1 Don't throw away your value model! Making PPO even better via Value-Guided Monte-Carlo Tree Search decoding Inference-time search algorithms such as Monte-Carlo Tree Search (MCTS) may seem unnecessary when generating natural language text based on state-of-the-art reinforcement learning such as Proximal Policy Optimization (PPO). In this paper, we demonstrate that it is possible to get extra mileage out of PPO by integrating MCTS on top. The key idea is not to throw out the value network, a byproduct of PPO training for evaluating partial output sequences, when decoding text out of the policy network. More concretely, we present a novel value-guided decoding algorithm called PPO-MCTS, which can integrate the value network from PPO to work closely with the policy network during inference-time generation. Compared to prior approaches based on MCTS for controlled text generation, the key strength of our approach is to reduce the fundamental mismatch of the scoring mechanisms of the partial outputs between training and test. Evaluation on four text generation tasks demonstrate that PPO-MCTS greatly improves the preferability of generated text compared to the standard practice of using only the PPO policy. Our results demonstrate the promise of search algorithms even on top of the aligned language models from PPO, and the under-explored benefit of the value network. 6 authors · Sep 26, 2023
- AI Agents for the Dhumbal Card Game: A Comparative Study This study evaluates Artificial Intelligence (AI) agents for Dhumbal, a culturally significant multiplayer card game with imperfect information, through a systematic comparison of rule-based, search-based, and learning-based strategies. We formalize Dhumbal's mechanics and implement diverse agents, including heuristic approaches (Aggressive, Conservative, Balanced, Opportunistic), search-based methods such as Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS), and reinforcement learning approaches including Deep Q-Network (DQN) and Proximal Policy Optimization (PPO), and a random baseline. Evaluation involves within-category tournaments followed by a cross-category championship. Performance is measured via win rate, economic outcome, Jhyap success, cards discarded per round, risk assessment, and decision efficiency. Statistical significance is assessed using Welch's t-test with Bonferroni correction, effect sizes via Cohen's d, and 95% confidence intervals (CI). Across 1024 simulated rounds, the rule-based Aggressive agent achieves the highest win rate (88.3%, 95% CI: [86.3, 90.3]), outperforming ISMCTS (9.0%) and PPO (1.5%) through effective exploitation of Jhyap declarations. The study contributes a reproducible AI framework, insights into heuristic efficacy under partial information, and open-source code, thereby advancing AI research and supporting digital preservation of cultural games. 1 authors · Oct 10