# Process data from paperswithcode See https://huggingface.co/datasets/pwc-archive/files/tree/main. Download and unzip evaluation tables: ```bash curl -L -O "https://huggingface.co/datasets/pwc-archive/files/resolve/main/jul-28-evaluation-tables.json.gz" gunzip jul-28-evaluation-tables.json.gz ``` Install jq. See https://jqlang.org/. If on Debian/Ubuntu, install with `sudo apt-get install jq`. Example jq to extract: ```bash jq -r ' def process(parent): .task as $current_task | (if parent then parent + " > " + $current_task else $current_task end) as $full_path | (.datasets[]? | .dataset as $dataset | .sota.rows[]? | { task_path: $full_path, dataset: $dataset, model_name: .model_name, paper_url: .paper_url, metrics: .metrics } ), (.subtasks[]? | process($full_path)); ["task_path", "dataset", "model_name", "paper_url", "metric_name", "metric_value"], ( [.[] | process(null)] | .[] | [.task_path, .dataset, .model_name, .paper_url] + (.metrics | to_entries[] | [.key, .value]) | flatten ) | @csv ' jul-28-evaluation-tables.json > results.csv ``` Should get 326,393 rows in results.csv and looks like this: ```bash ~/paperswithcode-data> nu -c "open results.csv | length" # 326393 ~/paperswithcode-data> nu -c "open results.csv | skip 100 | take 10" # ╭───┬────────────────────────────────────────────────────────────────────┬─────────────────┬───────────────┬────────────────────────────────────┬─────────────┬──────────────╮ # │ # │ task_path │ dataset │ model_name │ paper_url │ metric_name │ metric_value │ # ├───┼────────────────────────────────────────────────────────────────────┼─────────────────┼───────────────┼────────────────────────────────────┼─────────────┼──────────────┤ # │ 0 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ HTR-VT │ https://arxiv.org/abs/2409.08573v1 │ Test CER │ 2.80 │ # │ 1 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ HTR-VT │ https://arxiv.org/abs/2409.08573v1 │ Test WER │ 7.40 │ # │ 2 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-24 │ https://arxiv.org/abs/2006.07491v1 │ Test CER │ 3.00 │ # │ 3 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-24 │ https://arxiv.org/abs/2006.07491v1 │ Test WER │ 11.00 │ # │ 4 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-18 │ https://arxiv.org/abs/2006.07491v1 │ Test CER │ 3.10 │ # │ 5 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-18 │ https://arxiv.org/abs/2006.07491v1 │ Test WER │ 11.10 │ # │ 6 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-12 │ https://arxiv.org/abs/2006.07491v1 │ Test CER │ 3.10 │ # │ 7 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ OrigamiNet-12 │ https://arxiv.org/abs/2006.07491v1 │ Test WER │ 11.20 │ # │ 8 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ TrOCR │ https://arxiv.org/abs/2109.10282v5 │ Test CER │ 3.60 │ # │ 9 │ Optical Character Recognition (OCR) > Handwritten Text Recognition │ LAM(line-level) │ TrOCR │ https://arxiv.org/abs/2109.10282v5 │ Test WER │ 11.60 │ # ╰───┴────────────────────────────────────────────────────────────────────┴─────────────────┴───────────────┴────────────────────────────────────┴─────────────┴──────────────╯ ```