new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

  • 7 authors
·
Oct 15, 2024

Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers

In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available at https://github.com/danaroth83/irca.

  • 5 authors
·
Mar 24, 2023

Semi-Parametric Neural Image Synthesis

Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.

  • 5 authors
·
Apr 25, 2022

EverLight: Indoor-Outdoor Editable HDR Lighting Estimation

Because of the diversity in lighting environments, existing illumination estimation techniques have been designed explicitly on indoor or outdoor environments. Methods have focused specifically on capturing accurate energy (e.g., through parametric lighting models), which emphasizes shading and strong cast shadows; or producing plausible texture (e.g., with GANs), which prioritizes plausible reflections. Approaches which provide editable lighting capabilities have been proposed, but these tend to be with simplified lighting models, offering limited realism. In this work, we propose to bridge the gap between these recent trends in the literature, and propose a method which combines a parametric light model with 360{\deg} panoramas, ready to use as HDRI in rendering engines. We leverage recent advances in GAN-based LDR panorama extrapolation from a regular image, which we extend to HDR using parametric spherical gaussians. To achieve this, we introduce a novel lighting co-modulation method that injects lighting-related features throughout the generator, tightly coupling the original or edited scene illumination within the panorama generation process. In our representation, users can easily edit light direction, intensity, number, etc. to impact shading while providing rich, complex reflections while seamlessly blending with the edits. Furthermore, our method encompasses indoor and outdoor environments, demonstrating state-of-the-art results even when compared to domain-specific methods.

  • 4 authors
·
Apr 25, 2023

Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry

Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration.

  • 11 authors
·
Jan 7

Image generation with shortest path diffusion

The field of image generation has made significant progress thanks to the introduction of Diffusion Models, which learn to progressively reverse a given image corruption. Recently, a few studies introduced alternative ways of corrupting images in Diffusion Models, with an emphasis on blurring. However, these studies are purely empirical and it remains unclear what is the optimal procedure for corrupting an image. In this work, we hypothesize that the optimal procedure minimizes the length of the path taken when corrupting an image towards a given final state. We propose the Fisher metric for the path length, measured in the space of probability distributions. We compute the shortest path according to this metric, and we show that it corresponds to a combination of image sharpening, rather than blurring, and noise deblurring. While the corruption was chosen arbitrarily in previous work, our Shortest Path Diffusion (SPD) determines uniquely the entire spatiotemporal structure of the corruption. We show that SPD improves on strong baselines without any hyperparameter tuning, and outperforms all previous Diffusion Models based on image blurring. Furthermore, any small deviation from the shortest path leads to worse performance, suggesting that SPD provides the optimal procedure to corrupt images. Our work sheds new light on observations made in recent works and provides a new approach to improve diffusion models on images and other types of data.

  • 8 authors
·
Jun 1, 2023

Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting

We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.

  • 3 authors
·
Aug 14, 2024

Image Inpainting via Tractable Steering of Diffusion Models

Diffusion models are the current state of the art for generating photorealistic images. Controlling the sampling process for constrained image generation tasks such as inpainting, however, remains challenging since exact conditioning on such constraints is intractable. While existing methods use various techniques to approximate the constrained posterior, this paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior, and to leverage this signal to steer the denoising process of diffusion models. Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs). Building upon prior advances, we further scale up PCs and make them capable of guiding the image generation process of diffusion models. Empirical results suggest that our approach can consistently improve the overall quality and semantic coherence of inpainted images across three natural image datasets (i.e., CelebA-HQ, ImageNet, and LSUN) with only ~10% additional computational overhead brought by the TPM. Further, with the help of an image encoder and decoder, our method can readily accept semantic constraints on specific regions of the image, which opens up the potential for more controlled image generation tasks. In addition to proposing a new framework for constrained image generation, this paper highlights the benefit of more tractable models and motivates the development of expressive TPMs.

  • 3 authors
·
Nov 28, 2023

Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive, and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform calibration automatically. More precisely, we consider the setup y = A(d) x + epsilon where only partial information about the sensing matrix A(d) is known and where A(d) linearly depends on d. The goal is to estimate the calibration parameter d (resolve the uncertainty in the sensing process) and the signal/object of interests x simultaneously. For three different models of practical relevance, we show how such a bilinear inverse problem, including blind deconvolution as an important example, can be solved via a simple linear least squares approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus potentially allowing for real-time deployment. We also present a variation of the least squares approach, which leads to a~spectral method, where the solution to the bilinear inverse problem can be found by computing the singular vector associated with the smallest singular value of a certain matrix derived from the bilinear system. Explicit theoretical guarantees and stability theory are derived for both techniques; and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

  • 2 authors
·
Nov 13, 2016

LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction

Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.

