Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTHOR: A Non-Speculative Value Dependent Timing Side Channel Attack Exploiting Intel AMX
The rise of on-chip accelerators signifies a major shift in computing, driven by the growing demands of artificial intelligence (AI) and specialized applications. These accelerators have gained popularity due to their ability to substantially boost performance, cut energy usage, lower total cost of ownership (TCO), and promote sustainability. Intel's Advanced Matrix Extensions (AMX) is one such on-chip accelerator, specifically designed for handling tasks involving large matrix multiplications commonly used in machine learning (ML) models, image processing, and other computational-heavy operations. In this paper, we introduce a novel value-dependent timing side-channel vulnerability in Intel AMX. By exploiting this weakness, we demonstrate a software-based, value-dependent timing side-channel attack capable of inferring the sparsity of neural network weights without requiring any knowledge of the confidence score, privileged access or physical proximity. Our attack method can fully recover the sparsity of weights assigned to 64 input elements within 50 minutes, which is 631% faster than the maximum leakage rate achieved in the Hertzbleed attack.
SMASH: Sparse Matrix Atomic Scratchpad Hashing
Sparse matrices, more specifically SpGEMM kernels, are commonly found in a wide range of applications, spanning graph-based path-finding to machine learning algorithms (e.g., neural networks). A particular challenge in implementing SpGEMM kernels has been the pressure placed on DRAM memory. One approach to tackle this problem is to use an inner product method for the SpGEMM kernel implementation. While the inner product produces fewer intermediate results, it can end up saturating the memory bandwidth, given the high number of redundant fetches of the input matrix elements. Using an outer product-based SpGEMM kernel can reduce redundant fetches, but at the cost of increased overhead due to extra computation and memory accesses for producing/managing partial products. In this thesis, we introduce a novel SpGEMM kernel implementation based on the row-wise product approach. We leverage atomic instructions to merge intermediate partial products as they are generated. The use of atomic instructions eliminates the need to create partial product matrices. To evaluate our row-wise product approach, we map an optimized SpGEMM kernel to a custom accelerator designed to accelerate graph-based applications. The targeted accelerator is an experimental system named PIUMA, being developed by Intel. PIUMA provides several attractive features, including fast context switching, user-configurable caches, globally addressable memory, non-coherent caches, and asynchronous pipelines. We tailor our SpGEMM kernel to exploit many of the features of the PIUMA fabric. This thesis compares our SpGEMM implementation against prior solutions, all mapped to the PIUMA framework. We briefly describe some of the PIUMA architecture features and then delve into the details of our optimized SpGEMM kernel. Our SpGEMM kernel can achieve 9.4x speedup as compared to competing approaches.
SQ-format: A Unified Sparse-Quantized Hardware-friendly Data Format for LLMs
Post-training quantization (PTQ) plays a crucial role in the democratization of large language models (LLMs). However, existing low-bit quantization and sparsification techniques are difficult to balance accuracy and efficiency due to the limited hardware support. For example, W4A8 can only achieve the same peak TOPS as W8A8 whereas the GPU-supported sparse data format (2:4 semi-structure sparse) is seldomly adopted due to the loss of accuracy. To bridge this gap, in this paper, we propose the Sparse-Quantized Format (SQ-format), which is a unified data format for quantization and sparsification potentially easily supported by new hardware and existing GPUs. SQ-format makes use of the fact that sparse matrix can be accelerated in high-precision, and low-precision matrix multiplication can also be accelerated accordingly. As such, SQ-format is proposed to achieve Pareto improvement between performance and throughput. This format is particularly suitable for activations with outlier inequality status and makes their static compression possible. We show the state-of-the-art PTQ performance with SQ-format, propose the hardware required to support it, and further offer the design exploration and insights for the next-generation AI accelerators.
The Two-Pass Softmax Algorithm
The softmax (also called softargmax) function is widely used in machine learning models to normalize real-valued scores into a probability distribution. To avoid floating-point overflow, the softmax function is conventionally implemented in three passes: the first pass to compute the normalization constant, and two other passes to compute outputs from normalized inputs. We analyze two variants of the Three-Pass algorithm and demonstrate that in a well-optimized implementation on HPC-class processors performance of all three passes is limited by memory bandwidth. We then present a novel algorithm for softmax computation in just two passes. The proposed Two-Pass algorithm avoids both numerical overflow and the extra normalization pass by employing an exotic representation for intermediate values, where each value is represented as a pair of floating-point numbers: one representing the "mantissa" and another representing the "exponent". Performance evaluation demonstrates that on out-of-cache inputs on an Intel Skylake-X processor the new Two-Pass algorithm outperforms the traditional Three-Pass algorithm by up to 28% in AVX512 implementation, and by up to 18% in AVX2 implementation. The proposed Two-Pass algorithm also outperforms the traditional Three-Pass algorithm on Intel Broadwell and AMD Zen 2 processors. To foster reproducibility, we released an open-source implementation of the new Two-Pass Softmax algorithm and other experiments in this paper as a part of XNNPACK library at GitHub.com/google/XNNPACK.
