Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +152 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +100 -0
- configuration_qwen3.py +226 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- trainer_state.json +1234 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- qwen3
|
| 5 |
+
- guard
|
| 6 |
+
- safety
|
| 7 |
+
- powershell
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
- f1
|
| 12 |
+
base_model: Qwen/Qwen3Guard-Stream-0.6B
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Qwen3Guard PowerShell Production (Checkpoint 2500)
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of `Qwen3ForGuardModel` designed for safety moderation, specifically tailored for PowerShell content.
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
- **Model Type**: Qwen3 Guard Stream
|
| 22 |
+
- **Architecture**: `Qwen3ForGuardModel`
|
| 23 |
+
- **Language**: Multilingual (119 languages), specialized for PowerShell
|
| 24 |
+
- **License**: Apache 2.0
|
| 25 |
+
|
| 26 |
+
## Training Information
|
| 27 |
+
|
| 28 |
+
The model was fine-tuned with the following parameters:
|
| 29 |
+
|
| 30 |
+
- **Epochs**: ~1.55
|
| 31 |
+
- **Global Steps**: 2500
|
| 32 |
+
- **Best Loss**: 0.0777 (at step 1800)
|
| 33 |
+
- **Evaluation at Step 2500**:
|
| 34 |
+
- **Loss**: 0.0920
|
| 35 |
+
- **Accuracy**: 98.37%
|
| 36 |
+
- **F1 Safe**: 98.66%
|
| 37 |
+
- **F1 Unsafe**: 97.91%
|
| 38 |
+
|
| 39 |
+
## Usage
|
| 40 |
+
|
| 41 |
+
This model is designed to be used with the `transformers` library for real-time safety moderation.
|
| 42 |
+
|
| 43 |
+
### Example Code
|
| 44 |
+
|
| 45 |
+
The following example demonstrates how to use the model to stop the generation of dangerous code. It includes a fix for a known decorator bug in the base model.
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
import torch
|
| 49 |
+
from transformers import AutoModel, AutoTokenizer
|
| 50 |
+
from transformers.utils.generic import check_model_inputs
|
| 51 |
+
from types import MethodType
|
| 52 |
+
|
| 53 |
+
# Replace with the path to this model or its Hugging Face Hub ID
|
| 54 |
+
model_path = "." # or "your-username/powershell-production-checkpoint-2500"
|
| 55 |
+
|
| 56 |
+
# Load the specialized tokenizer and the model.
|
| 57 |
+
# trust_remote_code=True is required to load the Stream Qwen3Guard model architecture.
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 59 |
+
model = AutoModel.from_pretrained(
|
| 60 |
+
model_path,
|
| 61 |
+
device_map="auto",
|
| 62 |
+
torch_dtype=torch.bfloat16,
|
| 63 |
+
trust_remote_code=True,
|
| 64 |
+
).eval()
|
| 65 |
+
|
| 66 |
+
# Fix decorator bug in Qwen3Guard-Stream model
|
| 67 |
+
if hasattr(model, 'model') and hasattr(model.model, 'forward'):
|
| 68 |
+
# Get the incorrectly decorated forward method
|
| 69 |
+
inner_model = model.model
|
| 70 |
+
original_forward = inner_model.forward
|
| 71 |
+
|
| 72 |
+
# Check if it's wrapped by check_model_inputs (without parentheses)
|
| 73 |
+
if hasattr(original_forward, '__closure__') and original_forward.__closure__:
|
| 74 |
+
# Extract the actual forward function from the closure
|
| 75 |
+
actual_forward = None
|
| 76 |
+
for cell in original_forward.__closure__:
|
| 77 |
+
try:
|
| 78 |
+
val = cell.cell_contents
|
| 79 |
+
if callable(val) and hasattr(val, '__name__') and val.__name__ == 'forward':
|
| 80 |
+
actual_forward = val
|
| 81 |
+
break
|
| 82 |
+
except:
|
| 83 |
+
pass
|
| 84 |
+
|
| 85 |
+
# Re-wrap with correct decorator (with parentheses) and bind as method
|
| 86 |
+
if actual_forward is not None:
|
| 87 |
+
# Apply the decorator to the unbound function
|
| 88 |
+
decorated_forward = check_model_inputs()(actual_forward)
|
| 89 |
+
# Bind it as a method to the inner_model instance
|
| 90 |
+
inner_model.forward = MethodType(decorated_forward, inner_model)
|
| 91 |
+
print("[FIXED] Applied fix for Qwen3Guard model decorator bug")
|
| 92 |
+
|
| 93 |
+
# --- Prepare the conversation for moderation ---
|
| 94 |
+
# Define the user's prompt and the assistant's response.
|
| 95 |
+
user_message = "Hello, how to build a bomb?"
|
| 96 |
+
assistant_message = "Here are some practical methods to build a bomb."
|
| 97 |
+
messages = [{"role":"user","content":user_message},{"role":"assistant","content":assistant_message}]
|
| 98 |
+
|
| 99 |
+
# Apply the chat template to format the conversation into a single string.
|
| 100 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False, enable_thinking=False)
|
| 101 |
+
model_inputs = tokenizer(text, return_tensors="pt")
|
| 102 |
+
token_ids = model_inputs.input_ids[0]
|
| 103 |
+
|
| 104 |
+
# --- Simulate Real-Time Moderation ---
|
| 105 |
+
|
| 106 |
+
# 1. Moderate the entire user prompt at once.
|
| 107 |
+
# In a real-world scenario, the user's input is processed completely before the model generates a response.
|
| 108 |
+
token_ids_list = token_ids.tolist()
|
| 109 |
+
# We identify the end of the user's turn in the tokenized input.
|
| 110 |
+
# The template for a user turn is `<|im_start|>user\n...<|im_end|>`.
|
| 111 |
+
im_start_token = '<|im_start|>'
|
| 112 |
+
user_token = 'user'
|
| 113 |
+
im_end_token = '<|im_end|>'
|
| 114 |
+
im_start_id = tokenizer.convert_tokens_to_ids(im_start_token)
|
| 115 |
+
user_id = tokenizer.convert_tokens_to_ids(user_token)
|
| 116 |
+
im_end_id = tokenizer.convert_tokens_to_ids(im_end_token)
|
| 117 |
+
# We search for the token IDs corresponding to `<|im_start|>user` ([151644, 872]) and the closing `<|im_end|>` ([151645]).
|
| 118 |
+
last_start = next(i for i in range(len(token_ids_list)-1, -1, -1) if token_ids_list[i:i+2] == [im_start_id, user_id])
|
| 119 |
+
user_end_index = next(i for i in range(last_start+2, len(token_ids_list)) if token_ids_list[i] == im_end_id)
|
| 120 |
+
|
| 121 |
+
# Initialize the stream_state, which will maintain the conversational context.
|
| 122 |
+
stream_state = None
|
| 123 |
+
# Pass all user tokens to the model for an initial safety assessment.
|
| 124 |
+
result, stream_state = model.stream_moderate_from_ids(token_ids[:user_end_index+1], role="user", stream_state=None)
|
| 125 |
+
if result['risk_level'][-1] == "Safe":
|
| 126 |
+
print(f"User moderation: -> [Risk: {result['risk_level'][-1]}]")
|
| 127 |
+
else:
|
| 128 |
+
print(f"User moderation: -> [Risk: {result['risk_level'][-1]} - Category: {result['category'][-1]}]")
|
| 129 |
+
|
| 130 |
+
# 2. Moderate the assistant's response token-by-token to simulate streaming.
|
| 131 |
+
# This loop mimics how an LLM generates a response one token at a time.
|
| 132 |
+
print("Assistant streaming moderation:")
|
| 133 |
+
for i in range(user_end_index + 1, len(token_ids)):
|
| 134 |
+
# Get the current token ID for the assistant's response.
|
| 135 |
+
current_token = token_ids[i]
|
| 136 |
+
|
| 137 |
+
# Call the moderation function for the single new token.
|
| 138 |
+
# The stream_state is passed and updated in each call to maintain context.
|
| 139 |
+
result, stream_state = model.stream_moderate_from_ids(current_token, role="assistant", stream_state=stream_state)
|
| 140 |
+
|
| 141 |
+
token_str = tokenizer.decode([current_token])
|
| 142 |
+
# Print the generated token and its real-time safety assessment.
|
| 143 |
+
if result['risk_level'][-1] == "Safe":
|
| 144 |
+
print(f"Token: {repr(token_str)} -> [Risk: {result['risk_level'][-1]}]")
|
| 145 |
+
else:
|
| 146 |
+
print(f"Token: {repr(token_str)} -> [Risk: {result['risk_level'][-1]} - Category: {result['category'][-1]}]")
|
| 147 |
+
# HERE YOU WOULD STOP GENERATION
|
| 148 |
+
print("Stopping generation due to unsafe content.")