  • 6 authors
·
May 3

Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis

Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.

  • 9 authors
·
May 29

Diffusion Models Generate Images Like Painters: an Analytical Theory of Outline First, Details Later

How do diffusion generative models convert pure noise into meaningful images? In a variety of pretrained diffusion models (including conditional latent space models like Stable Diffusion), we observe that the reverse diffusion process that underlies image generation has the following properties: (i) individual trajectories tend to be low-dimensional and resemble 2D `rotations'; (ii) high-variance scene features like layout tend to emerge earlier, while low-variance details tend to emerge later; and (iii) early perturbations tend to have a greater impact on image content than later perturbations. To understand these phenomena, we derive and study a closed-form solution to the probability flow ODE for a Gaussian distribution, which shows that the reverse diffusion state rotates towards a gradually-specified target on the image manifold. It also shows that generation involves first committing to an outline, and then to finer and finer details. We find that this solution accurately describes the initial phase of image generation for pretrained models, and can in principle be used to make image generation more efficient by skipping reverse diffusion steps. Finally, we use our solution to characterize the image manifold in Stable Diffusion. Our viewpoint reveals an unexpected similarity between generation by GANs and diffusion and provides a conceptual link between diffusion and image retrieval.

  • 2 authors
·
Mar 4, 2023

Multiscale Structure Guided Diffusion for Image Deblurring

Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring, formulated as an image-conditioned generation process that maps Gaussian noise to the high-quality image, conditioned on the blurry input. Image-conditioned DPMs (icDPMs) have shown more realistic results than regression-based methods when trained on pairwise in-domain data. However, their robustness in restoring images is unclear when presented with out-of-domain images as they do not impose specific degradation models or intermediate constraints. To this end, we introduce a simple yet effective multiscale structure guidance as an implicit bias that informs the icDPM about the coarse structure of the sharp image at the intermediate layers. This guided formulation leads to a significant improvement of the deblurring results, particularly on unseen domain. The guidance is extracted from the latent space of a regression network trained to predict the clean-sharp target at multiple lower resolutions, thus maintaining the most salient sharp structures. With both the blurry input and multiscale guidance, the icDPM model can better understand the blur and recover the clean image. We evaluate a single-dataset trained model on diverse datasets and demonstrate more robust deblurring results with fewer artifacts on unseen data. Our method outperforms existing baselines, achieving state-of-the-art perceptual quality while keeping competitive distortion metrics.

  • 5 authors
·
Dec 4, 2022

FilterPrompt: Guiding Image Transfer in Diffusion Models

In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.

  • 6 authors
·
Apr 20, 2024

Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance

Recent advances in image generation, particularly via diffusion models, have led to impressive improvements in image synthesis quality. Despite this, diffusion models are still challenged by model-induced artifacts and limited stability in image fidelity. In this work, we hypothesize that the primary cause of this issue is the improper resampling operation that introduces aliasing in the diffusion model and a careful alias-free resampling dictated by image processing theory can improve the model's performance in image synthesis. We propose the integration of alias-free resampling layers into the UNet architecture of diffusion models without adding extra trainable parameters, thereby maintaining computational efficiency. We then assess whether these theory-driven modifications enhance image quality and rotational equivariance. Our experimental results on benchmark datasets, including CIFAR-10, MNIST, and MNIST-M, reveal consistent gains in image quality, particularly in terms of FID and KID scores. Furthermore, we propose a modified diffusion process that enables user-controlled rotation of generated images without requiring additional training. Our findings highlight the potential of theory-driven enhancements such as alias-free resampling in generative models to improve image quality while maintaining model efficiency and pioneer future research directions to incorporate them into video-generating diffusion models, enabling deeper exploration of the applications of alias-free resampling in generative modeling.

