File size: 15,263 Bytes
ebbcd26 a12ee73 ebbcd26 a12ee73 ebbcd26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
#!/usr/bin/env python3
"""
Dataset Tester for ML Inference Service
Tests the generated PyArrow datasets against the running ML inference service.
Validates API requests/responses and measures performance metrics.
"""
import json
import time
import asyncio
import statistics
from pathlib import Path
from typing import Dict, List, Any, Optional
import argparse
import pyarrow.parquet as pq
import requests
import pandas as pd
class DatasetTester:
def __init__(self, base_url: str = "http://127.0.0.1:8000", datasets_dir: str = "test_datasets"):
self.base_url = base_url.rstrip('/')
self.datasets_dir = Path(datasets_dir)
self.endpoint = f"{self.base_url}/predict"
self.results = []
def load_dataset(self, dataset_path: Path) -> pd.DataFrame:
"""Load a PyArrow dataset."""
table = pq.read_table(dataset_path)
return table.to_pandas()
def test_api_connection(self) -> bool:
"""Test if the API is running and accessible."""
try:
response = requests.get(f"{self.base_url}/docs", timeout=5)
return response.status_code == 200
except requests.RequestException:
return False
def send_prediction_request(self, api_request_json: str) -> Dict[str, Any]:
"""Send a single prediction request to the API."""
try:
request_data = json.loads(api_request_json)
start_time = time.time()
response = requests.post(
self.endpoint,
json=request_data,
headers={"Content-Type": "application/json"},
timeout=30
)
end_time = time.time()
latency_ms = (end_time - start_time) * 1000
return {
"success": response.status_code == 200,
"status_code": response.status_code,
"response": response.json() if response.status_code == 200 else response.text,
"latency_ms": round(latency_ms, 2),
"error": None
}
except requests.RequestException as e:
return {
"success": False,
"status_code": None,
"response": None,
"latency_ms": None,
"error": str(e)
}
except json.JSONDecodeError as e:
return {
"success": False,
"status_code": None,
"response": None,
"latency_ms": None,
"error": f"JSON decode error: {str(e)}"
}
def validate_response(self, actual_response: Dict[str, Any],
expected_response_json: str) -> Dict[str, Any]:
"""Validate API response against expected response."""
try:
expected = json.loads(expected_response_json)
validation = {
"structure_valid": True,
"field_errors": []
}
# Check required fields exist
required_fields = ["prediction", "confidence", "predicted_label", "model", "mediaType"]
for field in required_fields:
if field not in actual_response:
validation["structure_valid"] = False
validation["field_errors"].append(f"Missing field: {field}")
# Validate field types
if "confidence" in actual_response:
if not isinstance(actual_response["confidence"], (int, float)):
validation["field_errors"].append("confidence must be numeric")
elif not (0 <= actual_response["confidence"] <= 1):
validation["field_errors"].append("confidence must be between 0 and 1")
if "predicted_label" in actual_response:
if not isinstance(actual_response["predicted_label"], int):
validation["field_errors"].append("predicted_label must be integer")
return validation
except json.JSONDecodeError:
return {
"structure_valid": False,
"field_errors": ["Invalid expected response JSON"]
}
def test_dataset(self, dataset_path: Path, max_samples: Optional[int] = None) -> Dict[str, Any]:
"""Test a single dataset."""