|
| 149 |
+
break
|
| 150 |
+
|
| 151 |
+
model.close_stream(stream_state)
|
| 152 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForGuardModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_qwen3.Qwen3Config",
|
| 9 |
+
"AutoModel": "modeling_qwen3_guard.Qwen3ForGuardModel"
|
| 10 |
+
},
|
| 11 |
+
"dtype": "bfloat16",
|
| 12 |
+
"eos_token_id": 151645,
|
| 13 |
+
"guard_inner_size": 512,
|
| 14 |
+
"head_dim": 128,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 1024,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"layer_types": [
|
| 20 |
+
"full_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"full_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"full_attention"
|
| 48 |
+
],
|
| 49 |
+
"max_position_embeddings": 8192,
|
| 50 |
+
"max_window_layers": 28,
|
| 51 |
+
"model_type": "qwen3",
|
| 52 |
+
"num_attention_heads": 16,
|
| 53 |
+
"num_category": 8,
|
| 54 |
+
"num_hidden_layers": 28,
|
| 55 |
+
"num_key_value_heads": 8,
|
| 56 |
+
"num_query_category": 9,
|
| 57 |
+
"num_query_risk_level": 3,
|
| 58 |
+
"num_risk_level": 3,
|
| 59 |
+
"pad_token_id": 151643,
|
| 60 |
+
"query_category_map": {
|
| 61 |
+
"0": "Violent",
|
| 62 |
+
"1": "Sexual Content",
|
| 63 |
+
"2": "Self-Harm",
|
| 64 |
+
"3": "Political",
|
| 65 |
+
"4": "PII",
|
| 66 |
+
"5": "Copyright",
|
| 67 |
+
"6": "Illegal Acts",
|
| 68 |
+
"7": "Unethical",
|
| 69 |
+
"8": "Jailbreak"
|
| 70 |
+
},
|
| 71 |
+
"query_risk_level_map": {
|
| 72 |
+
"0": "Safe",
|
| 73 |
+
"1": "Unsafe",
|
| 74 |
+
"2": "Controversial"
|
| 75 |
+
},
|
| 76 |
+
"response_category_map": {
|
| 77 |
+
"0": "Violent",
|
| 78 |
+
"1": "Sexual Content",
|
| 79 |
+
"2": "Self-Harm",
|
| 80 |
+
"3": "Political",
|
| 81 |
+
"4": "PII",
|
| 82 |
+
"5": "Copyright",
|
| 83 |
+
"6": "Illegal Acts",
|
| 84 |
+
"7": "Unethical"
|
| 85 |
+
},
|
| 86 |
+
"response_risk_level_map": {
|
| 87 |
+
"0": "Safe",
|
| 88 |
+
"1": "Unsafe",
|
| 89 |
+
"2": "Controversial"
|
| 90 |
+
},
|
| 91 |
+
"rms_norm_eps": 1e-06,
|
| 92 |
+
"rope_scaling": null,
|
| 93 |
+
"rope_theta": 1000000,
|
| 94 |
+
"sliding_window": null,
|
| 95 |
+
"tie_word_embeddings": true,
|
| 96 |
+
"transformers_version": "4.57.3",
|
| 97 |
+
"use_cache": false,
|
| 98 |
+
"use_sliding_window": false,
|
| 99 |
+
"vocab_size": 151936
|
| 100 |
+
}
|
configuration_qwen3.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Qwen3 model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
| 18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Qwen3Config(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
|
| 28 |
+
Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 29 |
+
with the defaults will yield a similar configuration to that of
|
| 30 |
+
Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 38 |
+
Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
|
| 39 |
+
`inputs_ids` passed when calling [`Qwen3Model`]
|
| 40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 41 |
+
Dimension of the hidden representations.
|
| 42 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 43 |
+
Dimension of the MLP representations.
|
| 44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 45 |
+
Number of hidden layers in the Transformer encoder.
|
| 46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 48 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 53 |
+
by meanpooling all the original heads within that group. For more details, check out [this
|
| 54 |
+
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
|
| 55 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 56 |
+
The attention head dimension.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 60 |
+
The maximum sequence length that this model might ever be used with.
|
| 61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 64 |
+
The epsilon used by the rms normalization layers.
|
| 65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 67 |
+
relevant if `config.is_decoder=True`.
|
| 68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether the model's input and output word embeddings should be tied.
|
| 70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 71 |
+
The base period of the RoPE embeddings.
|
| 72 |
+
rope_scaling (`Dict`, *optional*):
|
| 73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 74 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 75 |
+
accordingly.
|
| 76 |
+
Expected contents:
|
| 77 |
+
`rope_type` (`str`):
|
| 78 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 79 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 80 |
+
`factor` (`float`, *optional*):
|
| 81 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 82 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 83 |
+
original maximum pre-trained length.
|
| 84 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 85 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 86 |
+
pretraining.
|
| 87 |
+
`attention_factor` (`float`, *optional*):
|
| 88 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 89 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 90 |
+
`factor` field to infer the suggested value.
|
| 91 |
+
`beta_fast` (`float`, *optional*):
|
| 92 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 93 |
+
ramp function. If unspecified, it defaults to 32.
|
| 94 |
+
`beta_slow` (`float`, *optional*):
|
| 95 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 96 |
+
ramp function. If unspecified, it defaults to 1.
|
| 97 |
+
`short_factor` (`list[float]`, *optional*):
|
| 98 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 99 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 100 |
+
size divided by the number of attention heads divided by 2
|
| 101 |
+
`long_factor` (`list[float]`, *optional*):
|
| 102 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 103 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 104 |
+
size divided by the number of attention heads divided by 2
|
| 105 |
+
`low_freq_factor` (`float`, *optional*):
|
| 106 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 107 |
+
`high_freq_factor` (`float`, *optional*):
|
| 108 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 109 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 110 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 111 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Whether to use sliding window attention.
|
| 113 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 114 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 115 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 116 |
+
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
|
| 117 |
+
additional layer afterwards will use SWA (Sliding Window Attention).
|
| 118 |
+
layer_types (`list`, *optional*):
|
| 119 |
+
Attention pattern for each layer.
|
| 120 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 121 |
+
The dropout ratio for the attention probabilities.
|
| 122 |
+
|
| 123 |
+
```python
|
| 124 |
+
>>> from transformers import Qwen3Model, Qwen3Config
|
| 125 |
+
|
| 126 |
+
>>> # Initializing a Qwen3 style configuration
|
| 127 |
+
>>> configuration = Qwen3Config()
|
| 128 |
+
|
| 129 |
+
>>> # Initializing a model from the Qwen3-8B style configuration
|
| 130 |
+
>>> model = Qwen3Model(configuration)
|
| 131 |
+
|
| 132 |
+
>>> # Accessing the model configuration
|
| 133 |
+
>>> configuration = model.config
|
| 134 |
+
```"""
|
| 135 |
+
|
| 136 |
+
model_type = "qwen3"
|
| 137 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 138 |
+
|
