- Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revealed here can be generalized to larger systems and benefit future innovation of efficient molecular light-harvesting materials. 4 authors · Jul 22, 2013
- Polariton Enhanced Free Charge Carrier Generation in Donor-Acceptor Cavity Systems by a Second-Hybridization Mechanism Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves that polaritons with proper energy levels allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation. 4 authors · Oct 3, 2022
- Quantum thermophoresis Thermophoresis is the migration of a particle due to a thermal gradient. Here, we theoretically uncover the quantum version of thermophoresis. As a proof of principle, we analytically find a thermophoretic force on a trapped quantum particle having three energy levels in Lambda configuration. We then consider a model of N sites, each coupled to its first neighbors and subjected to a local bath at a certain temperature, so as to show numerically how quantum thermophoresis behaves with increasing delocalization of the quantum particle. We discuss how negative thermophoresis and the Dufour effect appear in the quantum regime. 3 authors · Apr 18, 2024