print(f"π Testing dataset: {dataset_path.name}")
try:
df = self.load_dataset(dataset_path)
if max_samples:
df = df.head(max_samples)
results = {
"dataset_name": dataset_path.stem,
"total_samples": len(df),
"tested_samples": 0,
"successful_requests": 0,
"failed_requests": 0,
"validation_errors": 0,
"latencies_ms": [],
"errors": [],
"category": df['test_category'].iloc[0] if not df.empty else "unknown"
}
for idx, row in df.iterrows():
print(f" Testing sample {idx + 1}/{len(df)}", end="\r")
# Send API request
api_result = self.send_prediction_request(row['api_request'])
results["tested_samples"] += 1
if api_result["success"]:
results["successful_requests"] += 1
results["latencies_ms"].append(api_result["latency_ms"])
# Validate response structure
validation = self.validate_response(
api_result["response"],
row['expected_response']
)
if not validation["structure_valid"]:
results["validation_errors"] += 1
results["errors"].append({
"sample_id": row['image_id'],
"type": "validation_error",
"details": validation["field_errors"]
})
else:
results["failed_requests"] += 1
results["errors"].append({
"sample_id": row['image_id'],
"type": "request_failed",
"status_code": api_result["status_code"],
"error": api_result["error"]
})
# Calculate statistics
if results["latencies_ms"]:
results["avg_latency_ms"] = round(statistics.mean(results["latencies_ms"]), 2)
results["min_latency_ms"] = round(min(results["latencies_ms"]), 2)
results["max_latency_ms"] = round(max(results["latencies_ms"]), 2)
results["median_latency_ms"] = round(statistics.median(results["latencies_ms"]), 2)
else:
results.update({
"avg_latency_ms": None,
"min_latency_ms": None,
"max_latency_ms": None,
"median_latency_ms": None
})
results["success_rate"] = round(
results["successful_requests"] / results["tested_samples"] * 100, 2
) if results["tested_samples"] > 0 else 0
print(f"\n β
Completed: {results['success_rate']}% success rate")
return results
except Exception as e:
print(f"\n β Failed to test dataset: {str(e)}")
return {
"dataset_name": dataset_path.stem,
"error": str(e),
"success_rate": 0
}
def test_all_datasets(self, max_samples_per_dataset: Optional[int] = None,
category_filter: Optional[str] = None) -> Dict[str, Any]:
"""Test all datasets or filtered by category."""
if not self.test_api_connection():
print("β API is not accessible. Please start the service first:")
print(" uvicorn main:app --reload")
return {"error": "API not accessible"}
print(f" Starting dataset testing against {self.endpoint}")
parquet_files = list(self.datasets_dir.glob("*.parquet"))
if not parquet_files:
print(f"β No datasets found in {self.datasets_dir}")
return {"error": "No datasets found"}
if category_filter:
parquet_files = [f for f in parquet_files if category_filter in f.name]
print(f" Found {len(parquet_files)} datasets to test")
all_results = []
start_time = time.time()
for dataset_file in parquet_files:
result = self.test_dataset(dataset_file, max_samples_per_dataset)
all_results.append(result)
end_time = time.time()
total_time = end_time - start_time
summary = self.generate_summary(all_results, total_time)
self.save_results(summary, all_results)
return summary
def generate_summary(self, results: List[Dict[str, Any]], total_time: float) -> Dict[str, Any]:
"""Generate summary of all test results."""
successful_datasets = [r for r in results if r.get("success_rate", 0) > 0]
failed_datasets = [r for r in results if r.get("error") or r.get("success_rate", 0) == 0]
total_samples = sum(r.get("tested_samples", 0) for r in results)
total_successful = sum(r.get("successful_requests", 0) for r in results)
total_failed = sum(r.get("failed_requests", 0) for r in results)
all_latencies = []
for r in results:
all_latencies.extend(r.get("latencies_ms", []))
summary = {
"test_summary": {
"total_datasets": len(results),
"successful_datasets": len(successful_datasets),
"failed_datasets": len(failed_datasets),
"total_samples_tested": total_samples,
"total_successful_requests": total_successful,
"total_failed_requests": total_failed,
"overall_success_rate": round(
total_successful / total_samples * 100, 2
) if total_samples > 0 else 0,
"total_test_time_seconds": round(total_time, 2)
},
"performance_metrics": {
"avg_latency_ms": round(statistics.mean(all_latencies), 2) if all_latencies else None,
"median_latency_ms": round(statistics.median(all_latencies), 2) if all_latencies else None,
"min_latency_ms": round(min(all_latencies), 2) if all_latencies else None,
"max_latency_ms": round(max(all_latencies), 2) if all_latencies else None,
"requests_per_second": round(
total_successful / total_time, 2
) if total_time > 0 else 0
},
"category_breakdown": {},
"failed_datasets": [r["dataset_name"] for r in failed_datasets]
}
categories = {}
for result in results:
category = result.get("category", "unknown")
if category not in categories:
categories[category] = {
"count": 0,
"success_rates": [],
"avg_success_rate": 0
}
categories[category]["count"] += 1
categories[category]["success_rates"].append(result.get("success_rate", 0))
for category, data in categories.items():
data["avg_success_rate"] = round(
statistics.mean(data["success_rates"]), 2
) if data["success_rates"] else 0
summary["category_breakdown"] = categories
return summary
def save_results(self, summary: Dict[str, Any], detailed_results: List[Dict[str, Any]]):
"""Save test results to files."""
