new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

UMD: Unsupervised Model Detection for X2X Backdoor Attacks

Backdoor (Trojan) attack is a common threat to deep neural networks, where samples from one or more source classes embedded with a backdoor trigger will be misclassified to adversarial target classes. Existing methods for detecting whether a classifier is backdoor attacked are mostly designed for attacks with a single adversarial target (e.g., all-to-one attack). To the best of our knowledge, without supervision, no existing methods can effectively address the more general X2X attack with an arbitrary number of source classes, each paired with an arbitrary target class. In this paper, we propose UMD, the first Unsupervised Model Detection method that effectively detects X2X backdoor attacks via a joint inference of the adversarial (source, target) class pairs. In particular, we first define a novel transferability statistic to measure and select a subset of putative backdoor class pairs based on a proposed clustering approach. Then, these selected class pairs are jointly assessed based on an aggregation of their reverse-engineered trigger size for detection inference, using a robust and unsupervised anomaly detector we proposed. We conduct comprehensive evaluations on CIFAR-10, GTSRB, and Imagenette dataset, and show that our unsupervised UMD outperforms SOTA detectors (even with supervision) by 17%, 4%, and 8%, respectively, in terms of the detection accuracy against diverse X2X attacks. We also show the strong detection performance of UMD against several strong adaptive attacks.

  • 3 authors
·
May 29, 2023

Unsupervised and semi-supervised co-salient object detection via segmentation frequency statistics

In this paper, we address the detection of co-occurring salient objects (CoSOD) in an image group using frequency statistics in an unsupervised manner, which further enable us to develop a semi-supervised method. While previous works have mostly focused on fully supervised CoSOD, less attention has been allocated to detecting co-salient objects when limited segmentation annotations are available for training. Our simple yet effective unsupervised method US-CoSOD combines the object co-occurrence frequency statistics of unsupervised single-image semantic segmentations with salient foreground detections using self-supervised feature learning. For the first time, we show that a large unlabeled dataset e.g. ImageNet-1k can be effectively leveraged to significantly improve unsupervised CoSOD performance. Our unsupervised model is a great pre-training initialization for our semi-supervised model SS-CoSOD, especially when very limited labeled data is available for training. To avoid propagating erroneous signals from predictions on unlabeled data, we propose a confidence estimation module to guide our semi-supervised training. Extensive experiments on three CoSOD benchmark datasets show that both of our unsupervised and semi-supervised models outperform the corresponding state-of-the-art models by a significant margin (e.g., on the Cosal2015 dataset, our US-CoSOD model has an 8.8% F-measure gain over a SOTA unsupervised co-segmentation model and our SS-CoSOD model has an 11.81% F-measure gain over a SOTA semi-supervised CoSOD model).

  • 5 authors
·
Nov 11, 2023

Unsupervised Domain Adaptive Detection with Network Stability Analysis

Domain adaptive detection aims to improve the generality of a detector, learned from the labeled source domain, on the unlabeled target domain. In this work, drawing inspiration from the concept of stability from the control theory that a robust system requires to remain consistent both externally and internally regardless of disturbances, we propose a novel framework that achieves unsupervised domain adaptive detection through stability analysis. In specific, we treat discrepancies between images and regions from different domains as disturbances, and introduce a novel simple but effective Network Stability Analysis (NSA) framework that considers various disturbances for domain adaptation. Particularly, we explore three types of perturbations including heavy and light image-level disturbances and instancelevel disturbance. For each type, NSA performs external consistency analysis on the outputs from raw and perturbed images and/or internal consistency analysis on their features, using teacher-student models. By integrating NSA into Faster R-CNN, we immediately achieve state-of-the-art results. In particular, we set a new record of 52.7% mAP on Cityscapes-to-FoggyCityscapes, showing the potential of NSA for domain adaptive detection. It is worth noticing, our NSA is designed for general purpose, and thus applicable to one-stage detection model (e.g., FCOS) besides the adopted one, as shown by experiments. https://github.com/tiankongzhang/NSA.

