new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

LIR$^3$AG: A Lightweight Rerank Reasoning Strategy Framework for Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) effectively enhances Large Language Models (LLMs) by incorporating retrieved external knowledge into the generation process. Reasoning models improve LLM performance in multi-hop QA tasks, which require integrating and reasoning over multiple pieces of evidence across different documents to answer a complex question. However, they often introduce substantial computational costs, including increased token consumption and inference latency. To better understand and mitigate this trade-off, we conduct a comprehensive study of reasoning strategies for reasoning models in RAG multi-hop QA tasks. Our findings reveal that reasoning models adopt structured strategies to integrate retrieved and internal knowledge, primarily following two modes: Context-Grounded Reasoning, which relies directly on retrieved content, and Knowledge-Reconciled Reasoning, which resolves conflicts or gaps using internal knowledge. To this end, we propose a novel Lightweight Rerank Reasoning Strategy Framework for RAG (LiR^3AG) to enable non-reasoning models to transfer reasoning strategies by restructuring retrieved evidence into coherent reasoning chains. LiR^3AG significantly reduce the average 98% output tokens overhead and 58.6% inferencing time while improving 8B non-reasoning model's F1 performance ranging from 6.2% to 22.5% to surpass the performance of 32B reasoning model in RAG, offering a practical and efficient path forward for RAG systems.

  • 5 authors
·
Dec 20

Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)

Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically, support responsible decisions, and solve challenging problems. Traditionally, AI has addressed reasoning in the context of logic-based representations of knowledge. However, the recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities, particularly as they grow in size and are trained on more data. Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning. The goal of this workshop is to create a platform for researchers from different disciplines and/or AI perspectives, to explore approaches and techniques with the aim to reconcile reasoning between language models using transformers and using logic-based representations. The specific objectives include analyzing the reasoning abilities of language models measured alongside KR methods, injecting KR-style reasoning abilities into language models (including by neuro-symbolic means), and formalizing the kind of reasoning language models carry out. This exploration aims to uncover how language models can effectively integrate and leverage knowledge and reasoning with it, thus improving their application and utility in areas where precision and reliability are a key requirement.

  • 5 authors
·
Oct 6, 2024