  • 1 authors
·
Nov 13, 2024

MaGRITTe: Manipulative and Generative 3D Realization from Image, Topview and Text

The generation of 3D scenes from user-specified conditions offers a promising avenue for alleviating the production burden in 3D applications. Previous studies required significant effort to realize the desired scene, owing to limited control conditions. We propose a method for controlling and generating 3D scenes under multimodal conditions using partial images, layout information represented in the top view, and text prompts. Combining these conditions to generate a 3D scene involves the following significant difficulties: (1) the creation of large datasets, (2) reflection on the interaction of multimodal conditions, and (3) domain dependence of the layout conditions. We decompose the process of 3D scene generation into 2D image generation from the given conditions and 3D scene generation from 2D images. 2D image generation is achieved by fine-tuning a pretrained text-to-image model with a small artificial dataset of partial images and layouts, and 3D scene generation is achieved by layout-conditioned depth estimation and neural radiance fields (NeRF), thereby avoiding the creation of large datasets. The use of a common representation of spatial information using 360-degree images allows for the consideration of multimodal condition interactions and reduces the domain dependence of the layout control. The experimental results qualitatively and quantitatively demonstrated that the proposed method can generate 3D scenes in diverse domains, from indoor to outdoor, according to multimodal conditions.

  • 2 authors
·
Mar 30, 2024 11

Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration

Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.

  • 3 authors
·
Oct 1, 2024 3

Hate in Plain Sight: On the Risks of Moderating AI-Generated Hateful Illusions

Recent advances in text-to-image diffusion models have enabled the creation of a new form of digital art: optical illusions--visual tricks that create different perceptions of reality. However, adversaries may misuse such techniques to generate hateful illusions, which embed specific hate messages into harmless scenes and disseminate them across web communities. In this work, we take the first step toward investigating the risks of scalable hateful illusion generation and the potential for bypassing current content moderation models. Specifically, we generate 1,860 optical illusions using Stable Diffusion and ControlNet, conditioned on 62 hate messages. Of these, 1,571 are hateful illusions that successfully embed hate messages, either overtly or subtly, forming the Hateful Illusion dataset. Using this dataset, we evaluate the performance of six moderation classifiers and nine vision language models (VLMs) in identifying hateful illusions. Experimental results reveal significant vulnerabilities in existing moderation models: the detection accuracy falls below 0.245 for moderation classifiers and below 0.102 for VLMs. We further identify a critical limitation in their vision encoders, which mainly focus on surface-level image details while overlooking the secondary layer of information, i.e., hidden messages. To address this risk, we explore preliminary mitigation measures and identify the most effective approaches from the perspectives of image transformations and training-level strategies.

  • 6 authors
·
Jul 30

ShapeFusion: A 3D diffusion model for localized shape editing

In the realm of 3D computer vision, parametric models have emerged as a ground-breaking methodology for the creation of realistic and expressive 3D avatars. Traditionally, they rely on Principal Component Analysis (PCA), given its ability to decompose data to an orthonormal space that maximally captures shape variations. However, due to the orthogonality constraints and the global nature of PCA's decomposition, these models struggle to perform localized and disentangled editing of 3D shapes, which severely affects their use in applications requiring fine control such as face sculpting. In this paper, we leverage diffusion models to enable diverse and fully localized edits on 3D meshes, while completely preserving the un-edited regions. We propose an effective diffusion masking training strategy that, by design, facilitates localized manipulation of any shape region, without being limited to predefined regions or to sparse sets of predefined control vertices. Following our framework, a user can explicitly set their manipulation region of choice and define an arbitrary set of vertices as handles to edit a 3D mesh. Compared to the current state-of-the-art our method leads to more interpretable shape manipulations than methods relying on latent code state, greater localization and generation diversity while offering faster inference than optimization based approaches. Project page: https://rolpotamias.github.io/Shapefusion/

  • 4 authors
·
Mar 28, 2024

CRS-Diff: Controllable Remote Sensing Image Generation with Diffusion Model

The emergence of generative models has revolutionized the field of remote sensing (RS) image generation. Despite generating high-quality images, existing methods are limited in relying mainly on text control conditions, and thus do not always generate images accurately and stably. In this paper, we propose CRS-Diff, a new RS generative framework specifically tailored for RS image generation, leveraging the inherent advantages of diffusion models while integrating more advanced control mechanisms. Specifically, CRS-Diff can simultaneously support text-condition, metadata-condition, and image-condition control inputs, thus enabling more precise control to refine the generation process. To effectively integrate multiple condition control information, we introduce a new conditional control mechanism to achieve multi-scale feature fusion, thus enhancing the guiding effect of control conditions. To our knowledge, CRS-Diff is the first multiple-condition controllable RS generative model. Experimental results in single-condition and multiple-condition cases have demonstrated the superior ability of our CRS-Diff to generate RS images both quantitatively and qualitatively compared with previous methods. Additionally, our CRS-Diff can serve as a data engine that generates high-quality training data for downstream tasks, e.g., road extraction. The code is available at https://github.com/Sonettoo/CRS-Diff.

