new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs

This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.

  • 8 authors
·
May 4, 2024

SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models

Despite the effectiveness of data selection for large language models (LLMs) during pretraining and instruction fine-tuning phases, improving data efficiency in supervised fine-tuning (SFT) for specialized domains poses significant challenges due to the complexity of fine-tuning data. To bridge this gap, we introduce an effective and scalable data selection method for SFT, SmallToLarge (S2L), which leverages training trajectories from small models to guide the data selection for larger models. We demonstrate through extensive experiments that S2L significantly improves data efficiency in SFT for mathematical problem-solving, reducing the training data to just 11% of the original MathInstruct dataset (Yue et al., 2023) to match full dataset performance while outperforming state-of-the-art data selection algorithms by an average of 4.7% across 6 in- and out-domain evaluation datasets. Remarkably, selecting only 50K data for SFT, S2L achieves a 32.7% accuracy on the most challenging MATH (Hendrycks et al., 2021) benchmark, improving Phi-2 (Li et al., 2023b) by 16.6%. In clinical text summarization on the MIMIC-III dataset (Johnson et al., 2016), S2L again outperforms training on the full dataset using only 50% of the data. Notably, S2L can perform data selection using a reference model 40x smaller than the target model, proportionally reducing the cost of data selection.

  • 4 authors
·
Mar 12, 2024

Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities

Selecting appropriate training data is crucial for effective instruction fine-tuning of large language models (LLMs), which aims to (1) elicit strong capabilities, and (2) achieve balanced performance across a diverse range of tasks. Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2). Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others. As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves. As a remedy, we propose BIDS, a Balanced and Influential Data Selection algorithm. BIDS first normalizes influence scores of the training data, and then iteratively balances data selection by choosing the training example with the highest influence on the most underrepresented task. Experiments with both Llama-3 and Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that BIDS consistently outperforms both state-of-the-art influence-based algorithms and other non-influence-based selection frameworks. Surprisingly, training on a 15% subset selected by BIDS can even outperform full-dataset training with a much more balanced performance. Our analysis further highlights the importance of both instance-level normalization and iterative optimization of selected data for balanced learning of diverse capabilities.

  • 4 authors
·
Jan 21

Benchmarking Neural Network Training Algorithms

Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.

  • 25 authors
·
Jun 12, 2023 1

Unraveling the Key Components of OOD Generalization via Diversification

Supervised learning datasets may contain multiple cues that explain the training set equally well, i.e., learning any of them would lead to the correct predictions on the training data. However, many of them can be spurious, i.e., lose their predictive power under a distribution shift and consequently fail to generalize to out-of-distribution (OOD) data. Recently developed "diversification" methods (Lee et al., 2023; Pagliardini et al., 2023) approach this problem by finding multiple diverse hypotheses that rely on different features. This paper aims to study this class of methods and identify the key components contributing to their OOD generalization abilities. We show that (1) diversification methods are highly sensitive to the distribution of the unlabeled data used for diversification and can underperform significantly when away from a method-specific sweet spot. (2) Diversification alone is insufficient for OOD generalization. The choice of the used learning algorithm, e.g., the model's architecture and pretraining, is crucial. In standard experiments (classification on Waterbirds and Office-Home datasets), using the second-best choice leads to an up to 20\% absolute drop in accuracy. (3) The optimal choice of learning algorithm depends on the unlabeled data and vice versa i.e. they are co-dependent. (4) Finally, we show that, in practice, the above pitfalls cannot be alleviated by increasing the number of diverse hypotheses, the major feature of diversification methods. These findings provide a clearer understanding of the critical design factors influencing the OOD generalization abilities of diversification methods. They can guide practitioners in how to use the existing methods best and guide researchers in developing new, better ones.

  • 6 authors
·
Dec 26, 2023

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning

High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.

  • 6 authors
·
Dec 1, 2024

Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets

Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.

  • 4 authors
·
May 11, 2023

ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization

Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.