  • 4 authors
·
Aug 16, 2023

No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes

Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet

  • 3 authors
·
Aug 26 3

Distillation-based fabric anomaly detection

Unsupervised texture anomaly detection has been a concerning topic in a vast amount of industrial processes. Patterned textures inspection, particularly in the context of fabric defect detection, is indeed a widely encountered use case. This task involves handling a diverse spectrum of colors and textile types, encompassing a wide range of fabrics. Given the extensive variability in colors, textures, and defect types, fabric defect detection poses a complex and challenging problem in the field of patterned textures inspection. In this article, we propose a knowledge distillation-based approach tailored specifically for addressing the challenge of unsupervised anomaly detection in textures resembling fabrics. Our method aims to redefine the recently introduced reverse distillation approach, which advocates for an encoder-decoder design to mitigate classifier bias and to prevent the student from reconstructing anomalies. In this study, we present a new reverse distillation technique for the specific task of fabric defect detection. Our approach involves a meticulous design selection that strategically highlights high-level features. To demonstrate the capabilities of our approach both in terms of performance and inference speed, we conducted a series of experiments on multiple texture datasets, including MVTEC AD, AITEX, and TILDA, alongside conducting experiments on a dataset acquired from a textile manufacturing facility. The main contributions of this paper are the following: a robust texture anomaly detector utilizing a reverse knowledge-distillation technique suitable for both anomaly detection and domain generalization and a novel dataset encompassing a diverse range of fabrics and defects.

  • 2 authors
·
Jan 4, 2024

Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning

Identifying highlight moments of raw video materials is crucial for improving the efficiency of editing videos that are pervasive on internet platforms. However, the extensive work of manually labeling footage has created obstacles to applying supervised methods to videos of unseen categories. The absence of an audio modality that contains valuable cues for highlight detection in many videos also makes it difficult to use multimodal strategies. In this paper, we propose a novel model with cross-modal perception for unsupervised highlight detection. The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task. To achieve unsupervised highlight detection, we investigate the latent representations of the network and propose the representation activation sequence learning (RASL) module with k-point contrastive learning to learn significant representation activations. To connect the visual modality with the audio modality, we use the symmetric contrastive learning (SCL) module to learn the paired visual and audio representations. Furthermore, an auxiliary task of masked feature vector sequence (FVS) reconstruction is simultaneously conducted during pretraining for representation enhancement. During inference, the cross-modal pretrained model can generate representations with paired visual-audio semantics given only the visual modality. The RASL module is used to output the highlight scores. The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.

  • 3 authors
·
Mar 14, 2024

Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene

The unsupervised 3D object detection is to accurately detect objects in unstructured environments with no explicit supervisory signals. This task, given sparse LiDAR point clouds, often results in compromised performance for detecting distant or small objects due to the inherent sparsity and limited spatial resolution. In this paper, we are among the early attempts to integrate LiDAR data with 2D images for unsupervised 3D detection and introduce a new method, dubbed LiDAR-2D Self-paced Learning (LiSe). We argue that RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues, particularly when scarce LiDAR points are available for certain objects. Considering the unique characteristics of both modalities, our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies. The adaptive sampling strategy dynamically tunes the distribution of pseudo labels during training, countering the tendency of models to overfit easily detected samples, such as nearby and large-sized objects. By doing so, it ensures a balanced learning trajectory across varying object scales and distances. The weak model aggregation component consolidates the strengths of models trained under different pseudo label distributions, culminating in a robust and powerful final model. Experimental evaluations validate the efficacy of our proposed LiSe method, manifesting significant improvements of +7.1% AP_{BEV} and +3.4% AP_{3D} on nuScenes, and +8.3% AP_{BEV} and +7.4% AP_{3D} on Lyft compared to existing techniques.

  • 4 authors
·
Jul 11, 2024

StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder

Expert interpretation of anatomical images of the human brain is the central part of neuro-radiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data, and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642pm0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859pm0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522pm0.135 and 0.783pm0.111, respectively.

