new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Contrastive Pseudo Learning for Open-World DeepFake Attribution

The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or expression transferring are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces still remain under-explored. To push the related frontier research, we introduce a new benchmark called Open-World DeepFake Attribution (OW-DFA), which aims to evaluate attribution performance against various types of fake faces under open-world scenarios. Meanwhile, we propose a novel framework named Contrastive Pseudo Learning (CPL) for the OW-DFA task through 1) introducing a Global-Local Voting module to guide the feature alignment of forged faces with different manipulated regions, 2) designing a Confidence-based Soft Pseudo-label strategy to mitigate the pseudo-noise caused by similar methods in unlabeled set. In addition, we extend the CPL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments verify the superiority of our proposed method on the OW-DFA and also demonstrate the interpretability of deepfake attribution task and its impact on improving the security of deepfake detection area.

  • 7 authors
·
Sep 20, 2023

TT-DF: A Large-Scale Diffusion-Based Dataset and Benchmark for Human Body Forgery Detection

The emergence and popularity of facial deepfake methods spur the vigorous development of deepfake datasets and facial forgery detection, which to some extent alleviates the security concerns about facial-related artificial intelligence technologies. However, when it comes to human body forgery, there has been a persistent lack of datasets and detection methods, due to the later inception and complexity of human body generation methods. To mitigate this issue, we introduce TikTok-DeepFake (TT-DF), a novel large-scale diffusion-based dataset containing 6,120 forged videos with 1,378,857 synthetic frames, specifically tailored for body forgery detection. TT-DF offers a wide variety of forgery methods, involving multiple advanced human image animation models utilized for manipulation, two generative configurations based on the disentanglement of identity and pose information, as well as different compressed versions. The aim is to simulate any potential unseen forged data in the wild as comprehensively as possible, and we also furnish a benchmark on TT-DF. Additionally, we propose an adapted body forgery detection model, Temporal Optical Flow Network (TOF-Net), which exploits the spatiotemporal inconsistencies and optical flow distribution differences between natural data and forged data. Our experiments demonstrate that TOF-Net achieves favorable performance on TT-DF, outperforming current state-of-the-art extendable facial forgery detection models. For our TT-DF dataset, please refer to https://github.com/HashTAG00002/TT-DF.

  • 5 authors
·
May 13, 2025