  • 5 authors
·
Aug 15

A Benchmark Dataset for Tornado Detection and Prediction using Full-Resolution Polarimetric Weather Radar Data

Weather radar is the primary tool used by forecasters to detect and warn for tornadoes in near-real time. In order to assist forecasters in warning the public, several algorithms have been developed to automatically detect tornadic signatures in weather radar observations. Recently, Machine Learning (ML) algorithms, which learn directly from large amounts of labeled data, have been shown to be highly effective for this purpose. Since tornadoes are extremely rare events within the corpus of all available radar observations, the selection and design of training datasets for ML applications is critical for the performance, robustness, and ultimate acceptance of ML algorithms. This study introduces a new benchmark dataset, TorNet to support development of ML algorithms in tornado detection and prediction. TorNet contains full-resolution, polarimetric, Level-II WSR-88D data sampled from 10 years of reported storm events. A number of ML baselines for tornado detection are developed and compared, including a novel deep learning (DL) architecture capable of processing raw radar imagery without the need for manual feature extraction required for existing ML algorithms. Despite not benefiting from manual feature engineering or other preprocessing, the DL model shows increased detection performance compared to non-DL and operational baselines. The TorNet dataset, as well as source code and model weights of the DL baseline trained in this work, are made freely available.

  • 6 authors
·
Jan 26, 2024

An Integrated Optimization and Machine Learning Models to Predict the Admission Status of Emergency Patients

This work proposes a framework for optimizing machine learning algorithms. The practicality of the framework is illustrated using an important case study from the healthcare domain, which is predicting the admission status of emergency department (ED) patients (e.g., admitted vs. discharged) using patient data at the time of triage. The proposed framework can mitigate the crowding problem by proactively planning the patient boarding process. A large retrospective dataset of patient records is obtained from the electronic health record database of all ED visits over three years from three major locations of a healthcare provider in the Midwest of the US. Three machine learning algorithms are proposed: T-XGB, T-ADAB, and T-MLP. T-XGB integrates extreme gradient boosting (XGB) and Tabu Search (TS), T-ADAB integrates Adaboost and TS, and T-MLP integrates multi-layer perceptron (MLP) and TS. The proposed algorithms are compared with the traditional algorithms: XGB, ADAB, and MLP, in which their parameters are tunned using grid search. The three proposed algorithms and the original ones are trained and tested using nine data groups that are obtained from different feature selection methods. In other words, 54 models are developed. Performance was evaluated using five measures: Area under the curve (AUC), sensitivity, specificity, F1, and accuracy. The results show that the newly proposed algorithms resulted in high AUC and outperformed the traditional algorithms. The T-ADAB performs the best among the newly developed algorithms. The AUC, sensitivity, specificity, F1, and accuracy of the best model are 95.4%, 99.3%, 91.4%, 95.2%, 97.2%, respectively.

  • 4 authors
·
Feb 18, 2022

Value Drifts: Tracing Value Alignment During LLM Post-Training

As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.

Learning from the Best, Differently: A Diversity-Driven Rethinking on Data Selection

High-quality pre-training data is crutial for large language models, where quality captures factual reliability and semantic value, and diversity ensures broad coverage and distributional heterogeneity. Existing approaches typically rely on single or multiple-dimensional score-based selection. However, directly selecting top-scored data often degrades performance, and sampling from a broader range is required to recover results. The above non-monotonicity between dataset scores and downstream benchmark results reveals a fundamental bias: score-based methods collapse correlated dimensions, causing top-scored data to appear high-quality while systematically overlooking diversity. We argue that ensuring diversity requires decomposing correlated metrics into orthogonal feature dimensions, from which the top-scored data can be directly selected. Therefore, we proposed the Orthogonal Diversity-Aware Selection (ODiS) algorithm, which preserves both quality and diversity during data selection. First, ODiS evaluates data from multiple dimensions, covering language quality, knowledge quality, and comprehension difficulty. The multi-dimensional scores are then decorrelated via Principal Component Analysis (PCA), yielding orthogonal evaluation dimensions. For each dimension, a Roberta-based scorer is trained to regress the data onto PCA-projected scores, enabling scalable inference on large corpora. Finally, ODiS constructs the training dataset by selecting top-scored data within each orthogonal dimension, thereby ensuring both quality and diversity. Empirical results show that ODiS-selected data exhibit less than 2\% inter-dimension overlap, confirming orthogonality between dimensions. More importantly, models trained with ODiS-selected data significantly outperform other baselines on downstream benchmarks, highlighting the necessity of orthogonal, diversity-aware data selection for LLMs.