  • 10 authors
·
Jan 31, 2022

AutoPaint: A Self-Inpainting Method for Unsupervised Anomaly Detection

Robust and accurate detection and segmentation of heterogenous tumors appearing in different anatomical organs with supervised methods require large-scale labeled datasets covering all possible types of diseases. Due to the unavailability of such rich datasets and the high cost of annotations, unsupervised anomaly detection (UAD) methods have been developed aiming to detect the pathologies as deviation from the normality by utilizing the unlabeled healthy image data. However, developed UAD models are often trained with an incomplete distribution of healthy anatomies and have difficulties in preserving anatomical constraints. This work intends to, first, propose a robust inpainting model to learn the details of healthy anatomies and reconstruct high-resolution images by preserving anatomical constraints. Second, we propose an autoinpainting pipeline to automatically detect tumors, replace their appearance with the learned healthy anatomies, and based on that segment the tumoral volumes in a purely unsupervised fashion. Three imaging datasets, including PET, CT, and PET-CT scans of lung tumors and head and neck tumors, are studied as benchmarks for evaluation. Experimental results demonstrate the significant superiority of the proposed method over a wide range of state-of-the-art UAD methods. Moreover, the unsupervised method we propose produces comparable results to a robust supervised segmentation method when applied to multimodal images.

  • 8 authors
·
May 21, 2023

Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection

Recent studies highlighted a practical setting of unsupervised anomaly detection (UAD) that builds a unified model for multi-class images. Despite various advancements addressing this challenging task, the detection performance under the multi-class setting still lags far behind state-of-the-art class-separated models. Our research aims to bridge this substantial performance gap. In this paper, we introduce a minimalistic reconstruction-based anomaly detection framework, namely Dinomaly, which leverages pure Transformer architectures without relying on complex designs, additional modules, or specialized tricks. Given this powerful framework consisted of only Attentions and MLPs, we found four simple components that are essential to multi-class anomaly detection: (1) Foundation Transformers that extracts universal and discriminative features, (2) Noisy Bottleneck where pre-existing Dropouts do all the noise injection tricks, (3) Linear Attention that naturally cannot focus, and (4) Loose Reconstruction that does not force layer-to-layer and point-by-point reconstruction. Extensive experiments are conducted across popular anomaly detection benchmarks including MVTec-AD, VisA, and Real-IAD. Our proposed Dinomaly achieves impressive image-level AUROC of 99.6%, 98.7%, and 89.3% on the three datasets respectively, which is not only superior to state-of-the-art multi-class UAD methods, but also achieves the most advanced class-separated UAD records.

  • 6 authors
·
May 23, 2024

A Multi Camera Unsupervised Domain Adaptation Pipeline for Object Detection in Cultural Sites through Adversarial Learning and Self-Training

Object detection algorithms allow to enable many interesting applications which can be implemented in different devices, such as smartphones and wearable devices. In the context of a cultural site, implementing these algorithms in a wearable device, such as a pair of smart glasses, allow to enable the use of augmented reality (AR) to show extra information about the artworks and enrich the visitors' experience during their tour. However, object detection algorithms require to be trained on many well annotated examples to achieve reasonable results. This brings a major limitation since the annotation process requires human supervision which makes it expensive in terms of time and costs. A possible solution to reduce these costs consist in exploiting tools to automatically generate synthetic labeled images from a 3D model of the site. However, models trained with synthetic data do not generalize on real images acquired in the target scenario in which they are supposed to be used. Furthermore, object detectors should be able to work with different wearable devices or different mobile devices, which makes generalization even harder. In this paper, we present a new dataset collected in a cultural site to study the problem of domain adaptation for object detection in the presence of multiple unlabeled target domains corresponding to different cameras and a labeled source domain obtained considering synthetic images for training purposes. We present a new domain adaptation method which outperforms current state-of-the-art approaches combining the benefits of aligning the domains at the feature and pixel level with a self-training process. We release the dataset at the following link https://iplab.dmi.unict.it/OBJ-MDA/ and the code of the proposed architecture at https://github.com/fpv-iplab/STMDA-RetinaNet.

