CodeRankEmbed-compressed / factorization_info.json
gtandon's picture
Upload tensor-compressed CodeRankEmbed model
5c1e941 verified
{
"0.auto_model.encoder.layers.0.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.0.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.0.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.0.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.0.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.1.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.1.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.1.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.1.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.1.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.2.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.2.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.2.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.2.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.2.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.3.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.3.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.3.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.3.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.3.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.4.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.4.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.4.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.4.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.4.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.5.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.5.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.5.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.5.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.5.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.6.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.6.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.6.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.6.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.6.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.7.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.7.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.7.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.7.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.7.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.8.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.8.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.8.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.8.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.8.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.9.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.9.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.9.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.9.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.9.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.10.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.10.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.10.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.10.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.10.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
},
"0.auto_model.encoder.layers.11.attn.Wqkv": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 2304,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
2304,
768
],
"tensorized_shape": "((9, 16, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.11.attn.out_proj": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
768
],
"tensorized_shape": "((4, 12, 16), (4, 12, 16))"
},
"0.auto_model.encoder.layers.11.mlp.fc11": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.11.mlp.fc12": {
"type": "FactorizedLinear",
"in_features": 768,
"out_features": 3072,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
3072,
768
],
"tensorized_shape": "((8, 16, 24), (4, 12, 16))"
},
"0.auto_model.encoder.layers.11.mlp.fc2": {
"type": "FactorizedLinear",
"in_features": 3072,
"out_features": 768,
"bias": true,
"rank": 4,
"factorization": "cp",
"weight_shape": [
768,
3072
],
"tensorized_shape": "((4, 12, 16), (12, 16, 16))"
}
}