Datasets:
Tasks:
Question Answering
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
License:
| """TODO(math_qa): Add a description here.""" | |
| import json | |
| import os | |
| import datasets | |
| # TODO(math_qa): BibTeX citation | |
| _CITATION = """ | |
| """ | |
| # TODO(math_qa): | |
| _DESCRIPTION = """ | |
| Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options. | |
| """ | |
| _URL = "https://math-qa.github.io/math-QA/data/MathQA.zip" | |
| class MathQa(datasets.GeneratorBasedBuilder): | |
| """TODO(math_qa): Short description of my dataset.""" | |
| # TODO(math_qa): Set up version. | |
| VERSION = datasets.Version("0.1.0") | |
| def _info(self): | |
| # TODO(math_qa): Specifies the datasets.DatasetInfo object | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # datasets.features.FeatureConnectors | |
| features=datasets.Features( | |
| { | |
| # These are the features of your dataset like images, labels ... | |
| "Problem": datasets.Value("string"), | |
| "Rationale": datasets.Value("string"), | |
| "options": datasets.Value("string"), | |
| "correct": datasets.Value("string"), | |
| "annotated_formula": datasets.Value("string"), | |
| "linear_formula": datasets.Value("string"), | |
| "category": datasets.Value("string"), | |
| } | |
| ), | |
| # If there's a common (input, target) tuple from the features, | |
| # specify them here. They'll be used if as_supervised=True in | |
| # builder.as_dataset. | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage="https://math-qa.github.io/math-QA/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| # TODO(math_qa): Downloads the data and defines the splits | |
| # dl_manager is a datasets.download.DownloadManager that can be used to | |
| # download and extract URLs | |
| dl_path = dl_manager.download_and_extract(_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(dl_path, "train.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(dl_path, "test.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(dl_path, "dev.json")}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| # TODO(math_qa): Yields (key, example) tuples from the dataset | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for id_, row in enumerate(data): | |
| yield id_, row | |