- Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator Nonlinear quantum photonics serves as a cornerstone in photonic quantum technologies, such as universal quantum computing and quantum communications. The emergence of integrated photonics platform not only offers the advantage of large-scale manufacturing but also provides a variety of engineering methods. Given the complexity of integrated photonics engineering, a comprehensive simulation framework is essential to fully harness the potential of the platform. In this context, we introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors. Furthermore, utilizing the framework, we have developed a device scheme, chip-scale temporal walk-off compensation, that is useful for various quantum information processing tasks. Applying the simulation framework, we show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power. 6 authors · Feb 29, 2024
- Quantum limit for two-dimensional resolution of two incoherent optical point sources We obtain the multiple-parameter quantum Cram\'er-Rao bound for estimating the transverse Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method using fiber coupling can in principle attain the bound regardless of the distance between the two sources. 3 authors · Jun 2, 2016
- Indirect measurement of atomic magneto-optical rotation via Hilbert transform The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime. 4 authors · Mar 1, 2024
- The Virtual Quantum Optics Laboratory We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 5 authors · May 15, 2021