File size: 15,162 Bytes
0fb79ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import json
import os
import pickle
import random
from pathlib import Path
import time
import wfdb
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import ColorJitter
from scipy.io import loadmat
from load_class import get_temp_qa, change_ecg_to_qa, prepare_ecg_qa_data
from utils import set_device
import matplotlib.pyplot as plt
import argparse
from meta_trainer import MetaTrainer
import warnings
from transformers import AutoTokenizer
warnings.filterwarnings("ignore")
torch.manual_seed(222)
torch.cuda.manual_seed_all(222)
np.random.seed(222)
PROJECT_ROOT = str(Path.cwd().parent.parent) # project path
LOG_PATH = PROJECT_ROOT + "/logs/"
MODELS_PATH = PROJECT_ROOT + "/models/"
class FSL_ECG_QA_DataLoader(Dataset):
"""
This is DataLoader for episodic training on FSL_ECG_QA dataset
NOTICE: meta-learning is different from general supervised learning, especially the concept of batch and set.
batch: contains several sets / tasks
sets: conains n_way * k_shot for meta-train set, n_way * k_query for meta-test set.
"""
def __init__(self, mode, batchsz, n_way, k_shot, k_query, seq_len, seq_len_a, repeats, tokenizer,
prefix_length, startidx=0, all_ids=None, in_templates=None, prompt=1, paraphrased_path="",test_dataset=""):
self.batchsz = batchsz
self.n_way = n_way
self.k_shot = k_shot
self.k_query = k_query
self.repeats = repeats
self.setsz = self.n_way * self.k_shot if self.repeats == 0 else self.n_way * self.k_shot * (self.repeats + 1)
self.querysz = self.n_way * self.k_query # number of samples per set for evaluation
self.seq_len = seq_len # sentence seq length
self.seq_len_a = seq_len_a
self.prefix_length = prefix_length
self.startidx = startidx # index label not from 0, but from startidx
self.device = set_device()
print('shuffle DB: %s, b:%d, %d-way, %d-shot, %d-query, %d-repeats' % (mode, batchsz, n_way, k_shot,
k_query, repeats))
self.gpt_tokenizer = tokenizer
self.mode = mode
self.all_ids = all_ids
self.prompt = prompt
self.test_dataset=test_dataset
json_data_ecg = change_ecg_to_qa(all_ids, in_templates, paraphrased_path, test_dataset=test_dataset)
self.data = []
self.img2caption = {}
for i, (category_name, ecg_q_as) in enumerate(json_data_ecg.items()):
self.data.append(ecg_q_as)
self.cls_num = len(self.data)
print("self.cls_num", self.mode, self.cls_num)
self.create_batch(self.batchsz)
def create_batch(self, batchsz):
"""
create batch for meta-learning.
×episode× here means batch, and it means how many sets we want to retain.
:param episodes: batch size
:return:
"""
self.support_x_batch = [] # support set batch
self.query_x_batch = [] # query set batch
# Creating of tasks; batchsz is the num. of iterations when sampling from the task distribution
for b in range(batchsz): # for each batch
# 1.select n_way classes randomly
selected_cls = np.random.choice(self.cls_num, self.n_way, replace=False) # no duplicate
support_x = []
query_x = []
for cls in selected_cls:
selected_question = np.random.choice(len(self.data[cls]), 1)[0]
selected_imgs_idx = np.random.choice(len(self.data[cls][selected_question]), self.k_shot + self.k_query)
np.random.shuffle(selected_imgs_idx)
indexDtrain = np.array(selected_imgs_idx[:self.k_shot]) # idx for Dtrain
indexDtest = np.array(selected_imgs_idx[self.k_shot:]) # idx for Dtest
support_x.append(
np.array(self.data[cls][selected_question])[indexDtrain].tolist()) # get all images filename for current Dtrain
query_x.append(np.array(self.data[cls][selected_question])[indexDtest].tolist())
if self.repeats > 0:
for i in range(self.repeats):
support_x.append(np.array(self.data[cls][selected_question])[indexDtrain].tolist())
# shuffle the corresponding relation between support set and query set
random.shuffle(support_x)
random.shuffle(query_x)
self.support_x_batch.append(support_x) # append set to current sets
self.query_x_batch.append(query_x) # append sets to current sets
# shuffle the corresponding relation between support set and query set
random.shuffle(support_x)
random.shuffle(query_x)
self.support_x_batch.append(support_x) # append set to current sets
self.query_x_batch.append(query_x) # append sets to current sets
def get_ptbxl_data_path(self, ecg_id):
return os.path.join(
f"{int(ecg_id / 1000) * 1000 :05d}",
f"{ecg_id:05d}_hr"
)
def gen_prompt(self, q_str):
if self.prompt == 1:
token_p = "Question: "+q_str+"Answer: "
if self.prompt == 2:
token_p = q_str
if self.prompt == 3:
token_p = q_str+"the answer can be both, none or in question."