results_dir = Path("test_results")
results_dir.mkdir(exist_ok=True)
timestamp = int(time.time())
# Save summary
summary_path = results_dir / f"test_summary_{timestamp}.json"
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2)
# Save detailed results
detailed_path = results_dir / f"test_detailed_{timestamp}.json"
with open(detailed_path, 'w') as f:
json.dump(detailed_results, f, indent=2)
print(f" Results saved:")
print(f" Summary: {summary_path}")
print(f" Details: {detailed_path}")
def print_summary(self, summary: Dict[str, Any]):
"""Print test summary to console."""
print("\n" + "="*60)
print("π DATASET TESTING SUMMARY")
print("="*60)
ts = summary["test_summary"]
print(f"Datasets tested: {ts['total_datasets']}")
print(f"Successful datasets: {ts['successful_datasets']}")
print(f"Failed datasets: {ts['failed_datasets']}")
print(f"Total samples: {ts['total_samples_tested']}")
print(f"Overall success rate: {ts['overall_success_rate']}%")
print(f"Test duration: {ts['total_test_time_seconds']}s")
pm = summary["performance_metrics"]
if pm["avg_latency_ms"]:
print(f"\nPerformance:")
print(f" Avg latency: {pm['avg_latency_ms']}ms")
print(f" Median latency: {pm['median_latency_ms']}ms")
print(f" Min latency: {pm['min_latency_ms']}ms")
print(f" Max latency: {pm['max_latency_ms']}ms")
print(f" Requests/sec: {pm['requests_per_second']}")
print(f"\nCategory breakdown:")
for category, data in summary["category_breakdown"].items():
print(f" {category}: {data['count']} datasets, {data['avg_success_rate']}% avg success")
if summary["failed_datasets"]:
print(f"\nFailed datasets: {', '.join(summary['failed_datasets'])}")
def main():
parser = argparse.ArgumentParser(description="Test PyArrow datasets against ML inference service")
parser.add_argument("--base-url", default="http://127.0.0.1:8000", help="Base URL of the API")
parser.add_argument("--datasets-dir", default="test_datasets", help="Directory containing datasets")
parser.add_argument("--max-samples", type=int, help="Max samples per dataset to test")
parser.add_argument("--category", help="Filter datasets by category (standard, edge_case, performance, model_comparison)")
parser.add_argument("--quick", action="store_true", help="Quick test with max 5 samples per dataset")
args = parser.parse_args()
tester = DatasetTester(args.base_url, args.datasets_dir)
max_samples = args.max_samples
if args.quick:
max_samples = 5
results = tester.test_all_datasets(max_samples, args.category)
if "error" not in results:
tester.print_summary(results)
if results["test_summary"]["overall_success_rate"] > 90:
print("\nπ Excellent! API is working great with the datasets!")
elif results["test_summary"]["overall_success_rate"] > 70:
print("\nπ Good! API works well, minor issues detected.")
else:
print("\nβ οΈ Warning: Several issues detected. Check the detailed results.")
if __name__ == "__main__":
main() |