  • 3 authors
·
Oct 3, 2022

StackVAE-G: An efficient and interpretable model for time series anomaly detection

Recent studies have shown that autoencoder-based models can achieve superior performance on anomaly detection tasks due to their excellent ability to fit complex data in an unsupervised manner. In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection. Specifically, we utilize the similarities across the time series channels by the stacking block-wise reconstruction with a weight-sharing scheme to reduce the size of learned models and also relieve the overfitting to unknown noises in the training data. We also leverage a graph learning module to learn a sparse adjacency matrix to explicitly capture the stable interrelation structure among multiple time series channels for the interpretable pattern reconstruction of interrelated channels. Combining these two modules, we introduce the stacking block-wise VAE (variational autoencoder) with GNN (graph neural network) model for multivariate time series anomaly detection. We conduct extensive experiments on three commonly used public datasets, showing that our model achieves comparable (even better) performance with the state-of-the-art modelsand meanwhile requires much less computation and memory cost. Furthermore, we demonstrate that the adjacency matrix learned by our model accurately captures the interrelation among multiple channels, and can provide valuable information for failure diagnosis applications.

  • 5 authors
·
May 18, 2021

TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection

Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git

  • 3 authors
·
Jul 31

Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models

Zero-Shot Anomaly Detection (ZSAD) is an emerging AD paradigm. Unlike the traditional unsupervised AD setting that requires a large number of normal samples to train a model, ZSAD is more practical for handling data-restricted real-world scenarios. Recently, Multimodal Large Language Models (MLLMs) have shown revolutionary reasoning capabilities in various vision tasks. However, the reasoning of image abnormalities remains underexplored due to the lack of corresponding datasets and benchmarks. To facilitate research in AD & reasoning, we establish the first visual instruction tuning dataset, Anomaly-Instruct-125k, and the evaluation benchmark, VisA-D&R. Through investigation with our benchmark, we reveal that current MLLMs like GPT-4o cannot accurately detect and describe fine-grained anomalous details in images. To address this, we propose Anomaly-OneVision (Anomaly-OV), the first specialist visual assistant for ZSAD and reasoning. Inspired by human behavior in visual inspection, Anomaly-OV leverages a Look-Twice Feature Matching (LTFM) mechanism to adaptively select and emphasize abnormal visual tokens. Extensive experiments demonstrate that Anomaly-OV achieves significant improvements over advanced generalist models in both detection and reasoning. Extensions to medical and 3D AD are provided for future study. The link to our project page: https://xujiacong.github.io/Anomaly-OV/

  • 5 authors
·
Feb 11

Unsupervised Representation Learning by Predicting Image Rotations

Over the last years, deep convolutional neural networks (ConvNets) have transformed the field of computer vision thanks to their unparalleled capacity to learn high level semantic image features. However, in order to successfully learn those features, they usually require massive amounts of manually labeled data, which is both expensive and impractical to scale. Therefore, unsupervised semantic feature learning, i.e., learning without requiring manual annotation effort, is of crucial importance in order to successfully harvest the vast amount of visual data that are available today. In our work we propose to learn image features by training ConvNets to recognize the 2d rotation that is applied to the image that it gets as input. We demonstrate both qualitatively and quantitatively that this apparently simple task actually provides a very powerful supervisory signal for semantic feature learning. We exhaustively evaluate our method in various unsupervised feature learning benchmarks and we exhibit in all of them state-of-the-art performance. Specifically, our results on those benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in unsupervised representation learning and thus significantly close the gap with supervised feature learning. For instance, in PASCAL VOC 2007 detection task our unsupervised pre-trained AlexNet model achieves the state-of-the-art (among unsupervised methods) mAP of 54.4% that is only 2.4 points lower from the supervised case. We get similarly striking results when we transfer our unsupervised learned features on various other tasks, such as ImageNet classification, PASCAL classification, PASCAL segmentation, and CIFAR-10 classification. The code and models of our paper will be published on: https://github.com/gidariss/FeatureLearningRotNet .

  • 3 authors
·
Mar 20, 2018

Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training

As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.

