.nodes[0]["name"] = "foo" + assert self.G.nodes[0] == self.H.nodes[0] + self.H.nodes[1]["name"] = "bar" + assert self.G.nodes[1] == self.H.nodes[1] + + def test_edge_attr_dict(self): + """Tests that the edge attribute dictionary of the two graphs is + the same object. + + """ + for u, v, k in self.H.edges(keys=True): + assert self.G._adj[u][v][k] == self.H._adj[u][v][k] + # Making a change to G should make a change in H and vice versa. + self.G._adj[0][1][0]["name"] = "foo" + assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"] + self.H._adj[3][4][1]["name"] = "bar" + assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"] + + def test_graph_attr_dict(self): + """Tests that the graph attribute dictionary of the two graphs + is the same object. + + """ + assert self.G.graph is self.H.graph + + +class CustomDictClass(UserDict): + pass + + +class MultiGraphSubClass(nx.MultiGraph): + node_dict_factory = CustomDictClass # type: ignore[assignment] + node_attr_dict_factory = CustomDictClass # type: ignore[assignment] + adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment] + adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment] + edge_key_dict_factory = CustomDictClass # type: ignore[assignment] + edge_attr_dict_factory = CustomDictClass # type: ignore[assignment] + graph_attr_dict_factory = CustomDictClass # type: ignore[assignment] + + +class TestMultiGraphSubclass(TestMultiGraph): + def setup_method(self): + self.Graph = MultiGraphSubClass + # build K3 + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._adj = self.K3.adjlist_outer_dict_factory( + { + 0: self.K3.adjlist_inner_dict_factory(), + 1: self.K3.adjlist_inner_dict_factory(), + 2: self.K3.adjlist_inner_dict_factory(), + } + ) + self.K3._pred = {0: {}, 1: {}, 2: {}} + for u in self.k3nodes: + for v in self.k3nodes: + if u != v: + d = {0: {}} + self.K3._adj[u][v] = d + self.K3._adj[v][u] = d + self.K3._node = self.K3.node_dict_factory() + self.K3._node[0] = self.K3.node_attr_dict_factory() + self.K3._node[1] = self.K3.node_attr_dict_factory() + self.K3._node[2] = self.K3.node_attr_dict_factory() diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_reportviews.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_reportviews.py new file mode 100644 index 0000000000000000000000000000000000000000..a68d6eb822982cf7d11704583476a09fe42f1ab4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_reportviews.py @@ -0,0 +1,1423 @@ +import pickle +from copy import deepcopy + +import pytest + +import networkx as nx +from networkx.classes import reportviews as rv +from networkx.classes.reportviews import NodeDataView + + +# Nodes +class TestNodeView: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.nv = cls.G.nodes # NodeView(G) + + def test_pickle(self): + import pickle + + nv = self.nv + pnv = pickle.loads(pickle.dumps(nv, -1)) + assert nv == pnv + assert nv.__slots__ == pnv.__slots__ + + def test_str(self): + assert str(self.nv) == "[0, 1, 2, 3, 4, 5, 6, 7, 8]" + + def test_repr(self): + assert repr(self.nv) == "NodeView((0, 1, 2, 3, 4, 5, 6, 7, 8))" + + def test_contains(self): + G = self.G.copy() + nv = G.nodes + assert 7 in nv + assert 9 not in nv + G.remove_node(7) + G.add_node(9) + assert 7 not in nv + assert 9 in nv + + def test_getitem(self): + G = self.G.copy() + nv = G.nodes + G.nodes[3]["foo"] = "bar" + assert nv[7] == {} + assert nv[3] == {"foo": "bar"} + # slicing + with pytest.raises(nx.NetworkXError): + G.nodes[0:5] + + def test_iter(self): + nv = self.nv + for i, n in enumerate(nv): + assert i == n + inv = iter(nv) + assert next(inv) == 0 + assert iter(nv) != nv + assert iter(inv) == inv + inv2 = iter(nv) + next(inv2) + assert list(inv) == list(inv2) + # odd case where NodeView calls NodeDataView with data=False + nnv = nv(data=False) + for i, n in enumerate(nnv): + assert i == n + + def test_call(self): + nodes = self.nv + assert nodes is nodes() + assert nodes is not nodes(data=True) + assert nodes is not nodes(data="weight") + + +class TestNodeDataView: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.nv = NodeDataView(cls.G) + cls.ndv = cls.G.nodes.data(True) + cls.nwv = cls.G.nodes.data("foo") + + def test_viewtype(self): + nv = self.G.nodes + ndvfalse = nv.data(False) + assert nv is ndvfalse + assert nv is not self.ndv + + def test_pickle(self): + import pickle + + nv = self.nv + pnv = pickle.loads(pickle.dumps(nv, -1)) + assert nv == pnv + assert nv.__slots__ == pnv.__slots__ + + def test_str(self): + msg = str([(n, {}) for n in range(9)]) + assert str(self.ndv) == msg + + def test_repr(self): + expected = "NodeDataView((0, 1, 2, 3, 4, 5, 6, 7, 8))" + assert repr(self.nv) == expected + expected = ( + "NodeDataView({0: {}, 1: {}, 2: {}, 3: {}, " + + "4: {}, 5: {}, 6: {}, 7: {}, 8: {}})" + ) + assert repr(self.ndv) == expected + expected = ( + "NodeDataView({0: None, 1: None, 2: None, 3: None, 4: None, " + + "5: None, 6: None, 7: None, 8: None}, data='foo')" + ) + assert repr(self.nwv) == expected + + def test_contains(self): + G = self.G.copy() + nv = G.nodes.data() + nwv = G.nodes.data("foo") + G.nodes[3]["foo"] = "bar" + assert (7, {}) in nv + assert (3, {"foo": "bar"}) in nv + assert (3, "bar") in nwv + assert (7, None) in nwv + # default + nwv_def = G.nodes(data="foo", default="biz") + assert (7, "biz") in nwv_def + assert (3, "bar") in nwv_def + + def test_getitem(self): + G = self.G.copy() + nv = G.nodes + G.nodes[3]["foo"] = "bar" + assert nv[3] == {"foo": "bar"} + # default + nwv_def = G.nodes(data="foo", default="biz") + assert nwv_def[7], "biz" + assert nwv_def[3] == "bar" + # slicing + with pytest.raises(nx.NetworkXError): + G.nodes.data()[0:5] + + def test_iter(self): + G = self.G.copy() + nv = G.nodes.data() + ndv = G.nodes.data(True) + nwv = G.nodes.data("foo") + for i, (n, d) in enumerate(nv): + assert i == n + assert d == {} + inv = iter(nv) + assert next(inv) == (0, {}) + G.nodes[3]["foo"] = "bar" + # default + for n, d in nv: + if n == 3: + assert d == {"foo": "bar"} + else: + assert d == {} + # data=True + for n, d in ndv: + if n == 3: + assert d == {"foo": "bar"} + else: + assert d == {} + # data='foo' + for n, d in nwv: + if n == 3: + assert d == "bar" + else: + assert d is None + # data='foo', default=1 + for n, d in G.nodes.data("foo", default=1): + if n == 3: + assert d == "bar" + else: + assert d == 1 + + +def test_nodedataview_unhashable(): + G = nx.path_graph(9) + G.nodes[3]["foo"] = "bar" + nvs = [G.nodes.data()] + nvs.append(G.nodes.data(True)) + H = G.copy() + H.nodes[4]["foo"] = {1, 2, 3} + nvs.append(H.nodes.data(True)) + # raise unhashable + for nv in nvs: + pytest.raises(TypeError, set, nv) + pytest.raises(TypeError, eval, "nv | nv", locals()) + # no raise... hashable + Gn = G.nodes.data(False) + set(Gn) + Gn | Gn + Gn = G.nodes.data("foo") + set(Gn) + Gn | Gn + + +class TestNodeViewSetOps: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.G.nodes[3]["foo"] = "bar" + cls.nv = cls.G.nodes + + def n_its(self, nodes): + return set(nodes) + + def test_len(self): + G = self.G.copy() + nv = G.nodes + assert len(nv) == 9 + G.remove_node(7) + assert len(nv) == 8 + G.add_node(9) + assert len(nv) == 9 + + def test_and(self): + # print("G & H nodes:", gnv & hnv) + nv = self.nv + some_nodes = self.n_its(range(5, 12)) + assert nv & some_nodes == self.n_its(range(5, 9)) + assert some_nodes & nv == self.n_its(range(5, 9)) + + def test_or(self): + # print("G | H nodes:", gnv | hnv) + nv = self.nv + some_nodes = self.n_its(range(5, 12)) + assert nv | some_nodes == self.n_its(range(12)) + assert some_nodes | nv == self.n_its(range(12)) + + def test_xor(self): + # print("G ^ H nodes:", gnv ^ hnv) + nv = self.nv + some_nodes = self.n_its(range(5, 12)) + nodes = {0, 1, 2, 3, 4, 9, 10, 11} + assert nv ^ some_nodes == self.n_its(nodes) + assert some_nodes ^ nv == self.n_its(nodes) + + def test_sub(self): + # print("G - H nodes:", gnv - hnv) + nv = self.nv + some_nodes = self.n_its(range(5, 12)) + assert nv - some_nodes == self.n_its(range(5)) + assert some_nodes - nv == self.n_its(range(9, 12)) + + +class TestNodeDataViewSetOps(TestNodeViewSetOps): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.G.nodes[3]["foo"] = "bar" + cls.nv = cls.G.nodes.data("foo") + + def n_its(self, nodes): + return {(node, "bar" if node == 3 else None) for node in nodes} + + +class TestNodeDataViewDefaultSetOps(TestNodeDataViewSetOps): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.G.nodes[3]["foo"] = "bar" + cls.nv = cls.G.nodes.data("foo", default=1) + + def n_its(self, nodes): + return {(node, "bar" if node == 3 else 1) for node in nodes} + + +# Edges Data View +class TestEdgeDataView: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.eview = nx.reportviews.EdgeView + + def test_pickle(self): + import pickle + + ev = self.eview(self.G)(data=True) + pev = pickle.loads(pickle.dumps(ev, -1)) + assert list(ev) == list(pev) + assert ev.__slots__ == pev.__slots__ + + def modify_edge(self, G, e, **kwds): + G._adj[e[0]][e[1]].update(kwds) + + def test_str(self): + ev = self.eview(self.G)(data=True) + rep = str([(n, n + 1, {}) for n in range(8)]) + assert str(ev) == rep + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "EdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_iterdata(self): + G = self.G.copy() + evr = self.eview(G) + ev = evr(data=True) + ev_def = evr(data="foo", default=1) + + for u, v, d in ev: + pass + assert d == {} + + for u, v, wt in ev_def: + pass + assert wt == 1 + + self.modify_edge(G, (2, 3), foo="bar") + for e in ev: + assert len(e) == 3 + if set(e[:2]) == {2, 3}: + assert e[2] == {"foo": "bar"} + checked = True + else: + assert e[2] == {} + assert checked + + for e in ev_def: + assert len(e) == 3 + if set(e[:2]) == {2, 3}: + assert e[2] == "bar" + checked_wt = True + else: + assert e[2] == 1 + assert checked_wt + + def test_iter(self): + evr = self.eview(self.G) + ev = evr() + for u, v in ev: + pass + iev = iter(ev) + assert next(iev) == (0, 1) + assert iter(ev) != ev + assert iter(iev) == iev + + def test_contains(self): + evr = self.eview(self.G) + ev = evr() + if self.G.is_directed(): + assert (1, 2) in ev and (2, 1) not in ev + else: + assert (1, 2) in ev and (2, 1) in ev + assert (1, 4) not in ev + assert (1, 90) not in ev + assert (90, 1) not in ev + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + if self.G.is_directed(): + assert (0, 1) in ev + assert (1, 2) not in ev + assert (2, 3) in ev + else: + assert (0, 1) in ev + assert (1, 2) in ev + assert (2, 3) in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + def test_len(self): + evr = self.eview(self.G) + ev = evr(data="foo") + assert len(ev) == 8 + assert len(evr(1)) == 2 + assert len(evr([1, 2, 3])) == 4 + + assert len(self.G.edges(1)) == 2 + assert len(self.G.edges()) == 8 + assert len(self.G.edges) == 8 + + H = self.G.copy() + H.add_edge(1, 1) + assert len(H.edges(1)) == 3 + assert len(H.edges()) == 9 + assert len(H.edges) == 9 + + +class TestOutEdgeDataView(TestEdgeDataView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=nx.DiGraph()) + cls.eview = nx.reportviews.OutEdgeView + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "OutEdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_len(self): + evr = self.eview(self.G) + ev = evr(data="foo") + assert len(ev) == 8 + assert len(evr(1)) == 1 + assert len(evr([1, 2, 3])) == 3 + + assert len(self.G.edges(1)) == 1 + assert len(self.G.edges()) == 8 + assert len(self.G.edges) == 8 + + H = self.G.copy() + H.add_edge(1, 1) + assert len(H.edges(1)) == 2 + assert len(H.edges()) == 9 + assert len(H.edges) == 9 + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + assert (0, 1) in ev + assert (1, 2) not in ev + assert (2, 3) in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + +class TestInEdgeDataView(TestOutEdgeDataView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=nx.DiGraph()) + cls.eview = nx.reportviews.InEdgeView + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "InEdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + assert (0, 1) not in ev + assert (1, 2) in ev + assert (2, 3) not in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + +class TestMultiEdgeDataView(TestEdgeDataView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=nx.MultiGraph()) + cls.eview = nx.reportviews.MultiEdgeView + + def modify_edge(self, G, e, **kwds): + G._adj[e[0]][e[1]][0].update(kwds) + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "MultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + assert (0, 1) in ev + assert (1, 2) in ev + assert (2, 3) in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + +class TestOutMultiEdgeDataView(TestOutEdgeDataView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph()) + cls.eview = nx.reportviews.OutMultiEdgeView + + def modify_edge(self, G, e, **kwds): + G._adj[e[0]][e[1]][0].update(kwds) + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "OutMultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + assert (0, 1) in ev + assert (1, 2) not in ev + assert (2, 3) in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + +class TestInMultiEdgeDataView(TestOutMultiEdgeDataView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph()) + cls.eview = nx.reportviews.InMultiEdgeView + + def test_repr(self): + ev = self.eview(self.G)(data=True) + rep = ( + "InMultiEdgeDataView([(0, 1, {}), (1, 2, {}), " + + "(2, 3, {}), (3, 4, {}), " + + "(4, 5, {}), (5, 6, {}), " + + "(6, 7, {}), (7, 8, {})])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + evr = self.eview(self.G) + ev = evr(nbunch=[0, 2]) + assert (0, 1) not in ev + assert (1, 2) in ev + assert (2, 3) not in ev + assert (3, 4) not in ev + assert (4, 5) not in ev + assert (5, 6) not in ev + assert (7, 8) not in ev + assert (8, 9) not in ev + + +# Edge Views +class TestEdgeView: + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9) + cls.eview = nx.reportviews.EdgeView + + def test_pickle(self): + import pickle + + ev = self.eview(self.G) + pev = pickle.loads(pickle.dumps(ev, -1)) + assert ev == pev + assert ev.__slots__ == pev.__slots__ + + def modify_edge(self, G, e, **kwds): + G._adj[e[0]][e[1]].update(kwds) + + def test_str(self): + ev = self.eview(self.G) + rep = str([(n, n + 1) for n in range(8)]) + assert str(ev) == rep + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "EdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + + "(4, 5), (5, 6), (6, 7), (7, 8)])" + ) + assert repr(ev) == rep + + def test_getitem(self): + G = self.G.copy() + ev = G.edges + G.edges[0, 1]["foo"] = "bar" + assert ev[0, 1] == {"foo": "bar"} + + # slicing + with pytest.raises(nx.NetworkXError): + G.edges[0:5] + + def test_call(self): + ev = self.eview(self.G) + assert id(ev) == id(ev()) + assert id(ev) == id(ev(data=False)) + assert id(ev) != id(ev(data=True)) + assert id(ev) != id(ev(nbunch=1)) + + def test_data(self): + ev = self.eview(self.G) + assert id(ev) != id(ev.data()) + assert id(ev) == id(ev.data(data=False)) + assert id(ev) != id(ev.data(data=True)) + assert id(ev) != id(ev.data(nbunch=1)) + + def test_iter(self): + ev = self.eview(self.G) + for u, v in ev: + pass + iev = iter(ev) + assert next(iev) == (0, 1) + assert iter(ev) != ev + assert iter(iev) == iev + + def test_contains(self): + ev = self.eview(self.G) + edv = ev() + if self.G.is_directed(): + assert (1, 2) in ev and (2, 1) not in ev + assert (1, 2) in edv and (2, 1) not in edv + else: + assert (1, 2) in ev and (2, 1) in ev + assert (1, 2) in edv and (2, 1) in edv + assert (1, 4) not in ev + assert (1, 4) not in edv + # edge not in graph + assert (1, 90) not in ev + assert (90, 1) not in ev + assert (1, 90) not in edv + assert (90, 1) not in edv + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) in evn + assert (1, 2) in evn + assert (2, 3) in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + def test_len(self): + ev = self.eview(self.G) + num_ed = 9 if self.G.is_multigraph() else 8 + assert len(ev) == num_ed + + H = self.G.copy() + H.add_edge(1, 1) + assert len(H.edges(1)) == 3 + H.is_multigraph() - H.is_directed() + assert len(H.edges()) == num_ed + 1 + assert len(H.edges) == num_ed + 1 + + def test_and(self): + # print("G & H edges:", gnv & hnv) + ev = self.eview(self.G) + some_edges = {(0, 1), (1, 0), (0, 2)} + if self.G.is_directed(): + assert some_edges & ev, {(0, 1)} + assert ev & some_edges, {(0, 1)} + else: + assert ev & some_edges == {(0, 1), (1, 0)} + assert some_edges & ev == {(0, 1), (1, 0)} + return + + def test_or(self): + # print("G | H edges:", gnv | hnv) + ev = self.eview(self.G) + some_edges = {(0, 1), (1, 0), (0, 2)} + result1 = {(n, n + 1) for n in range(8)} + result1.update(some_edges) + result2 = {(n + 1, n) for n in range(8)} + result2.update(some_edges) + assert (ev | some_edges) in (result1, result2) + assert (some_edges | ev) in (result1, result2) + + def test_xor(self): + # print("G ^ H edges:", gnv ^ hnv) + ev = self.eview(self.G) + some_edges = {(0, 1), (1, 0), (0, 2)} + if self.G.is_directed(): + result = {(n, n + 1) for n in range(1, 8)} + result.update({(1, 0), (0, 2)}) + assert ev ^ some_edges == result + else: + result = {(n, n + 1) for n in range(1, 8)} + result.update({(0, 2)}) + assert ev ^ some_edges == result + return + + def test_sub(self): + # print("G - H edges:", gnv - hnv) + ev = self.eview(self.G) + some_edges = {(0, 1), (1, 0), (0, 2)} + result = {(n, n + 1) for n in range(8)} + result.remove((0, 1)) + assert ev - some_edges, result + + +class TestOutEdgeView(TestEdgeView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, nx.DiGraph()) + cls.eview = nx.reportviews.OutEdgeView + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "OutEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + + "(4, 5), (5, 6), (6, 7), (7, 8)])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) in evn + assert (1, 2) not in evn + assert (2, 3) in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + +class TestInEdgeView(TestEdgeView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, nx.DiGraph()) + cls.eview = nx.reportviews.InEdgeView + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "InEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), " + + "(4, 5), (5, 6), (6, 7), (7, 8)])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) not in evn + assert (1, 2) in evn + assert (2, 3) not in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + +class TestMultiEdgeView(TestEdgeView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, nx.MultiGraph()) + cls.G.add_edge(1, 2, key=3, foo="bar") + cls.eview = nx.reportviews.MultiEdgeView + + def modify_edge(self, G, e, **kwds): + if len(e) == 2: + e = e + (0,) + G._adj[e[0]][e[1]][e[2]].update(kwds) + + def