File size: 2,789 Bytes
b8577a7 72659de b8577a7 72659de b8577a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import os
import json
import datasets
_HOMEPAGE = "https://huggingface.co/datasets/zhenzi/data_process"
_LICENSE = "Apache License 2.0"
_CITATION = """\
@software{2022,
title=数据集标题,
author=zhenzi,
year={2022},
month={March},
publisher = {GitHub}
}
"""
_DESCRIPTION = """\
数据集描述.
"""
_REPO = "https://huggingface.co/datasets/zhenzi/data_process/resolve/main/metadata"
class ImageConfig(datasets.BuilderConfig):
"""BuilderConfig for Imagette."""
def __init__(self, data_url, metadata_urls, **kwargs):
super(ImageConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_url = data_url
self.metadata_urls = metadata_urls
class Imagenette(datasets.GeneratorBasedBuilder):
"""Imagenette dataset."""
BUILDER_CONFIGS = [
ImageConfig(
name="tests",
description="测试",
data_url="https://huggingface.co/datasets/zhenzi/test/resolve/main/tests.zip",
metadata_urls={
"train": f"{_REPO}/tests/train.txt"
},
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(self.config.data_url)
metadata_paths = dl_manager.download(self.config.metadata_urls)
archive_iter = dl_manager.iter_archive(archive_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["validation"],
},
),
]
def _generate_examples(self, images, metadata_path):
with open(metadata_path, encoding="utf-8") as f:
files_to_keep = set(f.read().split("\n"))
for file_path, file_obj in images:
print(file_path)
if file_path in files_to_keep:
yield file_path, {
"image": {"path": file_path, "bytes": file_obj.read()},
"text": "dee",
}
|