  • 5 authors
·
Oct 20, 2024 2

MetaRAG: Metamorphic Testing for Hallucination Detection in RAG Systems

Large Language Models (LLMs) are increasingly deployed in enterprise applications, yet their reliability remains limited by hallucinations, i.e., confident but factually incorrect information. Existing detection approaches, such as SelfCheckGPT and MetaQA, primarily target standalone LLMs and do not address the unique challenges of Retrieval-Augmented Generation (RAG) systems, where responses must be consistent with retrieved evidence. We therefore present MetaRAG, a metamorphic testing framework for hallucination detection in Retrieval-Augmented Generation (RAG) systems. MetaRAG operates in a real-time, unsupervised, black-box setting, requiring neither ground-truth references nor access to model internals, making it suitable for proprietary and high-stakes domains. The framework proceeds in four stages: (1) decompose answers into atomic factoids, (2) generate controlled mutations of each factoid using synonym and antonym substitutions, (3) verify each variant against the retrieved context (synonyms are expected to be entailed and antonyms contradicted), and (4) aggregate penalties for inconsistencies into a response-level hallucination score. Crucially for identity-aware AI, MetaRAG localizes unsupported claims at the factoid span where they occur (e.g., pregnancy-specific precautions, LGBTQ+ refugee rights, or labor eligibility), allowing users to see flagged spans and enabling system designers to configure thresholds and guardrails for identity-sensitive queries. Experiments on a proprietary enterprise dataset illustrate the effectiveness of MetaRAG for detecting hallucinations and enabling trustworthy deployment of RAG-based conversational agents. We also outline a topic-based deployment design that translates MetaRAG's span-level scores into identity-aware safeguards; this design is discussed but not evaluated in our experiments.

  • 3 authors
·
Sep 11

InvAD: Inversion-based Reconstruction-Free Anomaly Detection with Diffusion Models

Despite the remarkable success, recent reconstruction-based anomaly detection (AD) methods via diffusion modeling still involve fine-grained noise-strength tuning and computationally expensive multi-step denoising, leading to a fundamental tension between fidelity and efficiency. In this paper, we propose InvAD, a novel inversion-based anomaly detection approach ("detection via noising in latent space") that circumvents explicit reconstruction. Importantly, we contend that the limitations in prior reconstruction-based methods originate from the prevailing "detection via denoising in RGB space" paradigm. To address this, we model AD under a reconstruction-free formulation, which directly infers the final latent variable corresponding to the input image via DDIM inversion, and then measures the deviation based on the known prior distribution for anomaly scoring. Specifically, in approximating the original probability flow ODE using the Euler method, we enforce only a few inversion steps to noise the clean image to pursue inference efficiency. As the added noise is adaptively derived with the learned diffusion model, the original features for the clean testing image can still be leveraged to yield high detection accuracy. We perform extensive experiments and detailed analyses across four widely used industrial and medical AD benchmarks under the unsupervised unified setting to demonstrate the effectiveness of our model, achieving state-of-the-art AD performance and approximately 2x inference-time speedup without diffusion distillation.

  • 5 authors
·
Apr 8

Disentangled Causal Graph Learning for Online Unsupervised Root Cause Analysis

The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault. In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.

  • 5 authors
·
May 17, 2023

MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection

Monocular 3D object detection (Mono3D) holds noteworthy promise for autonomous driving applications owing to the cost-effectiveness and rich visual context of monocular camera sensors. However, depth ambiguity poses a significant challenge, as it requires extracting precise 3D scene geometry from a single image, resulting in suboptimal performance when transferring knowledge from a LiDAR-based teacher model to a camera-based student model. To address this issue, we introduce {\em Monocular Teaching Assistant Knowledge Distillation (MonoTAKD)} to enhance 3D perception in Mono3D. Our approach presents a robust camera-based teaching assistant model that effectively bridges the representation gap between different modalities for teacher and student models, addressing the challenge of inaccurate depth estimation. By defining 3D spatial cues as residual features that capture the differences between the teacher and the teaching assistant models, we leverage these cues into the student model, improving its 3D perception capabilities. Experimental results show that our MonoTAKD achieves state-of-the-art performance on the KITTI3D dataset. Additionally, we evaluate the performance on nuScenes and KITTI raw datasets to demonstrate the generalization of our model to multi-view 3D and unsupervised data settings. Our code will be available at https://github.com/hoiliu-0801/MonoTAKD.