test_str(self): + ev = self.eview(self.G) + replist = [(n, n + 1, 0) for n in range(8)] + replist.insert(2, (1, 2, 3)) + rep = str(replist) + assert str(ev) == rep + + def test_getitem(self): + G = self.G.copy() + ev = G.edges + G.edges[0, 1, 0]["foo"] = "bar" + assert ev[0, 1, 0] == {"foo": "bar"} + + # slicing + with pytest.raises(nx.NetworkXError): + G.edges[0:5] + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), " + + "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" + ) + assert repr(ev) == rep + + def test_call(self): + ev = self.eview(self.G) + assert id(ev) == id(ev(keys=True)) + assert id(ev) == id(ev(data=False, keys=True)) + assert id(ev) != id(ev(keys=False)) + assert id(ev) != id(ev(data=True)) + assert id(ev) != id(ev(nbunch=1)) + + def test_data(self): + ev = self.eview(self.G) + assert id(ev) != id(ev.data()) + assert id(ev) == id(ev.data(data=False, keys=True)) + assert id(ev) != id(ev.data(keys=False)) + assert id(ev) != id(ev.data(data=True)) + assert id(ev) != id(ev.data(nbunch=1)) + + def test_iter(self): + ev = self.eview(self.G) + for u, v, k in ev: + pass + iev = iter(ev) + assert next(iev) == (0, 1, 0) + assert iter(ev) != ev + assert iter(iev) == iev + + def test_iterkeys(self): + G = self.G + evr = self.eview(G) + ev = evr(keys=True) + for u, v, k in ev: + pass + assert k == 0 + ev = evr(keys=True, data="foo", default=1) + for u, v, k, wt in ev: + pass + assert wt == 1 + + self.modify_edge(G, (2, 3, 0), foo="bar") + ev = evr(keys=True, data=True) + for e in ev: + assert len(e) == 4 + print("edge:", e) + if set(e[:2]) == {2, 3}: + print(self.G._adj[2][3]) + assert e[2] == 0 + assert e[3] == {"foo": "bar"} + checked = True + elif set(e[:3]) == {1, 2, 3}: + assert e[2] == 3 + assert e[3] == {"foo": "bar"} + checked_multi = True + else: + assert e[2] == 0 + assert e[3] == {} + assert checked + assert checked_multi + ev = evr(keys=True, data="foo", default=1) + for e in ev: + if set(e[:2]) == {1, 2} and e[2] == 3: + assert e[3] == "bar" + if set(e[:2]) == {1, 2} and e[2] == 0: + assert e[3] == 1 + if set(e[:2]) == {2, 3}: + assert e[2] == 0 + assert e[3] == "bar" + assert len(e) == 4 + checked_wt = True + assert checked_wt + ev = evr(keys=True) + for e in ev: + assert len(e) == 3 + elist = sorted([(i, i + 1, 0) for i in range(8)] + [(1, 2, 3)]) + assert sorted(ev) == elist + # test that the keyword arguments are passed correctly + ev = evr((1, 2), "foo", keys=True, default=1) + with pytest.raises(TypeError): + evr((1, 2), "foo", True, 1) + with pytest.raises(TypeError): + evr((1, 2), "foo", True, default=1) + for e in ev: + if set(e[:2]) == {1, 2}: + assert e[2] in {0, 3} + if e[2] == 3: + assert e[3] == "bar" + else: # e[2] == 0 + assert e[3] == 1 + if G.is_directed(): + assert len(list(ev)) == 3 + else: + assert len(list(ev)) == 4 + + def test_or(self): + # print("G | H edges:", gnv | hnv) + ev = self.eview(self.G) + some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} + result = {(n, n + 1, 0) for n in range(8)} + result.update(some_edges) + result.update({(1, 2, 3)}) + assert ev | some_edges == result + assert some_edges | ev == result + + def test_sub(self): + # print("G - H edges:", gnv - hnv) + ev = self.eview(self.G) + some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} + result = {(n, n + 1, 0) for n in range(8)} + result.remove((0, 1, 0)) + result.update({(1, 2, 3)}) + assert ev - some_edges, result + assert some_edges - ev, result + + def test_xor(self): + # print("G ^ H edges:", gnv ^ hnv) + ev = self.eview(self.G) + some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} + if self.G.is_directed(): + result = {(n, n + 1, 0) for n in range(1, 8)} + result.update({(1, 0, 0), (0, 2, 0), (1, 2, 3)}) + assert ev ^ some_edges == result + assert some_edges ^ ev == result + else: + result = {(n, n + 1, 0) for n in range(1, 8)} + result.update({(0, 2, 0), (1, 2, 3)}) + assert ev ^ some_edges == result + assert some_edges ^ ev == result + + def test_and(self): + # print("G & H edges:", gnv & hnv) + ev = self.eview(self.G) + some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)} + if self.G.is_directed(): + assert ev & some_edges == {(0, 1, 0)} + assert some_edges & ev == {(0, 1, 0)} + else: + assert ev & some_edges == {(0, 1, 0), (1, 0, 0)} + assert some_edges & ev == {(0, 1, 0), (1, 0, 0)} + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) in evn + assert (1, 2) in evn + assert (2, 3) in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + +class TestOutMultiEdgeView(TestMultiEdgeView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, nx.MultiDiGraph()) + cls.G.add_edge(1, 2, key=3, foo="bar") + cls.eview = nx.reportviews.OutMultiEdgeView + + def modify_edge(self, G, e, **kwds): + if len(e) == 2: + e = e + (0,) + G._adj[e[0]][e[1]][e[2]].update(kwds) + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "OutMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0)," + + " (3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) in evn + assert (1, 2) not in evn + assert (2, 3) in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + +class TestInMultiEdgeView(TestMultiEdgeView): + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, nx.MultiDiGraph()) + cls.G.add_edge(1, 2, key=3, foo="bar") + cls.eview = nx.reportviews.InMultiEdgeView + + def modify_edge(self, G, e, **kwds): + if len(e) == 2: + e = e + (0,) + G._adj[e[0]][e[1]][e[2]].update(kwds) + + def test_repr(self): + ev = self.eview(self.G) + rep = ( + "InMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), " + + "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])" + ) + assert repr(ev) == rep + + def test_contains_with_nbunch(self): + ev = self.eview(self.G) + evn = ev(nbunch=[0, 2]) + assert (0, 1) not in evn + assert (1, 2) in evn + assert (2, 3) not in evn + assert (3, 4) not in evn + assert (4, 5) not in evn + assert (5, 6) not in evn + assert (7, 8) not in evn + assert (8, 9) not in evn + + +# Degrees +class TestDegreeView: + GRAPH = nx.Graph + dview = nx.reportviews.DegreeView + + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(6, cls.GRAPH()) + cls.G.add_edge(1, 3, foo=2) + cls.G.add_edge(1, 3, foo=3) + + def test_pickle(self): + import pickle + + deg = self.G.degree + pdeg = pickle.loads(pickle.dumps(deg, -1)) + assert dict(deg) == dict(pdeg) + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 1), (1, 3), (2, 2), (3, 3), (4, 2), (5, 1)]) + assert str(dv) == rep + dv = self.G.degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.dview(self.G) + rep = "DegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})" + assert repr(dv) == rep + + def test_iter(self): + dv = self.dview(self.G) + for n, d in dv: + pass + idv = iter(dv) + assert iter(dv) != dv + assert iter(idv) == idv + assert next(idv) == (0, dv[0]) + assert next(idv) == (1, dv[1]) + # weighted + dv = self.dview(self.G, weight="foo") + for n, d in dv: + pass + idv = iter(dv) + assert iter(dv) != dv + assert iter(idv) == idv + assert next(idv) == (0, dv[0]) + assert next(idv) == (1, dv[1]) + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 1 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 2), (3, 3)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 1 + assert dv[1] == 3 + assert dv[2] == 2 + assert dv[3] == 3 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 1 + assert dv[1] == 5 + assert dv[2] == 2 + assert dv[3] == 5 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 1 + dvw = dv(1, weight="foo") + assert dvw == 5 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 2), (3, 5)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 1 + assert dvd[1] == 5 + assert dvd[2] == 2 + assert dvd[3] == 5 + + def test_len(self): + dv = self.dview(self.G) + assert len(dv) == 6 + + +class TestDiDegreeView(TestDegreeView): + GRAPH = nx.DiGraph + dview = nx.reportviews.DiDegreeView + + def test_repr(self): + dv = self.G.degree() + rep = "DiDegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})" + assert repr(dv) == rep + + +class TestOutDegreeView(TestDegreeView): + GRAPH = nx.DiGraph + dview = nx.reportviews.OutDegreeView + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 1), (1, 2), (2, 1), (3, 1), (4, 1), (5, 0)]) + assert str(dv) == rep + dv = self.G.out_degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.G.out_degree() + rep = "OutDegreeView({0: 1, 1: 2, 2: 1, 3: 1, 4: 1, 5: 0})" + assert repr(dv) == rep + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 1 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 1), (3, 1)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 1 + assert dv[1] == 2 + assert dv[2] == 1 + assert dv[3] == 1 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 1 + assert dv[1] == 4 + assert dv[2] == 1 + assert dv[3] == 1 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 1 + dvw = dv(1, weight="foo") + assert dvw == 4 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 1), (3, 1)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 1 + assert dvd[1] == 4 + assert dvd[2] == 1 + assert dvd[3] == 1 + + +class TestInDegreeView(TestDegreeView): + GRAPH = nx.DiGraph + dview = nx.reportviews.InDegreeView + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 0), (1, 1), (2, 1), (3, 2), (4, 1), (5, 1)]) + assert str(dv) == rep + dv = self.G.in_degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.G.in_degree() + rep = "InDegreeView({0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 1})" + assert repr(dv) == rep + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 0 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 1), (3, 2)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 0 + assert dv[1] == 1 + assert dv[2] == 1 + assert dv[3] == 2 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 0 + assert dv[1] == 1 + assert dv[2] == 1 + assert dv[3] == 4 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 0 + dvw = dv(1, weight="foo") + assert dvw == 1 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 1), (3, 4)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 0 + assert dvd[1] == 1 + assert dvd[2] == 1 + assert dvd[3] == 4 + + +class TestMultiDegreeView(TestDegreeView): + GRAPH = nx.MultiGraph + dview = nx.reportviews.MultiDegreeView + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 1), (1, 4), (2, 2), (3, 4), (4, 2), (5, 1)]) + assert str(dv) == rep + dv = self.G.degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.G.degree() + rep = "MultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})" + assert repr(dv) == rep + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 1 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 2), (3, 4)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 1 + assert dv[1] == 4 + assert dv[2] == 2 + assert dv[3] == 4 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 1 + assert dv[1] == 7 + assert dv[2] == 2 + assert dv[3] == 7 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 1 + dvw = dv(1, weight="foo") + assert dvw == 7 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 2), (3, 7)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 1 + assert dvd[1] == 7 + assert dvd[2] == 2 + assert dvd[3] == 7 + + +class TestDiMultiDegreeView(TestMultiDegreeView): + GRAPH = nx.MultiDiGraph + dview = nx.reportviews.DiMultiDegreeView + + def test_repr(self): + dv = self.G.degree() + rep = "DiMultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})" + assert repr(dv) == rep + + +class TestOutMultiDegreeView(TestDegreeView): + GRAPH = nx.MultiDiGraph + dview = nx.reportviews.OutMultiDegreeView + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 1), (1, 3), (2, 1), (3, 1), (4, 1), (5, 0)]) + assert str(dv) == rep + dv = self.G.out_degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.G.out_degree() + rep = "OutMultiDegreeView({0: 1, 1: 3, 2: 1, 3: 1, 4: 1, 5: 0})" + assert repr(dv) == rep + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 1 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 1), (3, 1)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 1 + assert dv[1] == 3 + assert dv[2] == 1 + assert dv[3] == 1 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 1 + assert dv[1] == 6 + assert dv[2] == 1 + assert dv[3] == 1 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 1 + dvw = dv(1, weight="foo") + assert dvw == 6 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 1), (3, 1)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 1 + assert dvd[1] == 6 + assert dvd[2] == 1 + assert dvd[3] == 1 + + +class TestInMultiDegreeView(TestDegreeView): + GRAPH = nx.MultiDiGraph + dview = nx.reportviews.InMultiDegreeView + + def test_str(self): + dv = self.dview(self.G) + rep = str([(0, 0), (1, 1), (2, 1), (3, 3), (4, 1), (5, 1)]) + assert str(dv) == rep + dv = self.G.in_degree() + assert str(dv) == rep + + def test_repr(self): + dv = self.G.in_degree() + rep = "InMultiDegreeView({0: 0, 1: 1, 2: 1, 3: 3, 4: 1, 5: 1})" + assert repr(dv) == rep + + def test_nbunch(self): + dv = self.dview(self.G) + dvn = dv(0) + assert dvn == 0 + dvn = dv([2, 3]) + assert sorted(dvn) == [(2, 1), (3, 3)] + + def test_getitem(self): + dv = self.dview(self.G) + assert dv[0] == 0 + assert dv[1] == 1 + assert dv[2] == 1 + assert dv[3] == 3 + dv = self.dview(self.G, weight="foo") + assert dv[0] == 0 + assert dv[1] == 1 + assert dv[2] == 1 + assert dv[3] == 6 + + def test_weight(self): + dv = self.dview(self.G) + dvw = dv(0, weight="foo") + assert dvw == 0 + dvw = dv(1, weight="foo") + assert dvw == 1 + dvw = dv([2, 3], weight="foo") + assert sorted(dvw) == [(2, 1), (3, 6)] + dvd = dict(dv(weight="foo")) + assert dvd[0] == 0 + assert dvd[1] == 1 + assert dvd[2] == 1 + assert dvd[3] == 6 + + +@pytest.mark.parametrize( + ("reportview", "err_msg_terms"), + ( + (rv.NodeView, "list(G.nodes"), + (rv.NodeDataView, "list(G.nodes.data"), + (rv.EdgeView, "list(G.edges"), + # Directed EdgeViews + (rv.InEdgeView, "list(G.in_edges"), + (rv.OutEdgeView, "list(G.edges"), + # Multi EdgeViews + (rv.MultiEdgeView, "list(G.edges"), + (rv.InMultiEdgeView, "list(G.in_edges"), + (rv.OutMultiEdgeView, "list(G.edges"), + ), +) +def test_slicing_reportviews(reportview, err_msg_terms): + G = nx.complete_graph(3) + view = reportview(G) + with pytest.raises(nx.NetworkXError) as exc: + view[0:2] + errmsg = str(exc.value) + assert type(view).__name__ in errmsg + assert err_msg_terms in errmsg + + +@pytest.mark.parametrize( + "graph", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] +) +def test_cache_dict_get_set_state(graph): + G = nx.path_graph(5, graph()) + G.nodes, G.edges, G.adj, G.degree + if G.is_directed(): + G.pred, G.succ, G.in_edges, G.out_edges, G.in_degree, G.out_degree + cached_dict = G.__dict__ + assert "nodes" in cached_dict + assert "edges" in cached_dict + assert "adj" in cached_dict + assert "degree" in cached_dict + if G.is_directed(): + assert "pred" in cached_dict + assert "succ" in cached_dict + assert "in_edges" in cached_dict + assert "out_edges" in cached_dict + assert "in_degree" in cached_dict + assert "out_degree" in cached_dict + + # Raises error if the cached properties and views do not work + pickle.loads(pickle.dumps(G, -1)) + deepcopy(G) diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_special.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_special.py new file mode 100644 index 0000000000000000000000000000000000000000..1fa79605b484f57ed6cbd17762b21a23406ee006 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_special.py @@ -0,0 +1,131 @@ +import networkx as nx + +from .test_digraph import BaseDiGraphTester +from .test_digraph import TestDiGraph as _TestDiGraph +from .test_graph import BaseGraphTester +from .test_graph import TestGraph as _TestGraph +from .test_multidigraph import TestMultiDiGraph as _TestMultiDiGraph +from .test_multigraph import TestMultiGraph as _TestMultiGraph + + +def test_factories(): + class mydict1(dict): + pass + + class mydict2(dict): + pass + + class mydict3(dict): + pass + + class mydict4(dict): + pass + + class mydict5(dict): + pass + + for Graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph): + # print("testing class: ", Graph.__name__) + class MyGraph(Graph): + node_dict_factory = mydict1 + adjlist_outer_dict_factory = mydict2 + adjlist_inner_dict_factory = mydict3 + edge_key_dict_factory = mydict4 + edge_attr_dict_factory = mydict5 + + G = MyGraph() + assert isinstance(G._node, mydict1) + assert isinstance(G._adj, mydict2) + G.add_node(1) + assert isinstance(G._adj[1], mydict3) + if G.is_directed(): + assert isinstance(G._pred, mydict2) + assert isinstance(G._succ, mydict2) + assert isinstance(G._pred[1], mydict3) + G.add_edge(1, 2) + if G.is_multigraph(): + assert isinstance(G._adj[1][2], mydict4) + assert isinstance(G._adj[1][2][0], mydict5) + else: + assert isinstance(G._adj[1][2], mydict5) + + +class TestSpecialGraph(_TestGraph): + def setup_method(self): + _TestGraph.setup_method(self) + self.Graph = nx.Graph + + +class TestThinGraph(BaseGraphTester): + def setup_method(self): + all_edge_dict = {"weight": 1} + + class MyGraph(nx.Graph): + def edge_attr_dict_factory(self): + return all_edge_dict + + self.Graph = MyGraph + # build dict-of-dict-of-dict K3 + ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict) + self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}} + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._adj = self.k3adj + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + +class TestSpecialDiGraph(_TestDiGraph): + def setup_method(self): + _TestDiGraph.setup_method(self) + self.Graph = nx.DiGraph + + +class TestThinDiGraph(BaseDiGraphTester): + def setup_method(self): + all_edge_dict = {"weight": 1} + + class MyGraph(nx.DiGraph): + def edge_attr_dict_factory(self): + return all_edge_dict + + self.Graph = MyGraph + # build dict-of-dict-of-dict K3 + ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict) + ed4, ed5, ed6 = (all_edge_dict, all_edge_dict, all_edge_dict) + self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}} + self.k3edges = [(0, 1), (0, 2), (1, 2)] + self.k3nodes = [0, 1, 2] + self.K3 = self.Graph() + self.K3._succ = self.k3adj + # K3._adj is synced with K3._succ + self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}} + self.K3._node = {} + self.K3._node[0] = {} + self.K3._node[1] = {} + self.K3._node[2] = {} + + ed1, ed2 = (all_edge_dict, all_edge_dict) + self.P3 = self.Graph() + self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}} + # P3._adj is synced with P3._succ + self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}} + self.P3._node = {} + self.P3._node[0] = {} + self.P3._node[1] = {} + self.P3._node[2] = {} + + +class TestSpecialMultiGraph(_TestMultiGraph): + def setup_method(self): + _TestMultiGraph.setup_method(self) + self.Graph = nx.MultiGraph + + +class TestSpecialMultiDiGraph(_TestMultiDiGraph): + def setup_method(self): + _TestMultiDiGraph.setup_method(self) + self.Graph = nx.MultiDiGraph diff --git a/phivenv/Lib/site-packages/networkx/classes/tests/test_subgraphviews.py b/phivenv/Lib/site-packages/networkx/classes/tests/test_subgraphviews.py new file mode 100644 index 0000000000000000000000000000000000000000..73e0fdd2d52bcb7623dbd4e4f502e8bed0a4e3d3 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/classes/tests/test_subgraphviews.py @@ -0,0 +1,362 @@ +import pytest + +import networkx as nx +from networkx.utils import edges_equal + + +class TestSubGraphView: + gview = staticmethod(nx.subgraph_view) + graph = nx.Graph + hide_edges_filter = staticmethod(nx.filters.hide_edges) + show_edges_filter = staticmethod(nx.filters.show_edges) + + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=cls.graph()) + cls.hide_edges_w_hide_nodes = {(3, 4), (4, 5), (5, 6)} + + def test_hidden_nodes(self): + hide_nodes = [4, 5, 111] + nodes_gone = nx.filters.hide_nodes(hide_nodes) + gview = self.gview + G = gview(self.G, filter_node=nodes_gone) + assert self.G.nodes - G.nodes == {4, 5} + assert self.G.edges - G.edges == self.hide_edges_w_hide_nodes + if G.is_directed(): + assert list(G[3]) == [] + assert list(G[2]) == [3] + else: + assert list(G[3]) == [2] + assert set(G[2]) == {1, 3} + pytest.raises(KeyError, G.