- Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning Malicious server (MS) attacks have enabled the scaling of data stealing in federated learning to large batch sizes and secure aggregation, settings previously considered private. However, many concerns regarding client-side detectability of MS attacks were raised, questioning their practicality once they are publicly known. In this work, for the first time, we thoroughly study the problem of client-side detectability.We demonstrate that most prior MS attacks, which fundamentally rely on one of two key principles, are detectable by principled client-side checks. Further, we formulate desiderata for practical MS attacks and propose SEER, a novel attack framework that satisfies all desiderata, while stealing user data from gradients of realistic networks, even for large batch sizes (up to 512 in our experiments) and under secure aggregation. The key insight of SEER is the use of a secret decoder, which is jointly trained with the shared model. Our work represents a promising first step towards more principled treatment of MS attacks, paving the way for realistic data stealing that can compromise user privacy in real-world deployments. 4 authors · Jun 5, 2023
- All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting Recent advances in 3D Gaussian Splatting (3DGS) have revolutionized scene reconstruction, opening new possibilities for 3D steganography by hiding 3D secrets within 3D covers. The key challenge in steganography is ensuring imperceptibility while maintaining high-fidelity reconstruction. However, existing methods often suffer from detectability risks and utilize only suboptimal 3DGS features, limiting their full potential. We propose a novel end-to-end key-secured 3D steganography framework (KeySS) that jointly optimizes a 3DGS model and a key-secured decoder for secret reconstruction. Our approach reveals that Gaussian features contribute unequally to secret hiding. The framework incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention, while systematically exploring optimal feature update to balance fidelity and security. To rigorously evaluate steganographic imperceptibility beyond conventional 2D metrics, we introduce 3D-Sinkhorn distance analysis, which quantifies distributional differences between original and steganographic Gaussian parameters in the representation space. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels, advancing the field of 3D steganography. Code is available at https://github.com/RY-Paper/KeySS 3 authors · Mar 10
- Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes. 5 authors · Dec 17