  • 9 authors
·
Apr 7, 2024

RoLA: A Real-Time Online Lightweight Anomaly Detection System for Multivariate Time Series

A multivariate time series refers to observations of two or more variables taken from a device or a system simultaneously over time. There is an increasing need to monitor multivariate time series and detect anomalies in real time to ensure proper system operation and good service quality. It is also highly desirable to have a lightweight anomaly detection system that considers correlations between different variables, adapts to changes in the pattern of the multivariate time series, offers immediate responses, and provides supportive information regarding detection results based on unsupervised learning and online model training. In the past decade, many multivariate time series anomaly detection approaches have been introduced. However, they are unable to offer all the above-mentioned features. In this paper, we propose RoLA, a real-time online lightweight anomaly detection system for multivariate time series based on a divide-and-conquer strategy, parallel processing, and the majority rule. RoLA employs multiple lightweight anomaly detectors to monitor multivariate time series in parallel, determine the correlations between variables dynamically on the fly, and then jointly detect anomalies based on the majority rule in real time. To demonstrate the performance of RoLA, we conducted an experiment based on a public dataset provided by the FerryBox of the One Ocean Expedition. The results show that RoLA provides satisfactory detection accuracy and lightweight performance.

  • 2 authors
·
May 25, 2023

Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention

Humans possess a versatile mechanism for extracting structured representations of our visual world. When looking at an image, we can decompose the scene into entities and their parts as well as obtain the dependencies between them. To mimic such capability, we propose Visual Dependency Transformers (DependencyViT) that can induce visual dependencies without any labels. We achieve that with a novel neural operator called reversed attention that can naturally capture long-range visual dependencies between image patches. Specifically, we formulate it as a dependency graph where a child token in reversed attention is trained to attend to its parent tokens and send information following a normalized probability distribution rather than gathering information in conventional self-attention. With such a design, hierarchies naturally emerge from reversed attention layers, and a dependency tree is progressively induced from leaf nodes to the root node unsupervisedly. DependencyViT offers several appealing benefits. (i) Entities and their parts in an image are represented by different subtrees, enabling part partitioning from dependencies; (ii) Dynamic visual pooling is made possible. The leaf nodes which rarely send messages can be pruned without hindering the model performance, based on which we propose the lightweight DependencyViT-Lite to reduce the computational and memory footprints; (iii) DependencyViT works well on both self- and weakly-supervised pretraining paradigms on ImageNet, and demonstrates its effectiveness on 8 datasets and 5 tasks, such as unsupervised part and saliency segmentation, recognition, and detection.

  • 8 authors
·
Apr 6, 2023

Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection

Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.

  • 4 authors
·
Jul 24

Unsupervised Anomaly Detection in Medical Images with a Memory-augmented Multi-level Cross-attentional Masked Autoencoder

Unsupervised anomaly detection (UAD) aims to find anomalous images by optimising a detector using a training set that contains only normal images. UAD approaches can be based on reconstruction methods, self-supervised approaches, and Imagenet pre-trained models. Reconstruction methods, which detect anomalies from image reconstruction errors, are advantageous because they do not rely on the design of problem-specific pretext tasks needed by self-supervised approaches, and on the unreliable translation of models pre-trained from non-medical datasets. However, reconstruction methods may fail because they can have low reconstruction errors even for anomalous images. In this paper, we introduce a new reconstruction-based UAD approach that addresses this low-reconstruction error issue for anomalous images. Our UAD approach, the memory-augmented multi-level cross-attentional masked autoencoder (MemMC-MAE), is a transformer-based approach, consisting of a novel memory-augmented self-attention operator for the encoder and a new multi-level cross-attention operator for the decoder. MemMCMAE masks large parts of the input image during its reconstruction, reducing the risk that it will produce low reconstruction errors because anomalies are likely to be masked and cannot be reconstructed. However, when the anomaly is not masked, then the normal patterns stored in the encoder's memory combined with the decoder's multi-level cross attention will constrain the accurate reconstruction of the anomaly. We show that our method achieves SOTA anomaly detection and localisation on colonoscopy, pneumonia, and covid-19 chest x-ray datasets.