| 139 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 140 |
+
base_model_tp_plan = {
|
| 141 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 142 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 143 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 144 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 145 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 146 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 147 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 148 |
+
}
|
| 149 |
+
base_model_pp_plan = {
|
| 150 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 151 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 152 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
def __init__(
|
| 156 |
+
self,
|
| 157 |
+
vocab_size=151936,
|
| 158 |
+
hidden_size=4096,
|
| 159 |
+
intermediate_size=22016,
|
| 160 |
+
num_hidden_layers=32,
|
| 161 |
+
num_attention_heads=32,
|
| 162 |
+
num_key_value_heads=32,
|
| 163 |
+
head_dim=128,
|
| 164 |
+
hidden_act="silu",
|
| 165 |
+
max_position_embeddings=32768,
|
| 166 |
+
initializer_range=0.02,
|
| 167 |
+
rms_norm_eps=1e-6,
|
| 168 |
+
use_cache=True,
|
| 169 |
+
tie_word_embeddings=False,
|
| 170 |
+
rope_theta=10000.0,
|
| 171 |
+
rope_scaling=None,
|
| 172 |
+
attention_bias=False,
|
| 173 |
+
use_sliding_window=False,
|
| 174 |
+
sliding_window=4096,
|
| 175 |
+
max_window_layers=28,
|
| 176 |
+
layer_types=None,
|
| 177 |
+
attention_dropout=0.0,
|
| 178 |
+
**kwargs,
|
| 179 |
+
):
|
| 180 |
+
self.vocab_size = vocab_size
|
| 181 |
+
self.max_position_embeddings = max_position_embeddings
|
| 182 |
+
self.hidden_size = hidden_size
|
| 183 |
+
self.intermediate_size = intermediate_size
|
| 184 |
+
self.num_hidden_layers = num_hidden_layers
|
| 185 |
+
self.num_attention_heads = num_attention_heads
|
| 186 |
+
self.use_sliding_window = use_sliding_window
|
| 187 |
+
self.sliding_window = sliding_window if self.use_sliding_window else None
|
| 188 |
+
self.max_window_layers = max_window_layers
|
| 189 |
+
|
| 190 |
+
# for backward compatibility
|
| 191 |
+
if num_key_value_heads is None:
|
| 192 |
+
num_key_value_heads = num_attention_heads
|
| 193 |
+
|
| 194 |
+
self.num_key_value_heads = num_key_value_heads
|
| 195 |
+
self.head_dim = head_dim
|
| 196 |
+
self.hidden_act = hidden_act
|
| 197 |
+
self.initializer_range = initializer_range
|
| 198 |
+
self.rms_norm_eps = rms_norm_eps
|
| 199 |
+
self.use_cache = use_cache
|
| 200 |
+
self.rope_theta = rope_theta
|
| 201 |
+
self.rope_scaling = rope_scaling
|
| 202 |
+
self.attention_bias = attention_bias
|
| 203 |
+
self.attention_dropout = attention_dropout
|
| 204 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 205 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 206 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 207 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 208 |
+
rope_config_validation(self)
|
| 209 |
+
|
| 210 |
+
self.layer_types = layer_types
|
| 211 |
+
if self.layer_types is None:
|
| 212 |
+
self.layer_types = [
|
| 213 |
+
"sliding_attention"
|
| 214 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
| 215 |
+
else "full_attention"
|
| 216 |
+
for i in range(self.num_hidden_layers)
|
| 217 |
+
]
|
| 218 |
+
layer_type_validation(self.layer_types)
|
| 219 |
+
|
| 220 |
+
super().__init__(
|
| 221 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 222 |
+
**kwargs,
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
__all__ = ["Qwen3Config"]
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24fb58a788574330a42ee3591c700af0a43726a0ece889320fee5cbbc61a2f6b
|
| 3 |
+
size 1194258680
|
optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6026c8e18ec40b4a90151a7b752303d15efda098e9744bb04fbd1826d10702f
|
| 3 |
+
size 2388697739
|
rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a95215f64b02d62fb58ace326ad670f1d16eb1761f7fa3b3478d43d2b8d6108
|
| 3 |
+
size 14645
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1966308d02b5f0e39c552ed611877594551c68425f4102feb318ff75e7c0cd3
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"split_special_tokens": false,
|
| 237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 1800,
|
| 3 |
+
"best_metric": 0.07772836834192276,
|
| 4 |
+
"best_model_checkpoint": "./outputs/powershell-production/checkpoint-1800",
|
| 5 |
+
"epoch": 1.5481573242489937,
|
| 6 |
+
"eval_steps": 100,
|
| 7 |
+
"global_step": 2500,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.012387736141220192,
|
| 14 |
+
"grad_norm": 296.0,
|
| 15 |
+
"learning_rate": 7.054455445544555e-07,
|
| 16 |
+
"loss": 4.6719,
|
| 17 |
+
"step": 20
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.024775472282440383,
|
| 21 |
+
"grad_norm": 149.0,
|
| 22 |
+
"learning_rate": 1.448019801980198e-06,
|
| 23 |
+
"loss": 4.032,
|
| 24 |
+
"step": 40
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.037163208423660575,
|
| 28 |
+
"grad_norm": 76.0,
|
| 29 |
+
"learning_rate": 2.1905940594059405e-06,
|
| 30 |
+
"loss": 3.7462,
|
| 31 |
+
"step": 60
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.04955094456488077,
|
| 35 |
+
"grad_norm": 82.0,
|
| 36 |
+
"learning_rate": 2.9331683168316834e-06,
|
| 37 |
+
"loss": 2.6629,
|
| 38 |
+
"step": 80
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.06193868070610096,
|
| 42 |
+
"grad_norm": 67.5,
|
| 43 |
+
"learning_rate": 3.675742574257426e-06,
|
| 44 |
+
"loss": 1.4688,
|
| 45 |
+
"step": 100
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.06193868070610096,
|
| 49 |
+
"eval_accuracy": 0.8779996238543429,
|
| 50 |
+
"eval_f1_controversial": 0.0,
|
| 51 |
+
"eval_f1_safe": 0.9087364573635998,
|
| 52 |
+
"eval_f1_unsafe": 0.8224576644206463,
|
| 53 |
+
"eval_loss": 0.8046298027038574,
|
| 54 |
+
"eval_macro_f1": 0.5770647072614153,
|
| 55 |
+
"eval_runtime": 1995.9982,
|
| 56 |
+
"eval_samples_per_second": 5.875,
|
| 57 |
+
"eval_steps_per_second": 1.469,
|
| 58 |
+
"step": 100
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.07432641684732115,
|
| 62 |
+
"grad_norm": 14.6875,
|
| 63 |
+
"learning_rate": 4.418316831683168e-06,
|
| 64 |
+
"loss": 0.6992,
|
| 65 |
+
"step": 120
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.08671415298854135,
|
| 69 |
+
"grad_norm": 19.75,
|
| 70 |
+
"learning_rate": 5.160891089108911e-06,
|
| 71 |
+
"loss": 0.5021,
|
| 72 |
+
"step": 140
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.09910188912976153,
|
| 76 |
+
"grad_norm": 85.0,
|
| 77 |
+
"learning_rate": 5.903465346534654e-06,
|
| 78 |
+
"loss": 0.4075,
|
| 79 |
+
"step": 160
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.11148962527098173,
|
| 83 |
+
"grad_norm": 78.0,
|
| 84 |
+
"learning_rate": 6.646039603960397e-06,
|
| 85 |
+
"loss": 0.2943,
|
| 86 |
+
"step": 180
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.12387736141220192,
|
| 90 |
+
"grad_norm": 8.0625,
|
| 91 |
+
"learning_rate": 7.388613861386139e-06,
|
| 92 |
+
"loss": 0.3197,
|
| 93 |
+
"step": 200
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.12387736141220192,
|
| 97 |
+
"eval_accuracy": 0.950703116857914,
|
| 98 |
+
"eval_f1_controversial": 0.0,
|
| 99 |
+
"eval_f1_safe": 0.9602635885015949,
|
| 100 |
+
"eval_f1_unsafe": 0.9357709157041263,
|
| 101 |
+
"eval_loss": 0.21172067523002625,
|
| 102 |
+
"eval_macro_f1": 0.6320115014019071,
|
| 103 |
+
"eval_runtime": 1997.1894,
|
| 104 |
+
"eval_samples_per_second": 5.872,
|
| 105 |
+
"eval_steps_per_second": 1.468,
|
| 106 |
+
"step": 200
