from typing import Dict, List, Any from diffusers import DiffusionPipeline import torch from io import BytesIO import requests from PIL import Image import base64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") # set mixed precision dtype dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler(): def __init__(self, path=""): self.pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages", torch_dtype=dtype).to(device) # # this command loads the individual model components on GPU on-demand. # self.pipeline.enable_model_cpu_offload() def __call__(self, data: Any) -> List[List[Dict[str, float]]]: image = data.pop("image", None) # process image image = self.decode_base64_image(image) low_res_img = image#.resize((128, 128)) with torch.no_grad(): upscaled_image = self.pipeline(low_res_img, num_inference_steps=100, eta=1).images[0] return upscaled_image # helper to decode input image def decode_base64_image(self, image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image