  • 9 authors
·
Oct 20 3

Data Selection for Language Models via Importance Resampling

Selecting a suitable training dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this data selection problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution, given some unlabeled target samples. Due to the large scale and dimensionality of the raw text data, existing methods use simple heuristics to select data that are similar to a high-quality reference corpus (e.g., Wikipedia), or leverage experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. Crucially, we work in a reduced feature space to make importance weight estimation tractable over the space of text. To determine an appropriate feature space, we first show that KL reduction, a data metric that measures the proximity between selected data and the target in a feature space, has high correlation with average accuracy on 8 downstream tasks (r=0.89) when computed with simple n-gram features. From this observation, we present Data Selection with Importance Resampling (DSIR), an efficient and scalable algorithm that estimates importance weights in a reduced feature space (e.g., n-gram features in our instantiation) and selects data with importance resampling according to these weights. When training general-domain models (target is Wikipedia + books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark. When performing continued pretraining towards a specific domain, DSIR performs comparably to expert curated data across 8 target distributions.

  • 4 authors
·
Feb 6, 2023

LESS: Selecting Influential Data for Targeted Instruction Tuning

Instruction tuning has unlocked powerful capabilities in large language models (LLMs), effectively using combined datasets to develop generalpurpose chatbots. However, real-world applications often require a specialized suite of skills (e.g., reasoning). The challenge lies in identifying the most relevant data from these extensive datasets to effectively develop specific capabilities, a setting we frame as targeted instruction tuning. We propose LESS, an optimizer-aware and practically efficient algorithm to effectively estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection. Crucially, LESS adapts existing influence formulations to work with the Adam optimizer and variable-length instruction data. LESS first constructs a highly reusable and transferable gradient datastore with low-dimensional gradient features and then selects examples based on their similarity to few-shot examples embodying a specific capability. Experiments show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks. Furthermore, the selected data is highly transferable: smaller models can be leveraged to select useful data for larger models and models from different families. Our qualitative analysis shows that our method goes beyond surface form cues to identify data that exemplifies the necessary reasoning skills for the intended downstream application.

  • 5 authors
·
Feb 6, 2024 2

IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models

In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influence-driven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection. The project page is available at https://skzhang1.github.io/IDEAL/.

  • 7 authors
·
Oct 16, 2023

Scaling Towards the Information Boundary of Instruction Set: InfinityInstruct-Subject Technical Report

Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical labeling system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct InfinityInstruct-Subject, a high-quality dataset containing ~1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that InfinityInstruct-Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.

  • 4 authors
·
Jul 9

Causal-Copilot: An Autonomous Causal Analysis Agent

Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.

  • 13 authors
·
Apr 17 2

A Survey on Data Selection for Language Models

A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.

  • 14 authors
·
Feb 26, 2024

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

  • 55 authors
·
Feb 18

PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs

Selecting a sample generation scheme from multiple prompt-based generative models, including large language models (LLMs) and prompt-guided image and video generation models, is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed PAK-UCB algorithm addresses a contextual bandit (CB) setting with shared context variables across the arms, utilizing the generated data to update kernel-based functions that predict the score of each model available for unseen text prompts. Additionally, we leverage random Fourier features (RFF) to accelerate the online learning process of PAK-UCB. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show that RFF-UCB performs successfully in identifying the best generation model across different sample types. The code is available at: github.com/yannxiaoyanhu/dgm-online-select.

  • 3 authors
·
Oct 17, 2024

Large-Scale Data Selection for Instruction Tuning

Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.

  • 5 authors
·
Mar 3 2

Hierarchical Dataset Selection for High-Quality Data Sharing

The success of modern machine learning hinges on access to high-quality training data. In many real-world scenarios, such as acquiring data from public repositories or sharing across institutions, data is naturally organized into discrete datasets that vary in relevance, quality, and utility. Selecting which repositories or institutions to search for useful datasets, and which datasets to incorporate into model training are therefore critical decisions, yet most existing methods select individual samples and treat all data as equally relevant, ignoring differences between datasets and their sources. In this work, we formalize the task of dataset selection: selecting entire datasets from a large, heterogeneous pool to improve downstream performance under resource constraints. We propose Dataset Selection via Hierarchies (DaSH), a dataset selection method that models utility at both dataset and group (e.g., collections, institutions) levels, enabling efficient generalization from limited observations. Across two public benchmarks (Digit-Five and DomainNet), DaSH outperforms state-of-the-art data selection baselines by up to 26.2% in accuracy, while requiring significantly fewer exploration steps. Ablations show DaSH is robust to low-resource settings and lack of relevant datasets, making it suitable for scalable and adaptive dataset selection in practical multi-source learning workflows.