  • 10 authors
·
Mar 22, 2022

Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room

The fine-grained localization of clinicians in the operating room (OR) is a key component to design the new generation of OR support systems. Computer vision models for person pixel-based segmentation and body-keypoints detection are needed to better understand the clinical activities and the spatial layout of the OR. This is challenging, not only because OR images are very different from traditional vision datasets, but also because data and annotations are hard to collect and generate in the OR due to privacy concerns. To address these concerns, we first study how joint person pose estimation and instance segmentation can be performed on low resolutions images with downsampling factors from 1x to 12x. Second, to address the domain shift and the lack of annotations, we propose a novel unsupervised domain adaptation method, called AdaptOR, to adapt a model from an in-the-wild labeled source domain to a statistically different unlabeled target domain. We propose to exploit explicit geometric constraints on the different augmentations of the unlabeled target domain image to generate accurate pseudo labels and use these pseudo labels to train the model on high- and low-resolution OR images in a self-training framework. Furthermore, we propose disentangled feature normalization to handle the statistically different source and target domain data. Extensive experimental results with detailed ablation studies on the two OR datasets MVOR+ and TUM-OR-test show the effectiveness of our approach against strongly constructed baselines, especially on the low-resolution privacy-preserving OR images. Finally, we show the generality of our method as a semi-supervised learning (SSL) method on the large-scale COCO dataset, where we achieve comparable results with as few as 1% of labeled supervision against a model trained with 100% labeled supervision.

  • 3 authors
·
Aug 26, 2021

Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection

In unsupervised anomaly detection (UAD) research, while state-of-the-art models have reached a saturation point with extensive studies on public benchmark datasets, they adopt large-scale tailor-made neural networks (NN) for detection performance or pursued unified models for various tasks. Towards edge computing, it is necessary to develop a computationally efficient and scalable solution that avoids large-scale complex NNs. Motivated by this, we aim to optimize the UAD performance with minimal changes to NN settings. Thus, we revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses. The strength of the SOTA methods is a single deterministic masking approach that addresses the challenges of random multiple masking that is inference latency and output inconsistency. Nevertheless, the issue of failure to provide a mask to completely cover anomalous regions is a remaining weakness. To mitigate this issue, we propose Feature Attenuation of Defective Representation (FADeR) that only employs two MLP layers which attenuates feature information of anomaly reconstruction during decoding. By leveraging FADeR, features of unseen anomaly patterns are reconstructed into seen normal patterns, reducing false alarms. Experimental results demonstrate that FADeR achieves enhanced performance compared to similar-scale NNs. Furthermore, our approach exhibits scalability in performance enhancement when integrated with other single deterministic masking methods in a plug-and-play manner.

  • 5 authors
·
Jul 5, 2024

Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt

Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.

  • 1 authors
·
May 14 2

AUGCAL: Improving Sim2Real Adaptation by Uncertainty Calibration on Augmented Synthetic Images

Synthetic data (SIM) drawn from simulators have emerged as a popular alternative for training models where acquiring annotated real-world images is difficult. However, transferring models trained on synthetic images to real-world applications can be challenging due to appearance disparities. A commonly employed solution to counter this SIM2REAL gap is unsupervised domain adaptation, where models are trained using labeled SIM data and unlabeled REAL data. Mispredictions made by such SIM2REAL adapted models are often associated with miscalibration - stemming from overconfident predictions on real data. In this paper, we introduce AUGCAL, a simple training-time patch for unsupervised adaptation that improves SIM2REAL adapted models by - (1) reducing overall miscalibration, (2) reducing overconfidence in incorrect predictions and (3) improving confidence score reliability by better guiding misclassification detection - all while retaining or improving SIM2REAL performance. Given a base SIM2REAL adaptation algorithm, at training time, AUGCAL involves replacing vanilla SIM images with strongly augmented views (AUG intervention) and additionally optimizing for a training time calibration loss on augmented SIM predictions (CAL intervention). We motivate AUGCAL using a brief analytical justification of how to reduce miscalibration on unlabeled REAL data. Through our experiments, we empirically show the efficacy of AUGCAL across multiple adaptation methods, backbones, tasks and shifts.