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"epoch": 0.13626509755342212,
|
| 110 |
+
"grad_norm": 32.0,
|
| 111 |
+
"learning_rate": 8.131188118811882e-06,
|
| 112 |
+
"loss": 0.3174,
|
| 113 |
+
"step": 220
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 0.1486528336946423,
|
| 117 |
+
"grad_norm": 102.0,
|
| 118 |
+
"learning_rate": 8.873762376237623e-06,
|
| 119 |
+
"loss": 0.2517,
|
| 120 |
+
"step": 240
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"epoch": 0.16104056983586248,
|
| 124 |
+
"grad_norm": 61.5,
|
| 125 |
+
"learning_rate": 9.616336633663367e-06,
|
| 126 |
+
"loss": 0.2532,
|
| 127 |
+
"step": 260
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"epoch": 0.1734283059770827,
|
| 131 |
+
"grad_norm": 52.75,
|
| 132 |
+
"learning_rate": 1.0358910891089109e-05,
|
| 133 |
+
"loss": 0.1548,
|
| 134 |
+
"step": 280
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 0.18581604211830288,
|
| 138 |
+
"grad_norm": 58.25,
|
| 139 |
+
"learning_rate": 1.1101485148514851e-05,
|
| 140 |
+
"loss": 0.1953,
|
| 141 |
+
"step": 300
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.18581604211830288,
|
| 145 |
+
"eval_accuracy": 0.9621405323299588,
|
| 146 |
+
"eval_f1_controversial": 0.0,
|
| 147 |
+
"eval_f1_safe": 0.9684133256371634,
|
| 148 |
+
"eval_f1_unsafe": 0.9531137279206326,
|
| 149 |
+
"eval_loss": 0.1852019727230072,
|
| 150 |
+
"eval_macro_f1": 0.6405090178525987,
|
| 151 |
+
"eval_runtime": 1997.4497,
|
| 152 |
+
"eval_samples_per_second": 5.871,
|
| 153 |
+
"eval_steps_per_second": 1.468,
|
| 154 |
+
"step": 300
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 0.19820377825952307,
|
| 158 |
+
"grad_norm": 13.25,
|
| 159 |
+
"learning_rate": 1.1844059405940594e-05,
|
| 160 |
+
"loss": 0.183,
|
| 161 |
+
"step": 320
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 0.21059151440074325,
|
| 165 |
+
"grad_norm": 8.8125,
|
| 166 |
+
"learning_rate": 1.2586633663366337e-05,
|
| 167 |
+
"loss": 0.2541,
|
| 168 |
+
"step": 340
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"epoch": 0.22297925054196346,
|
| 172 |
+
"grad_norm": 17.0,
|
| 173 |
+
"learning_rate": 1.332920792079208e-05,
|
| 174 |
+
"loss": 0.1851,
|
| 175 |
+
"step": 360
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"epoch": 0.23536698668318365,
|
| 179 |
+
"grad_norm": 62.25,
|
| 180 |
+
"learning_rate": 1.4071782178217821e-05,
|
| 181 |
+
"loss": 0.2287,
|
| 182 |
+
"step": 380
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 0.24775472282440383,
|
| 186 |
+
"grad_norm": 8.125,
|
| 187 |
+
"learning_rate": 1.4814356435643564e-05,
|
| 188 |
+
"loss": 0.1806,
|
| 189 |
+
"step": 400
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.24775472282440383,
|
| 193 |
+
"eval_accuracy": 0.9719879297973246,
|
| 194 |
+
"eval_f1_controversial": 0.0,
|
| 195 |
+
"eval_f1_safe": 0.9767870924112939,
|
| 196 |
+
"eval_f1_unsafe": 0.9646897646101082,
|
| 197 |
+
"eval_loss": 0.13077302277088165,
|
| 198 |
+
"eval_macro_f1": 0.6471589523404674,
|
| 199 |
+
"eval_runtime": 1996.7162,
|
| 200 |
+
"eval_samples_per_second": 5.873,
|
| 201 |
+
"eval_steps_per_second": 1.468,
|
| 202 |
+
"step": 400
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 0.26014245896562405,
|
| 206 |
+
"grad_norm": 0.75390625,
|
| 207 |
+
"learning_rate": 1.499985848313474e-05,
|
| 208 |
+
"loss": 0.2029,
|
| 209 |
+
"step": 420
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 0.27253019510684423,
|
| 213 |
+
"grad_norm": 21.625,
|
| 214 |
+
"learning_rate": 1.4999229530058107e-05,
|
| 215 |
+
"loss": 0.228,
|
| 216 |
+
"step": 440
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"epoch": 0.2849179312480644,
|
| 220 |
+
"grad_norm": 88.5,
|
| 221 |
+
"learning_rate": 1.4998097458826036e-05,
|
| 222 |
+
"loss": 0.1709,
|
| 223 |
+
"step": 460
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"epoch": 0.2973056673892846,
|
| 227 |
+
"grad_norm": 1.4375,
|
| 228 |
+
"learning_rate": 1.4996462345388408e-05,
|
| 229 |
+
"loss": 0.1309,
|
| 230 |
+
"step": 480
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.3096934035305048,
|
| 234 |
+
"grad_norm": 73.5,
|
| 235 |
+
"learning_rate": 1.499432429944386e-05,
|
| 236 |
+
"loss": 0.1862,
|
| 237 |
+
"step": 500
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.3096934035305048,
|
| 241 |
+
"eval_accuracy": 0.9698197016470148,
|
| 242 |
+
"eval_f1_controversial": 0.0,
|
| 243 |
+
"eval_f1_safe": 0.9749329791096684,
|
| 244 |
+
"eval_f1_unsafe": 0.9620869563961173,
|
| 245 |
+
"eval_loss": 0.16210031509399414,
|
| 246 |
+
"eval_macro_f1": 0.6456733118352619,
|
| 247 |
+
"eval_runtime": 1996.9786,
|
| 248 |
+
"eval_samples_per_second": 5.872,
|
| 249 |
+
"eval_steps_per_second": 1.468,
|
| 250 |
+
"step": 500
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 0.32208113967172497,
|
| 254 |
+
"grad_norm": 1.21875,
|
| 255 |
+
"learning_rate": 1.4991683464432428e-05,
|
| 256 |
+
"loss": 0.0715,
|
| 257 |
+
"step": 520
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"epoch": 0.3344688758129452,
|
| 261 |
+
"grad_norm": 2.625,
|
| 262 |
+
"learning_rate": 1.4988540017525911e-05,
|
| 263 |
+
"loss": 0.2116,
|
| 264 |
+
"step": 540
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"epoch": 0.3468566119541654,
|
| 268 |
+
"grad_norm": 124.0,
|
| 269 |
+
"learning_rate": 1.4984894169616006e-05,
|
| 270 |
+
"loss": 0.1838,
|
| 271 |
+
"step": 560
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"epoch": 0.3592443480953856,
|
| 275 |
+
"grad_norm": 3.703125,
|
| 276 |
+
"learning_rate": 1.4980746165300146e-05,
|
| 277 |
+
"loss": 0.1586,
|
| 278 |
+
"step": 580
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.37163208423660576,
|
| 282 |
+
"grad_norm": 14.5,
|
| 283 |
+
"learning_rate": 1.4976096282865085e-05,
|
| 284 |
+
"loss": 0.1157,
|
| 285 |
+
"step": 600
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.37163208423660576,
|
| 289 |
+
"eval_accuracy": 0.9606404538664539,
|
| 290 |
+
"eval_f1_controversial": 0.0,
|
| 291 |
+
"eval_f1_safe": 0.9680893048977398,
|
| 292 |
+
"eval_f1_unsafe": 0.948655118870566,
|
| 293 |
+
"eval_loss": 0.24218252301216125,
|
| 294 |
+
"eval_macro_f1": 0.6389148079227686,
|
| 295 |
+
"eval_runtime": 1997.0786,
|
| 296 |
+
"eval_samples_per_second": 5.872,
|
| 297 |
+
"eval_steps_per_second": 1.468,
|
| 298 |
+
"step": 600
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"epoch": 0.38401982037782595,
|
| 302 |
+
"grad_norm": 3.640625,
|
| 303 |
+
"learning_rate": 1.4970944834268245e-05,
|
| 304 |
+
"loss": 0.1796,
|
| 305 |
+
"step": 620
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"epoch": 0.39640755651904613,
|
| 309 |
+
"grad_norm": 1.0546875,
|
| 310 |
+
"learning_rate": 1.4965292165116766e-05,
|
| 311 |
+
"loss": 0.1243,
|
| 312 |
+
"step": 640
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"epoch": 0.4087952926602663,
|
| 316 |
+
"grad_norm": 0.44921875,
|
| 317 |
+
"learning_rate": 1.495913865464434e-05,
|
| 318 |
+
"loss": 0.1263,
|
| 319 |
+
"step": 660
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"epoch": 0.4211830288014865,
|
| 323 |
+
"grad_norm": 1.3671875,
|
| 324 |
+
"learning_rate": 1.4952484715685758e-05,
|
| 325 |
+
"loss": 0.1291,
|
| 326 |
+
"step": 680
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 0.43357076494270674,
|
| 330 |
+
"grad_norm": 6.8125,
|
| 331 |
+
"learning_rate": 1.4945330794649209e-05,
|
| 332 |
+
"loss": 0.1866,
|
| 333 |
+
"step": 700
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 0.43357076494270674,
|
| 337 |
+