  • 6 authors
·
Mar 18, 2024

ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with Diffusion Models

In this work, we investigate the capability of generating images from pre-trained diffusion models at much higher resolutions than the training image sizes. In addition, the generated images should have arbitrary image aspect ratios. When generating images directly at a higher resolution, 1024 x 1024, with the pre-trained Stable Diffusion using training images of resolution 512 x 512, we observe persistent problems of object repetition and unreasonable object structures. Existing works for higher-resolution generation, such as attention-based and joint-diffusion approaches, cannot well address these issues. As a new perspective, we examine the structural components of the U-Net in diffusion models and identify the crucial cause as the limited perception field of convolutional kernels. Based on this key observation, we propose a simple yet effective re-dilation that can dynamically adjust the convolutional perception field during inference. We further propose the dispersed convolution and noise-damped classifier-free guidance, which can enable ultra-high-resolution image generation (e.g., 4096 x 4096). Notably, our approach does not require any training or optimization. Extensive experiments demonstrate that our approach can address the repetition issue well and achieve state-of-the-art performance on higher-resolution image synthesis, especially in texture details. Our work also suggests that a pre-trained diffusion model trained on low-resolution images can be directly used for high-resolution visual generation without further tuning, which may provide insights for future research on ultra-high-resolution image and video synthesis.

  • 10 authors
·
Oct 11, 2023

Model-Based Image Signal Processors via Learnable Dictionaries

Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP). Computational photography tasks such as image denoising and colour constancy are commonly performed in the RAW domain, in part due to the inherent hardware design, but also due to the appealing simplicity of noise statistics that result from the direct sensor readings. Despite this, the availability of RAW images is limited in comparison with the abundance and diversity of available RGB data. Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping: handcrafted model-based methods that are interpretable and controllable usually require manual parameter fine-tuning, while end-to-end learnable neural networks require large amounts of training data, at times with complex training procedures, and generally lack interpretability and parametric control. Towards addressing these existing limitations, we present a novel hybrid model-based and data-driven ISP that builds on canonical ISP operations and is both learnable and interpretable. Our proposed invertible model, capable of bidirectional mapping between RAW and RGB domains, employs end-to-end learning of rich parameter representations, i.e. dictionaries, that are free from direct parametric supervision and additionally enable simple and plausible data augmentation. We evidence the value of our data generation process by extensive experiments under both RAW image reconstruction and RAW image denoising tasks, obtaining state-of-the-art performance in both. Additionally, we show that our ISP can learn meaningful mappings from few data samples, and that denoising models trained with our dictionary-based data augmentation are competitive despite having only few or zero ground-truth labels.

  • 5 authors
·
Jan 10, 2022

Troublemaker Learning for Low-Light Image Enhancement

Low-light image enhancement (LLIE) restores the color and brightness of underexposed images. Supervised methods suffer from high costs in collecting low/normal-light image pairs. Unsupervised methods invest substantial effort in crafting complex loss functions. We address these two challenges through the proposed TroubleMaker Learning (TML) strategy, which employs normal-light images as inputs for training. TML is simple: we first dim the input and then increase its brightness. TML is based on two core components. First, the troublemaker model (TM) constructs pseudo low-light images from normal images to relieve the cost of pairwise data. Second, the predicting model (PM) enhances the brightness of pseudo low-light images. Additionally, we incorporate an enhancing model (EM) to further improve the visual performance of PM outputs. Moreover, in LLIE tasks, characterizing global element correlations is important because more information on the same object can be captured. CNN cannot achieve this well, and self-attention has high time complexity. Accordingly, we propose Global Dynamic Convolution (GDC) with O(n) time complexity, which essentially imitates the partial calculation process of self-attention to formulate elementwise correlations. Based on the GDC module, we build the UGDC model. Extensive quantitative and qualitative experiments demonstrate that UGDC trained with TML can achieve competitive performance against state-of-the-art approaches on public datasets. The code is available at https://github.com/Rainbowman0/TML_LLIE.