__getitem__, 4) + pytest.raises(KeyError, G.__getitem__, 112) + pytest.raises(KeyError, G.__getitem__, 111) + assert G.degree(3) == (3 if G.is_multigraph() else 1) + assert G.size() == (7 if G.is_multigraph() else 5) + + def test_hidden_edges(self): + hide_edges = [(2, 3), (8, 7), (222, 223)] + edges_gone = self.hide_edges_filter(hide_edges) + gview = self.gview + G = gview(self.G, filter_edge=edges_gone) + assert self.G.nodes == G.nodes + if G.is_directed(): + assert self.G.edges - G.edges == {(2, 3)} + assert list(G[2]) == [] + assert list(G.pred[3]) == [] + assert list(G.pred[2]) == [1] + assert G.size() == 7 + else: + assert self.G.edges - G.edges == {(2, 3), (7, 8)} + assert list(G[2]) == [1] + assert G.size() == 6 + assert list(G[3]) == [4] + pytest.raises(KeyError, G.__getitem__, 221) + pytest.raises(KeyError, G.__getitem__, 222) + assert G.degree(3) == 1 + + def test_shown_node(self): + induced_subgraph = nx.filters.show_nodes([2, 3, 111]) + gview = self.gview + G = gview(self.G, filter_node=induced_subgraph) + assert set(G.nodes) == {2, 3} + if G.is_directed(): + assert list(G[3]) == [] + else: + assert list(G[3]) == [2] + assert list(G[2]) == [3] + pytest.raises(KeyError, G.__getitem__, 4) + pytest.raises(KeyError, G.__getitem__, 112) + pytest.raises(KeyError, G.__getitem__, 111) + assert G.degree(3) == (3 if G.is_multigraph() else 1) + assert G.size() == (3 if G.is_multigraph() else 1) + + def test_shown_edges(self): + show_edges = [(2, 3), (8, 7), (222, 223)] + edge_subgraph = self.show_edges_filter(show_edges) + G = self.gview(self.G, filter_edge=edge_subgraph) + assert self.G.nodes == G.nodes + if G.is_directed(): + assert G.edges == {(2, 3)} + assert list(G[3]) == [] + assert list(G[2]) == [3] + assert list(G.pred[3]) == [2] + assert list(G.pred[2]) == [] + assert G.size() == 1 + else: + assert G.edges == {(2, 3), (7, 8)} + assert list(G[3]) == [2] + assert list(G[2]) == [3] + assert G.size() == 2 + pytest.raises(KeyError, G.__getitem__, 221) + pytest.raises(KeyError, G.__getitem__, 222) + assert G.degree(3) == 1 + + +class TestSubDiGraphView(TestSubGraphView): + gview = staticmethod(nx.subgraph_view) + graph = nx.DiGraph + hide_edges_filter = staticmethod(nx.filters.hide_diedges) + show_edges_filter = staticmethod(nx.filters.show_diedges) + hide_edges = [(2, 3), (8, 7), (222, 223)] + excluded = {(2, 3), (3, 4), (4, 5), (5, 6)} + + def test_inoutedges(self): + edges_gone = self.hide_edges_filter(self.hide_edges) + hide_nodes = [4, 5, 111] + nodes_gone = nx.filters.hide_nodes(hide_nodes) + G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone) + + assert self.G.in_edges - G.in_edges == self.excluded + assert self.G.out_edges - G.out_edges == self.excluded + + def test_pred(self): + edges_gone = self.hide_edges_filter(self.hide_edges) + hide_nodes = [4, 5, 111] + nodes_gone = nx.filters.hide_nodes(hide_nodes) + G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone) + + assert list(G.pred[2]) == [1] + assert list(G.pred[6]) == [] + + def test_inout_degree(self): + edges_gone = self.hide_edges_filter(self.hide_edges) + hide_nodes = [4, 5, 111] + nodes_gone = nx.filters.hide_nodes(hide_nodes) + G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone) + + assert G.degree(2) == 1 + assert G.out_degree(2) == 0 + assert G.in_degree(2) == 1 + assert G.size() == 4 + + +# multigraph +class TestMultiGraphView(TestSubGraphView): + gview = staticmethod(nx.subgraph_view) + graph = nx.MultiGraph + hide_edges_filter = staticmethod(nx.filters.hide_multiedges) + show_edges_filter = staticmethod(nx.filters.show_multiedges) + + @classmethod + def setup_class(cls): + cls.G = nx.path_graph(9, create_using=cls.graph()) + multiedges = {(2, 3, 4), (2, 3, 5)} + cls.G.add_edges_from(multiedges) + cls.hide_edges_w_hide_nodes = {(3, 4, 0), (4, 5, 0), (5, 6, 0)} + + def test_hidden_edges(self): + hide_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)] + edges_gone = self.hide_edges_filter(hide_edges) + G = self.gview(self.G, filter_edge=edges_gone) + assert self.G.nodes == G.nodes + if G.is_directed(): + assert self.G.edges - G.edges == {(2, 3, 4)} + assert list(G[3]) == [4] + assert list(G[2]) == [3] + assert list(G.pred[3]) == [2] # only one 2 but two edges + assert list(G.pred[2]) == [1] + assert G.size() == 9 + else: + assert self.G.edges - G.edges == {(2, 3, 4), (7, 8, 0)} + assert list(G[3]) == [2, 4] + assert list(G[2]) == [1, 3] + assert G.size() == 8 + assert G.degree(3) == 3 + pytest.raises(KeyError, G.__getitem__, 221) + pytest.raises(KeyError, G.__getitem__, 222) + + def test_shown_edges(self): + show_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)] + edge_subgraph = self.show_edges_filter(show_edges) + G = self.gview(self.G, filter_edge=edge_subgraph) + assert self.G.nodes == G.nodes + if G.is_directed(): + assert G.edges == {(2, 3, 4)} + assert list(G[3]) == [] + assert list(G.pred[3]) == [2] + assert list(G.pred[2]) == [] + assert G.size() == 1 + else: + assert G.edges == {(2, 3, 4), (7, 8, 0)} + assert G.size() == 2 + assert list(G[3]) == [2] + assert G.degree(3) == 1 + assert list(G[2]) == [3] + pytest.raises(KeyError, G.__getitem__, 221) + pytest.raises(KeyError, G.__getitem__, 222) + + +# multidigraph +class TestMultiDiGraphView(TestMultiGraphView, TestSubDiGraphView): + gview = staticmethod(nx.subgraph_view) + graph = nx.MultiDiGraph + hide_edges_filter = staticmethod(nx.filters.hide_multidiedges) + show_edges_filter = staticmethod(nx.filters.show_multidiedges) + hide_edges = [(2, 3, 0), (8, 7, 0), (222, 223, 0)] + excluded = {(2, 3, 0), (3, 4, 0), (4, 5, 0), (5, 6, 0)} + + def test_inout_degree(self): + edges_gone = self.hide_edges_filter(self.hide_edges) + hide_nodes = [4, 5, 111] + nodes_gone = nx.filters.hide_nodes(hide_nodes) + G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone) + + assert G.degree(2) == 3 + assert G.out_degree(2) == 2 + assert G.in_degree(2) == 1 + assert G.size() == 6 + + +# induced_subgraph +class TestInducedSubGraph: + @classmethod + def setup_class(cls): + cls.K3 = G = nx.complete_graph(3) + G.graph["foo"] = [] + G.nodes[0]["foo"] = [] + G.remove_edge(1, 2) + ll = [] + G.add_edge(1, 2, foo=ll) + G.add_edge(2, 1, foo=ll) + + def test_full_graph(self): + G = self.K3 + H = nx.induced_subgraph(G, [0, 1, 2, 5]) + assert H.name == G.name + self.graphs_equal(H, G) + self.same_attrdict(H, G) + + def test_partial_subgraph(self): + G = self.K3 + H = nx.induced_subgraph(G, 0) + assert dict(H.adj) == {0: {}} + assert dict(G.adj) != {0: {}} + + H = nx.induced_subgraph(G, [0, 1]) + assert dict(H.adj) == {0: {1: {}}, 1: {0: {}}} + + def same_attrdict(self, H, G): + old_foo = H[1][2]["foo"] + H.edges[1, 2]["foo"] = "baz" + assert G.edges == H.edges + H.edges[1, 2]["foo"] = old_foo + assert G.edges == H.edges + old_foo = H.nodes[0]["foo"] + H.nodes[0]["foo"] = "baz" + assert G.nodes == H.nodes + H.nodes[0]["foo"] = old_foo + assert G.nodes == H.nodes + + def graphs_equal(self, H, G): + assert G._adj == H._adj + assert G._node == H._node + assert G.graph == H.graph + assert G.name == H.name + if not G.is_directed() and not H.is_directed(): + assert H._adj[1][2] is H._adj[2][1] + assert G._adj[1][2] is G._adj[2][1] + else: # at least one is directed + if not G.is_directed(): + G._pred = G._adj + G._succ = G._adj + if not H.is_directed(): + H._pred = H._adj + H._succ = H._adj + assert G._pred == H._pred + assert G._succ == H._succ + assert H._succ[1][2] is H._pred[2][1] + assert G._succ[1][2] is G._pred[2][1] + + +# edge_subgraph +class TestEdgeSubGraph: + @classmethod + def setup_class(cls): + # Create a path graph on five nodes. + cls.G = G = nx.path_graph(5) + # Add some node, edge, and graph attributes. + for i in range(5): + G.nodes[i]["name"] = f"node{i}" + G.edges[0, 1]["name"] = "edge01" + G.edges[3, 4]["name"] = "edge34" + G.graph["name"] = "graph" + # Get the subgraph induced by the first and last edges. + cls.H = nx.edge_subgraph(G, [(0, 1), (3, 4)]) + + def test_correct_nodes(self): + """Tests that the subgraph has the correct nodes.""" + assert [(0, "node0"), (1, "node1"), (3, "node3"), (4, "node4")] == sorted( + self.H.nodes.data("name") + ) + + def test_correct_edges(self): + """Tests that the subgraph has the correct edges.""" + assert edges_equal( + [(0, 1, "edge01"), (3, 4, "edge34")], self.H.edges.data("name") + ) + + def test_add_node(self): + """Tests that adding a node to the original graph does not + affect the nodes of the subgraph. + + """ + self.G.add_node(5) + assert [0, 1, 3, 4] == sorted(self.H.nodes) + self.G.remove_node(5) + + def test_remove_node(self): + """Tests that removing a node in the original graph + removes the nodes of the subgraph. + + """ + self.G.remove_node(0) + assert [1, 3, 4] == sorted(self.H.nodes) + self.G.add_node(0, name="node0") + self.G.add_edge(0, 1, name="edge01") + + def test_node_attr_dict(self): + """Tests that the node attribute dictionary of the two graphs is + the same object. + + """ + for v in self.H: + assert self.G.nodes[v] == self.H.nodes[v] + # Making a change to G should make a change in H and vice versa. + self.G.nodes[0]["name"] = "foo" + assert self.G.nodes[0] == self.H.nodes[0] + self.H.nodes[1]["name"] = "bar" + assert self.G.nodes[1] == self.H.nodes[1] + # Revert the change, so tests pass with pytest-randomly + self.G.nodes[0]["name"] = "node0" + self.H.nodes[1]["name"] = "node1" + + def test_edge_attr_dict(self): + """Tests that the edge attribute dictionary of the two graphs is + the same object. + + """ + for u, v in self.H.edges(): + assert self.G.edges[u, v] == self.H.edges[u, v] + # Making a change to G should make a change in H and vice versa. + self.G.edges[0, 1]["name"] = "foo" + assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"] + self.H.edges[3, 4]["name"] = "bar" + assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"] + # Revert the change, so tests pass with pytest-randomly + self.G.edges[0, 1]["name"] = "edge01" + self.H.edges[3, 4]["name"] = "edge34" + + def test_graph_attr_dict(self): + """Tests that the graph attribute dictionary of the two graphs + is the same object. + + """ + assert self.G.graph is self.H.graph + + def test_readonly(self): + """Tests that the subgraph cannot change the graph structure""" + pytest.raises(nx.NetworkXError, self.H.add_node, 5) + pytest.raises(nx.NetworkXError, self.H.remove_node, 0) + pytest.raises(nx.NetworkXError, self.H.add_edge, 5, 6) + pytest.raises(nx.NetworkXError, self.H.remove_edge, 0, 1) diff --git a/phivenv/Lib/site-packages/networkx/drawing/__init__.py b/phivenv/Lib/site-packages/networkx/drawing/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0f53309d4da23a445bcce8cb7570a6de364452b5 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/__init__.py @@ -0,0 +1,7 @@ +# graph drawing and interface to graphviz + +from .layout import * +from .nx_latex import * +from .nx_pylab import * +from . import nx_agraph +from . import nx_pydot diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/__init__.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86a82734a9d69387e3bdcdc6525786e033aa1271 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/__init__.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/layout.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/layout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..427fe326597c0883ff346dd4299ced69d4a622f6 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/layout.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..24abfef81a2704675f7d36462cb52fda8fd29851 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..273bc0deae80ed93962279fc443de9b0ca471786 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5015adee74bf903986dfa4ea5eee7ef000dc14c Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-39.pyc b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d823f44a8a2fc227e03d4c25b4bfb81e55c5ba31 Binary files /dev/null and b/phivenv/Lib/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-39.pyc differ diff --git a/phivenv/Lib/site-packages/networkx/drawing/layout.py b/phivenv/Lib/site-packages/networkx/drawing/layout.py new file mode 100644 index 0000000000000000000000000000000000000000..fa120d670748a67cb536f48dbba20081669b96a4 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/layout.py @@ -0,0 +1,1297 @@ +""" +****** +Layout +****** + +Node positioning algorithms for graph drawing. + +For `random_layout()` the possible resulting shape +is a square of side [0, scale] (default: [0, 1]) +Changing `center` shifts the layout by that amount. + +For the other layout routines, the extent is +[center - scale, center + scale] (default: [-1, 1]). + +Warning: Most layout routines have only been tested in 2-dimensions. + +""" +import networkx as nx +from networkx.utils import np_random_state + +__all__ = [ + "bipartite_layout", + "circular_layout", + "kamada_kawai_layout", + "random_layout", + "rescale_layout", + "rescale_layout_dict", + "shell_layout", + "spring_layout", + "spectral_layout", + "planar_layout", + "fruchterman_reingold_layout", + "spiral_layout", + "multipartite_layout", + "arf_layout", +] + + +def _process_params(G, center, dim): + # Some boilerplate code. + import numpy as np + + if not isinstance(G, nx.Graph): + empty_graph = nx.Graph() + empty_graph.add_nodes_from(G) + G = empty_graph + + if center is None: + center = np.zeros(dim) + else: + center = np.asarray(center) + + if len(center) != dim: + msg = "length of center coordinates must match dimension of layout" + raise ValueError(msg) + + return G, center + + +@np_random_state(3) +def random_layout(G, center=None, dim=2, seed=None): + """Position nodes uniformly at random in the unit square. + + For every node, a position is generated by choosing each of dim + coordinates uniformly at random on the interval [0.0, 1.0). + + NumPy (http://scipy.org) is required for this function. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + seed : int, RandomState instance or None optional (default=None) + Set the random state for deterministic node layouts. + If int, `seed` is the seed used by the random number generator, + if numpy.random.RandomState instance, `seed` is the random + number generator, + if None, the random number generator is the RandomState instance used + by numpy.random. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.lollipop_graph(4, 3) + >>> pos = nx.random_layout(G) + + """ + import numpy as np + + G, center = _process_params(G, center, dim) + pos = seed.rand(len(G), dim) + center + pos = pos.astype(np.float32) + pos = dict(zip(G, pos)) + + return pos + + +def circular_layout(G, scale=1, center=None, dim=2): + # dim=2 only + """Position nodes on a circle. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + If dim>2, the remaining dimensions are set to zero + in the returned positions. + If dim<2, a ValueError is raised. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------ + ValueError + If dim < 2 + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.circular_layout(G) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + import numpy as np + + if dim < 2: + raise ValueError("cannot handle dimensions < 2") + + G, center = _process_params(G, center, dim) + + paddims = max(0, (dim - 2)) + + if len(G) == 0: + pos = {} + elif len(G) == 1: + pos = {nx.utils.arbitrary_element(G): center} + else: + # Discard the extra angle since it matches 0 radians. + theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi + theta = theta.astype(np.float32) + pos = np.column_stack( + [np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))] + ) + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + + return pos + + +def shell_layout(G, nlist=None, rotate=None, scale=1, center=None, dim=2): + """Position nodes in concentric circles. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + nlist : list of lists + List of node lists for each shell. + + rotate : angle in radians (default=pi/len(nlist)) + Angle by which to rotate the starting position of each shell + relative to the starting position of the previous shell. + To recreate behavior before v2.5 use rotate=0. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout, currently only dim=2 is supported. + Other dimension values result in a ValueError. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------ + ValueError + If dim != 2 + + Examples + -------- + >>> G = nx.path_graph(4) + >>> shells = [[0], [1, 2, 3]] + >>> pos = nx.shell_layout(G, shells) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + import numpy as np + + if dim != 2: + raise ValueError("can only handle 2 dimensions") + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G): center} + + if nlist is None: + # draw the whole graph in one shell + nlist = [list(G)] + + radius_bump = scale / len(nlist) + + if len(nlist[0]) == 1: + # single node at center + radius = 0.0 + else: + # else start at r=1 + radius = radius_bump + + if rotate is None: + rotate = np.pi / len(nlist) + first_theta = rotate + npos = {} + for nodes in nlist: + # Discard the last angle (endpoint=False) since 2*pi matches 0 radians + theta = ( + np.linspace(0, 2 * np.pi, len(nodes), endpoint=False, dtype=np.float32) + + first_theta + ) + pos = radius * np.column_stack([np.cos(theta), np.sin(theta)]) + center + npos.update(zip(nodes, pos)) + radius += radius_bump + first_theta += rotate + + return npos + + +def bipartite_layout( + G, nodes, align="vertical", scale=1, center=None, aspect_ratio=4 / 3 +): + """Position nodes in two straight lines. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + nodes : list or container + Nodes in one node set of the bipartite graph. + This set will be placed on left or top. + + align : string (default='vertical') + The alignment of nodes. Vertical or horizontal. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + aspect_ratio : number (default=4/3): + The ratio of the width to the height of the layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node. + + Examples + -------- + >>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123) + >>> top = nx.bipartite.sets(G)[0] + >>> pos = nx.bipartite_layout(G, top) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + + import numpy as np + + if align not in ("vertical", "horizontal"): + msg = "align must be either vertical or horizontal." + raise ValueError(msg) + + G, center = _process_params(G, center=center, dim=2) + if len(G) == 0: + return {} + + height = 1 + width = aspect_ratio * height + offset = (width / 2, height / 2) + + top = dict.fromkeys(nodes) + bottom = [v for v in G if v not in top] + nodes = list(top) + bottom + + left_xs = np.repeat(0, len(top)) + right_xs = np.repeat(width, len(bottom)) + left_ys = np.linspace(0, height, len(top)) + right_ys = np.linspace(0, height, len(bottom)) + + top_pos = np.column_stack([left_xs, left_ys]) - offset + bottom_pos = np.column_stack([right_xs, right_ys]) - offset + + pos = np.concatenate([top_pos, bottom_pos]) + pos = rescale_layout(pos, scale=scale) + center + if align == "horizontal": + pos = pos[:, ::-1] # swap x and y coords + pos = dict(zip(nodes, pos)) + return pos + + +@np_random_state(10) +def spring_layout( + G, + k=None, + pos=None, + fixed=None, + iterations=50, + threshold=1e-4, + weight="weight", + scale=1, + center=None, + dim=2, + seed=None, +): + """Position nodes using Fruchterman-Reingold force-directed algorithm. + + The algorithm simulates a force-directed representation of the network + treating edges as springs holding nodes close, while treating nodes + as repelling objects, sometimes called an anti-gravity force. + Simulation continues until the positions are close to an equilibrium. + + There are some hard-coded values: minimal distance between + nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away. + During the simulation, `k` helps determine the distance between nodes, + though `scale` and `center` determine the size and place after + rescaling occurs at the end of the simulation. + + Fixing some nodes doesn't allow them to move in the simulation. + It also turns off the rescaling feature at the simulation's end. + In addition, setting `scale` to `None` turns off rescaling. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + k : float (default=None) + Optimal distance between nodes. If None the distance is set to + 1/sqrt(n) where n is the number of nodes. Increase this value + to move nodes farther apart. + + pos : dict or None optional (default=None) + Initial positions for nodes as a dictionary with node as keys + and values as a coordinate list or tuple. If None, then use + random initial positions. + + fixed : list or None optional (default=None) + Nodes to keep fixed at initial position. + Nodes not in ``G.nodes`` are ignored. + ValueError raised if `fixed` specified and `pos` not. + + iterations : int optional (default=50) + Maximum number of iterations taken + + threshold: float optional (default = 1e-4) + Threshold for relative error in node position changes. + The iteration stops if the error is below this threshold. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. Larger means a stronger attractive force. + If None, then all edge weights are 1. + + scale : number or None (default: 1) + Scale factor for positions. Not used unless `fixed is None`. + If scale is None, no rescaling is performed. + + center : array-like or None + Coordinate pair around which to center the layout. + Not used unless `fixed is None`. + + dim : int + Dimension of layout. + + seed : int, RandomState instance or None optional (default=None) + Set the random state for deterministic node layouts. + If int, `seed` is the seed used by the random number generator, + if numpy.random.RandomState instance, `seed` is the random + number generator, + if None, the random number generator is the RandomState instance used + by numpy.random. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spring_layout(G) + + # The same using longer but equivalent function name + >>> pos = nx.fruchterman_reingold_layout(G) + """ + import numpy as np + + G, center = _process_params(G, center, dim) + + if fixed is not None: + if pos is None: + raise ValueError("nodes are fixed without positions given") + for node in fixed: + if node not in pos: + raise ValueError("nodes are fixed without positions given") + nfixed = {node: i for i, node in enumerate(G)} + fixed = np.asarray([nfixed[node] for node in fixed if node in nfixed]) + + if pos is not None: + # Determine size of existing domain to adjust initial positions + dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup) + if dom_size == 0: + dom_size = 1 + pos_arr = seed.rand(len(G), dim) * dom_size + center + + for i, n in enumerate(G): + if n in pos: + pos_arr[i] = np.asarray(pos[n]) + else: + pos_arr = None + dom_size = 1 + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G.nodes()): center} + + try: + # Sparse matrix + if len(G) < 500: # sparse solver for large graphs + raise ValueError + A = nx.to_scipy_sparse_array(G, weight=weight, dtype="f") + if k is None and fixed is not None: + # We must adjust k by domain size for layouts not near 1x1 + nnodes, _ = A.shape + k = dom_size / np.sqrt(nnodes) + pos = _sparse_fruchterman_reingold( + A, k, pos_arr, fixed, iterations, threshold, dim, seed + ) + except ValueError: + A = nx.to_numpy_array(G, weight=weight) + if k is None and fixed is not None: + # We must adjust k by domain size for layouts not near 1x1 + nnodes, _ = A.shape + k = dom_size / np.sqrt(nnodes) + pos = _fruchterman_reingold( + A, k, pos_arr, fixed, iterations, threshold, dim, seed + ) + if fixed is None and scale is not None: + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + return pos + + +fruchterman_reingold_layout = spring_layout + + +@np_random_state(7) +def _fruchterman_reingold( + A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None +): + # Position nodes in adjacency matrix A using Fruchterman-Reingold + # Entry point for NetworkX graph is fruchterman_reingold_layout() + import numpy as np + + try: + nnodes, _ = A.shape + except AttributeError as err: + msg = "fruchterman_reingold() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) from err + + if pos is None: + # random initial positions + pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) + else: + # make sure positions are of same type as matrix + pos = pos.astype(A.dtype) + + # optimal distance between nodes + if k is None: + k = np.sqrt(1.0 / nnodes) + # the initial "temperature" is about .1 of domain area (=1x1) + # this is the largest step allowed in the dynamics. + # We need to calculate this in case our fixed positions force our domain + # to be much bigger than 1x1 + t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 + # simple cooling scheme. + # linearly step down by dt on each iteration so last iteration is size dt. + dt = t / (iterations + 1) + delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype) + # the inscrutable (but fast) version + # this is still O(V^2) + # could use multilevel methods to speed this up significantly + for iteration in range(iterations): + # matrix of difference between points + delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :] + # distance between points + distance = np.linalg.norm(delta, axis=-1) + # enforce minimum distance of 0.01 + np.clip(distance, 0.01, None, out=distance) + # displacement "force" + displacement = np.einsum( + "ijk,ij->ik", delta, (k * k / distance**2 - A * distance / k) + ) + # update positions + length = np.linalg.norm(displacement, axis=-1) + length = np.where(length < 0.01, 0.1, length) + delta_pos = np.einsum("ij,i->ij", displacement, t / length) + if fixed is not None: + # don't change positions of fixed nodes + delta_pos[fixed] = 0.0 + pos += delta_pos + # cool temperature + t -= dt + if (np.linalg.norm(delta_pos) / nnodes) < threshold: + break + return pos + + +@np_random_state(7) +def _sparse_fruchterman_reingold( + A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None +): + # Position nodes in adjacency matrix A using Fruchterman-Reingold + # Entry point for NetworkX graph is fruchterman_reingold_layout() + # Sparse version + import numpy as np + import scipy as sp + + try: + nnodes, _ = A.shape + except AttributeError as err: + msg = "fruchterman_reingold() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) from err + # make sure we have a LIst of Lists representation + try: + A = A.tolil() + except AttributeError: + A = (sp.sparse.coo_array(A)).tolil() + + if pos is None: + # random initial positions + pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) + else: + # make sure positions are of same type as matrix + pos = pos.astype(A.dtype) + + # no fixed nodes + if fixed is None: + fixed = [] + + # optimal distance between nodes + if k is None: + k = np.sqrt(1.0 / nnodes) + # the initial "temperature" is about .1 of domain area (=1x1) + # this is the largest step allowed in the dynamics. + t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 + # simple cooling scheme. + # linearly step down by dt on each iteration so last iteration is size dt. + dt = t / (iterations + 1) + + displacement = np.zeros((dim, nnodes)) + for iteration in range(iterations): + displacement *= 0 + # loop over rows + for i in range(A.shape[0]): + if i in fixed: + continue + # difference between this row's node position and all others + delta = (pos[i] - pos).T + # distance between points + distance = np.sqrt((delta**2).sum(axis=0)) + # enforce minimum distance of 0.01 + distance = np.where(distance < 0.01, 0.01, distance) + # the adjacency matrix row + Ai = A.getrowview(i).toarray() # TODO: revisit w/ sparse 1D container + # displacement "force" + displacement[:, i] += ( + delta * (k * k / distance**2 - Ai * distance / k) + ).sum(axis=1) + # update positions + length = np.sqrt((displacement**2).sum(axis=0)) + length = np.where(length < 0.01, 0.1, length) + delta_pos = (displacement * t / length).T + pos += delta_pos + # cool temperature + t -= dt + if (np.linalg.norm(delta_pos) / nnodes) < threshold: + break + return pos + + +def kamada_kawai_layout( + G, dist=None, pos=None, weight="weight", scale=1, center=None, dim=2 +): + """Position nodes using Kamada-Kawai path-length cost-function. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + dist : dict (default=None) + A two-level dictionary of optimal distances between nodes, + indexed by source and destination node. + If None, the distance is computed using shortest_path_length(). + + pos : dict or None optional (default=None) + Initial positions for nodes as a dictionary with node as keys + and values as a coordinate list or tuple. If None, then use + circular_layout() for dim >= 2 and a linear layout for dim == 1. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. If None, then all edge weights are 1. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.kamada_kawai_layout(G) + """ + import numpy as np + + G, center = _process_params(G, center, dim) + nNodes = len(G) + if nNodes == 0: + return {} + + if dist is None: + dist = dict(nx.shortest_path_length(G, weight=weight)) + dist_mtx = 1e6 * np.ones((nNodes, nNodes)) + for row, nr in enumerate(G): + if nr not in dist: + continue + rdist = dist[nr] + for col, nc in enumerate(G): + if nc not in rdist: + continue + dist_mtx[row][col] = rdist[nc] + + if pos is None: + if dim >= 3: + pos = random_layout(G, dim=dim) + elif dim == 2: + pos = circular_layout(G, dim=dim) + else: + pos = dict(zip(G, np.linspace(0, 1, len(G)))) + pos_arr = np.array([pos[n] for n in G]) + + pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim) + + pos = rescale_layout(pos, scale=scale) + center + return dict(zip(G, pos)) + + +def _kamada_kawai_solve(dist_mtx, pos_arr, dim): + # Anneal node locations based on the Kamada-Kawai cost-function, + # using the supplied matrix of preferred inter-node distances, + # and starting locations. + + import numpy as np + import scipy as sp + + meanwt = 1e-3 + costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim) + + optresult = sp.optimize.minimize( + _kamada_kawai_costfn, + pos_arr.ravel(), + method="L-BFGS-B", + args=costargs, + jac=True, + ) + + return optresult.x.reshape((-1, dim)) + + +def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim): + # Cost-function and gradient for Kamada-Kawai layout algorithm + nNodes = invdist.shape[0] + pos_arr = pos_vec.reshape((nNodes, dim)) + + delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :] + nodesep = np.linalg.norm(delta, axis=-1) + direction = np.einsum("ijk,ij->ijk", delta, 1 / (nodesep + np.eye(nNodes) * 1e-3)) + + offset = nodesep * invdist - 1.0 + offset[np.diag_indices(nNodes)] = 0 + + cost = 0.5 * np.sum(offset**2) + grad = np.einsum("ij,ij,ijk->ik", invdist, offset, direction) - np.einsum( + "ij,ij,ijk->jk", invdist, offset, direction + ) + + # Additional parabolic term to encourage mean position to be near origin: + sumpos = np.sum(pos_arr, axis=0) + cost += 0.5 * meanweight * np.sum(sumpos**2) + grad += meanweight * sumpos + + return (cost, grad.ravel()) + + +def spectral_layout(G, weight="weight", scale=1, center=None, dim=2): + """Position nodes using the eigenvectors of the graph Laplacian. + + Using the unnormalized Laplacian, the layout shows possible clusters of + nodes which are an approximation of the ratio cut. If dim is the number of + dimensions then the positions are the entries of the dim eigenvectors + corresponding to the ascending eigenvalues starting from the second one. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. If None, then all edge weights are 1. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spectral_layout(G) + + Notes + ----- + Directed graphs will be considered as undirected graphs when + positioning the nodes. + + For larger graphs (>500 nodes) this will use the SciPy sparse + eigenvalue solver (ARPACK). + """ + # handle some special cases that break the eigensolvers + import numpy as np + + G, center = _process_params(G, center, dim) + + if len(G) <= 2: + if len(G) == 0: + pos = np.array([]) + elif len(G) == 1: + pos = np.array([center]) + else: + pos = np.array([np.zeros(dim), np.array(center) * 2.0]) + return dict(zip(G, pos)) + try: + # Sparse matrix + if len(G) < 500: # dense solver is faster for small graphs + raise ValueError + A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d") + # Symmetrize directed graphs + if G.is_directed(): + A = A + np.transpose(A) + pos = _sparse_spectral(A, dim) + except (ImportError, ValueError): + # Dense matrix + A = nx.to_numpy_array(G, weight=weight) + # Symmetrize directed graphs + if G.is_directed(): + A += A.T + pos = _spectral(A, dim) + + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + return pos + + +def _spectral(A, dim=2): + # Input adjacency matrix A + # Uses dense eigenvalue solver from numpy + import numpy as np + + try: + nnodes, _ = A.shape + except AttributeError as err: + msg = "spectral() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) from err + + # form Laplacian matrix where D is diagonal of degrees + D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1) + L = D - A + + eigenvalues, eigenvectors = np.linalg.eig(L) + # sort and keep smallest nonzero + index = np.argsort(eigenvalues)[1 : dim + 1] # 0 index is zero eigenvalue + return np.real(eigenvectors[:, index]) + + +def _sparse_spectral(A, dim=2): + # Input adjacency matrix A + # Uses sparse eigenvalue solver from scipy + # Could use multilevel methods here, see Koren "On spectral graph drawing" + import numpy as np + import scipy as sp + + try: + nnodes, _ = A.shape + except AttributeError as err: + msg = "sparse_spectral() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) from err + + # form Laplacian matrix + # TODO: Rm csr_array wrapper in favor of spdiags array constructor when available + D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, nnodes, nnodes)) + L = D - A + + k = dim + 1 + # number of Lanczos vectors for ARPACK solver.What is the right scaling? + ncv = max(2 * k + 1, int(np.sqrt(nnodes))) + # return smallest k eigenvalues and eigenvectors + eigenvalues, eigenvectors = sp.sparse.linalg.eigsh(L, k, which="SM", ncv=ncv) + index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue + return np.real(eigenvectors[:, index]) + + +def planar_layout(G, scale=1, center=None, dim=2): + """Position nodes without edge intersections. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. If G is of type + nx.PlanarEmbedding, the positions are selected accordingly. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------ + NetworkXException + If G is not planar + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.planar_layout(G) + """ + import numpy as np + + if dim != 2: + raise ValueError("can only handle 2 dimensions") + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + + if isinstance(G, nx.PlanarEmbedding): + embedding = G + else: + is_planar, embedding = nx.check_planarity(G) + if not is_planar: + raise nx.NetworkXException("G is not planar.") + pos = nx.combinatorial_embedding_to_pos(embedding) + node_list = list(embedding) + pos = np.row_stack([pos[x] for x in node_list]) + pos = pos.astype(np.float64) + pos = rescale_layout(pos, scale=scale) + center + return dict(zip(node_list, pos)) + + +def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False): + """Position nodes in a spiral layout. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + scale : number (default: 1) + Scale factor for positions. + center : array-like or None + Coordinate pair around which to center the layout. + dim : int, default=2 + Dimension of layout, currently only dim=2 is supported. + Other dimension values result in a ValueError. + resolution : float, default=0.35 + The compactness of the spiral layout returned. + Lower values result in more compressed spiral layouts. + equidistant : bool, default=False + If True, nodes will be positioned equidistant from each other + by decreasing angle further from center. + If False, nodes will be positioned at equal angles + from each other by increasing separation further from center. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------ + ValueError + If dim != 2 + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spiral_layout(G) + >>> nx.draw(G, pos=pos) + + Notes + ----- + This algorithm currently only works in two dimensions. + + """ + import numpy as np + + if dim != 2: + raise ValueError("can only handle 2 dimensions") + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G): center} + + pos = [] + if equidistant: + chord = 1 + step = 0.5 + theta = resolution + theta += chord / (step * theta) + for _ in range(len(G)): + r = step * theta + theta += chord / r + pos.append([np.cos(theta) * r, np.sin(theta) * r]) + + else: + dist = np.arange(len(G), dtype=float) + angle = resolution * dist + pos = np.transpose(dist * np.array([np.cos(angle), np.sin(angle)])) + + pos = rescale_layout(np.array(pos), scale=scale) + center + + pos = dict(zip(G, pos)) + + return pos + + +def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None): + """Position nodes in layers of straight lines. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + subset_key : string (default='subset') + Key of node data to be used as layer subset. + + align : string (default='vertical') + The alignment of nodes. Vertical or horizontal. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node. + + Examples + -------- + >>> G = nx.complete_multipartite_graph(28, 16, 10) + >>> pos = nx.multipartite_layout(G) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + Network does not need to be a complete multipartite graph. As long as nodes + have subset_key data, they will be placed in the corresponding layers. + + """ + import numpy as np + + if align not in ("vertical", "horizontal"): + msg = "align must be either vertical or horizontal." + raise ValueError(msg) + + G, center = _process_params(G, center=center, dim=2) + if len(G) == 0: + return {} + + layers = {} + for v, data in G.nodes(data=True): + try: + layer = data[subset_key] + except KeyError: + msg = "all nodes must have subset_key (default='subset') as data" + raise ValueError(msg) + layers[layer] = [v] + layers.get(layer, []) + + # Sort by layer, if possible + try: + layers = sorted(layers.items()) + except TypeError: + layers = list(layers.items()) + + pos = None + nodes = [] + width = len(layers) + for i, (_, layer) in enumerate(layers): + height = len(layer) + xs = np.repeat(i, height) + ys = np.arange(0, height, dtype=float) + offset = ((width - 1) / 2, (height - 1) / 2) + layer_pos = np.column_stack([xs, ys]) - offset + if pos is None: + pos = layer_pos + else: + pos = np.concatenate([pos, layer_pos]) + nodes.extend(layer) + pos = rescale_layout(pos, scale=scale) + center + if align == "horizontal": + pos = pos[:, ::-1] # swap x and y coords + pos = dict(zip(nodes, pos)) + return pos + + +def arf_layout( + G, + pos=None, + scaling=1, + a=1.1, + etol=1e-6, + dt=1e-3, + max_iter=1000, +): + """Arf layout for networkx + + The attractive and repulsive forces (arf) layout [1] + improves the spring layout in three ways. First, it + prevents congestion of highly connected nodes due to + strong forcing between nodes. Second, it utilizes the + layout space more effectively by preventing large gaps + that spring layout tends to create. Lastly, the arf + layout represents symmetries in the layout better than + the default spring layout. + + Parameters + ---------- + G : nx.Graph or nx.DiGraph + Networkx graph. + pos : dict + Initial position of the nodes. If set to None a + random layout will be used. + scaling : float + Scales the radius of the circular layout space. + a : float + Strength of springs between connected nodes. Should be larger than 1. The greater a, the clearer the separation ofunconnected sub clusters. + etol : float + Gradient sum of spring forces must be larger than `etol` before successful termination. + dt : float + Time step for force differential equation simulations. + max_iter : int + Max iterations before termination of the algorithm. + + References + .. [1] "Self-Organization Applied to Dynamic Network Layout", M. Geipel, + International Journal of Modern Physics C, 2007, Vol 18, No 10, pp. 1537-1549. + https://doi.org/10.1142/S0129183107011558 https://arxiv.org/abs/0704.1748 + + Returns + ------- + pos : dict + A dictionary of positions keyed by node. + + Examples + -------- + >>> G = nx.grid_graph((5, 5)) + >>> pos = nx.arf_layout(G) + + """ + import warnings + + import numpy as np + + if a <= 1: + msg = "The parameter a should be larger than 1" + raise ValueError(msg) + + pos_tmp = nx.random_layout(G) + if pos is None: + pos = pos_tmp + else: + for node in G.nodes(): + if node not in pos: + pos[node] = pos_tmp[node].copy() + + # Initialize spring constant matrix + N = len(G) + # No nodes no computation + if N == 0: + return pos + + # init force of springs + K = np.ones((N, N)) - np.eye(N) + node_order = {node: i for i, node in enumerate(G)} + for x, y in G.edges(): + if x != y: + idx, jdx = (node_order[i] for i in (x, y)) + K[idx, jdx] = a + + # vectorize values + p = np.asarray(list(pos.values())) + + # equation 10 in [1] + rho = scaling * np.sqrt(N) + + # looping variables + error = etol + 1 + n_iter = 0 + while error > etol: + diff = p[:, np.newaxis] - p[np.newaxis] + A = np.linalg.norm(diff, axis=-1)[..., np.newaxis] + # attraction_force - repulsions force + # suppress nans due to division; caused by diagonal set to zero. + # Does not affect the computation due to nansum + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + change = K[..., np.newaxis] * diff - rho / A * diff + change = np.nansum(change, axis=0) + p += change * dt + + error = np.linalg.norm(change, axis=-1).sum() + if n_iter > max_iter: + break + n_iter += 1 + return dict(zip(G.nodes(), p)) + + +def rescale_layout(pos, scale=1): + """Returns scaled position array to (-scale, scale) in all axes. + + The function acts on NumPy arrays which hold position information. + Each position is one row of the array. The dimension of the space + equals the number of columns. Each coordinate in one column. + + To rescale, the mean (center) is subtracted from each axis separately. + Then all values are scaled so that the largest magnitude value + from all axes equals `scale` (thus, the aspect ratio is preserved). + The resulting NumPy Array is returned (order of rows unchanged). + + Parameters + ---------- + pos : numpy array + positions to be scaled. Each row is a position. + + scale : number (default: 1) + The size of the resulting extent in all directions. + + Returns + ------- + pos : numpy array + scaled positions. Each row is a position. + + See Also + -------- + rescale_layout_dict + """ + import numpy as np + + # Find max length over all dimensions + pos -= pos.mean(axis=0) + lim = np.abs(pos).max() # max coordinate for all axes + # rescale to (-scale, scale) in all directions, preserves aspect + if lim > 0: + pos *= scale / lim + return pos + + +def rescale_layout_dict(pos, scale=1): + """Return a dictionary of scaled positions keyed by node + + Parameters + ---------- + pos : A dictionary of positions keyed by node + + scale : number (default: 1) + The size of the resulting extent in all directions. + + Returns + ------- + pos : A dictionary of positions keyed by node + + Examples + -------- + >>> import numpy as np + >>> pos = {0: np.array((0, 0)), 1: np.array((1, 1)), 2: np.array((0.5, 0.5))} + >>> nx.rescale_layout_dict(pos) + {0: array([-1., -1.]), 1: array([1., 1.]), 2: array([0., 0.])} + + >>> pos = {0: np.array((0, 0)), 1: np.array((-1, 1)), 2: np.array((-0.5, 0.5))} + >>> nx.rescale_layout_dict(pos, scale=2) + {0: array([ 2., -2.]), 1: array([-2., 2.]), 2: array([0., 0.])} + + See Also + -------- + rescale_layout + """ + import numpy as np + + if not pos: # empty_graph + return {} + pos_v = np.array(list(pos.values())) + pos_v = rescale_layout(pos_v, scale=scale) + return dict(zip(pos, pos_v)) diff --git a/phivenv/Lib/site-packages/networkx/drawing/nx_agraph.py b/phivenv/Lib/site-packages/networkx/drawing/nx_agraph.py new file mode 100644 index 0000000000000000000000000000000000000000..8db3400f20041ed8d6ce23b1b4cb937ac192c0ee --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/nx_agraph.py @@ -0,0 +1,469 @@ +""" +*************** +Graphviz AGraph +*************** + +Interface to pygraphviz AGraph class. + +Examples +-------- +>>> G = nx.complete_graph(5) +>>> A = nx.nx_agraph.to_agraph(G) +>>> H = nx.nx_agraph.from_agraph(A) + +See Also +-------- + - Pygraphviz: http://pygraphviz.github.io/ + - Graphviz: https://www.graphviz.org + - DOT Language: http://www.graphviz.org/doc/info/lang.html +""" +import os +import tempfile + +import networkx as nx + +__all__ = [ + "from_agraph", + "to_agraph", + "write_dot", + "read_dot", + "graphviz_layout", + "pygraphviz_layout", + "view_pygraphviz", +] + + +@nx._dispatch(graphs=None) +def from_agraph(A, create_using=None): + """Returns a NetworkX Graph or DiGraph from a PyGraphviz graph. + + Parameters + ---------- + A : PyGraphviz AGraph + A graph created with PyGraphviz + + create_using : NetworkX graph constructor, optional (default=None) + Graph type to create. If graph instance, then cleared before populated. + If `None`, then the appropriate Graph type is inferred from `A`. + + Examples + -------- + >>> K5 = nx.complete_graph(5) + >>> A = nx.nx_agraph.to_agraph(K5) + >>> G = nx.nx_agraph.from_agraph(A) + + Notes + ----- + The Graph G will have a dictionary G.graph_attr containing + the default graphviz attributes for graphs, nodes and edges. + + Default node attributes will be in the dictionary G.node_attr + which is keyed by node. + + Edge attributes will be returned as edge data in G. With + edge_attr=False the edge data will be the Graphviz edge weight + attribute or the value 1 if no edge weight attribute is found. + + """ + if create_using is None: + if A.is_directed(): + if A.is_strict(): + create_using = nx.DiGraph + else: + create_using = nx.MultiDiGraph + else: + if A.is_strict(): + create_using = nx.Graph + else: + create_using = nx.MultiGraph + + # assign defaults + N = nx.empty_graph(0, create_using) + if A.name is not None: + N.name = A.name + + # add graph attributes + N.graph.update(A.graph_attr) + + # add nodes, attributes to N.node_attr + for n in A.nodes(): + str_attr = {str(k): v for k, v in n.attr.items()} + N.add_node(str(n), **str_attr) + + # add edges, assign edge data as dictionary of attributes + for e in A.edges(): + u, v = str(e[0]), str(e[1]) + attr = dict(e.attr) + str_attr = {str(k): v for k, v in attr.items()} + if not N.is_multigraph(): + if e.name is not None: + str_attr["key"] = e.name + N.add_edge(u, v, **str_attr) + else: + N.add_edge(u, v, key=e.name, **str_attr) + + # add default attributes for graph, nodes, and edges + # hang them on N.graph_attr + N.graph["graph"] = dict(A.graph_attr) + N.graph["node"] = dict(A.node_attr) + N.graph["edge"] = dict(A.edge_attr) + return N + + +def to_agraph(N): + """Returns a pygraphviz graph from a NetworkX graph N. + + Parameters + ---------- + N : NetworkX graph + A graph created with NetworkX + + Examples + -------- + >>> K5 = nx.complete_graph(5) + >>> A = nx.nx_agraph.to_agraph(K5) + + Notes + ----- + If N has an dict N.graph_attr an attempt will be made first + to copy properties attached to the graph (see from_agraph) + and then updated with the calling arguments if any. + + """ + try: + import pygraphviz + except ImportError as err: + raise ImportError( + "requires pygraphviz " "http://pygraphviz.github.io/" + ) from err + directed = N.is_directed() + strict = nx.number_of_selfloops(N) == 0 and not N.is_multigraph() + + for node in N: + if "pos" in N.nodes[node]: + N.nodes[node]["pos"] = "{},{}!".format( + N.nodes[node]["pos"][0], N.nodes[node]["pos"][1] + ) + + A = pygraphviz.AGraph(name=N.name, strict=strict, directed=directed) + + # default graph attributes + A.graph_attr.update(N.graph.get("graph", {})) + A.node_attr.update(N.graph.get("node", {})) + A.edge_attr.update(N.graph.get("edge", {})) + + A.graph_attr.update( + (k, v) for k, v in N.graph.items() if k not in ("graph", "node", "edge") + ) + + # add nodes + for n, nodedata in N.nodes(data=True): + A.add_node(n) + # Add node data + a = A.get_node(n) + a.attr.update({k: str(v) for k, v in nodedata.items()}) + + # loop over edges + if N.is_multigraph(): + for u, v, key, edgedata in N.edges(data=True, keys=True): + str_edgedata = {k: str(v) for k, v in edgedata.items() if k != "key"} + A.add_edge(u, v, key=str(key)) + # Add edge data + a = A.get_edge(u, v) + a.attr.update(str_edgedata) + + else: + for u, v, edgedata in N.edges(data=True): + str_edgedata = {k: str(v) for k, v in edgedata.items()} + A.add_edge(u, v) + # Add edge data + a = A.get_edge(u, v) + a.attr.update(str_edgedata) + + return A + + +def write_dot(G, path): + """Write NetworkX graph G to Graphviz dot format on path. + + Parameters + ---------- + G : graph + A networkx graph + path : filename + Filename or file handle to write + + Notes + ----- + To use a specific graph layout, call ``A.layout`` prior to `write_dot`. + Note that some graphviz layouts are not guaranteed to be deterministic, + see https://gitlab.com/graphviz/graphviz/-/issues/1767 for more info. + """ + A = to_agraph(G) + A.write(path) + A.clear() + return + + +@nx._dispatch(name="agraph_read_dot", graphs=None) +def read_dot(path): + """Returns a NetworkX graph from a dot file on path. + + Parameters + ---------- + path : file or string + File name or file handle to read. + """ + try: + import pygraphviz + except ImportError as err: + raise ImportError( + "read_dot() requires pygraphviz " "http://pygraphviz.github.io/" + ) from err + A = pygraphviz.AGraph(file=path) + gr = from_agraph(A) + A.clear() + return gr + + +def graphviz_layout(G, prog="neato", root=None, args=""): + """Create node positions for G using Graphviz. + + Parameters + ---------- + G : NetworkX graph + A graph created with NetworkX + prog : string + Name of Graphviz layout program + root : string, optional + Root node for twopi layout + args : string, optional + Extra arguments to Graphviz layout program + + Returns + ------- + Dictionary of x, y, positions keyed by node. + + Examples + -------- + >>> G = nx.petersen_graph() + >>> pos = nx.nx_agraph.graphviz_layout(G) + >>> pos = nx.nx_agraph.graphviz_layout(G, prog="dot") + + Notes + ----- + This is a wrapper for pygraphviz_layout. + + Note that some graphviz layouts are not guaranteed to be deterministic, + see https://gitlab.com/graphviz/graphviz/-/issues/1767 for more info. + """ + return pygraphviz_layout(G, prog=prog, root=root, args=args) + + +def pygraphviz_layout(G, prog="neato", root=None, args=""): + """Create node positions for G using Graphviz. + + Parameters + ---------- + G : NetworkX graph + A graph created with NetworkX + prog : string + Name of Graphviz layout program + root : string, optional + Root node for twopi layout + args : string, optional + Extra arguments to Graphviz layout program + + Returns + ------- + node_pos : dict + Dictionary of x, y, positions keyed by node. + + Examples + -------- + >>> G = nx.petersen_graph() + >>> pos = nx.nx_agraph.graphviz_layout(G) + >>> pos = nx.nx_agraph.graphviz_layout(G, prog="dot") + + Notes + ----- + If you use complex node objects, they may have the same string + representation and GraphViz could treat them as the same node. + The layout may assign both nodes a single location. See Issue #1568 + If this occurs in your case, consider relabeling the nodes just + for the layout computation using something similar to:: + + >>> H = nx.convert_node_labels_to_integers(G, label_attribute="node_label") + >>> H_layout = nx.nx_agraph.pygraphviz_layout(G, prog="dot") + >>> G_layout = {H.nodes[n]["node_label"]: p for n, p in H_layout.items()} + + Note that some graphviz layouts are not guaranteed to be deterministic, + see https://gitlab.com/graphviz/graphviz/-/issues/1767 for more info. + """ + try: + import pygraphviz + except ImportError as err: + raise ImportError( + "requires pygraphviz " "http://pygraphviz.github.io/" + ) from err + if root is not None: + args += f"-Groot={root}" + A = to_agraph(G) + A.layout(prog=prog, args=args) + node_pos = {} + for n in G: + node = pygraphviz.Node(A, n) + try: + xs = node.attr["pos"].split(",") + node_pos[n] = tuple(float(x) for x in xs) + except: + print("no position for node", n) + node_pos[n] = (0.0, 0.0) + return node_pos + + +@nx.utils.open_file(5, "w+b") +def view_pygraphviz( + G, edgelabel=None, prog="dot", args="", suffix="", path=None, show=True +): + """Views the graph G using the specified layout algorithm. + + Parameters + ---------- + G : NetworkX graph + The machine to draw. + edgelabel : str, callable, None + If a string, then it specifies the edge attribute to be displayed + on the edge labels. If a callable, then it is called for each + edge and it should return the string to be displayed on the edges. + The function signature of `edgelabel` should be edgelabel(data), + where `data` is the edge attribute dictionary. + prog : string + Name of Graphviz layout program. + args : str + Additional arguments to pass to the Graphviz layout program. + suffix : str + If `filename` is None, we save to a temporary file. The value of + `suffix` will appear at the tail end of the temporary filename. + path : str, None + The filename used to save the image. If None, save to a temporary + file. File formats are the same as those from pygraphviz.agraph.draw. + show : bool, default = True + Whether to display the graph with :mod:`PIL.Image.show`, + default is `True`. If `False`, the rendered graph is still available + at `path`. + + Returns + ------- + path : str + The filename of the generated image. + A : PyGraphviz graph + The PyGraphviz graph instance used to generate the image. + + Notes + ----- + If this function is called in succession too quickly, sometimes the + image is not displayed. So you might consider time.sleep(.5) between + calls if you experience problems. + + Note that some graphviz layouts are not guaranteed to be deterministic, + see https://gitlab.com/graphviz/graphviz/-/issues/1767 for more info. + + """ + if not len(G): + raise nx.NetworkXException("An empty graph cannot be drawn.") + + # If we are providing default values for graphviz, these must be set + # before any nodes or edges are added to the PyGraphviz graph object. + # The reason for this is that default values only affect incoming objects. + # If you change the default values after the objects have been added, + # then they inherit no value and are set only if explicitly set. + + # to_agraph() uses these values. + attrs = ["edge", "node", "graph"] + for attr in attrs: + if attr not in G.graph: + G.graph[attr] = {} + + # These are the default values. + edge_attrs = {"fontsize": "10"} + node_attrs = { + "style": "filled", + "fillcolor": "#0000FF40", + "height": "0.75", + "width": "0.75", + "shape": "circle", + } + graph_attrs = {} + + def update_attrs(which, attrs): + # Update graph attributes. Return list of those which were added. + added = [] + for k, v in attrs.items(): + if k not in G.graph[which]: + G.graph[which][k] = v + added.append(k) + + def clean_attrs(which, added): + # Remove added attributes + for attr in added: + del G.graph[which][attr] + if not G.graph[which]: + del G.graph[which] + + # Update all default values + update_attrs("edge", edge_attrs) + update_attrs("node", node_attrs) + update_attrs("graph", graph_attrs) + + # Convert to agraph, so we inherit default values + A = to_agraph(G) + + # Remove the default values we added to the original graph. + clean_attrs("edge", edge_attrs) + clean_attrs("node", node_attrs) + clean_attrs("graph", graph_attrs) + + # If the user passed in an edgelabel, we update the labels for all edges. + if edgelabel is not None: + if not callable(edgelabel): + + def func(data): + return "".join([" ", str(data[edgelabel]), " "]) + + else: + func = edgelabel + + # update all the edge labels + if G.is_multigraph(): + for u, v, key, data in G.edges(keys=True, data=True): + # PyGraphviz doesn't convert the key to a string. See #339 + edge = A.get_edge(u, v, str(key)) + edge.attr["label"] = str(func(data)) + else: + for u, v, data in G.edges(data=True): + edge = A.get_edge(u, v) + edge.attr["label"] = str(func(data)) + + if path is None: + ext = "png" + if suffix: + suffix = f"_{suffix}.