Harnessing Diversity for Important Data Selection in Pretraining Large Language Models

Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated iHVP computation methods for attention layers, enhancing our ability to evaluate the influence of data, i.e., its quality. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.

  • 13 authors
·
Sep 25, 2024

MATES: Model-Aware Data Selection for Efficient Pretraining with Data Influence Models

Pretraining data selection has the potential to improve language model pretraining efficiency by utilizing higher-quality data from massive web data corpora. Current data selection methods, which rely on either hand-crafted rules or larger reference models, are conducted statically and do not capture the evolving data preferences during pretraining. In this paper, we introduce model-aware data selection with data influence models (MATES), where a data influence model continuously adapts to the evolving data preferences of the pretraining model and then selects the data most effective for the current pretraining progress. Specifically, we fine-tune a small data influence model to approximate oracle data preference signals collected by locally probing the pretraining model and to select data accordingly for the next pretraining stage. Experiments on Pythia and the C4 dataset demonstrate that MATES significantly outperforms random data selection on extensive downstream tasks in both zero- and few-shot settings. It doubles the gains achieved by recent data selection approaches that leverage larger reference models and reduces the total FLOPs required to reach certain performances by half. Further analysis validates the ever-changing data preferences of pretraining models and the effectiveness of our data influence models to capture them. Our code is open-sourced at https://github.com/cxcscmu/MATES.

  • 3 authors
·
Jun 10, 2024

Predictive Data Selection: The Data That Predicts Is the Data That Teaches

Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmark (Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning. To leverage this insight, we introduce data selection based on data's Predictive strength (Preselect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpasses the performance of a vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect.

  • 8 authors
·
Mar 2 2

Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models

Instruction tuning plays a critical role in aligning large language models (LLMs) with human preference. Despite the vast amount of open instruction datasets, naively training a LLM on all existing instructions may not be optimal and practical. To pinpoint the most beneficial datapoints, data assessment and selection methods have been proposed in the fields of natural language processing (NLP) and deep learning. However, under the context of instruction tuning, there still exists a gap in knowledge on what kind of data evaluation metrics can be employed and how they can be integrated into the selection mechanism. To bridge this gap, we present a comprehensive review on existing literature of data assessment and selection especially for instruction tuning of LLMs. We systematically categorize all applicable methods into quality-based, diversity-based, and importance-based ones where a unified, fine-grained taxonomy is structured. For each category, representative methods are elaborated to describe the landscape of relevant research. In addition, comparison between latest methods is conducted on their officially reported results to provide in-depth discussions on their limitations. Finally, we summarize the open challenges and propose the promosing avenues for future studies. All related contents are available at https://github.com/yuleiqin/fantastic-data-engineering.

  • 10 authors
·
Aug 4, 2024 4

Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm

Selecting high-quality and diverse training samples from extensive datasets plays a crucial role in reducing training overhead and enhancing the performance of Large Language Models (LLMs). However, existing studies fall short in assessing the overall value of selected data, focusing primarily on individual quality, and struggle to strike an effective balance between ensuring diversity and minimizing data point traversals. Therefore, this paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples when incorporated into the subset. Thanks to the advanced language understanding capabilities of LLMs, we utilize LLMs to evaluate the value of each option during the selection process. Furthermore, we design a greedy sampling process where samples are incrementally added to the subset, thereby improving efficiency by eliminating the need for exhaustive traversal of the entire dataset with the limited budget. Extensive experiments demonstrate that selected data from our method not only surpass the performance of the full dataset but also achieves competitive results with state-of-the-art (SOTA) studies, while requiring fewer selections. Moreover, we validate our approach on a larger medical dataset, highlighting its practical applicability in real-world applications.

  • 8 authors
·
Mar 4

MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space

Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to Maximize the Information Gain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.

  • 6 authors
·
Apr 18 3

Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations

There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.