  • 8 authors
·
Feb 6, 2024

Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models

Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.

  • 4 authors
·
Apr 20, 2023

Tunable Convolutions with Parametric Multi-Loss Optimization

Behavior of neural networks is irremediably determined by the specific loss and data used during training. However it is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data. This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks. In this work, we propose to optimize a parametric tunable convolutional layer, which includes a number of different kernels, using a parametric multi-loss, which includes an equal number of objectives. Our key insight is to use a shared set of parameters to dynamically interpolate both the objectives and the kernels. During training, these parameters are sampled at random to explicitly optimize all possible combinations of objectives and consequently disentangle their effect into the corresponding kernels. During inference, these parameters become interactive inputs of the model hence enabling reliable and consistent control over the model behavior. Extensive experimental results demonstrate that our tunable convolutions effectively work as a drop-in replacement for traditional convolutions in existing neural networks at virtually no extra computational cost, outperforming state-of-the-art control strategies in a wide range of applications; including image denoising, deblurring, super-resolution, and style transfer.

  • 5 authors
·
Apr 3, 2023

Boosting 3D Object Generation through PBR Materials

Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.

  • 5 authors
·
Nov 24, 2024

Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration

We propose an image restoration algorithm that can control the perceptual quality and/or the mean square error (MSE) of any pre-trained model, trading one over the other at test time. Our algorithm is few-shot: Given about a dozen images restored by the model, it can significantly improve the perceptual quality and/or the MSE of the model for newly restored images without further training. Our approach is motivated by a recent theoretical result that links between the minimum MSE (MMSE) predictor and the predictor that minimizes the MSE under a perfect perceptual quality constraint. Specifically, it has been shown that the latter can be obtained by optimally transporting the output of the former, such that its distribution matches the source data. Thus, to improve the perceptual quality of a predictor that was originally trained to minimize MSE, we approximate the optimal transport by a linear transformation in the latent space of a variational auto-encoder, which we compute in closed-form using empirical means and covariances. Going beyond the theory, we find that applying the same procedure on models that were initially trained to achieve high perceptual quality, typically improves their perceptual quality even further. And by interpolating the results with the original output of the model, we can improve their MSE on the expense of perceptual quality. We illustrate our method on a variety of degradations applied to general content images of arbitrary dimensions.

  • 4 authors
·
Jun 4, 2023

Ambiguity in solving imaging inverse problems with deep learning based operators

In recent years, large convolutional neural networks have been widely used as tools for image deblurring, because of their ability in restoring images very precisely. It is well known that image deblurring is mathematically modeled as an ill-posed inverse problem and its solution is difficult to approximate when noise affects the data. Really, one limitation of neural networks for deblurring is their sensitivity to noise and other perturbations, which can lead to instability and produce poor reconstructions. In addition, networks do not necessarily take into account the numerical formulation of the underlying imaging problem, when trained end-to-end. In this paper, we propose some strategies to improve stability without losing to much accuracy to deblur images with deep-learning based methods. First, we suggest a very small neural architecture, which reduces the execution time for training, satisfying a green AI need, and does not extremely amplify noise in the computed image. Second, we introduce a unified framework where a pre-processing step balances the lack of stability of the following, neural network-based, step. Two different pre-processors are presented: the former implements a strong parameter-free denoiser, and the latter is a variational model-based regularized formulation of the latent imaging problem. This framework is also formally characterized by mathematical analysis. Numerical experiments are performed to verify the accuracy and stability of the proposed approaches for image deblurring when unknown or not-quantified noise is present; the results confirm that they improve the network stability with respect to noise. In particular, the model-based framework represents the most reliable trade-off between visual precision and robustness.

  • 4 authors
·
May 31, 2023

DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation

This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.

