File size: 6,343 Bytes
5db050e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a34e1
 
 
 
 
5db050e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a34e1
179da02
e2a34e1
 
 
5db050e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the Semeru Lab and SEART research group.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import csv
import glob
import os

import datasets

import numpy as np

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
    title = {A great new dataset},
    author={huggingface, Inc.
    },
    year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_DATA_URLs = {
    "long": {
        "train": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/long/training_long.csv",
        "valid": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/long/validation_long.csv",
        "test": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/long/test_long.csv",
    },
    "medium": {
        "train": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/medium/training_medium.csv",
        "valid": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/medium/validation_medium.csv",
        "test": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/medium/test_medium.csv",
    },
    "short": {
        "train": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/short/training_short.csv",
        "valid": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/short/validation_short.csv",
        "test": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/short/test_short.csv",
    },
    "mix": {
        "train": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/mix/training_mix.csv",
        "valid": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/mix/validation_mix.csv",
        "test": "https://huggingface.co/datasets/semeru/completeformer_java_data/resolve/main/mix/test_mix.csv",
    },
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class CSNCHumanJudgementDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="long",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="medium",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="short",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="mix",
            version=VERSION,
            description="",
        ),
    ]

    DEFAULT_CONFIG_NAME = "long"

    def _info(self):
        features = datasets.Features(
            { 
                "idx": datasets.Value("int32"),
                "input": datasets.Value("string"),
                "target": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _DATA_URLs[self.config.name]
        data_dirs = {}
        for k, v in my_urls.items():
            data_dirs[k] = dl_manager.download_and_extract(v)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "file_path": data_dirs["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "file_path": data_dirs["valid"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "file_path": data_dirs["test"],
                },
            ),
        ]

    def _generate_examples(
        self,
        file_path,
    ):
        """Yields examples as (key, example) tuples."""
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        with open(file_path, encoding="utf-8") as f:
            csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
            next(csv_reader, None) # skip header

            for row_id, row in enumerate(csv_reader):
                _, idx, input, target = row
                yield row_id, {
                    "idx": idx,
                    "input": input,
                    "target": target,
                }