  • 4 authors
·
Mar 23, 2024

Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement

Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities. As instruction datasets proliferate, selecting optimal data for effective training becomes increasingly important. This work addresses the question: How can we determine the optimal subset of data for effective training? While existing research often emphasizes local criteria like instance quality for subset selection, we argue that a global approach focused on data diversity is more critical. Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset. We propose an iterative refinement method inspired by active learning techniques to resample instances from clusters, reassessing each cluster's importance and sampling weight in every training iteration. This approach reduces the effect of outliers and automatically filters out clusters containing low-quality data. Through extensive evaluation across natural language reasoning, general world knowledge, code and math reasoning tasks, and by fine-tuning models from various families, we observe consistent improvements, achieving a 7% increase over random selection and a 3.8% improvement over state-of-the-art sampling methods. Our work highlights the significance of diversity-first sampling when finetuning LLMs to enhance performance across a broad array of evaluation tasks. Our code is available at https://github.com/for-ai/iterative-data-selection.

  • 4 authors
·
Sep 17, 2024

Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning

The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.

  • 1 authors
·
Nov 13, 2018

Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models

The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose four dimensions to evaluate data quality: professionalism, readability, reasoning, and cleanliness. We further introduce Meta-rater,a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with advantages that scale to models as large as 7.2B parameters. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability. To advance future research, we release scripts, data, and models at https://github.com/opendatalab/Meta-rater.

  • 10 authors
·
Apr 19

Language Models Improve When Pretraining Data Matches Target Tasks

Every data selection method inherently has a target. In practice, these targets often emerge implicitly through benchmark-driven iteration: researchers develop selection strategies, train models, measure benchmark performance, then refine accordingly. This raises a natural question: what happens when we make this optimization explicit? To explore this, we propose benchmark-targeted ranking (BETR), a simple method that selects pretraining documents based on similarity to benchmark training examples. BETR embeds benchmark examples and a sample of pretraining documents in a shared space, scores this sample by similarity to benchmarks, then trains a lightweight classifier to predict these scores for the full corpus. We compare data selection methods by training over 500 models spanning 10^{19} to 10^{22} FLOPs and fitting scaling laws to them. From this, we find that simply aligning pretraining data to evaluation benchmarks using BETR achieves a 2.1x compute multiplier over DCLM-Baseline (4.7x over unfiltered data) and improves performance on 9 out of 10 tasks across all scales. BETR also generalizes well: when targeting a diverse set of benchmarks disjoint from our evaluation suite, it still matches or outperforms baselines. Our scaling analysis further reveals a clear trend: larger models require less aggressive filtering. Overall, our findings show that directly matching pretraining data to target tasks precisely shapes model capabilities and highlight that optimal selection strategies must adapt to model scale.

  • 10 authors
·
Jul 16

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

  • 11 authors
·
Apr 7, 2023

Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources

Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.

  • 4 authors
·
Jul 5, 2023

T-SHIRT: Token-Selective Hierarchical Data Selection for Instruction Tuning

Instruction tuning is essential for Large Language Models (LLMs) to effectively follow user instructions. To improve training efficiency and reduce data redundancy, recent works use LLM-based scoring functions, e.g., Instruction-Following Difficulty (IFD), to select high-quality instruction-tuning data with scores above a threshold. While these data selection methods often lead to models that can match or even exceed the performance of models trained on the full datasets, we identify two key limitations: (i) they assess quality at the sample level, ignoring token-level informativeness; and (ii) they overlook the robustness of the scoring method, often selecting a sample due to superficial lexical features instead of its true quality. In this work, we propose Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT), a novel data selection framework that introduces a new scoring method to include only informative tokens in quality evaluation and also promotes robust and reliable samples whose neighbors also show high quality with less local inconsistencies. We demonstrate that models instruction-tuned on a curated dataset (only 5% of the original size) using T-SHIRT can outperform those trained on the entire large-scale dataset by up to 5.48 points on average across eight benchmarks. Across various LLMs and training set scales, our method consistently surpasses existing state-of-the-art data selection techniques, while also remaining both cost-effective and highly efficient. For instance, by using GPT-2 for score computation, we are able to process a dataset of 52k samples in 40 minutes on a single GPU. Our code is available at https://github.com/Dynamite321/T-SHIRT.

  • 3 authors
·
Jun 2

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

  • 3 authors
·
Oct 29, 2020

MeSH Suggester: A Library and System for MeSH Term Suggestion for Systematic Review Boolean Query Construction

Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.

  • 3 authors
·
Dec 18, 2022

MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models

High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a MAthematical data Selection framework using the Skill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.

