yl4300 commited on
Commit
9d0306b
·
verified ·
1 Parent(s): ae9fc63

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +177 -0
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RoundaboutHD:High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
2
+
3
+ [![Paper](http://img.shields.io/badge/paper-arXiv%3A2507.08729-B31B1B.svg)](https://arxiv.org/abs/2507.08729)
4
+
5
+ **News(21/07/2025):**
6
+
7
+ We have submitted this paper to [WACV 2026](https://wacv.thecvf.com/).
8
+
9
+ ---
10
+
11
+ **RoundaboutHD** is a comprehensive, high-resolution multi-camera vehicle tracking (MCVT) dataset captured in a real-world roundabout scenario. It is designed to support the development and benchmarking of object detection, single-camera tracking (SCT), and multi-camera vehicle tracking (MCVT) algorithms in urban environments with nonlinear motion and frequent occlusions.
12
+
13
+ <p align="center">
14
+ <img src="layout.jpg" alt="RoundaboutHD Example" width="400"/>
15
+ </p>
16
+
17
+
18
+ ## Dataset Access
19
+
20
+ The full content of RoundaboutHD is under RoundaboutHD.zip file.
21
+
22
+ ---
23
+
24
+
25
+ ## Dataset Description
26
+
27
+ RoundaboutHD provides **40 minutes of fully annotated video footage** recorded from **4 non-overlapping 4K cameras at 15 FPS**. Each camera covers 10 minutes of traffic under various conditions: normal, light, and heavy traffic. The roundabout layout introduces significant challenges such as:
28
+
29
+ - **Nonlinear vehicle trajectories**
30
+ - **Frequent occlusions** due to infrastructure (e.g., a central statue)
31
+ - **Multiple exits and intersections** between cameras
32
+
33
+ This makes RoundaboutHD a challenging yet realistic benchmark for evaluating vehicle tracking performance in smart city applications.
34
+
35
+ ---
36
+
37
+ ## Dataset Contents
38
+
39
+ The dataset structure:
40
+ ```
41
+ RoundaboutHD/
42
+ ├── imagesc001/ ← Same structure applies to imagesc002, imagesc003, imagesc004
43
+ │ ├── detection/
44
+ │ │ ├── labels_GT.zip/
45
+ │ │ │ ├── img000000.txt
46
+ │ │ │ ├── ...
47
+ │ │ │ └── img008999.txt # Total: 9000 files
48
+ │ │ ├── labels_test.zip/
49
+ │ │ └── labels_xy.zip/
50
+ │ ├── SCT/
51
+ │ │ └── imagesc001_SCT_GT.txt
52
+ │ ├── geo-mapping/
53
+ │ │ ├── cam01_fitted_cam.json
54
+ │ │ ├── cam01_info.png
55
+ │ │ ├── cam01_topview.jpg
56
+ │ │ ├── cam01_trace.png
57
+ │ │ └── cam01_undistorted.png
58
+ │ └── video.mp4
59
+ ├── imagesc002/
60
+ ├── imagesc003/
61
+ ├── imagesc004/
62
+ ├── ReID_subset/
63
+ │ └── ReID_subset.zip/
64
+ │ ├── query_images/
65
+ │ ├── test_images/
66
+ │ └── train_images/
67
+ ├── Multi_CAM_Ground_Truth.txt
68
+ └── vehicle_statistic.xlsx
69
+ ```
70
+ In this dataset, it contains:
71
+ - **Labeled video footage**
72
+ - **Object detection Ground Turth**
73
+ - **Single-camera tracking (SCT) Ground Turth**
74
+ - **camera modelling parameter and visualization**
75
+ - **RoundaboutHD image-based ReID subset**
76
+ - **Image-based ReID Ground Turth**
77
+ - **Multi-camera tracking (MCVT) Ground Turth**
78
+ - **Vehicle context information**
79
+ - **Evaluation scripts and label format documentation**
80
+ ---
81
+
82
+ ## Evaluation
83
+
84
+ We provide tools for evaluating tracking performance in this repository:
85