{ext}" + else: + suffix = f".{ext}" + path = tempfile.NamedTemporaryFile(suffix=suffix, delete=False) + else: + # Assume the decorator worked and it is a file-object. + pass + + # Write graph to file + A.draw(path=path, format=None, prog=prog, args=args) + path.close() + + # Show graph in a new window (depends on platform configuration) + if show: + from PIL import Image + + Image.open(path.name).show() + + return path.name, A diff --git a/phivenv/Lib/site-packages/networkx/drawing/nx_latex.py b/phivenv/Lib/site-packages/networkx/drawing/nx_latex.py new file mode 100644 index 0000000000000000000000000000000000000000..6312f71505e79bf5a2e2d9979274ba2a08b2e32b --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/nx_latex.py @@ -0,0 +1,571 @@ +r""" +***** +LaTeX +***** + +Export NetworkX graphs in LaTeX format using the TikZ library within TeX/LaTeX. +Usually, you will want the drawing to appear in a figure environment so +you use ``to_latex(G, caption="A caption")``. If you want the raw +drawing commands without a figure environment use :func:`to_latex_raw`. +And if you want to write to a file instead of just returning the latex +code as a string, use ``write_latex(G, "filename.tex", caption="A caption")``. + +To construct a figure with subfigures for each graph to be shown, provide +``to_latex`` or ``write_latex`` a list of graphs, a list of subcaptions, +and a number of rows of subfigures inside the figure. + +To be able to refer to the figures or subfigures in latex using ``\\ref``, +the keyword ``latex_label`` is available for figures and `sub_labels` for +a list of labels, one for each subfigure. + +We intend to eventually provide an interface to the TikZ Graph +features which include e.g. layout algorithms. + +Let us know via github what you'd like to see available, or better yet +give us some code to do it, or even better make a github pull request +to add the feature. + +The TikZ approach +================= +Drawing options can be stored on the graph as node/edge attributes, or +can be provided as dicts keyed by node/edge to a string of the options +for that node/edge. Similarly a label can be shown for each node/edge +by specifying the labels as graph node/edge attributes or by providing +a dict keyed by node/edge to the text to be written for that node/edge. + +Options for the tikzpicture environment (e.g. "[scale=2]") can be provided +via a keyword argument. Similarly default node and edge options can be +provided through keywords arguments. The default node options are applied +to the single TikZ "path" that draws all nodes (and no edges). The default edge +options are applied to a TikZ "scope" which contains a path for each edge. + +Examples +======== +>>> G = nx.path_graph(3) +>>> nx.write_latex(G, "just_my_figure.tex", as_document=True) +>>> nx.write_latex(G, "my_figure.tex", caption="A path graph", latex_label="fig1") +>>> latex_code = nx.to_latex(G) # a string rather than a file + +You can change many features of the nodes and edges. + +>>> G = nx.path_graph(4, create_using=nx.DiGraph) +>>> pos = {n: (n, n) for n in G} # nodes set on a line + +>>> G.nodes[0]["style"] = "blue" +>>> G.nodes[2]["style"] = "line width=3,draw" +>>> G.nodes[3]["label"] = "Stop" +>>> G.edges[(0, 1)]["label"] = "1st Step" +>>> G.edges[(0, 1)]["label_opts"] = "near start" +>>> G.edges[(1, 2)]["style"] = "line width=3" +>>> G.edges[(1, 2)]["label"] = "2nd Step" +>>> G.edges[(2, 3)]["style"] = "green" +>>> G.edges[(2, 3)]["label"] = "3rd Step" +>>> G.edges[(2, 3)]["label_opts"] = "near end" + +>>> nx.write_latex(G, "latex_graph.tex", pos=pos, as_document=True) + +Then compile the LaTeX using something like ``pdflatex latex_graph.tex`` +and view the pdf file created: ``latex_graph.pdf``. + +If you want **subfigures** each containing one graph, you can input a list of graphs. + +>>> H1 = nx.path_graph(4) +>>> H2 = nx.complete_graph(4) +>>> H3 = nx.path_graph(8) +>>> H4 = nx.complete_graph(8) +>>> graphs = [H1, H2, H3, H4] +>>> caps = ["Path 4", "Complete graph 4", "Path 8", "Complete graph 8"] +>>> lbls = ["fig2a", "fig2b", "fig2c", "fig2d"] +>>> nx.write_latex(graphs, "subfigs.tex", n_rows=2, sub_captions=caps, sub_labels=lbls) +>>> latex_code = nx.to_latex(graphs, n_rows=2, sub_captions=caps, sub_labels=lbls) + +>>> node_color = {0: "red", 1: "orange", 2: "blue", 3: "gray!90"} +>>> edge_width = {e: "line width=1.5" for e in H3.edges} +>>> pos = nx.circular_layout(H3) +>>> latex_code = nx.to_latex(H3, pos, node_options=node_color, edge_options=edge_width) +>>> print(latex_code) +\documentclass{report} +\usepackage{tikz} +\usepackage{subcaption} + +\begin{document} +\begin{figure} + \begin{tikzpicture} + \draw + (1.0, 0.0) node[red] (0){0} + (0.707, 0.707) node[orange] (1){1} + (-0.0, 1.0) node[blue] (2){2} + (-0.707, 0.707) node[gray!90] (3){3} + (-1.0, -0.0) node (4){4} + (-0.707, -0.707) node (5){5} + (0.0, -1.0) node (6){6} + (0.707, -0.707) node (7){7}; + \begin{scope}[-] + \draw[line width=1.5] (0) to (1); + \draw[line width=1.5] (1) to (2); + \draw[line width=1.5] (2) to (3); + \draw[line width=1.5] (3) to (4); + \draw[line width=1.5] (4) to (5); + \draw[line width=1.5] (5) to (6); + \draw[line width=1.5] (6) to (7); + \end{scope} + \end{tikzpicture} +\end{figure} +\end{document} + +Notes +----- +If you want to change the preamble/postamble of the figure/document/subfigure +environment, use the keyword arguments: `figure_wrapper`, `document_wrapper`, +`subfigure_wrapper`. The default values are stored in private variables +e.g. ``nx.nx_layout._DOCUMENT_WRAPPER`` + +References +---------- +TikZ: https://tikz.dev/ + +TikZ options details: https://tikz.dev/tikz-actions +""" +import numbers +import os + +import networkx as nx + +__all__ = [ + "to_latex_raw", + "to_latex", + "write_latex", +] + + +@nx.utils.not_implemented_for("multigraph") +def to_latex_raw( + G, + pos="pos", + tikz_options="", + default_node_options="", + node_options="node_options", + node_label="label", + default_edge_options="", + edge_options="edge_options", + edge_label="label", + edge_label_options="edge_label_options", +): + """Return a string of the LaTeX/TikZ code to draw `G` + + This function produces just the code for the tikzpicture + without any enclosing environment. + + Parameters + ========== + G : NetworkX graph + The NetworkX graph to be drawn + pos : string or dict (default "pos") + The name of the node attribute on `G` that holds the position of each node. + Positions can be sequences of length 2 with numbers for (x,y) coordinates. + They can also be strings to denote positions in TikZ style, such as (x, y) + or (angle:radius). + If a dict, it should be keyed by node to a position. + If an empty dict, a circular layout is computed by TikZ. + tikz_options : string + The tikzpicture options description defining the options for the picture. + Often large scale options like `[scale=2]`. + default_node_options : string + The draw options for a path of nodes. Individual node options override these. + node_options : string or dict + The name of the node attribute on `G` that holds the options for each node. + Or a dict keyed by node to a string holding the options for that node. + node_label : string or dict + The name of the node attribute on `G` that holds the node label (text) + displayed for each node. If the attribute is "" or not present, the node + itself is drawn as a string. LaTeX processing such as ``"$A_1$"`` is allowed. + Or a dict keyed by node to a string holding the label for that node. + default_edge_options : string + The options for the scope drawing all edges. The default is "[-]" for + undirected graphs and "[->]" for directed graphs. + edge_options : string or dict + The name of the edge attribute on `G` that holds the options for each edge. + If the edge is a self-loop and ``"loop" not in edge_options`` the option + "loop," is added to the options for the self-loop edge. Hence you can + use "[loop above]" explicitly, but the default is "[loop]". + Or a dict keyed by edge to a string holding the options for that edge. + edge_label : string or dict + The name of the edge attribute on `G` that holds the edge label (text) + displayed for each edge. If the attribute is "" or not present, no edge + label is drawn. + Or a dict keyed by edge to a string holding the label for that edge. + edge_label_options : string or dict + The name of the edge attribute on `G` that holds the label options for + each edge. For example, "[sloped,above,blue]". The default is no options. + Or a dict keyed by edge to a string holding the label options for that edge. + + Returns + ======= + latex_code : string + The text string which draws the desired graph(s) when compiled by LaTeX. + + See Also + ======== + to_latex + write_latex + """ + i4 = "\n " + i8 = "\n " + + # set up position dict + # TODO allow pos to be None and use a nice TikZ default + if not isinstance(pos, dict): + pos = nx.get_node_attributes(G, pos) + if not pos: + # circular layout with radius 2 + pos = {n: f"({round(360.0 * i / len(G), 3)}:2)" for i, n in enumerate(G)} + for node in G: + if node not in pos: + raise nx.NetworkXError(f"node {node} has no specified pos {pos}") + posnode = pos[node] + if not isinstance(posnode, str): + try: + posx, posy = posnode + pos[node] = f"({round(posx, 3)}, {round(posy, 3)})" + except (TypeError, ValueError): + msg = f"position pos[{node}] is not 2-tuple or a string: {posnode}" + raise nx.NetworkXError(msg) + + # set up all the dicts + if not isinstance(node_options, dict): + node_options = nx.get_node_attributes(G, node_options) + if not isinstance(node_label, dict): + node_label = nx.get_node_attributes(G, node_label) + if not isinstance(edge_options, dict): + edge_options = nx.get_edge_attributes(G, edge_options) + if not isinstance(edge_label, dict): + edge_label = nx.get_edge_attributes(G, edge_label) + if not isinstance(edge_label_options, dict): + edge_label_options = nx.get_edge_attributes(G, edge_label_options) + + # process default options (add brackets or not) + topts = "" if tikz_options == "" else f"[{tikz_options.strip('[]')}]" + defn = "" if default_node_options == "" else f"[{default_node_options.strip('[]')}]" + linestyle = f"{'->' if G.is_directed() else '-'}" + if default_edge_options == "": + defe = "[" + linestyle + "]" + elif "-" in default_edge_options: + defe = default_edge_options + else: + defe = f"[{linestyle},{default_edge_options.strip('[]')}]" + + # Construct the string line by line + result = " \\begin{tikzpicture}" + topts + result += i4 + " \\draw" + defn + # load the nodes + for n in G: + # node options goes inside square brackets + nopts = f"[{node_options[n].strip('[]')}]" if n in node_options else "" + # node text goes inside curly brackets {} + ntext = f"{{{node_label[n]}}}" if n in node_label else f"{{{n}}}" + + result += i8 + f"{pos[n]} node{nopts} ({n}){ntext}" + result += ";\n" + + # load the edges + result += " \\begin{scope}" + defe + for edge in G.edges: + u, v = edge[:2] + e_opts = f"{edge_options[edge]}".strip("[]") if edge in edge_options else "" + # add loop options for selfloops if not present + if u == v and "loop" not in e_opts: + e_opts = "loop," + e_opts + e_opts = f"[{e_opts}]" if e_opts != "" else "" + # TODO -- handle bending of multiedges + + els = edge_label_options[edge] if edge in edge_label_options else "" + # edge label options goes inside square brackets [] + els = f"[{els.strip('[]')}]" + # edge text is drawn using the TikZ node command inside curly brackets {} + e_label = f" node{els} {{{edge_label[edge]}}}" if edge in edge_label else "" + + result += i8 + f"\\draw{e_opts} ({u}) to{e_label} ({v});" + + result += "\n \\end{scope}\n \\end{tikzpicture}\n" + return result + + +_DOC_WRAPPER_TIKZ = r"""\documentclass{{report}} +\usepackage{{tikz}} +\usepackage{{subcaption}} + +\begin{{document}} +{content} +\end{{document}}""" + + +_FIG_WRAPPER = r"""\begin{{figure}} +{content}{caption}{label} +\end{{figure}}""" + + +_SUBFIG_WRAPPER = r""" \begin{{subfigure}}{{{size}\textwidth}} +{content}{caption}{label} + \end{{subfigure}}""" + + +def to_latex( + Gbunch, + pos="pos", + tikz_options="", + default_node_options="", + node_options="node_options", + node_label="node_label", + default_edge_options="", + edge_options="edge_options", + edge_label="edge_label", + edge_label_options="edge_label_options", + caption="", + latex_label="", + sub_captions=None, + sub_labels=None, + n_rows=1, + as_document=True, + document_wrapper=_DOC_WRAPPER_TIKZ, + figure_wrapper=_FIG_WRAPPER, + subfigure_wrapper=_SUBFIG_WRAPPER, +): + """Return latex code to draw the graph(s) in `Gbunch` + + The TikZ drawing utility in LaTeX is used to draw the graph(s). + If `Gbunch` is a graph, it is drawn in a figure environment. + If `Gbunch` is an iterable of graphs, each is drawn in a subfigure environment + within a single figure environment. + + If `as_document` is True, the figure is wrapped inside a document environment + so that the resulting string is ready to be compiled by LaTeX. Otherwise, + the string is ready for inclusion in a larger tex document using ``\\include`` + or ``\\input`` statements. + + Parameters + ========== + Gbunch : NetworkX graph or iterable of NetworkX graphs + The NetworkX graph to be drawn or an iterable of graphs + to be drawn inside subfigures of a single figure. + pos : string or list of strings + The name of the node attribute on `G` that holds the position of each node. + Positions can be sequences of length 2 with numbers for (x,y) coordinates. + They can also be strings to denote positions in TikZ style, such as (x, y) + or (angle:radius). + If a dict, it should be keyed by node to a position. + If an empty dict, a circular layout is computed by TikZ. + If you are drawing many graphs in subfigures, use a list of position dicts. + tikz_options : string + The tikzpicture options description defining the options for the picture. + Often large scale options like `[scale=2]`. + default_node_options : string + The draw options for a path of nodes. Individual node options override these. + node_options : string or dict + The name of the node attribute on `G` that holds the options for each node. + Or a dict keyed by node to a string holding the options for that node. + node_label : string or dict + The name of the node attribute on `G` that holds the node label (text) + displayed for each node. If the attribute is "" or not present, the node + itself is drawn as a string. LaTeX processing such as ``"$A_1$"`` is allowed. + Or a dict keyed by node to a string holding the label for that node. + default_edge_options : string + The options for the scope drawing all edges. The default is "[-]" for + undirected graphs and "[->]" for directed graphs. + edge_options : string or dict + The name of the edge attribute on `G` that holds the options for each edge. + If the edge is a self-loop and ``"loop" not in edge_options`` the option + "loop," is added to the options for the self-loop edge. Hence you can + use "[loop above]" explicitly, but the default is "[loop]". + Or a dict keyed by edge to a string holding the options for that edge. + edge_label : string or dict + The name of the edge attribute on `G` that holds the edge label (text) + displayed for each edge. If the attribute is "" or not present, no edge + label is drawn. + Or a dict keyed by edge to a string holding the label for that edge. + edge_label_options : string or dict + The name of the edge attribute on `G` that holds the label options for + each edge. For example, "[sloped,above,blue]". The default is no options. + Or a dict keyed by edge to a string holding the label options for that edge. + caption : string + The caption string for the figure environment + latex_label : string + The latex label used for the figure for easy referral from the main text + sub_captions : list of strings + The sub_caption string for each subfigure in the figure + sub_latex_labels : list of strings + The latex label for each subfigure in the figure + n_rows : int + The number of rows of subfigures to arrange for multiple graphs + as_document : bool + Whether to wrap the latex code in a document environment for compiling + document_wrapper : formatted text string with variable ``content``. + This text is called to evaluate the content embedded in a document + environment with a preamble setting up TikZ. + figure_wrapper : formatted text string + This text is evaluated with variables ``content``, ``caption`` and ``label``. + It wraps the content and if a caption is provided, adds the latex code for + that caption, and if a label is provided, adds the latex code for a label. + subfigure_wrapper : formatted text string + This text evaluate variables ``size``, ``content``, ``caption`` and ``label``. + It wraps