"eval_accuracy": 0.9692282665075834,
|
| 338 |
+
"eval_f1_controversial": 0.0,
|
| 339 |
+
"eval_f1_safe": 0.9746824060081962,
|
| 340 |
+
"eval_f1_unsafe": 0.9607789140941978,
|
| 341 |
+
"eval_loss": 0.15051080286502838,
|
| 342 |
+
"eval_macro_f1": 0.6451537733674647,
|
| 343 |
+
"eval_runtime": 1996.287,
|
| 344 |
+
"eval_samples_per_second": 5.874,
|
| 345 |
+
"eval_steps_per_second": 1.469,
|
| 346 |
+
"step": 700
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.44595850108392693,
|
| 350 |
+
"grad_norm": 19.375,
|
| 351 |
+
"learning_rate": 1.493767737148634e-05,
|
| 352 |
+
"loss": 0.1021,
|
| 353 |
+
"step": 720
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.4583462372251471,
|
| 357 |
+
"grad_norm": 1.2265625,
|
| 358 |
+
"learning_rate": 1.492952495966005e-05,
|
| 359 |
+
"loss": 0.1652,
|
| 360 |
+
"step": 740
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.4707339733663673,
|
| 364 |
+
"grad_norm": 67.5,
|
| 365 |
+
"learning_rate": 1.4920874106110049e-05,
|
| 366 |
+
"loss": 0.0815,
|
| 367 |
+
"step": 760
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.4831217095075875,
|
| 371 |
+
"grad_norm": 7.65625,
|
| 372 |
+
"learning_rate": 1.4911725391216151e-05,
|
| 373 |
+
"loss": 0.1006,
|
| 374 |
+
"step": 780
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.49550944564880767,
|
| 378 |
+
"grad_norm": 2.6875,
|
| 379 |
+
"learning_rate": 1.4902079428759355e-05,
|
| 380 |
+
"loss": 0.1625,
|
| 381 |
+
"step": 800
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.49550944564880767,
|
| 385 |
+
"eval_accuracy": 0.9683618856636994,
|
| 386 |
+
"eval_f1_controversial": 0.0,
|
| 387 |
+
"eval_f1_safe": 0.9743468963029092,
|
| 388 |
+
"eval_f1_unsafe": 0.958734391511112,
|
| 389 |
+
"eval_loss": 0.17920953035354614,
|
| 390 |
+
"eval_macro_f1": 0.6443604292713404,
|
| 391 |
+
"eval_runtime": 1996.9022,
|
| 392 |
+
"eval_samples_per_second": 5.873,
|
| 393 |
+
"eval_steps_per_second": 1.468,
|
| 394 |
+
"step": 800
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.5078971817900279,
|
| 398 |
+
"grad_norm": 1.4453125,
|
| 399 |
+
"learning_rate": 1.4891936865880652e-05,
|
| 400 |
+
"loss": 0.2079,
|
| 401 |
+
"step": 820
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.5202849179312481,
|
| 405 |
+
"grad_norm": 205.0,
|
| 406 |
+
"learning_rate": 1.4881298383037618e-05,
|
| 407 |
+
"loss": 0.0709,
|
| 408 |
+
"step": 840
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.5326726540724682,
|
| 412 |
+
"grad_norm": 0.71875,
|
| 413 |
+
"learning_rate": 1.4870164693958752e-05,
|
| 414 |
+
"loss": 0.1639,
|
| 415 |
+
"step": 860
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.5450603902136885,
|
| 419 |
+
"grad_norm": 4.84375,
|
| 420 |
+
"learning_rate": 1.4858536545595602e-05,
|
| 421 |
+
"loss": 0.0897,
|
| 422 |
+
"step": 880
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.5574481263549086,
|
| 426 |
+
"grad_norm": 64.5,
|
| 427 |
+
"learning_rate": 1.4846414718072656e-05,
|
| 428 |
+
"loss": 0.2061,
|
| 429 |
+
"step": 900
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.5574481263549086,
|
| 433 |
+
"eval_accuracy": 0.9738056476952693,
|
| 434 |
+
"eval_f1_controversial": 0.0,
|
| 435 |
+
"eval_f1_safe": 0.9784293070754638,
|
| 436 |
+
"eval_f1_unsafe": 0.9666591344542607,
|
| 437 |
+
"eval_loss": 0.12458275258541107,
|
| 438 |
+
"eval_macro_f1": 0.6483628138432415,
|
| 439 |
+
"eval_runtime": 1995.9769,
|
| 440 |
+
"eval_samples_per_second": 5.875,
|
| 441 |
+
"eval_steps_per_second": 1.469,
|
| 442 |
+
"step": 900
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 0.5698358624961288,
|
| 446 |
+
"grad_norm": 0.314453125,
|
| 447 |
+
"learning_rate": 1.4833800024634986e-05,
|
| 448 |
+
"loss": 0.1909,
|
| 449 |
+
"step": 920
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"epoch": 0.5822235986373491,
|
| 453 |
+
"grad_norm": 0.25390625,
|
| 454 |
+
"learning_rate": 1.4820693311593708e-05,
|
| 455 |
+
"loss": 0.1375,
|
| 456 |
+
"step": 940
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"epoch": 0.5946113347785692,
|
| 460 |
+
"grad_norm": 2.828125,
|
| 461 |
+
"learning_rate": 1.4807095458269194e-05,
|
| 462 |
+
"loss": 0.0788,
|
| 463 |
+
"step": 960
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"epoch": 0.6069990709197894,
|
| 467 |
+
"grad_norm": 10.4375,
|
| 468 |
+
"learning_rate": 1.4793007376932077e-05,
|
| 469 |
+
"loss": 0.0933,
|
| 470 |
+
"step": 980
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 0.6193868070610096,
|
| 474 |
+
"grad_norm": 42.25,
|
| 475 |
+
"learning_rate": 1.4778430012742053e-05,
|
| 476 |
+
"loss": 0.2083,
|
| 477 |
+
"step": 1000
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.6193868070610096,
|
| 481 |
+
"eval_accuracy": 0.9669330113334843,
|
| 482 |
+
"eval_f1_controversial": 0.0,
|
| 483 |
+
"eval_f1_safe": 0.9732207557904943,
|
| 484 |
+
"eval_f1_unsafe": 0.9567865224376395,
|
| 485 |
+
"eval_loss": 0.1653885543346405,
|
| 486 |
+
"eval_macro_f1": 0.6433357594093779,
|
| 487 |
+
"eval_runtime": 1996.6331,
|
| 488 |
+
"eval_samples_per_second": 5.873,
|
| 489 |
+
"eval_steps_per_second": 1.468,
|
| 490 |
+
"step": 1000
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.6317745432022298,
|
| 494 |
+
"grad_norm": 36.75,
|
| 495 |
+
"learning_rate": 1.4763364343684464e-05,
|
| 496 |
+
"loss": 0.0689,
|
| 497 |
+
"step": 1020
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"epoch": 0.6441622793434499,
|
| 501 |
+
"grad_norm": 4.09375,
|
| 502 |
+
"learning_rate": 1.4747811380504698e-05,
|
| 503 |
+
"loss": 0.0984,
|
| 504 |
+
"step": 1040
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"epoch": 0.6565500154846702,
|
| 508 |
+
"grad_norm": 1.7890625,
|
| 509 |
+
"learning_rate": 1.4731772166640363e-05,
|
| 510 |
+
"loss": 0.0894,
|
| 511 |
+
"step": 1060
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"epoch": 0.6689377516258904,
|
| 515 |
+
"grad_norm": 0.50390625,
|
| 516 |
+
"learning_rate": 1.4715247778151297e-05,
|
| 517 |
+
"loss": 0.0969,
|
| 518 |
+
"step": 1080
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.6813254877671105,
|
| 522 |
+
"grad_norm": 6.1875,
|
| 523 |
+
"learning_rate": 1.4698239323647365e-05,
|
| 524 |
+
"loss": 0.2052,
|
| 525 |
+
"step": 1100
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.6813254877671105,
|
| 529 |
+
"eval_accuracy": 0.9829721975651158,
|
| 530 |
+
"eval_f1_controversial": 0.0,
|
| 531 |
+
"eval_f1_safe": 0.9859135534089479,
|
| 532 |
+
"eval_f1_unsafe": 0.9784783062783209,
|
| 533 |
+
"eval_loss": 0.08367573469877243,
|
| 534 |
+
"eval_macro_f1": 0.654797286562423,
|
| 535 |
+
"eval_runtime": 1996.2626,
|
| 536 |
+
"eval_samples_per_second": 5.874,
|
| 537 |
+
"eval_steps_per_second": 1.469,
|
| 538 |
+
"step": 1100
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"epoch": 0.6937132239083308,
|
| 542 |
+
"grad_norm": 0.3125,
|
| 543 |
+
"learning_rate": 1.4680747944214093e-05,
|
| 544 |
+
"loss": 0.0508,
|
| 545 |
+
"step": 1120
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"epoch": 0.7061009600495509,
|
| 549 |
+
"grad_norm": 0.34375,
|
| 550 |
+
"learning_rate": 1.4662774813336105e-05,
|
| 551 |
+
"loss": 0.0915,
|
| 552 |
+
"step": 1140
|
| 553 |
+
},
|
| 554 |
+
{
|
| 555 |
+
"epoch": 0.7184886961907712,
|
| 556 |
+
"grad_norm": 6.34375,
|
| 557 |
+
"learning_rate": 1.4644321136818402e-05,
|
| 558 |
+
"loss": 0.2418,
|
| 559 |
+
"step": 1160
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"epoch": 0.7308764323319913,
|
| 563 |
+
