jiang-cc commited on
Commit
102f024
·
verified ·
1 Parent(s): f1753f5

Upload processor

Browse files
Files changed (1) hide show
  1. modeling_yangjian.py +92 -113
modeling_yangjian.py CHANGED
@@ -26,7 +26,8 @@ class YangJianConfig(Qwen2_5_VLConfig):
26
  super().__init__(**kwargs)
27
  self.vision_config.compare_token_size = 100
28
  self.architectures = ["YangJianVLForConditionalGeneration"]
29
-
 
30
  class YangJianProcessor(Qwen2_5_VLProcessor):
31
  config_class = YangJianConfig
32
  def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
@@ -152,7 +153,6 @@ class OptimizedCrossAttention(nn.Module):
152
  self.dim = config.hidden_size
153
  self.num_heads = config.num_heads
154
  self.head_dim = self.dim // self.num_heads
155
- self.num_key_value_groups = 1 # 对于 cross attention,通常设为 1
156
  self.scaling = self.head_dim**-0.5
157
  self.attention_dropout = 0.0
158
  self.is_causal = False # cross attention 不需要因果掩码
@@ -173,103 +173,108 @@ class OptimizedCrossAttention(nn.Module):
173
  query_states: torch.Tensor,
174
  key_value_states: Optional[torch.Tensor] = None,
175
  attention_mask: Optional[torch.Tensor] = None,
 
 
176
  **kwargs,
177
  ) -> torch.Tensor:
178
- """
179
- Args:
180
- query_states: [seq_len_q, hidden_size] 或 [batch_size, seq_len_q, hidden_size]
181
- key_value_states: [seq_len_kv, hidden_size] 或 [batch_size, seq_len_kv, hidden_size]
182
- 如果为 None,则执行 self attention
183
- """
184
- # 处理输入维度
185
  if query_states.dim() == 2:
186
- query_states = query_states.unsqueeze(0) # [1, seq_len_q, hidden_size]
187
- squeeze_output = True
188
- else:
189
- squeeze_output = False
190
-
191
  batch_size, seq_len_q, _ = query_states.shape
192
-
 
193
  if self.is_cross_attention and key_value_states is not None:
194
- # Cross Attention
195
  if key_value_states.dim() == 2:
196
- key_value_states = key_value_states.unsqueeze(0) # [1, seq_len_kv, hidden_size]
197
-
198
- # 计算 Q
199
- q = self.q_proj(query_states) # [batch_size, seq_len_q, hidden_size]
200
-
201
- # 计算 K、V(融合计算)
202
- kv = self.kv(key_value_states) # [batch_size, seq_len_kv, hidden_size * 2]
203
  seq_len_kv = kv.shape[1]
204
-
205
- # 分离 K、V
206
  k, v = kv.reshape(batch_size, seq_len_kv, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)
207
- # k, v: [batch_size, num_heads, seq_len_kv, head_dim]
208
-
209
- # 重塑 Q
210
  q = q.reshape(batch_size, seq_len_q, self.num_heads, self.head_dim).transpose(1, 2)
211
- # q: [batch_size, num_heads, seq_len_q, head_dim]
212
-
213
  else:
214
- # Self Attention
215
  if key_value_states is None:
216
  key_value_states = query_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
 
218
- # 融合计算 Q、K、V
219
- qkv = self.qkv(query_states) # [batch_size, seq_len, hidden_size * 3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
 
221
- # 分离 Q、K、V
222
- q, k, v = qkv.reshape(batch_size, seq_len_q, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)
223
- # q, k, v: [batch_size, num_heads, seq_len, head_dim]
224
-
225
- # 选择 attention 实现
226
- attention_interface: Callable = ALL_ATTENTION_FUNCTIONS["sdpa"]
227
- # if hasattr(self.config, '_attn_implementation') and self.config._attn_implementation != "eager":
228
- # attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
229
-
230
- # 构造 cu_seqlens 参数(FlashAttention 必需)
231
- cu_seqlens_q = torch.arange(0, (batch_size*self.num_heads + 1) * seq_len_q, step=seq_len_q, dtype=torch.int32, device=q.device)
232
- if self.is_cross_attention and key_value_states is not None:
233
- cu_seqlens_k = torch.arange(0, (batch_size*self.num_heads + 1) * seq_len_kv, step=seq_len_kv, dtype=torch.int32, device=k.device)
234
  else:
235
- cu_seqlens_k = cu_seqlens_q
236
-
237
- # 执行 attention 计算
238
- attn_output, _ = attention_interface(
239
- self,
240
- q,
241
- k,
242
- v,
243
- attention_mask=attention_mask,
244
- cu_seqlens_q=cu_seqlens_q,
245
- cu_seqlens_k=cu_seqlens_k,
246
- max_seqlen_q=seq_len_q,
247
- max_seqlen_k=seq_len_kv if self.is_cross_attention and key_value_states is not None else seq_len_q,
248
- dropout=0.0 if not self.training else self.attention_dropout,
249
- scaling=self.scaling,
250
- is_causal=False,
251
- **kwargs,
252
- )
253
-
254
- attn_output = attn_output.reshape(batch_size, self.num_heads, seq_len_q, self.head_dim)
255
-
256
- attn_output = attn_output.transpose(1, 2).contiguous() # [batch_size, seq_len_q, num_heads, head_dim]
257
- attn_output = attn_output.reshape(batch_size, seq_len_q, self.dim) # [batch_size, seq_len_q, hidden_size]
258
-
259
- # 输出投影
260
  attn_output = self.proj(attn_output)
261
-
262
- # 如果输入是 2D,则输出也应该是 2D
263
- if squeeze_output:
264
- attn_output = attn_output.squeeze(0) # [seq_len_q, hidden_size]
265
-
266
- return attn_output
267
 