the content and if a caption is provided, adds the latex code for + that caption, and if a label is provided, adds the latex code for a label. + The size is the vertical size of each row of subfigures as a fraction. + + Returns + ======= + latex_code : string + The text string which draws the desired graph(s) when compiled by LaTeX. + + See Also + ======== + write_latex + to_latex_raw + """ + if hasattr(Gbunch, "adj"): + raw = to_latex_raw( + Gbunch, + pos, + tikz_options, + default_node_options, + node_options, + node_label, + default_edge_options, + edge_options, + edge_label, + edge_label_options, + ) + else: # iterator of graphs + sbf = subfigure_wrapper + size = 1 / n_rows + + N = len(Gbunch) + if isinstance(pos, (str, dict)): + pos = [pos] * N + if sub_captions is None: + sub_captions = [""] * N + if sub_labels is None: + sub_labels = [""] * N + if not (len(Gbunch) == len(pos) == len(sub_captions) == len(sub_labels)): + raise nx.NetworkXError( + "length of Gbunch, sub_captions and sub_figures must agree" + ) + + raw = "" + for G, pos, subcap, sublbl in zip(Gbunch, pos, sub_captions, sub_labels): + subraw = to_latex_raw( + G, + pos, + tikz_options, + default_node_options, + node_options, + node_label, + default_edge_options, + edge_options, + edge_label, + edge_label_options, + ) + cap = f" \\caption{{{subcap}}}" if subcap else "" + lbl = f"\\label{{{sublbl}}}" if sublbl else "" + raw += sbf.format(size=size, content=subraw, caption=cap, label=lbl) + raw += "\n" + + # put raw latex code into a figure environment and optionally into a document + raw = raw[:-1] + cap = f"\n \\caption{{{caption}}}" if caption else "" + lbl = f"\\label{{{latex_label}}}" if latex_label else "" + fig = figure_wrapper.format(content=raw, caption=cap, label=lbl) + if as_document: + return document_wrapper.format(content=fig) + return fig + + +@nx.utils.open_file(1, mode="w") +def write_latex(Gbunch, path, **options): + """Write the latex code to draw the graph(s) onto `path`. + + This convenience function creates the latex drawing code as a string + and writes that to a file ready to be compiled when `as_document` is True + or ready to be ``import`` ed or ``include`` ed into your main LaTeX document. + + The `path` argument can be a string filename or a file handle to write to. + + Parameters + ---------- + Gbunch : NetworkX graph or iterable of NetworkX graphs + If Gbunch is a graph, it is drawn in a figure environment. + If Gbunch is an iterable of graphs, each is drawn in a subfigure + environment within a single figure environment. + path : filename + Filename or file handle to write to + options : dict + By default, TikZ is used with options: (others are ignored):: + + pos : string or dict or list + The name of the node attribute on `G` that holds the position of each node. + Positions can be sequences of length 2 with numbers for (x,y) coordinates. + They can also be strings to denote positions in TikZ style, such as (x, y) + or (angle:radius). + If a dict, it should be keyed by node to a position. + If an empty dict, a circular layout is computed by TikZ. + If you are drawing many graphs in subfigures, use a list of position dicts. + tikz_options : string + The tikzpicture options description defining the options for the picture. + Often large scale options like `[scale=2]`. + default_node_options : string + The draw options for a path of nodes. Individual node options override these. + node_options : string or dict + The name of the node attribute on `G` that holds the options for each node. + Or a dict keyed by node to a string holding the options for that node. + node_label : string or dict + The name of the node attribute on `G` that holds the node label (text) + displayed for each node. If the attribute is "" or not present, the node + itself is drawn as a string. LaTeX processing such as ``"$A_1$"`` is allowed. + Or a dict keyed by node to a string holding the label for that node. + default_edge_options : string + The options for the scope drawing all edges. The default is "[-]" for + undirected graphs and "[->]" for directed graphs. + edge_options : string or dict + The name of the edge attribute on `G` that holds the options for each edge. + If the edge is a self-loop and ``"loop" not in edge_options`` the option + "loop," is added to the options for the self-loop edge. Hence you can + use "[loop above]" explicitly, but the default is "[loop]". + Or a dict keyed by edge to a string holding the options for that edge. + edge_label : string or dict + The name of the edge attribute on `G` that holds the edge label (text) + displayed for each edge. If the attribute is "" or not present, no edge + label is drawn. + Or a dict keyed by edge to a string holding the label for that edge. + edge_label_options : string or dict + The name of the edge attribute on `G` that holds the label options for + each edge. For example, "[sloped,above,blue]". The default is no options. + Or a dict keyed by edge to a string holding the label options for that edge. + caption : string + The caption string for the figure environment + latex_label : string + The latex label used for the figure for easy referral from the main text + sub_captions : list of strings + The sub_caption string for each subfigure in the figure + sub_latex_labels : list of strings + The latex label for each subfigure in the figure + n_rows : int + The number of rows of subfigures to arrange for multiple graphs + as_document : bool + Whether to wrap the latex code in a document environment for compiling + document_wrapper : formatted text string with variable ``content``. + This text is called to evaluate the content embedded in a document + environment with a preamble setting up the TikZ syntax. + figure_wrapper : formatted text string + This text is evaluated with variables ``content``, ``caption`` and ``label``. + It wraps the content and if a caption is provided, adds the latex code for + that caption, and if a label is provided, adds the latex code for a label. + subfigure_wrapper : formatted text string + This text evaluate variables ``size``, ``content``, ``caption`` and ``label``. + It wraps the content and if a caption is provided, adds the latex code for + that caption, and if a label is provided, adds the latex code for a label. + The size is the vertical size of each row of subfigures as a fraction. + + See Also + ======== + to_latex + """ + path.write(to_latex(Gbunch, **options)) diff --git a/phivenv/Lib/site-packages/networkx/drawing/nx_pydot.py b/phivenv/Lib/site-packages/networkx/drawing/nx_pydot.py new file mode 100644 index 0000000000000000000000000000000000000000..1cd17818373fff6fb4120c5a3f9d39046d3df441 --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/nx_pydot.py @@ -0,0 +1,454 @@ +""" +***** +Pydot +***** + +Import and export NetworkX graphs in Graphviz dot format using pydot. + +Either this module or nx_agraph can be used to interface with graphviz. + +Examples +-------- +>>> G = nx.complete_graph(5) +>>> PG = nx.nx_pydot.to_pydot(G) +>>> H = nx.nx_pydot.from_pydot(PG) + +See Also +-------- + - pydot: https://github.com/erocarrera/pydot + - Graphviz: https://www.graphviz.org + - DOT Language: http://www.graphviz.org/doc/info/lang.html +""" +import warnings +from locale import getpreferredencoding + +import networkx as nx +from networkx.utils import open_file + +__all__ = [ + "write_dot", + "read_dot", + "graphviz_layout", + "pydot_layout", + "to_pydot", + "from_pydot", +] + + +@open_file(1, mode="w") +def write_dot(G, path): + """Write NetworkX graph G to Graphviz dot format on path. + + Path can be a string or a file handle. + """ + msg = ( + "nx.nx_pydot.write_dot depends on the pydot package, which has " + "known issues and is not actively maintained. Consider using " + "nx.nx_agraph.write_dot instead.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + P = to_pydot(G) + path.write(P.to_string()) + return + + +@open_file(0, mode="r") +@nx._dispatch(name="pydot_read_dot", graphs=None) +def read_dot(path): + """Returns a NetworkX :class:`MultiGraph` or :class:`MultiDiGraph` from the + dot file with the passed path. + + If this file contains multiple graphs, only the first such graph is + returned. All graphs _except_ the first are silently ignored. + + Parameters + ---------- + path : str or file + Filename or file handle. + + Returns + ------- + G : MultiGraph or MultiDiGraph + A :class:`MultiGraph` or :class:`MultiDiGraph`. + + Notes + ----- + Use `G = nx.Graph(nx.nx_pydot.read_dot(path))` to return a :class:`Graph` instead of a + :class:`MultiGraph`. + """ + import pydot + + msg = ( + "nx.nx_pydot.read_dot depends on the pydot package, which has " + "known issues and is not actively maintained. Consider using " + "nx.nx_agraph.read_dot instead.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + + data = path.read() + + # List of one or more "pydot.Dot" instances deserialized from this file. + P_list = pydot.graph_from_dot_data(data) + + # Convert only the first such instance into a NetworkX graph. + return from_pydot(P_list[0]) + + +@nx._dispatch(graphs=None) +def from_pydot(P): + """Returns a NetworkX graph from a Pydot graph. + + Parameters + ---------- + P : Pydot graph + A graph created with Pydot + + Returns + ------- + G : NetworkX multigraph + A MultiGraph or MultiDiGraph. + + Examples + -------- + >>> K5 = nx.complete_graph(5) + >>> A = nx.nx_pydot.to_pydot(K5) + >>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph + + # make a Graph instead of MultiGraph + >>> G = nx.Graph(nx.nx_pydot.from_pydot(A)) + + """ + msg = ( + "nx.nx_pydot.from_pydot depends on the pydot package, which has " + "known issues and is not actively maintained.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + + if P.get_strict(None): # pydot bug: get_strict() shouldn't take argument + multiedges = False + else: + multiedges = True + + if P.get_type() == "graph": # undirected + if multiedges: + N = nx.MultiGraph() + else: + N = nx.Graph() + else: + if multiedges: + N = nx.MultiDiGraph() + else: + N = nx.DiGraph() + + # assign defaults + name = P.get_name().strip('"') + if name != "": + N.name = name + + # add nodes, attributes to N.node_attr + for p in P.get_node_list(): + n = p.get_name().strip('"') + if n in ("node", "graph", "edge"): + continue + N.add_node(n, **p.get_attributes()) + + # add edges + for e in P.get_edge_list(): + u = e.get_source() + v = e.get_destination() + attr = e.get_attributes() + s = [] + d = [] + + if isinstance(u, str): + s.append(u.strip('"')) + else: + for unodes in u["nodes"]: + s.append(unodes.strip('"')) + + if isinstance(v, str): + d.append(v.strip('"')) + else: + for vnodes in v["nodes"]: + d.append(vnodes.strip('"')) + + for source_node in s: + for destination_node in d: + N.add_edge(source_node, destination_node, **attr) + + # add default attributes for graph, nodes, edges + pattr = P.get_attributes() + if pattr: + N.graph["graph"] = pattr + try: + N.graph["node"] = P.get_node_defaults()[0] + except (IndexError, TypeError): + pass # N.graph['node']={} + try: + N.graph["edge"] = P.get_edge_defaults()[0] + except (IndexError, TypeError): + pass # N.graph['edge']={} + return N + + +def _check_colon_quotes(s): + # A quick helper function to check if a string has a colon in it + # and if it is quoted properly with double quotes. + # refer https://github.com/pydot/pydot/issues/258 + return ":" in s and (s[0] != '"' or s[-1] != '"') + + +def to_pydot(N): + """Returns a pydot graph from a NetworkX graph N. + + Parameters + ---------- + N : NetworkX graph + A graph created with NetworkX + + Examples + -------- + >>> K5 = nx.complete_graph(5) + >>> P = nx.nx_pydot.to_pydot(K5) + + Notes + ----- + + """ + import pydot + + msg = ( + "nx.nx_pydot.to_pydot depends on the pydot package, which has " + "known issues and is not actively maintained.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + + # set Graphviz graph type + if N.is_directed(): + graph_type = "digraph" + else: + graph_type = "graph" + strict = nx.number_of_selfloops(N) == 0 and not N.is_multigraph() + + name = N.name + graph_defaults = N.graph.get("graph", {}) + if name == "": + P = pydot.Dot("", graph_type=graph_type, strict=strict, **graph_defaults) + else: + P = pydot.Dot( + f'"{name}"', graph_type=graph_type, strict=strict, **graph_defaults + ) + try: + P.set_node_defaults(**N.graph["node"]) + except KeyError: + pass + try: + P.set_edge_defaults(**N.graph["edge"]) + except KeyError: + pass + + for n, nodedata in N.nodes(data=True): + str_nodedata = {str(k): str(v) for k, v in nodedata.items()} + # Explicitly catch nodes with ":" in node names or nodedata. + n = str(n) + raise_error = _check_colon_quotes(n) or ( + any( + (_check_colon_quotes(k) or _check_colon_quotes(v)) + for k, v in str_nodedata.items() + ) + ) + if raise_error: + raise ValueError( + f'Node names and attributes should not contain ":" unless they are quoted with "".\ + For example the string \'attribute:data1\' should be written as \'"attribute:data1"\'.\ + Please refer https://github.com/pydot/pydot/issues/258' + ) + p = pydot.Node(n, **str_nodedata) + P.add_node(p) + + if N.is_multigraph(): + for u, v, key, edgedata in N.edges(data=True, keys=True): + str_edgedata = {str(k): str(v) for k, v in edgedata.items() if k != "key"} + u, v = str(u), str(v) + raise_error = ( + _check_colon_quotes(u) + or _check_colon_quotes(v) + or ( + any( + (_check_colon_quotes(k) or _check_colon_quotes(val)) + for k, val in str_edgedata.items() + ) + ) + ) + if raise_error: + raise ValueError( + f'Node names and attributes should not contain ":" unless they are quoted with "".\ + For example the string \'attribute:data1\' should be written as \'"attribute:data1"\'.\ + Please refer https://github.com/pydot/pydot/issues/258' + ) + edge = pydot.Edge(u, v, key=str(key), **str_edgedata) + P.add_edge(edge) + + else: + for u, v, edgedata in N.edges(data=True): + str_edgedata = {str(k): str(v) for k, v in edgedata.items()} + u, v = str(u), str(v) + raise_error = ( + _check_colon_quotes(u) + or _check_colon_quotes(v) + or ( + any( + (_check_colon_quotes(k) or _check_colon_quotes(val)) + for k, val in str_edgedata.items() + ) + ) + ) + if raise_error: + raise ValueError( + f'Node names and attributes should not contain ":" unless they are quoted with "".\ + For example the string \'attribute:data1\' should be written as \'"attribute:data1"\'.\ + Please refer https://github.com/pydot/pydot/issues/258' + ) + edge = pydot.Edge(u, v, **str_edgedata) + P.add_edge(edge) + return P + + +def graphviz_layout(G, prog="neato", root=None): + """Create node positions using Pydot and Graphviz. + + Returns a dictionary of positions keyed by node. + + Parameters + ---------- + G : NetworkX Graph + The graph for which the layout is computed. + prog : string (default: 'neato') + The name of the GraphViz program to use for layout. + Options depend on GraphViz version but may include: + 'dot', 'twopi', 'fdp', 'sfdp', 'circo' + root : Node from G or None (default: None) + The node of G from which to start some layout algorithms. + + Returns + ------- + Dictionary of (x, y) positions keyed by node. + + Examples + -------- + >>> G = nx.complete_graph(4) + >>> pos = nx.nx_pydot.graphviz_layout(G) + >>> pos = nx.nx_pydot.graphviz_layout(G, prog="dot") + + Notes + ----- + This is a wrapper for pydot_layout. + """ + msg = ( + "nx.nx_pydot.graphviz_layout depends on the pydot package, which has " + "known issues and is not actively maintained. Consider using " + "nx.nx_agraph.graphviz_layout instead.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + + return pydot_layout(G=G, prog=prog, root=root) + + +def pydot_layout(G, prog="neato", root=None): + """Create node positions using :mod:`pydot` and Graphviz. + + Parameters + ---------- + G : Graph + NetworkX graph to be laid out. + prog : string (default: 'neato') + Name of the GraphViz command to use for layout. + Options depend on GraphViz version but may include: + 'dot', 'twopi', 'fdp', 'sfdp', 'circo' + root : Node from G or None (default: None) + The node of G from which to start some layout algorithms. + + Returns + ------- + dict + Dictionary of positions keyed by node. + + Examples + -------- + >>> G = nx.complete_graph(4) + >>> pos = nx.nx_pydot.pydot_layout(G) + >>> pos = nx.nx_pydot.pydot_layout(G, prog="dot") + + Notes + ----- + If you use complex node objects, they may have the same string + representation and GraphViz could treat them as the same node. + The layout may assign both nodes a single location. See Issue #1568 + If this occurs in your case, consider relabeling the nodes just + for the layout computation using something similar to:: + + H = nx.convert_node_labels_to_integers(G, label_attribute='node_label') + H_layout = nx.nx_pydot.pydot_layout(G, prog='dot') + G_layout = {H.nodes[n]['node_label']: p for n, p in H_layout.items()} + + """ + import pydot + + msg = ( + "nx.nx_pydot.pydot_layout depends on the pydot package, which has " + "known issues and is not actively maintained.\n\n" + "See https://github.com/networkx/networkx/issues/5723" + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + P = to_pydot(G) + if root is not None: + P.set("root", str(root)) + + # List of low-level bytes comprising a string in the dot language converted + # from the passed graph with the passed external GraphViz command. + D_bytes = P.create_dot(prog=prog) + + # Unique string decoded from these bytes with the preferred locale encoding + D = str(D_bytes, encoding=getpreferredencoding()) + + if D == "": # no data returned + print(f"Graphviz layout with {prog} failed") + print() + print("To debug what happened try:") + print("P = nx.nx_pydot.to_pydot(G)") + print('P.write_dot("file.dot")') + print(f"And then run {prog} on file.dot") + return + + # List of one or more "pydot.Dot" instances deserialized from this string. + Q_list = pydot.graph_from_dot_data(D) + assert len(Q_list) == 1 + + # The first and only such instance, as guaranteed by the above assertion. + Q = Q_list[0] + + node_pos = {} + for n in G.nodes(): + str_n = str(n) + # Explicitly catch nodes with ":" in node names or nodedata. + if _check_colon_quotes(str_n): + raise ValueError( + f'Node names and node attributes should not contain ":" unless they are quoted with "".\ + For example the string \'attribute:data1\' should be written as \'"attribute:data1"\'.