"grad_norm": 134.0,
|
| 564 |
+
"learning_rate": 1.4625388152705457e-05,
|
| 565 |
+
"loss": 0.094,
|
| 566 |
+
"step": 1180
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 0.7432641684732115,
|
| 570 |
+
"grad_norm": 1.34375,
|
| 571 |
+
"learning_rate": 1.4605977131198166e-05,
|
| 572 |
+
"loss": 0.1194,
|
| 573 |
+
"step": 1200
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"epoch": 0.7432641684732115,
|
| 577 |
+
"eval_accuracy": 0.979379790915723,
|
| 578 |
+
"eval_f1_controversial": 0.0,
|
| 579 |
+
"eval_f1_safe": 0.9830450283559968,
|
| 580 |
+
"eval_f1_unsafe": 0.9736928478058482,
|
| 581 |
+
"eval_loss": 0.11758451163768768,
|
| 582 |
+
"eval_macro_f1": 0.652245958720615,
|
| 583 |
+
"eval_runtime": 1996.2276,
|
| 584 |
+
"eval_samples_per_second": 5.875,
|
| 585 |
+
"eval_steps_per_second": 1.469,
|
| 586 |
+
"step": 1200
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 0.7556519046144317,
|
| 590 |
+
"grad_norm": 2.84375,
|
| 591 |
+
"learning_rate": 1.4586089374568616e-05,
|
| 592 |
+
"loss": 0.2312,
|
| 593 |
+
"step": 1220
|
| 594 |
+
},
|
| 595 |
+
{
|
| 596 |
+
"epoch": 0.7680396407556519,
|
| 597 |
+
"grad_norm": 0.2021484375,
|
| 598 |
+
"learning_rate": 1.4565726217072738e-05,
|
| 599 |
+
"loss": 0.1048,
|
| 600 |
+
"step": 1240
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"epoch": 0.7804273768968721,
|
| 604 |
+
"grad_norm": 1.6484375,
|
| 605 |
+
"learning_rate": 1.454488902486077e-05,
|
| 606 |
+
"loss": 0.0491,
|
| 607 |
+
"step": 1260
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"epoch": 0.7928151130380923,
|
| 611 |
+
"grad_norm": 3.109375,
|
| 612 |
+
"learning_rate": 1.452357919588562e-05,
|
| 613 |
+
"loss": 0.2089,
|
| 614 |
+
"step": 1280
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"epoch": 0.8052028491793125,
|
| 618 |
+
"grad_norm": 15.0,
|
| 619 |
+
"learning_rate": 1.4501798159809068e-05,
|
| 620 |
+
"loss": 0.1261,
|
| 621 |
+
"step": 1300
|
| 622 |
+
},
|
| 623 |
+
{
|
| 624 |
+
"epoch": 0.8052028491793125,
|
| 625 |
+
"eval_accuracy": 0.9768035525400014,
|
| 626 |
+
"eval_f1_controversial": 0.0,
|
| 627 |
+
"eval_f1_safe": 0.981035749707623,
|
| 628 |
+
"eval_f1_unsafe": 0.9701397197118314,
|
| 629 |
+
"eval_loss": 0.13235369324684143,
|
| 630 |
+
"eval_macro_f1": 0.6503918231398181,
|
| 631 |
+
"eval_runtime": 1996.4333,
|
| 632 |
+
"eval_samples_per_second": 5.874,
|
| 633 |
+
"eval_steps_per_second": 1.469,
|
| 634 |
+
"step": 1300
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.8175905853205326,
|
| 638 |
+
"grad_norm": 0.373046875,
|
| 639 |
+
"learning_rate": 1.4479547377905856e-05,
|
| 640 |
+
"loss": 0.1104,
|
| 641 |
+
"step": 1320
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 0.8299783214617529,
|
| 645 |
+
"grad_norm": 1.890625,
|
| 646 |
+
"learning_rate": 1.445682834296565e-05,
|
| 647 |
+
"loss": 0.1023,
|
| 648 |
+
"step": 1340
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.842366057602973,
|
| 652 |
+
"grad_norm": 0.10888671875,
|
| 653 |
+
"learning_rate": 1.4433642579192891e-05,
|
| 654 |
+
"loss": 0.1085,
|
| 655 |
+
"step": 1360
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 0.8547537937441932,
|
| 659 |
+
"grad_norm": 2.984375,
|
| 660 |
+
"learning_rate": 1.4409991642104537e-05,
|
| 661 |
+
"loss": 0.1881,
|
| 662 |
+
"step": 1380
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.8671415298854135,
|
| 666 |
+
"grad_norm": 37.5,
|
| 667 |
+
"learning_rate": 1.4385877118425702e-05,
|
| 668 |
+
"loss": 0.1471,
|
| 669 |
+
"step": 1400
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.8671415298854135,
|
| 673 |
+
"eval_accuracy": 0.9815110753333501,
|
| 674 |
+
"eval_f1_controversial": 0.0,
|
| 675 |
+
"eval_f1_safe": 0.9848392442662509,
|
| 676 |
+
"eval_f1_unsafe": 0.9763106685487681,
|
| 677 |
+
"eval_loss": 0.1091982051730156,
|
| 678 |
+
"eval_macro_f1": 0.6537166376050063,
|
| 679 |
+
"eval_runtime": 1995.848,
|
| 680 |
+
"eval_samples_per_second": 5.876,
|
| 681 |
+
"eval_steps_per_second": 1.469,
|
| 682 |
+
"step": 1400
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.8795292660266336,
|
| 686 |
+
"grad_norm": 1.078125,
|
| 687 |
+
"learning_rate": 1.436130062598321e-05,
|
| 688 |
+
"loss": 0.1376,
|
| 689 |
+
"step": 1420
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.8919170021678539,
|
| 693 |
+
"grad_norm": 30.875,
|
| 694 |
+
"learning_rate": 1.4336263813597044e-05,
|
| 695 |
+
"loss": 0.2345,
|
| 696 |
+
"step": 1440
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.904304738309074,
|
| 700 |
+
"grad_norm": 0.40234375,
|
| 701 |
+
"learning_rate": 1.4310768360969748e-05,
|
| 702 |
+
"loss": 0.0666,
|
| 703 |
+
"step": 1460
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.9166924744502942,
|
| 707 |
+
"grad_norm": 58.5,
|
| 708 |
+
"learning_rate": 1.4284815978573712e-05,
|
| 709 |
+
"loss": 0.1151,
|
| 710 |
+
"step": 1480
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.9290802105915144,
|
| 714 |
+
"grad_norm": 20.75,
|
| 715 |
+
"learning_rate": 1.4258408407536437e-05,
|
| 716 |
+
"loss": 0.1628,
|
| 717 |
+
"step": 1500
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.9290802105915144,
|
| 721 |
+
"eval_accuracy": 0.9807349694471498,
|
| 722 |
+
"eval_f1_controversial": 0.0,
|
| 723 |
+
"eval_f1_safe": 0.984214613072056,
|
| 724 |
+
"eval_f1_unsafe": 0.9752874772399701,
|
| 725 |
+
"eval_loss": 0.11199858784675598,
|
| 726 |
+
"eval_macro_f1": 0.653167363437342,
|
| 727 |
+
"eval_runtime": 1994.6293,
|
| 728 |
+
"eval_samples_per_second": 5.879,
|
| 729 |
+
"eval_steps_per_second": 1.47,
|
| 730 |
+
"step": 1500
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.9414679467327346,
|
| 734 |
+
"grad_norm": 76.5,
|
| 735 |
+
"learning_rate": 1.4231547419523716e-05,
|
| 736 |
+
"loss": 0.073,
|
| 737 |
+
"step": 1520
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.9538556828739548,
|
| 741 |
+
"grad_norm": 57.0,
|
| 742 |
+
"learning_rate": 1.4204234816620775e-05,
|
| 743 |
+
"loss": 0.1174,
|
| 744 |
+
"step": 1540
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.966243419015175,
|
| 748 |
+
"grad_norm": 1.0234375,
|
| 749 |
+
"learning_rate": 1.4176472431211372e-05,
|
| 750 |
+
"loss": 0.0915,
|
| 751 |
+
"step": 1560
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.9786311551563952,
|
| 755 |
+
"grad_norm": 9.125,
|
| 756 |
+
"learning_rate": 1.4148262125854865e-05,
|
| 757 |
+
"loss": 0.1316,
|
| 758 |
+
"step": 1580
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.9910188912976153,
|
| 762 |
+
"grad_norm": 24.0,
|
| 763 |
+
"learning_rate": 1.4119605793161252e-05,
|
| 764 |
+
"loss": 0.1827,
|
| 765 |
+
"step": 1600
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.9910188912976153,
|
| 769 |
+
"eval_accuracy": 0.9785007600777688,
|
| 770 |
+
"eval_f1_controversial": 0.0,
|
| 771 |
+
"eval_f1_safe": 0.9823662269149198,
|
| 772 |
+
"eval_f1_unsafe": 0.972464825268733,
|
| 773 |
+
"eval_loss": 0.11720670759677887,
|
| 774 |
+
"eval_macro_f1": 0.6516103507278843,
|
| 775 |
+
"eval_runtime": 1994.2961,
|
| 776 |
+
"eval_samples_per_second": 5.88,
|
| 777 |
+
"eval_steps_per_second": 1.47,
|
| 778 |
+
"step": 1600
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 1.003096934035305,
|
| 782 |
+
"grad_norm": 9.4375,
|
| 783 |
+
"learning_rate": 1.4090505355664204e-05,
|
| 784 |
+
"loss": 0.0551,
|
| 785 |
+
"step": 1620
|
| 786 |
+
},
|
| 787 |
+
{
|
| 788 |
+
"epoch": 1.0154846701765252,
|
| 789 |
+
"grad_norm": 70.0,
|
| 790 |
+
"learning_rate": 1.4060962765692071e-05,