  • 6 authors
·
Feb 19, 2024 1

Training-free Diffusion Model Adaptation for Variable-Sized Text-to-Image Synthesis

Diffusion models (DMs) have recently gained attention with state-of-the-art performance in text-to-image synthesis. Abiding by the tradition in deep learning, DMs are trained and evaluated on the images with fixed sizes. However, users are demanding for various images with specific sizes and various aspect ratio. This paper focuses on adapting text-to-image diffusion models to handle such variety while maintaining visual fidelity. First we observe that, during the synthesis, lower resolution images suffer from incomplete object portrayal, while higher resolution images exhibit repetitively disordered presentation. Next, we establish a statistical relationship indicating that attention entropy changes with token quantity, suggesting that models aggregate spatial information in proportion to image resolution. The subsequent interpretation on our observations is that objects are incompletely depicted due to limited spatial information for low resolutions, while repetitively disorganized presentation arises from redundant spatial information for high resolutions. From this perspective, we propose a scaling factor to alleviate the change of attention entropy and mitigate the defective pattern observed. Extensive experimental results validate the efficacy of the proposed scaling factor, enabling models to achieve better visual effects, image quality, and text alignment. Notably, these improvements are achieved without additional training or fine-tuning techniques.

  • 4 authors
·
Jun 14, 2023

Personalized Restoration via Dual-Pivot Tuning

Generative diffusion models can serve as a prior which ensures that solutions of image restoration systems adhere to the manifold of natural images. However, for restoring facial images, a personalized prior is necessary to accurately represent and reconstruct unique facial features of a given individual. In this paper, we propose a simple, yet effective, method for personalized restoration, called Dual-Pivot Tuning - a two-stage approach that personalize a blind restoration system while maintaining the integrity of the general prior and the distinct role of each component. Our key observation is that for optimal personalization, the generative model should be tuned around a fixed text pivot, while the guiding network should be tuned in a generic (non-personalized) manner, using the personalized generative model as a fixed ``pivot". This approach ensures that personalization does not interfere with the restoration process, resulting in a natural appearance with high fidelity to the person's identity and the attributes of the degraded image. We evaluated our approach both qualitatively and quantitatively through extensive experiments with images of widely recognized individuals, comparing it against relevant baselines. Surprisingly, we found that our personalized prior not only achieves higher fidelity to identity with respect to the person's identity, but also outperforms state-of-the-art generic priors in terms of general image quality. Project webpage: https://personalized-restoration.github.io

  • 7 authors
·
Dec 28, 2023

Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration

In this paper, we present DM-Calib, a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image. Monocular camera calibration is essential for many 3D vision tasks. However, most existing methods depend on handcrafted assumptions or are constrained by limited training data, resulting in poor generalization across diverse real-world images. Recent advancements in stable diffusion models, trained on massive data, have shown the ability to generate high-quality images with varied characteristics. Emerging evidence indicates that these models implicitly capture the relationship between camera focal length and image content. Building on this insight, we explore how to leverage the powerful priors of diffusion models for monocular pinhole camera calibration. Specifically, we introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics and integrates seamlessly with the diffusion framework. Using this representation, we reformulate the problem of estimating camera intrinsics as the generation of a dense Camera Image conditioned on an input image. By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation. We further demonstrate that our monocular calibration method enhances performance across various 3D tasks, including zero-shot metric depth estimation, 3D metrology, pose estimation and sparse-view reconstruction. Extensive experiments on multiple public datasets show that our approach significantly outperforms baselines and provides broad benefits to 3D vision tasks. Code is available at https://github.com/JunyuanDeng/DM-Calib.

  • 8 authors
·
Nov 26, 2024

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our https://yuzeng-at-tri.github.io/ppd-page/{project page}.

Towards Metamerism via Foveated Style Transfer

The problem of visual metamerism is defined as finding a family of perceptually indistinguishable, yet physically different images. In this paper, we propose our NeuroFovea metamer model, a foveated generative model that is based on a mixture of peripheral representations and style transfer forward-pass algorithms. Our gradient-descent free model is parametrized by a foveated VGG19 encoder-decoder which allows us to encode images in high dimensional space and interpolate between the content and texture information with adaptive instance normalization anywhere in the visual field. Our contributions include: 1) A framework for computing metamers that resembles a noisy communication system via a foveated feed-forward encoder-decoder network -- We observe that metamerism arises as a byproduct of noisy perturbations that partially lie in the perceptual null space; 2) A perceptual optimization scheme as a solution to the hyperparametric nature of our metamer model that requires tuning of the image-texture tradeoff coefficients everywhere in the visual field which are a consequence of internal noise; 3) An ABX psychophysical evaluation of our metamers where we also find that the rate of growth of the receptive fields in our model match V1 for reference metamers and V2 between synthesized samples. Our model also renders metamers at roughly a second, presenting a times1000 speed-up compared to the previous work, which allows for tractable data-driven metamer experiments.