\ + Please refer https://github.com/pydot/pydot/issues/258' + ) + pydot_node = pydot.Node(str_n).get_name() + node = Q.get_node(pydot_node) + + if isinstance(node, list): + node = node[0] + pos = node.get_pos()[1:-1] # strip leading and trailing double quotes + if pos is not None: + xx, yy = pos.split(",") + node_pos[n] = (float(xx), float(yy)) + return node_pos diff --git a/phivenv/Lib/site-packages/networkx/drawing/nx_pylab.py b/phivenv/Lib/site-packages/networkx/drawing/nx_pylab.py new file mode 100644 index 0000000000000000000000000000000000000000..096e7b01d052adcd9bbfb64b23ad9abbcf43deef --- /dev/null +++ b/phivenv/Lib/site-packages/networkx/drawing/nx_pylab.py @@ -0,0 +1,1594 @@ +""" +********** +Matplotlib +********** + +Draw networks with matplotlib. + +Examples +-------- +>>> G = nx.complete_graph(5) +>>> nx.draw(G) + +See Also +-------- + - :doc:`matplotlib ` + - :func:`matplotlib.pyplot.scatter` + - :obj:`matplotlib.patches.FancyArrowPatch` +""" +from numbers import Number + +import networkx as nx +from networkx.drawing.layout import ( + circular_layout, + kamada_kawai_layout, + planar_layout, + random_layout, + shell_layout, + spectral_layout, + spring_layout, +) + +__all__ = [ + "draw", + "draw_networkx", + "draw_networkx_nodes", + "draw_networkx_edges", + "draw_networkx_labels", + "draw_networkx_edge_labels", + "draw_circular", + "draw_kamada_kawai", + "draw_random", + "draw_spectral", + "draw_spring", + "draw_planar", + "draw_shell", +] + + +def draw(G, pos=None, ax=None, **kwds): + """Draw the graph G with Matplotlib. + + Draw the graph as a simple representation with no node + labels or edge labels and using the full Matplotlib figure area + and no axis labels by default. See draw_networkx() for more + full-featured drawing that allows title, axis labels etc. + + Parameters + ---------- + G : graph + A networkx graph + + pos : dictionary, optional + A dictionary with nodes as keys and positions as values. + If not specified a spring layout positioning will be computed. + See :py:mod:`networkx.drawing.layout` for functions that + compute node positions. + + ax : Matplotlib Axes object, optional + Draw the graph in specified Matplotlib axes. + + kwds : optional keywords + See networkx.draw_networkx() for a description of optional keywords. + + Examples + -------- + >>> G = nx.dodecahedral_graph() + >>> nx.draw(G) + >>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout + + See Also + -------- + draw_networkx + draw_networkx_nodes + draw_networkx_edges + draw_networkx_labels + draw_networkx_edge_labels + + Notes + ----- + This function has the same name as pylab.draw and pyplot.draw + so beware when using `from networkx import *` + + since you might overwrite the pylab.draw function. + + With pyplot use + + >>> import matplotlib.pyplot as plt + >>> G = nx.dodecahedral_graph() + >>> nx.draw(G) # networkx draw() + >>> plt.draw() # pyplot draw() + + Also see the NetworkX drawing examples at + https://networkx.org/documentation/latest/auto_examples/index.html + """ + import matplotlib.pyplot as plt + + if ax is None: + cf = plt.gcf() + else: + cf = ax.get_figure() + cf.set_facecolor("w") + if ax is None: + if cf.axes: + ax = cf.gca() + else: + ax = cf.add_axes((0, 0, 1, 1)) + + if "with_labels" not in kwds: + kwds["with_labels"] = "labels" in kwds + + draw_networkx(G, pos=pos, ax=ax, **kwds) + ax.set_axis_off() + plt.draw_if_interactive() + return + + +def draw_networkx(G, pos=None, arrows=None, with_labels=True, **kwds): + r"""Draw the graph G using Matplotlib. + + Draw the graph with Matplotlib with options for node positions, + labeling, titles, and many other drawing features. + See draw() for simple drawing without labels or axes. + + Parameters + ---------- + G : graph + A networkx graph + + pos : dictionary, optional + A dictionary with nodes as keys and positions as values. + If not specified a spring layout positioning will be computed. + See :py:mod:`networkx.drawing.layout` for functions that + compute node positions. + + arrows : bool or None, optional (default=None) + If `None`, directed graphs draw arrowheads with + `~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges + via `~matplotlib.collections.LineCollection` for speed. + If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish). + If `False`, draw edges using LineCollection (linear and fast). + For directed graphs, if True draw arrowheads. + Note: Arrows will be the same color as edges. + + arrowstyle : str (default='-\|>' for directed graphs) + For directed graphs, choose the style of the arrowsheads. + For undirected graphs default to '-' + + See `matplotlib.patches.ArrowStyle` for more options. + + arrowsize : int or list (default=10) + For directed graphs, choose the size of the arrow head's length and + width. A list of values can be passed in to assign a different size for arrow head's length and width. + See `matplotlib.patches.FancyArrowPatch` for attribute `mutation_scale` + for more info. + + with_labels : bool (default=True) + Set to True to draw labels on the nodes. + + ax : Matplotlib Axes object, optional + Draw the graph in the specified Matplotlib axes. + + nodelist : list (default=list(G)) + Draw only specified nodes + + edgelist : list (default=list(G.edges())) + Draw only specified edges + + node_size : scalar or array (default=300) + Size of nodes. If an array is specified it must be the + same length as nodelist. + + node_color : color or array of colors (default='#1f78b4') + Node color. Can be a single color or a sequence of colors with the same + length as nodelist. Color can be string or rgb (or rgba) tuple of + floats from 0-1. If numeric values are specified they will be + mapped to colors using the cmap and vmin,vmax parameters. See + matplotlib.scatter for more details. + + node_shape : string (default='o') + The shape of the node. Specification is as matplotlib.scatter + marker, one of 'so^>v>> G = nx.dodecahedral_graph() + >>> nx.draw(G) + >>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout + + >>> import matplotlib.pyplot as plt + >>> limits = plt.axis("off") # turn off axis + + Also see the NetworkX drawing examples at + https://networkx.org/documentation/latest/auto_examples/index.html + + See Also + -------- + draw + draw_networkx_nodes + draw_networkx_edges + draw_networkx_labels + draw_networkx_edge_labels + """ + from inspect import signature + + import matplotlib.pyplot as plt + + # Get all valid keywords by inspecting the signatures of draw_networkx_nodes, + # draw_networkx_edges, draw_networkx_labels + + valid_node_kwds = signature(draw_networkx_nodes).parameters.keys() + valid_edge_kwds = signature(draw_networkx_edges).parameters.keys() + valid_label_kwds = signature(draw_networkx_labels).parameters.keys() + + # Create a set with all valid keywords across the three functions and + # remove the arguments of this function (draw_networkx) + valid_kwds = (valid_node_kwds | valid_edge_kwds | valid_label_kwds) - { + "G", + "pos", + "arrows", + "with_labels", + } + + if any(k not in valid_kwds for k in kwds): + invalid_args = ", ".join([k for k in kwds if k not in valid_kwds]) + raise ValueError(f"Received invalid argument(s): {invalid_args}") + + node_kwds = {k: v for k, v in kwds.items() if k in valid_node_kwds} + edge_kwds = {k: v for k, v in kwds.items() if k in valid_edge_kwds} + label_kwds = {k: v for k, v in kwds.items() if k in valid_label_kwds} + + if pos is None: + pos = nx.drawing.spring_layout(G) # default to spring layout + + draw_networkx_nodes(G, pos, **node_kwds) + draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds) + if with_labels: + draw_networkx_labels(G, pos, **label_kwds) + plt.draw_if_interactive() + + +def draw_networkx_nodes( + G, + pos, + nodelist=None, + node_size=300, + node_color="#1f78b4", + node_shape="o", + alpha=None, + cmap=None, + vmin=None, + vmax=None, + ax=None, + linewidths=None, + edgecolors=None, + label=None, + margins=None, +): + """Draw the nodes of the graph G. + + This draws only the nodes of the graph G. + + Parameters + ---------- + G : graph + A networkx graph + + pos : dictionary + A dictionary with nodes as keys and positions as values. + Positions should be sequences of length 2. + + ax : Matplotlib Axes object, optional + Draw the graph in the specified Matplotlib axes. + + nodelist : list (default list(G)) + Draw only specified nodes + + node_size : scalar or array (default=300) + Size of nodes. If an array it must be the same length as nodelist. + + node_color : color or array of colors (default='#1f78b4') + Node color. Can be a single color or a sequence of colors with the same + length as nodelist. Color can be string or rgb (or rgba) tuple of + floats from 0-1. If numeric values are specified they will be + mapped to colors using the cmap and vmin,vmax parameters. See + matplotlib.scatter for more details. + + node_shape : string (default='o') + The shape of the node. Specification is as matplotlib.scatter + marker, one of 'so^>v>> G = nx.dodecahedral_graph() + >>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G)) + + Also see the NetworkX drawing examples at + https://networkx.org/documentation/latest/auto_examples/index.html + + See Also + -------- + draw + draw_networkx + draw_networkx_edges + draw_networkx_labels + draw_networkx_edge_labels + """ + from collections.abc import Iterable + + import matplotlib as mpl + import matplotlib.collections # call as mpl.collections + import matplotlib.pyplot as plt + import numpy as np + + if ax is None: + ax = plt.gca() + + if nodelist is None: + nodelist = list(G) + + if len(nodelist) == 0: # empty nodelist, no drawing + return mpl.collections.PathCollection(None) + + try: + xy = np.asarray([pos[v] for v in nodelist]) + except KeyError as err: + raise nx.NetworkXError(f"Node {err} has no position.") from err + + if isinstance(alpha, Iterable): + node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax) + alpha = None + + node_collection = ax.scatter( + xy[:, 0], + xy[:, 1], + s=node_size, + c=node_color, + marker=node_shape, + cmap=cmap, + vmin=vmin, + vmax=vmax, + alpha=alpha, + linewidths=linewidths, + edgecolors=edgecolors, + label=label, + ) + ax.tick_params( + axis="both", + which="both", + bottom=False, + left=False, + labelbottom=False, + labelleft=False, + ) + + if margins is not None: + if isinstance(margins, Iterable): + ax.margins(*margins) + else: + ax.margins(margins) + + node_collection.set_zorder(2) + return node_collection + + +def draw_networkx_edges( + G, + pos, + edgelist=None, + width=1.0, + edge_color="k", + style="solid", + alpha=None, + arrowstyle=None, + arrowsize=10, + edge_cmap=None, + edge_vmin=None, + edge_vmax=None, + ax=None, + arrows=None, + label=None, + node_size=300, + nodelist=None, + node_shape="o", + connectionstyle="arc3", + min_source_margin=0, + min_target_margin=0, +): + r"""Draw the edges of the graph G. + + This draws only the edges of the graph G. + + Parameters + ---------- + G : graph + A networkx graph + + pos : dictionary + A dictionary with nodes as keys and positions as values. + Positions should be sequences of length 2. + + edgelist : collection of edge tuples (default=G.edges()) + Draw only specified edges + + width : float or array of floats (default=1.0) + Line width of edges + + edge_color : color or array of colors (default='k') + Edge color. Can be a single color or a sequence of colors with the same + length as edgelist. Color can be string or rgb (or rgba) tuple of + floats from 0-1. If numeric values are specified they will be + mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. + + style : string or array of strings (default='solid') + Edge line style e.g.: '-', '--', '-.', ':' + or words like 'solid' or 'dashed'. + Can be a single style or a sequence of styles with the same + length as the edge list. + If less styles than edges are given the styles will cycle. + If more styles than edges are given the styles will be used sequentially + and not be exhausted. + Also, `(offset, onoffseq)` tuples can be used as style instead of a strings. + (See `matplotlib.patches.FancyArrowPatch`: `linestyle`) + + alpha : float or array of floats (default=None) + The edge transparency. This can be a single alpha value, + in which case it will be applied to all specified edges. Otherwise, + if it is an array, the elements of alpha will be applied to the colors + in order (cycling through alpha multiple times if necessary). + + edge_cmap : Matplotlib colormap, optional + Colormap for mapping intensities of edges + + edge_vmin,edge_vmax : floats, optional + Minimum and maximum for edge colormap scaling + + ax : Matplotlib Axes object, optional + Draw the graph in the specified Matplotlib axes. + + arrows : bool or None, optional (default=None) + If `None`, directed graphs draw arrowheads with + `~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges + via `~matplotlib.collections.LineCollection` for speed. + If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish). + If `False`, draw edges using LineCollection (linear and fast). + + Note: Arrowheads will be the same color as edges. + + arrowstyle : str (default='-\|>' for directed graphs) + For directed graphs and `arrows==True` defaults to '-\|>', + For undirected graphs default to '-'. + + See `matplotlib.patches.ArrowStyle` for more options. + + arrowsize : int (default=10) + For directed graphs, choose the size of the arrow head's length and + width. See `matplotlib.patches.FancyArrowPatch` for attribute + `mutation_scale` for more info. + + connectionstyle : string (default="arc3") + Pass the connectionstyle parameter to create curved arc of rounding + radius rad. For example, connectionstyle='arc3,rad=0.2'. + See `matplotlib.patches.ConnectionStyle` and + `matplotlib.patches.FancyArrowPatch` for more info. + + node_size : scalar or array (default=300) + Size of nodes. Though the nodes are not drawn with this function, the + node size is used in determining edge positioning. + + nodelist : list, optional (default=G.nodes()) + This provides the node order for the `node_size` array (if it is an array). + + node_shape : string (default='o') + The marker used for nodes, used in determining edge positioning. + Specification is as a `matplotlib.markers` marker, e.g. one of 'so^>v>> G = nx.dodecahedral_graph() + >>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G)) + + >>> G = nx.DiGraph() + >>> G.add_edges_from([(1, 2), (1, 3), (2, 3)]) + >>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G)) + >>> alphas = [0.3, 0.4, 0.5] + >>> for i, arc in enumerate(arcs): # change alpha values of arcs + ... arc.set_alpha(alphas[i]) + + The FancyArrowPatches corresponding to self-loops are not always + returned, but can always be accessed via the ``patches`` attribute of the + `matplotlib.Axes` object. + + >>> import matplotlib.pyplot as plt + >>> fig, ax = plt.subplots() + >>> G = nx.Graph([(0, 1), (0, 0)]) # Self-loop at node 0 + >>> edge_collection = nx.draw_networkx_edges(G, pos=nx.circular_layout(G), ax=ax) + >>> self_loop_fap = ax.patches[0] + + Also see the NetworkX drawing examples at + https://networkx.org/documentation/latest/auto_examples/index.html + + See Also + -------- + draw + draw_networkx + draw_networkx_nodes + draw_networkx_labels + draw_networkx_edge_labels + + """ + import matplotlib as mpl + import matplotlib.collections # call as mpl.collections + import matplotlib.colors # call as mpl.colors + import matplotlib.patches # call as mpl.patches + import matplotlib.path # call as mpl.path + import matplotlib.pyplot as plt + import numpy as np + + # The default behavior is to use LineCollection to draw edges for + # undirected graphs (for performance reasons) and use FancyArrowPatches + # for directed graphs. + # The `arrows` keyword can be used to override the default behavior + use_linecollection = not G.is_directed() + if arrows in (True, False): + use_linecollection = not arrows + + # Some kwargs only apply to FancyArrowPatches. Warn users when they use + # non-default values for these kwargs when LineCollection is being used + # instead of silently ignoring the specified option + if use_linecollection and any( + [ + arrowstyle is not None, + arrowsize != 10, + connectionstyle != "arc3", + min_source_margin != 0, + min_target_margin != 0, + ] + ): + import warnings + + msg = ( + "\n\nThe {0} keyword argument is not applicable when drawing edges\n" + "with LineCollection.\n\n" + "To make this warning go away, either specify `arrows=True` to\n" + "force FancyArrowPatches or use the default value for {0}.\n" + "Note that using FancyArrowPatches may be slow for large graphs.\n" + ) + if arrowstyle is not None: + msg = msg.format("arrowstyle") + if arrowsize != 10: + msg = msg.format("arrowsize") + if connectionstyle != "arc3": + msg = msg.format("connectionstyle") + if min_source_margin != 0: + msg = msg.format("min_source_margin") + if min_target_margin != 0: + msg = msg.format("min_target_margin") + warnings.warn(msg, category=UserWarning, stacklevel=2) + + if arrowstyle == None: + if G.is_directed(): + arrowstyle = "-|>" + else: + arrowstyle = "-" + + if ax is None: + ax = plt.gca() + + if edgelist is None: + edgelist = list(G.edges()) + + if len(edgelist) == 0: # no edges! + return [] + + if nodelist is None: + nodelist = list(G.nodes()) + + # FancyArrowPatch handles color=None different from LineCollection + if edge_color is None: + edge_color = "k" + edgelist_tuple = list(map(tuple, edgelist)) + + # set edge positions + edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist]) + + # Check if edge_color is an array of floats and map to edge_cmap. + # This is the only case handled differently from matplotlib + if ( + np.iterable(edge_color) + and (len(edge_color) == len(edge_pos)) + and np.all([isinstance(c, Number) for c in edge_color]) + ): + if edge_cmap is not None: + assert isinstance(edge_cmap, mpl.colors.Colormap) + else: + edge_cmap = plt.get_cmap() + if edge_vmin is None: + edge_vmin = min(edge_color) + if edge_vmax is None: + edge_vmax = max(edge_color) + color_normal = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax) + edge_color = [edge_cmap(color_normal(e)) for e in edge_color] + + def _draw_networkx_edges_line_collection(): + edge_collection = mpl.collections.LineCollection( + edge_pos, + colors=edge_color, + linewidths=width, + antialiaseds=(1,), + linestyle=style, + alpha=alpha, + ) + edge_collection.set_cmap(edge_cmap) + edge_collection.set_clim(edge_vmin, edge_vmax) + edge_collection.set_zorder(1) # edges go behind nodes + edge_collection.set_label(label) + ax.add_collection(edge_collection) + + return edge_collection + + def _draw_networkx_edges_fancy_arrow_patch(): + # Note: Waiting for someone to implement arrow to intersection with + # marker. Meanwhile, this works well for polygons with more than 4 + # sides and circle. + + def to_marker_edge(marker_size, marker): + if marker in "s^>v