268
 
269
  class YangJianCompareVisualEncoder(nn.Module):
270
  def __init__(self, config):
271
  super().__init__()
272
  self.config = config
 
273
  self.hidden_size = config.hidden_size
274
  # self.token_size = 100 * (config.spatial_merge_size**2) if "compare_token_size" not in config else config.compare_token_size * (config.spatial_merge_size**2)
275
  self.token_size = 100 if "compare_token_size" not in config else config.compare_token_size
@@ -291,7 +296,6 @@ class YangJianCompareVisualEncoder(nn.Module):
291
  self.query_embeddings = nn.Parameter(
292
  torch.empty(self.token_size, self.hidden_size)
293
  )
294
-
295
  # 只保留 Cross Attention for queries to attend to encoded features
296
  self.decoder_cross_attn = OptimizedCrossAttention(config, is_cross_attention=True)
297
 
@@ -301,33 +305,8 @@ class YangJianCompareVisualEncoder(nn.Module):
301
 
302
  self.compare_projector = nn.Linear(config.hidden_size, config.out_hidden_size)
303
 
304
- def _ensure_device_dtype_consistency(self, target_tensor):
305
- """
306
- 确保所有模块组件都在目标张量的设备上并使用相同的数据类型
307
- """
308
- device = target_tensor.device
309
- dtype = target_tensor.dtype
310
-
311
- # 移动 attention 模块到正确设备
312
- self.encoder_cross_attn1 = self.encoder_cross_attn1.to(device=device, dtype=dtype)
313
- self.encoder_cross_attn2 = self.encoder_cross_attn2.to(device=device, dtype=dtype)
314
- self.decoder_cross_attn = self.decoder_cross_attn.to(device=device, dtype=dtype)
315
-
316
- # 移动 norm 层到正确设备
317
- self.encoder_norm1 = self.encoder_norm1.to(device=device, dtype=dtype)
318
- self.encoder_norm2 = self.encoder_norm2.to(device=device, dtype=dtype)
319
- self.encoder_norm3 = self.encoder_norm3.to(device=device, dtype=dtype)
320
- self.encoder_norm4 = self.encoder_norm4.to(device=device, dtype=dtype)
321
- self.decoder_norm1 = self.decoder_norm1.to(device=device, dtype=dtype)
322
- self.decoder_norm2 = self.decoder_norm2.to(device=device, dtype=dtype)
323
-
324
- # 移动 MLP 到正确设备
325
- self.encoder_mlp1 = self.encoder_mlp1.to(device=device, dtype=dtype)
326
- self.encoder_mlp2 = self.encoder_mlp2.to(device=device, dtype=dtype)
327
- self.decoder_mlp = self.decoder_mlp.to(device=device, dtype=dtype)
328
-
329
- def _initialize_weights(self):
330
- nn.init.normal_(self.query_embeddings.weight, mean=0.0, std=0.02)
331
 
332
  def forward(self, images_hidden_states: list) -> torch.Tensor:
333
  """
@@ -340,13 +319,10 @@ class YangJianCompareVisualEncoder(nn.Module):
340
  if not images_hidden_states:
341
  return torch.empty(0, self.token_size, self.hidden_size)
342
 
343
- # 确保所有组件的设备和数据类型一致
344
- # self._ensure_device_dtype_consistency(images_hidden_states[0])
345
-
346
  # 检查 query_embeddings 是否包含 NaN
347
  if torch.isnan(self.query_embeddings).any():
348
- print("警告:query_embeddings 包含 NaN 值,重新初始化")
349
- nn.init.normal_(self.query_embeddings, mean=0.0, std=0.02)
350
 