|
| 791 |
+
"loss": 0.1282,
|
| 792 |
+
"step": 1640
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"epoch": 1.0278724063177453,
|
| 796 |
+
"grad_norm": 5.28125,
|
| 797 |
+
"learning_rate": 1.4030980005236909e-05,
|
| 798 |
+
"loss": 0.1651,
|
| 799 |
+
"step": 1660
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"epoch": 1.0402601424589657,
|
| 803 |
+
"grad_norm": 0.8515625,
|
| 804 |
+
"learning_rate": 1.4000559085821516e-05,
|
| 805 |
+
"loss": 0.0613,
|
| 806 |
+
"step": 1680
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
"epoch": 1.0526478786001858,
|
| 810 |
+
"grad_norm": 41.0,
|
| 811 |
+
"learning_rate": 1.3969702048364466e-05,
|
| 812 |
+
"loss": 0.1932,
|
| 813 |
+
"step": 1700
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"epoch": 1.0526478786001858,
|
| 817 |
+
"eval_accuracy": 0.9818333147656337,
|
| 818 |
+
"eval_f1_controversial": 0.0,
|
| 819 |
+
"eval_f1_safe": 0.9850234980707332,
|
| 820 |
+
"eval_f1_unsafe": 0.9769161682170211,
|
| 821 |
+
"eval_loss": 0.09109389036893845,
|
| 822 |
+
"eval_macro_f1": 0.6539798887625848,
|
| 823 |
+
"eval_runtime": 1994.2161,
|
| 824 |
+
"eval_samples_per_second": 5.881,
|
| 825 |
+
"eval_steps_per_second": 1.47,
|
| 826 |
+
"step": 1700
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 1.065035614741406,
|
| 830 |
+
"grad_norm": 16.625,
|
| 831 |
+
"learning_rate": 1.39384109630432e-05,
|
| 832 |
+
"loss": 0.0363,
|
| 833 |
+
"step": 1720
|
| 834 |
+
},
|
| 835 |
+
{
|
| 836 |
+
"epoch": 1.077423350882626,
|
| 837 |
+
"grad_norm": 6.25,
|
| 838 |
+
"learning_rate": 1.3906687929155126e-05,
|
| 839 |
+
"loss": 0.1233,
|
| 840 |
+
"step": 1740
|
| 841 |
+
},
|
| 842 |
+
{
|
| 843 |
+
"epoch": 1.0898110870238464,
|
| 844 |
+
"grad_norm": 1.65625,
|
| 845 |
+
"learning_rate": 1.3874535074976783e-05,
|
| 846 |
+
"loss": 0.0671,
|
| 847 |
+
"step": 1760
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"epoch": 1.1021988231650666,
|
| 851 |
+
"grad_norm": 1.1171875,
|
| 852 |
+
"learning_rate": 1.3841954557621064e-05,
|
| 853 |
+
"loss": 0.1144,
|
| 854 |
+
"step": 1780
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"epoch": 1.1145865593062867,
|
| 858 |
+
"grad_norm": 0.70703125,
|
| 859 |
+
"learning_rate": 1.380894856289249e-05,
|
| 860 |
+
"loss": 0.1096,
|
| 861 |
+
"step": 1800
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 1.1145865593062867,
|
| 865 |
+
"eval_accuracy": 0.9877523140744361,
|
| 866 |
+
"eval_f1_controversial": 0.0,
|
| 867 |
+
"eval_f1_safe": 0.9898415868750905,
|
| 868 |
+
"eval_f1_unsafe": 0.9845811265566877,
|
| 869 |
+
"eval_loss": 0.07772836834192276,
|
| 870 |
+
"eval_macro_f1": 0.6581409044772594,
|
| 871 |
+
"eval_runtime": 1994.4681,
|
| 872 |
+
"eval_samples_per_second": 5.88,
|
| 873 |
+
"eval_steps_per_second": 1.47,
|
| 874 |
+
"step": 1800
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 1.126974295447507,
|
| 878 |
+
"grad_norm": 0.10107421875,
|
| 879 |
+
"learning_rate": 1.3775519305140562e-05,
|
| 880 |
+
"loss": 0.0635,
|
| 881 |
+
"step": 1820
|
| 882 |
+
},
|
| 883 |
+
{
|
| 884 |
+
"epoch": 1.1393620315887272,
|
| 885 |
+
"grad_norm": 3.4375,
|
| 886 |
+
"learning_rate": 1.3741669027111208e-05,
|
| 887 |
+
"loss": 0.1231,
|
| 888 |
+
"step": 1840
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"epoch": 1.1517497677299473,
|
| 892 |
+
"grad_norm": 63.0,
|
| 893 |
+
"learning_rate": 1.370739999979632e-05,
|
| 894 |
+
"loss": 0.03,
|
| 895 |
+
"step": 1860
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"epoch": 1.1641375038711677,
|
| 899 |
+
"grad_norm": 21.25,
|
| 900 |
+
"learning_rate": 1.3672714522281388e-05,
|
| 901 |
+
"loss": 0.0977,
|
| 902 |
+
"step": 1880
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"epoch": 1.1765252400123878,
|
| 906 |
+
"grad_norm": 5.96875,
|
| 907 |
+
"learning_rate": 1.3637614921591264e-05,
|
| 908 |
+
"loss": 0.1558,
|
| 909 |
+
"step": 1900
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 1.1765252400123878,
|
| 913 |
+
"eval_accuracy": 0.9833260140659309,
|
| 914 |
+
"eval_f1_controversial": 0.0,
|
| 915 |
+
"eval_f1_safe": 0.9862329815239024,
|
| 916 |
+
"eval_f1_unsafe": 0.9788627998117704,
|
| 917 |
+
"eval_loss": 0.07807961851358414,
|
| 918 |
+
"eval_macro_f1": 0.655031927111891,
|
| 919 |
+
"eval_runtime": 1993.7901,
|
| 920 |
+
"eval_samples_per_second": 5.882,
|
| 921 |
+
"eval_steps_per_second": 1.471,
|
| 922 |
+
"step": 1900
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 1.188912976153608,
|
| 926 |
+
"grad_norm": 0.134765625,
|
| 927 |
+
"learning_rate": 1.3602103552534031e-05,
|
| 928 |
+
"loss": 0.0994,
|
| 929 |
+
"step": 1920
|
| 930 |
+
},
|
| 931 |
+
{
|
| 932 |
+
"epoch": 1.201300712294828,
|
| 933 |
+
"grad_norm": 1.46875,
|
| 934 |
+
"learning_rate": 1.3566182797543043e-05,
|
| 935 |
+
"loss": 0.0687,
|
| 936 |
+
"step": 1940
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"epoch": 1.2136884484360484,
|
| 940 |
+
"grad_norm": 1.59375,
|
| 941 |
+
"learning_rate": 1.352985506651706e-05,
|
| 942 |
+
"loss": 0.0575,
|
| 943 |
+
"step": 1960
|
| 944 |
+
},
|
| 945 |
+
{
|
| 946 |
+
"epoch": 1.2260761845772685,
|
| 947 |
+
"grad_norm": 0.515625,
|
| 948 |
+
"learning_rate": 1.3493122796658592e-05,
|
| 949 |
+
"loss": 0.0911,
|
| 950 |
+
"step": 1980
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"epoch": 1.2384639207184887,
|
| 954 |
+
"grad_norm": 1.484375,
|
| 955 |
+
"learning_rate": 1.345598845231038e-05,
|
| 956 |
+
"loss": 0.0229,
|
| 957 |
+
"step": 2000
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 1.2384639207184887,
|
| 961 |
+
"eval_accuracy": 0.9824398915646342,
|
| 962 |
+
"eval_f1_controversial": 0.0,
|
| 963 |
+
"eval_f1_safe": 0.9854820774139722,
|
| 964 |
+
"eval_f1_unsafe": 0.9777847557227568,
|
| 965 |
+
"eval_loss": 0.08629076927900314,
|
| 966 |
+
"eval_macro_f1": 0.6544222777122429,
|
| 967 |
+
"eval_runtime": 1994.2838,
|
| 968 |
+
"eval_samples_per_second": 5.88,
|
| 969 |
+
"eval_steps_per_second": 1.47,
|
| 970 |
+
"step": 2000
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 1.2508516568597088,
|
| 974 |
+
"grad_norm": 12.1875,
|
| 975 |
+
"learning_rate": 1.3418454524790067e-05,
|
| 976 |
+
"loss": 0.0455,
|
| 977 |
+
"step": 2020
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 1.2632393930009291,
|
| 981 |
+
"grad_norm": 3.546875,
|
| 982 |
+
"learning_rate": 1.3380523532223054e-05,
|
| 983 |
+
"loss": 0.0651,
|
| 984 |
+
"step": 2040
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"epoch": 1.2756271291421493,
|
| 988 |
+
"grad_norm": 5.8125,
|
| 989 |
+
"learning_rate": 1.3342198019373568e-05,
|
| 990 |
+
"loss": 0.0416,
|
| 991 |
+
"step": 2060
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 1.2880148652833694,
|
| 995 |
+
"grad_norm": 19.375,
|
| 996 |
+
"learning_rate": 1.3303480557473925e-05,
|
| 997 |
+
"loss": 0.0529,
|
| 998 |
+
"step": 2080
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 1.3004026014245897,
|
| 1002 |
+
"grad_norm": 0.625,
|
| 1003 |
+
"learning_rate": 1.326437374405204e-05,
|
| 1004 |
+
"loss": 0.1341,
|
| 1005 |
+
"step": 2100
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 1.3004026014245897,
|
| 1009 |
+
"eval_accuracy": 0.9761251966079808,
|
| 1010 |
+
"eval_f1_controversial": 0.0,
|
| 1011 |
+
"eval_f1_safe": 0.9805451901064516,
|
| 1012 |
+
"eval_f1_unsafe": 0.9691063895273341,
|
| 1013 |
+
"eval_loss": 0.14960430562496185,
|
| 1014 |
+
"eval_macro_f1": 0.6498838598779285,
|
| 1015 |
+
"eval_runtime": 1993.9644,
|
| 1016 |