  • 7 authors
·
Mar 19

D3: Diversity, Difficulty, and Dependability-Aware Data Selection for Sample-Efficient LLM Instruction Tuning

Recent advancements in instruction tuning for large language models (LLMs) suggest that a small, high-quality dataset can significantly equip LLMs with instruction-following capabilities, outperforming large datasets often burdened by quality and redundancy issues. However, the challenge lies in automatically identifying valuable subsets from large datasets to boost both the effectiveness and efficiency of instruction tuning. In this paper, we first establish data selection criteria based on three distinct aspects of data value: diversity, difficulty, and dependability, and then propose the D3 method comprising two key steps of scoring and selection. Specifically, in the scoring step, we define the diversity function to measure sample distinctiveness and introduce the uncertainty-based prediction difficulty to evaluate sample difficulty by mitigating the interference of context-oriented generation diversity. Additionally, we integrate an external LLM for dependability assessment. In the selection step, we formulate the D3 weighted coreset objective, which jointly optimizes three aspects of data value to solve for the most valuable subset. The two steps of D3 can iterate multiple rounds, incorporating feedback to refine the selection focus adaptively. Experiments on both public datasets and the real-world Taobao Live application demonstrate the effectiveness of D3 in endowing LLMs with competitive or even superior instruction-following capabilities using less than 10\% of the entire dataset.

  • 8 authors
·
Mar 14

Adapt-infty: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection

Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of lifelong adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. To address this, we reframe the problem of Lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. Based on empirical analyses that show that selecting the best data subset using a static importance measure is often ineffective for multi-task datasets with evolving distributions, we propose Adapt-infty, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, which would result in excessive computation, we further introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. Training with samples selected by Adapt-infty alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original datasets.

  • 4 authors
·
Oct 14, 2024

What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning

Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.

  • 5 authors
·
Dec 25, 2023 1

Task-Specific Data Selection for Instruction Tuning via Monosemantic Neuronal Activations

Instruction tuning improves the ability of large language models (LLMs) to follow diverse human instructions, but achieving strong performance on specific target tasks remains challenging. A critical bottleneck is selecting the most relevant data to maximize task-specific performance. Existing data selection approaches include unstable influence-based methods and more stable distribution alignment methods, the latter of which critically rely on the underlying sample representation. In practice, most distribution alignment methods, from shallow features (e.g., BM25) to neural embeddings (e.g., BGE, LLM2Vec), may fail to capture how the model internally processes samples. To bridge this gap, we adopt a model-centric strategy in which each sample is represented by its neuronal activation pattern in the model, directly reflecting internal computation. However, directly using raw neuron activations leads to spurious similarity between unrelated samples due to neuron polysemanticity, where a single neuron may respond to multiple, unrelated concepts. To address this, we employ sparse autoencoders to disentangle polysemantic activations into sparse, monosemantic representations, and introduce a dedicated similarity metric for this space to better identify task-relevant data. Comprehensive experiments across multiple instruction datasets, models, tasks, and selection ratios show that our approach consistently outperforms existing data selection baselines in both stability and task-specific performance.

  • 9 authors
·
Mar 19

CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training

Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4

  • 5 authors
·
Jun 15, 2024 1

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.

  • 4 authors
·
Jan 12, 2024

SELECT: A Large-Scale Benchmark of Data Curation Strategies for Image Classification

Data curation is the problem of how to collect and organize samples into a dataset that supports efficient learning. Despite the centrality of the task, little work has been devoted towards a large-scale, systematic comparison of various curation methods. In this work, we take steps towards a formal evaluation of data curation strategies and introduce SELECT, the first large-scale benchmark of curation strategies for image classification. In order to generate baseline methods for the SELECT benchmark, we create a new dataset, ImageNet++, which constitutes the largest superset of ImageNet-1K to date. Our dataset extends ImageNet with 5 new training-data shifts, each approximately the size of ImageNet-1K itself, and each assembled using a distinct curation strategy. We evaluate our data curation baselines in two ways: (i) using each training-data shift to train identical image classification models from scratch (ii) using the data itself to fit a pretrained self-supervised representation. Our findings show interesting trends, particularly pertaining to recent methods for data curation such as synthetic data generation and lookup based on CLIP embeddings. We show that although these strategies are highly competitive for certain tasks, the curation strategy used to assemble the original ImageNet-1K dataset remains the gold standard. We anticipate that our benchmark can illuminate the path for new methods to further reduce the gap. We release our checkpoints, code, documentation, and a link to our dataset at https://github.com/jimmyxu123/SELECT.

  • 6 authors
·
Oct 7, 2024 2