351
  # 获取每个图像的序列长度
352
  seq_lengths = [state.size(0) for state in images_hidden_states]
@@ -380,9 +356,11 @@ class YangJianCompareVisualEncoder(nn.Module):
380
  # 创建循环移位的状态用于对比
381
  # 对于第一个图像,使用自身作为previous
382
  previous_states = torch.roll(batched_states, shifts=1, dims=0)
383
- previous_states[0] = batched_states[0]
384
  previous_masks = torch.roll(attention_masks, shifts=1, dims=0)
385
- previous_masks[0] = attention_masks[0]
 
 
 
386
 
387
  # Encoder: 批量处理所有图像
388
  encoded_features = self._encoder_forward(
@@ -759,4 +737,5 @@ class YangJianVLForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
759
 
760
  def __init__(self, config):
761
  super().__init__(config)
762
- self.model = YangJianVLModel(config)
 
 
26
  super().__init__(**kwargs)
27
  self.vision_config.compare_token_size = 100
28
  self.architectures = ["YangJianVLForConditionalGeneration"]
29
+ self.sequence_compare = False
30
+
31
  class YangJianProcessor(Qwen2_5_VLProcessor):
32
  config_class = YangJianConfig
33
  def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
 
153
  self.dim = config.hidden_size
154
  self.num_heads = config.num_heads
155
  self.head_dim = self.dim // self.num_heads
 
156
  self.scaling = self.head_dim**-0.5
157
  self.attention_dropout = 0.0
158
  self.is_causal = False # cross attention 不需要因果掩码
 
173
  query_states: torch.Tensor,
174
  key_value_states: Optional[torch.Tensor] = None,
175
  attention_mask: Optional[torch.Tensor] = None,
176
+ cu_seqlens: Optional[torch.Tensor] = None, # 只FA2用
177
+ kv_cu_seqlens: Optional[torch.Tensor] = None,# 只FA2用
178
  **kwargs,
179
  ) -> torch.Tensor:
180
+ # 允许 query_states [B,T,d] 或 [T,d],自动扩展 batch 维
181
+ orig_2d = False
 
 
 
 
 
182
  if query_states.dim() == 2:
183
+ query_states = query_states.unsqueeze(0)
184
+ orig_2d = True
185
+
 
 
186
  batch_size, seq_len_q, _ = query_states.shape
187
+
188
+ # Q/K/V投影
189
  if self.is_cross_attention and key_value_states is not None:
 
190
  if key_value_states.dim() == 2:
191
+ key_value_states = key_value_states.unsqueeze(0)
192
+ q = self.q_proj(query_states)
193
+ kv = self.kv(key_value_states)
 
 
 
 
194
  seq_len_kv = kv.shape[1]
 
 
195
  k, v = kv.reshape(batch_size, seq_len_kv, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)
 
 
 
196
  q = q.reshape(batch_size, seq_len_q, self.num_heads, self.head_dim).transpose(1, 2)
 
 
197
  else:
 
198
  if key_value_states is None:
199
  key_value_states = query_states
200
+ qkv = self.qkv(query_states)
201
+ q, k, v = qkv.reshape(batch_size, seq_len_q, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)
202
+
203
+ # 选用哪个 attention kernel
204
+ attn_impl = getattr(self.config, '_attn_implementation', 'sdpa')
205
+ attn_impl = 'sdpa'
206
+ attention_interface: Callable = ALL_ATTENTION_FUNCTIONS[attn_impl]
207
+
208
+ # ========= 支持 FA2 ==========
209
+ if attn_impl == "flash_attention_2":
210
+ # Qwen2_5 之所以能支持 FA2,是因为准备了 flatten+cu_seqlens
211
+ # 这里假设 query_states/key_value_states 按 batch 维是变长的
212
+
213
+ # 检查 cu_seqlens,有就用,否则尝试自动生成
214
+ if cu_seqlens is None:
215
+ # 默认把每个batch都视为长度=seq_len_q
216
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seq_len_q, step=seq_len_q, dtype=torch.int32, device=q.device)
217
+ if kv_cu_seqlens is None:
218
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * k.shape[2], step=k.shape[2], dtype=torch.int32, device=k.device)
219
+ else:
220
+ cu_seqlens_k = kv_cu_seqlens
221
+
222
+ # flatten [B, nH, T, d] -> [total_T, nH, d]
223
+ # 注意!FlashAttn2是 (total, nH, d),不是 (nH, total, d),和普通实现不一样
224
+ # 更安全的 flatten 方式
225
+ # [B, nH, T, d] -> [B, T, nH, d] -> [total_T, nH, d]
226
+ q_ = q.transpose(1, 2).contiguous().view(-1, self.num_heads, self.head_dim)
227
+ k_ = k.transpose(1, 2).contiguous().view(-1, self.num_heads, self.head_dim)
228
+ v_ = v.transpose(1, 2).contiguous().view(-1, self.num_heads, self.head_dim)
229
 
