push pipeline using my custom method
Browse files- MyPipe.py +76 -0
- README.md +201 -0
- config.json +14 -4
MyPipe.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch, os
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torchvision.transforms.functional import normalize
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import Pipeline
|
| 7 |
+
from skimage import io
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
class RMBGPipe(Pipeline):
|
| 11 |
+
def __init__(self,**kwargs):
|
| 12 |
+
Pipeline.__init__(self,**kwargs)
|
| 13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
self.model.to(self.device)
|
| 15 |
+
self.model.eval()
|
| 16 |
+
|
| 17 |
+
def _sanitize_parameters(self, **kwargs):
|
| 18 |
+
# parse parameters
|
| 19 |
+
preprocess_kwargs = {}
|
| 20 |
+
postprocess_kwargs = {}
|
| 21 |
+
if "model_input_size" in kwargs :
|
| 22 |
+
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
| 23 |
+
if "out_name" in kwargs:
|
| 24 |
+
postprocess_kwargs["out_name"] = kwargs["out_name"]
|
| 25 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
| 26 |
+
|
| 27 |
+
def preprocess(self,im_path:str,model_input_size: list=[1024,1024]):
|
| 28 |
+
# preprocess the input
|
| 29 |
+
orig_im = io.imread(im_path)
|
| 30 |
+
orig_im_size = orig_im.shape[0:2]
|
| 31 |
+
image = self.preprocess_image(orig_im, model_input_size).to(self.device)
|
| 32 |
+
inputs = {
|
| 33 |
+
"image":image,
|
| 34 |
+
"orig_im_size":orig_im_size,
|
| 35 |
+
"im_path" : im_path
|
| 36 |
+
}
|
| 37 |
+
return inputs
|
| 38 |
+
|
| 39 |
+
def _forward(self,inputs):
|
| 40 |
+
result = self.model(inputs.pop("image"))
|
| 41 |
+
inputs["result"] = result
|
| 42 |
+
return inputs
|
| 43 |
+
def postprocess(self,inputs,out_name = ""):
|
| 44 |
+
result = inputs.pop("result")
|
| 45 |
+
orig_im_size = inputs.pop("orig_im_size")
|
| 46 |
+
im_path = inputs.pop("im_path")
|
| 47 |
+
result_image = self.postprocess_image(result[0][0], orig_im_size)
|
| 48 |
+
if out_name != "" :
|
| 49 |
+
# if out_name is specified we save the image using that name
|
| 50 |
+
pil_im = Image.fromarray(result_image)
|
| 51 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 52 |
+
orig_image = Image.open(im_path)
|
| 53 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
| 54 |
+
no_bg_image.save(out_name)
|
| 55 |
+
else :
|
| 56 |
+
return result_image
|
| 57 |
+
|
| 58 |
+
# utilities functions
|
| 59 |
+
def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor:
|
| 60 |
+
# same as utilities.py with minor modification
|
| 61 |
+
if len(im.shape) < 3:
|
| 62 |
+
im = im[:, :, np.newaxis]
|
| 63 |
+
# orig_im_size=im.shape[0:2]
|
| 64 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 65 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
| 66 |
+
image = torch.divide(im_tensor,255.0)
|
| 67 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 68 |
+
return image
|
| 69 |
+
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray:
|
| 70 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
| 71 |
+
ma = torch.max(result)
|
| 72 |
+
mi = torch.min(result)
|
| 73 |
+
result = (result-mi)/(ma-mi)
|
| 74 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
| 75 |
+
im_array = np.squeeze(im_array)
|
| 76 |
+
return im_array
|
README.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
|
| 201 |
+
|
config.json
CHANGED
|
@@ -1,15 +1,25 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
"BriaRMBG"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
-
"AutoConfig": "MyConfig.RMBGConfig",
|
| 8 |
-
"AutoModelForImageSegmentation": "briarmbg.BriaRMBG"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
},
|
| 10 |
"in_ch": 3,
|
| 11 |
"model_type": "SegformerForSemanticSegmentation",
|
| 12 |
"out_ch": 1,
|
| 13 |
"torch_dtype": "float32",
|
| 14 |
-
"transformers_version": "4.
|
| 15 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "not-lain/CustomCodeForRMBG",
|
| 3 |
"architectures": [
|
| 4 |
"BriaRMBG"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
+
"AutoConfig": "not-lain/CustomCodeForRMBG--MyConfig.RMBGConfig",
|
| 8 |
+
"AutoModelForImageSegmentation": "not-lain/CustomCodeForRMBG--briarmbg.BriaRMBG"
|
| 9 |
+
},
|
| 10 |
+
"custom_pipelines": {
|
| 11 |
+
"image-segmentation": {
|
| 12 |
+
"impl": "MyPipe.RMBGPipe",
|
| 13 |
+
"pt": [
|
| 14 |
+
"AutoModelForImageSegmentation"
|
| 15 |
+
],
|
| 16 |
+
"tf": [],
|
| 17 |
+
"type": "image"
|
| 18 |
+
}
|
| 19 |
},
|
| 20 |
"in_ch": 3,
|
| 21 |
"model_type": "SegformerForSemanticSegmentation",
|
| 22 |
"out_ch": 1,
|
| 23 |
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.38.0.dev0"
|
| 25 |
}
|