return token_p
def __getitem__(self, index):
"""
index means index of sets, 0<= index <= batchsz-1
:param index:
:return:
"""
support_x = torch.FloatTensor(self.setsz, 12, 2500)
query_x = torch.FloatTensor(self.querysz, 12, 2500)
support_y_q = []
support_y_a = []
support_y_q_mask = []
support_y_a_mask = []
query_y_q = []
query_y_a = []
query_y_q_mask = []
query_y_a_mask = []
flatten_support_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
for sublist in self.support_x_batch[index] for sample in sublist]
flatten_query_x = [f"/gpfs/home1/jtang1/multimodal_fsl_99/process_ptbxl2/{self.get_ptbxl_data_path(sample['ecg_id'][0])}"
for sublist in self.query_x_batch[index] for sample in sublist]
for sublist in self.support_x_batch[index]:
for sample in sublist:
q_str = sample["question"].lower()
for num_a, content in enumerate(sample["answer"]):
if num_a != 0:
a_str += ", " + content.lower()
else:
a_str = content.lower()
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
support_y_q.append(caption_padded_q)
support_y_q_mask.append(mask_0_q)
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
support_y_a.append(caption_padded_a)
support_y_a_mask.append(mask_0_a)
support_y_q = torch.stack(support_y_q)
support_y_a = torch.stack(support_y_a)
support_y_q_mask = torch.stack(support_y_q_mask)
support_y_a_mask = torch.stack(support_y_a_mask)
for sublist in self.query_x_batch[index]:
for sample in sublist:
q_str = sample["question"].lower()
for num_a, content in enumerate(sample["answer"]):
if num_a != 0:
a_str += ", " + content.lower()
else:
a_str = content.lower()
q_str_tokenized = self.gpt_tokenizer(self.gen_prompt(q_str), return_tensors="pt")['input_ids']
caption_padded_q, mask_0_q = pad_tokens(q_str_tokenized, self.seq_len, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
query_y_q.append(caption_padded_q)
query_y_q_mask.append(mask_0_q)
a_str_tokenized = self.gpt_tokenizer(a_str, return_tensors="pt")['input_ids']
caption_padded_a, mask_0_a = pad_tokens(a_str_tokenized, self.seq_len_a, self.prefix_length,
self.gpt_tokenizer.eos_token_id)
query_y_a.append(caption_padded_a)
query_y_a_mask.append(mask_0_a)
query_y_q = torch.stack(query_y_q)
query_y_q_mask = torch.stack(query_y_q_mask)
query_y_a = torch.stack(query_y_a)
query_y_a_mask = torch.stack(query_y_a_mask)
# Reading of ecgs:
for i, path in enumerate(flatten_support_x):
ecg = loadmat(path)['feats']
support_x[i] = torch.tensor(ecg)
for i, path in enumerate(flatten_query_x):
ecg = loadmat(path)['feats']
query_x[i] = torch.tensor(ecg)
return support_x, support_y_q, support_y_a, support_y_q_mask, support_y_a_mask, flatten_support_x, query_x, query_y_q, query_y_a, query_y_q_mask, query_y_a_mask, flatten_query_x
def __len__(self):
return self.batchsz
def pad_tokens(tokens, seq_len, prefix_length, eos_token_id):
tokens = tokens.squeeze(0)
padding = seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
tokens = tokens[:seq_len]
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = eos_token_id
mask = mask.float()
mask = torch.cat((torch.ones(prefix_length), mask), dim=0) # adding prefix mask
return tokens, mask
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--experiment_id', type=int, default=666)
argparser.add_argument('--batchsz_train', type=int, default=10000)
argparser.add_argument('--batchsz_test', type=int, default=1000)