  • 3 authors
·
May 29, 2017

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models

In recent years, diffusion models have become the most popular and powerful methods in the field of image synthesis, even rivaling human artists in artistic creativity. However, the key issue currently limiting the application of diffusion models is its extremely slow generation process. Although several methods were proposed to speed up the generation process, there still exists a trade-off between efficiency and quality. In this paper, we first provide a detailed theoretical and empirical analysis of the generation process of the diffusion models based on schedulers. We transform the designing problem of schedulers into the determination of several parameters, and further transform the accelerated generation process into an expansion process of the linear subspace. Based on these analyses, we consequently propose a novel method called Optimal Linear Subspace Search (OLSS), which accelerates the generation process by searching for the optimal approximation process of the complete generation process in the linear subspaces spanned by latent variables. OLSS is able to generate high-quality images with a very small number of steps. To demonstrate the effectiveness of our method, we conduct extensive comparative experiments on open-source diffusion models. Experimental results show that with a given number of steps, OLSS can significantly improve the quality of generated images. Using an NVIDIA A100 GPU, we make it possible to generate a high-quality image by Stable Diffusion within only one second without other optimization techniques.

  • 5 authors
·
May 23, 2023

Learning Multiple-Scattering Solutions for Sphere-Tracing of Volumetric Subsurface Effects

Accurate subsurface scattering solutions require the integration of optical material properties along many complicated light paths. We present a method that learns a simple geometric approximation of random paths in a homogeneous volume of translucent material. The generated representation allows determining the absorption along the path as well as a direct lighting contribution, which is representative of all scattering events along the path. A sequence of conditional variational auto-encoders (CVAEs) is trained to model the statistical distribution of the photon paths inside a spherical region in presence of multiple scattering events. A first CVAE learns to sample the number of scattering events, occurring on a ray path inside the sphere, which effectively determines the probability of the ray being absorbed. Conditioned on this, a second model predicts the exit position and direction of the light particle. Finally, a third model generates a representative sample of photon position and direction along the path, which is used to approximate the contribution of direct illumination due to in-scattering. To accelerate the tracing of the light path through the volumetric medium toward the solid boundary, we employ a sphere-tracing strategy that considers the light absorption and is able to perform statistically accurate next-event estimation. We demonstrate efficient learning using shallow networks of only three layers and no more than 16 nodes. In combination with a GPU shader that evaluates the CVAEs' predictions, performance gains can be demonstrated for a variety of different scenarios. A quality evaluation analyzes the approximation error that is introduced by the data-driven scattering simulation and sheds light on the major sources of error in the accelerated path tracing process.

  • 3 authors
·
Nov 5, 2020

DiffCalib: Reformulating Monocular Camera Calibration as Diffusion-Based Dense Incident Map Generation

Monocular camera calibration is a key precondition for numerous 3D vision applications. Despite considerable advancements, existing methods often hinge on specific assumptions and struggle to generalize across varied real-world scenarios, and the performance is limited by insufficient training data. Recently, diffusion models trained on expansive datasets have been confirmed to maintain the capability to generate diverse, high-quality images. This success suggests a strong potential of the models to effectively understand varied visual information. In this work, we leverage the comprehensive visual knowledge embedded in pre-trained diffusion models to enable more robust and accurate monocular camera intrinsic estimation. Specifically, we reformulate the problem of estimating the four degrees of freedom (4-DoF) of camera intrinsic parameters as a dense incident map generation task. The map details the angle of incidence for each pixel in the RGB image, and its format aligns well with the paradigm of diffusion models. The camera intrinsic then can be derived from the incident map with a simple non-learning RANSAC algorithm during inference. Moreover, to further enhance the performance, we jointly estimate a depth map to provide extra geometric information for the incident map estimation. Extensive experiments on multiple testing datasets demonstrate that our model achieves state-of-the-art performance, gaining up to a 40% reduction in prediction errors. Besides, the experiments also show that the precise camera intrinsic and depth maps estimated by our pipeline can greatly benefit practical applications such as 3D reconstruction from a single in-the-wild image.

  • 6 authors
·
May 24, 2024