+ [Multi-Camera Tracking Labelling Tool](https://github.com/siri-rouser/multi_camera_tracking_labelling_tool.git)
86
+
87
+ ### Multi-Camera Tracking Evaluation
88
+
89
+ Use the following command:
90
+
91
+ ```bash
92
+ python eval_label.py <prediction_file> <ground_truth_file>
93
+ ```
94
+
95
+ Each line in the prediction/ground-truth file should follow this format:
96
+
97
+ ```
98
+ <camera_id> <obj_id> <frame_id> <xmin> <ymin> <width> <height> <xworld> <yworld>
99
+ ```
100
+
101
+ **Descriptions:**
102
+
103
+ - `camera_id`: Integer identifier (1–4 in RoundaboutHD)
104
+ - `obj_id`: Object ID (positive integer, consistent across cameras)
105
+ - `frame_id`: Frame number (starting at 0)
106
+ - `xmin`, `ymin`, `width`, `height`: Bounding box coordinates (pixels)
107
+ - `xworld`, `yworld`: GPS/world coordinates of the object (optional)
108
+
109
+ > *Note: The value of `xworld` and `yworld` do not count into the evaluation, you can use the value -1 as placehold.
110
+ ---
111
+
112
+ ### Single-Camera Tracking Evaluation
113
+
114
+ Use the following command:
115
+
116
+ ```bash
117
+ python eval_det.py <prediction_file> <ground_truth_file>
118
+ ```
119
+ Each line in the prediction/ground-truth file should follow this format:
120
+ ```
121
+ <frame_id> <obj_id> <xmin> <ymin> <xmax> <ymax>
122
+ ```
123
+
124
+ **Descriptions:**
125
+ The definition of each item is as same as the multi-camera tracking format.
126
+
127
+ ### Object Detection Evaluation
128
+ Use the following command:
129
+
130
+ ```bash
131
+ python eval_sct.py <prediction_directory> <ground_truth_directory>
132
+ ```
133
+ Each directory should contain multiple `.txt` files named by frame with format f'img{frame_id:06d}.txt', example as below:
134
+
135
+ ```
136
+ img000000.txt, img000001.txt, ...
137
+ ```
138
+
139
+ Each file must contain object detections in the format:
140
+
141
+ ```
142
+ <class_id> <xmin> <ymin> <xmax> <ymax>
143
+ ```
144
+ **Descriptions:**
145
+ `class_id` corresponds to the category names pre-defined in the COCO dataset.
146
+ > *Note: The value of `class_id` do not influence the results for object detection evaluation.
147
+
148
+ ---
149
+ ## Baseline
150
+
151
+ We evaluate our dataset using **ELECTRICITY** [1], a general and reproducible MCVT method. We set the **distance threshold** to **12** and apply a **hard removal distance** of **80**. Static vehicle trajectories are removed. The result is shown below:
152
+
153
+ | Dataset | IDF1 | IDP | IDR |
154
+ |-------------------|-------|-------|-------|
155
+ | **RoundaboutHD** | 28.14 | 26.45 | 30.06 |
156
+
157
+ ---
158
+
159
+ ## Citation
160
+
161
+ If you use **RoundaboutHD** in your research, please cite:
162
+
163
+ ```
164
+ @misc{lin2025roundabouthdhighresolutionrealworldurban,
165
+ title={RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking},
166
+ author={Yuqiang Lin and Sam Lockyer and Mingxuan Sui and Li Gan and Florian Stanek and Markus Zarbock and Wenbin Li and Adrian Evans and Nic Zhang},
167
+ year={2025},
168
+ eprint={2507.08729},
169
+ archivePrefix={arXiv},
170
+ primaryClass={cs.CV},
171
+ url={https://arxiv.org/abs/2507.08729},
172
+ }
173
+ ```
174
+
175
+ ---
176
+
177
+ [1] Y. Qian et al., "ELECTRICITY: An Efficient Multi-Camera Vehicle Tracking System for Intelligent City", CVPRW, 2020.