argparser.add_argument('--model_name', type=str, help="path to model download from hugging face", default="path/to/model")
argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5)
argparser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=15)
argparser.add_argument('--paraphrased_path', type=str, default='path/to/paraphrased',
help='path to ./paraphrased containing trian/val/test ECG-QA json files')
argparser.add_argument('--question_type', type=str, help='question types, single-verify, single-choose, single-query,all', default='single-verify')
argparser.add_argument('--epoch', type=int, help='epoch number', default=10000)
argparser.add_argument('--n_way', type=int, help='n way', default=5)
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5)
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=5)
argparser.add_argument('--prompt', type=int, help='1,Question: +q_str+Answer:,2,q_str,3,q_str+the answer can be both, none or in question.', default=1)
argparser.add_argument('--dif_exp', type=int, help='0,same_exp,1,dif_exp', default=0)
argparser.add_argument('--frozen_gpt', type=int, help='0,unfrozen_gpt,1,frozen_gpt', default=1)
argparser.add_argument('--frozen_features', type=int, help='0,unfrozen_features,1,frozen_features', default=1)
argparser.add_argument('--repeats', type=int, help='repeats for support set', default=0)
argparser.add_argument('--seq_len', help='for padding batch', type=int, default=30)
argparser.add_argument('--seq_len_a', help='for padding batch', type=int, default=30)
argparser.add_argument('--prefix_length', type=int, default=4)
argparser.add_argument('--mapper_type', type=str, help='ATT MLP', default="MLP")
argparser.add_argument('--task_num', type=int, help='meta batch size, namely task num', default=1)
argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=5e-4)
argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=0.05)
argparser.add_argument('--test_dataset', type=str, default="ptb-xl", choices=["ptb-xl", "mimic"], help='Dataset to use (ptb-xl or mimic)')
args = argparser.parse_args()
class_qa, train_temp, test_temp = prepare_ecg_qa_data(args)
device = set_device()
meta = MetaTrainer(args, args.experiment_id, is_pretrained=False).to(device)
params = list(filter(lambda p: p.requires_grad, meta.model.parameters()))
params_summed = sum(p.numel() for p in params)
print("Total num of params: {} ".format(params_summed))
gpt_tokenizer = AutoTokenizer.from_pretrained(args.model_name)
data_loader_train = FSL_ECG_QA_DataLoader(mode='train', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=train_temp, prompt=args.prompt,
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
data_loader_test = FSL_ECG_QA_DataLoader(mode='test', n_way=args.n_way, k_shot=args.k_spt,k_query=args.k_qry, batchsz=args.batchsz_train,
seq_len=args.seq_len, seq_len_a=args.seq_len_a,repeats=args.repeats, tokenizer=gpt_tokenizer,
prefix_length=args.prefix_length,all_ids=class_qa, in_templates=test_temp, prompt=args.prompt,
paraphrased_path= args.paraphrased_path, test_dataset=args.test_dataset)
batch = next(iter(data_loader_train))
if isinstance(batch, dict):
for key, value in batch.items():
print(f"{key}: {value}")
elif isinstance(batch, (list, tuple)):
for i, item in enumerate(batch):
print(f"Item {i}: {item}")
else:
print(batch)
|