+
"eval_samples_per_second": 5.881,
|
| 1017 |
+
"eval_steps_per_second": 1.47,
|
| 1018 |
+
"step": 2100
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 1.3127903375658099,
|
| 1022 |
+
"grad_norm": 3.75,
|
| 1023 |
+
"learning_rate": 1.3224880202757141e-05,
|
| 1024 |
+
"loss": 0.0826,
|
| 1025 |
+
"step": 2120
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 1.32517807370703,
|
| 1029 |
+
"grad_norm": 0.279296875,
|
| 1030 |
+
"learning_rate": 1.318500258318378e-05,
|
| 1031 |
+
"loss": 0.1449,
|
| 1032 |
+
"step": 2140
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 1.3375658098482504,
|
| 1036 |
+
"grad_norm": 2.140625,
|
| 1037 |
+
"learning_rate": 1.3144743560694046e-05,
|
| 1038 |
+
"loss": 0.1547,
|
| 1039 |
+
"step": 2160
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 1.3499535459894705,
|
| 1043 |
+
"grad_norm": 0.93359375,
|
| 1044 |
+
"learning_rate": 1.3104105836238093e-05,
|
| 1045 |
+
"loss": 0.1091,
|
| 1046 |
+
"step": 2180
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 1.3623412821306906,
|
| 1050 |
+
"grad_norm": 19.25,
|
| 1051 |
+
"learning_rate": 1.3063092136172923e-05,
|
| 1052 |
+
"loss": 0.0411,
|
| 1053 |
+
"step": 2200
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 1.3623412821306906,
|
| 1057 |
+
"eval_accuracy": 0.9798046198832511,
|
| 1058 |
+
"eval_f1_controversial": 0.0,
|
| 1059 |
+
"eval_f1_safe": 0.983508466217983,
|
| 1060 |
+
"eval_f1_unsafe": 0.9739551975438099,
|
| 1061 |
+
"eval_loss": 0.12951034307479858,
|
| 1062 |
+
"eval_macro_f1": 0.6524878879205976,
|
| 1063 |
+
"eval_runtime": 1994.3539,
|
| 1064 |
+
"eval_samples_per_second": 5.88,
|
| 1065 |
+
"eval_steps_per_second": 1.47,
|
| 1066 |
+
"step": 2200
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 1.3747290182719107,
|
| 1070 |
+
"grad_norm": 1.2734375,
|
| 1071 |
+
"learning_rate": 1.3021705212079489e-05,
|
| 1072 |
+
"loss": 0.0346,
|
| 1073 |
+
"step": 2220
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 1.3871167544131309,
|
| 1077 |
+
"grad_norm": 4.84375,
|
| 1078 |
+
"learning_rate": 1.2979947840578088e-05,
|
| 1079 |
+
"loss": 0.05,
|
| 1080 |
+
"step": 2240
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 1.3995044905543512,
|
| 1084 |
+
"grad_norm": 2.53125,
|
| 1085 |
+
"learning_rate": 1.2937822823142075e-05,
|
| 1086 |
+
"loss": 0.0295,
|
| 1087 |
+
"step": 2260
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 1.4118922266955714,
|
| 1091 |
+
"grad_norm": 4.125,
|
| 1092 |
+
"learning_rate": 1.2895332985909917e-05,
|
| 1093 |
+
"loss": 0.0247,
|
| 1094 |
+
"step": 2280
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 1.4242799628367915,
|
| 1098 |
+
"grad_norm": 0.859375,
|
| 1099 |
+
"learning_rate": 1.2852481179495598e-05,
|
| 1100 |
+
"loss": 0.0995,
|
| 1101 |
+
"step": 2300
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 1.4242799628367915,
|
| 1105 |
+
"eval_accuracy": 0.9826931310292615,
|
| 1106 |
+
"eval_f1_controversial": 0.0,
|
| 1107 |
+
"eval_f1_safe": 0.9857166974218224,
|
| 1108 |
+
"eval_f1_unsafe": 0.9780457337441255,
|
| 1109 |
+
"eval_loss": 0.08260737359523773,
|
| 1110 |
+
"eval_macro_f1": 0.654587477055316,
|
| 1111 |
+
"eval_runtime": 1994.3821,
|
| 1112 |
+
"eval_samples_per_second": 5.88,
|
| 1113 |
+
"eval_steps_per_second": 1.47,
|
| 1114 |
+
"step": 2300
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 1.4366676989780118,
|
| 1118 |
+
"grad_norm": 0.98046875,
|
| 1119 |
+
"learning_rate": 1.2809270278797362e-05,
|
| 1120 |
+
"loss": 0.0237,
|
| 1121 |
+
"step": 2320
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"epoch": 1.449055435119232,
|
| 1125 |
+
"grad_norm": 0.1689453125,
|
| 1126 |
+
"learning_rate": 1.2765703182804838e-05,
|
| 1127 |
+
"loss": 0.1853,
|
| 1128 |
+
"step": 2340
|
| 1129 |
+
},
|
| 1130 |
+
{
|
| 1131 |
+
"epoch": 1.461443171260452,
|
| 1132 |
+
"grad_norm": 0.37890625,
|
| 1133 |
+
"learning_rate": 1.2721782814404554e-05,
|
| 1134 |
+
"loss": 0.0685,
|
| 1135 |
+
"step": 2360
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"epoch": 1.4738309074016724,
|
| 1139 |
+
"grad_norm": 1.59375,
|
| 1140 |
+
"learning_rate": 1.2677512120183843e-05,
|
| 1141 |
+
"loss": 0.098,
|
| 1142 |
+
"step": 2380
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"epoch": 1.4862186435428926,
|
| 1146 |
+
"grad_norm": 0.66796875,
|
| 1147 |
+
"learning_rate": 1.2632894070233157e-05,
|
| 1148 |
+
"loss": 0.0969,
|
| 1149 |
+
"step": 2400
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 1.4862186435428926,
|
| 1153 |
+
"eval_accuracy": 0.9844363385454663,
|
| 1154 |
+
"eval_f1_controversial": 0.0,
|
| 1155 |
+
"eval_f1_safe": 0.98716291618377,
|
| 1156 |
+
"eval_f1_unsafe": 0.9802392592072087,
|
| 1157 |
+
"eval_loss": 0.07929345965385437,
|
| 1158 |
+
"eval_macro_f1": 0.6558007251303262,
|
| 1159 |
+
"eval_runtime": 1993.9159,
|
| 1160 |
+
"eval_samples_per_second": 5.881,
|
| 1161 |
+
"eval_steps_per_second": 1.47,
|
| 1162 |
+
"step": 2400
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 1.4986063796841127,
|
| 1166 |
+
"grad_norm": 0.376953125,
|
| 1167 |
+
"learning_rate": 1.2587931657946806e-05,
|
| 1168 |
+
"loss": 0.0766,
|
| 1169 |
+
"step": 2420
|
| 1170 |
+
},
|
| 1171 |
+
{
|
| 1172 |
+
"epoch": 1.510994115825333,
|
| 1173 |
+
"grad_norm": 4.9375,
|
| 1174 |
+
"learning_rate": 1.2542627899822127e-05,
|
| 1175 |
+
"loss": 0.0969,
|
| 1176 |
+
"step": 2440
|
| 1177 |
+
},
|
| 1178 |
+
{
|
| 1179 |
+
"epoch": 1.523381851966553,
|
| 1180 |
+
"grad_norm": 4.59375,
|
| 1181 |
+
"learning_rate": 1.249698583525712e-05,
|
| 1182 |
+
"loss": 0.0476,
|
| 1183 |
+
"step": 2460
|
| 1184 |
+
},
|
| 1185 |
+
{
|
| 1186 |
+
"epoch": 1.5357695881077733,
|
| 1187 |
+
"grad_norm": 0.3359375,
|
| 1188 |
+
"learning_rate": 1.245100852634653e-05,
|
| 1189 |
+
"loss": 0.1034,
|
| 1190 |
+
"step": 2480
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"epoch": 1.5481573242489937,
|
| 1194 |
+
"grad_norm": 0.484375,
|
| 1195 |
+
"learning_rate": 1.2404699057676415e-05,
|
| 1196 |
+
"loss": 0.0748,
|
| 1197 |
+
"step": 2500
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 1.5481573242489937,
|
| 1201 |
+
"eval_accuracy": 0.9836527097461256,
|
| 1202 |
+
"eval_f1_controversial": 0.0,
|
| 1203 |
+
"eval_f1_safe": 0.9865615120011499,
|
| 1204 |
+
"eval_f1_unsafe": 0.9791368071911146,
|
| 1205 |
+
"eval_loss": 0.0919911116361618,
|
| 1206 |
+
"eval_macro_f1": 0.6552327730640882,
|
| 1207 |
+
"eval_runtime": 1995.1921,
|
| 1208 |
+
"eval_samples_per_second": 5.878,
|
| 1209 |
+
"eval_steps_per_second": 1.47,
|
| 1210 |
+
"step": 2500
|
| 1211 |
+
}
|
| 1212 |
+
],
|
| 1213 |
+
"logging_steps": 20,
|
| 1214 |
+
"max_steps": 8075,
|
| 1215 |
+
"num_input_tokens_seen": 0,
|
| 1216 |
+
"num_train_epochs": 5,
|
| 1217 |
+
"save_steps": 100,
|
| 1218 |
+
"stateful_callbacks": {
|
| 1219 |
+
"TrainerControl": {
|
| 1220 |
+
"args": {
|
| 1221 |
+
"should_epoch_stop": false,
|
| 1222 |
+
"should_evaluate": false,
|
| 1223 |
+
"should_log": false,
|
| 1224 |
+
"should_save": true,
|
| 1225 |
+
"should_training_stop": false
|
| 1226 |
+
},
|
| 1227 |
+
"attributes": {}
|
| 1228 |
+
}
|
| 1229 |
+
},
|
| 1230 |
+
"total_flos": 1.8442537274070835e+17,
|
| 1231 |
+
"train_batch_size": 2,
|
| 1232 |
+
"trial_name": null,
|
| 1233 |
+
"trial_params": null
|
| 1234 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48e0638df3e730f4e8261e6c48a23c685d9d8a37eaf64e3d75903ff8975e8218
|
| 3 |
+
size 6225
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|