  • 5 authors
·
Dec 10, 2023

NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models

Generative models have been very popular in the recent years for their image generation capabilities. GAN-based models are highly regarded for their disentangled latent space, which is a key feature contributing to their success in controlled image editing. On the other hand, diffusion models have emerged as powerful tools for generating high-quality images. However, the latent space of diffusion models is not as thoroughly explored or understood. Existing methods that aim to explore the latent space of diffusion models usually relies on text prompts to pinpoint specific semantics. However, this approach may be restrictive in areas such as art, fashion, or specialized fields like medicine, where suitable text prompts might not be available or easy to conceive thus limiting the scope of existing work. In this paper, we propose an unsupervised method to discover latent semantics in text-to-image diffusion models without relying on text prompts. Our method takes a small set of unlabeled images from specific domains, such as faces or cats, and a pre-trained diffusion model, and discovers diverse semantics in unsupervised fashion using a contrastive learning objective. Moreover, the learned directions can be applied simultaneously, either within the same domain (such as various types of facial edits) or across different domains (such as applying cat and face edits within the same image) without interfering with each other. Our extensive experiments show that our method achieves highly disentangled edits, outperforming existing approaches in both diffusion-based and GAN-based latent space editing methods.

  • 2 authors
·
Dec 8, 2023

UCoder: Unsupervised Code Generation by Internal Probing of Large Language Models

Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, their effectiveness heavily relies on supervised training with extensive labeled (e.g., question-answering pairs) or unlabeled datasets (e.g., code snippets), which are often expensive and difficult to obtain at scale. To address this limitation, this paper introduces a method IPC, an unsupervised framework that leverages Internal Probing of LLMs for Code generation without any external corpus, even unlabeled code snippets. We introduce the problem space probing, test understanding probing, solution space probing, and knowledge consolidation and reinforcement to probe the internal knowledge and confidence patterns existing in LLMs. Further, IPC identifies reliable code candidates through self-consistency mechanisms and representation-based quality estimation to train UCoder (coder with unsupervised learning). We validate the proposed approach across multiple code benchmarks, demonstrating that unsupervised methods can achieve competitive performance compared to supervised approaches while significantly reducing the dependency on labeled data and computational resources. Analytic experiments reveal that internal model states contain rich signals about code quality and correctness, and that properly harnessing these signals enables effective unsupervised learning for code generation tasks, opening new directions for training code LLMs in resource-constrained scenarios.

  • 9 authors
·
Dec 19 2

Time-Reversal Provides Unsupervised Feedback to LLMs

Large Language Models (LLMs) are typically trained to predict in the forward direction of time. However, recent works have shown that prompting these models to look back and critique their own generations can produce useful feedback. Motivated by this, we explore the question of whether LLMs can be empowered to think (predict and score) backwards to provide unsupervised feedback that complements forward LLMs. Towards this, we introduce Time Reversed Language Models (TRLMs), which can score and generate queries when conditioned on responses, effectively functioning in the reverse direction of time. Further, to effectively infer in the response to query direction, we pre-train and fine-tune a language model (TRLM-Ba) in the reverse token order from scratch. We show empirically (and theoretically in a stylized setting) that time-reversed models can indeed complement forward model predictions when used to score the query given response for re-ranking multiple forward generations. We obtain up to 5\% improvement on the widely used AlpacaEval Leaderboard over the competent baseline of best-of-N re-ranking using self log-perplexity scores. We further show that TRLM scoring outperforms conventional forward scoring of response given query, resulting in significant gains in applications such as citation generation and passage retrieval. We next leverage the generative ability of TRLM to augment or provide unsupervised feedback to input safety filters of LLMs, demonstrating a drastic reduction in false negative rate with negligible impact on false positive rates against several attacks published on the popular JailbreakBench leaderboard.

  • 6 authors
·
Dec 3, 2024