230
+ max_seqlen_q = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
231
+ max_seqlen_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).max().item()
232
+
233
+ attn_output, _ = attention_interface(
234
+ self,
235
+ q_,
236
+ k_,
237
+ v_,
238
+ attention_mask=None,
239
+ scaling=self.scaling,
240
+ dropout=0.0 if not self.training else self.attention_dropout,
241
+ cu_seq_lens_q=cu_seqlens,
242
+ cu_seq_lens_k=cu_seqlens_k,
243
+ max_length_q=max_seqlen_q,
244
+ max_length_k=max_seqlen_k,
245
+ is_causal=self.is_causal,
246
+ **kwargs,
247
+ )
248
 
249
+ # 更简洁的输出重构
250
+ # [total_q, nH, d] -> [B, seq_len_q, nH, d]
251
+ attn_output = attn_output.view(batch_size, seq_len_q, self.num_heads, self.head_dim).contiguous()
 
 
 
 
 
 
 
 
 
 
252
  else:
253
+ # 普通实现,下游实现就是 [B, nH, T, d]
254
+ attn_output, _ = attention_interface(
255
+ self,
256
+ q, k, v,
257
+ attention_mask=attention_mask,
258
+ scaling=self.scaling,
259
+ dropout=0.0 if not self.training else self.attention_dropout,
260
+ is_causal=self.is_causal,
261
+ **kwargs,
262
+ )
263
+ # attn_output: [B, nH, seq_q, d]
264
+ attn_output = attn_output.transpose(1, 2).contiguous() # [B, seq_q, nH, d]
265
+
266
+ attn_output = attn_output.reshape(batch_size, seq_len_q, self.dim) # [B, seq_q, D]
 
 
 
 
 
 
 
 
 
 
 
267
  attn_output = self.proj(attn_output)
268
+ if orig_2d:
269
+ attn_output = attn_output.squeeze(0)
270
+ return attn_output.contiguous()
 
 
 
271
 
272
 
273
  class YangJianCompareVisualEncoder(nn.Module):
274
  def __init__(self, config):
275
  super().__init__()
276
  self.config = config
277
+ self.sequence_compare = getattr(config, "sequence_compare", False)
278
  self.hidden_size = config.hidden_size
279
  # self.token_size = 100 * (config.spatial_merge_size**2) if "compare_token_size" not in config else config.compare_token_size * (config.spatial_merge_size**2)
280
  self.token_size = 100 if "compare_token_size" not in config else config.compare_token_size
 
296
  self.query_embeddings = nn.Parameter(
297
  torch.empty(self.token_size, self.hidden_size)
298
  )
 
299
  # 只保留 Cross Attention for queries to attend to encoded features
300
  self.decoder_cross_attn = OptimizedCrossAttention(config, is_cross_attention=True)
301
 
 
305
 
306
  self.compare_projector = nn.Linear(config.hidden_size, config.out_hidden_size)
307
 
308
+ def init_query_embeddings(self):
309
+ nn.init.normal_(self.query_embeddings, mean=0.0, std=0.02)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
 
311
  def forward(self, images_hidden_states: list) -> torch.Tensor:
312
  """
 
319
  if not images_hidden_states:
320
  return torch.empty(0, self.token_size, self.hidden_size)
321
 
 
 
 
322
  # 检查 query_embeddings 是否包含 NaN
323
  if torch.isnan(self.query_embeddings).any():
324
+ print("警告:query_embeddings 包含 NaN ")
325
+ # nn.init.normal_(self.query_embeddings, mean=0.0, std=0.02)
326
 
327
  # 获取每个图像的序列长度
328
  seq_lengths = [state.size(0) for state in images_hidden_states]
 
356
  # 创建循环移位的状态用于对比
357
  # 对于第一个图像,使用自身作为previous
358
  previous_states = torch.roll(batched_states, shifts=1, dims=0)
 
359
  previous_masks = torch.roll(attention_masks, shifts=1, dims=0)
360
+
361
+ if previous_states.size(0) > 1 and self.sequence_compare:
362
+ previous_states[0] = previous_states[1]
363
+ previous_masks[0] = previous_masks[1]
364
 
365
  # Encoder: 批量处理所有图像
366
  encoded_features = self._encoder_forward(
 
737
 
738
  def __init__(self, config):
739
  super().__init__(config)
740
+ self.model = YangJianVLModel(config)
741
+