File size: 15,263 Bytes
ebbcd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ee73
ebbcd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ee73
ebbcd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python3
"""
Dataset Tester for ML Inference Service

Tests the generated PyArrow datasets against the running ML inference service.
Validates API requests/responses and measures performance metrics.
"""

import json
import time
import asyncio
import statistics
from pathlib import Path
from typing import Dict, List, Any, Optional
import argparse

import pyarrow.parquet as pq
import requests
import pandas as pd


class DatasetTester:
    def __init__(self, base_url: str = "http://127.0.0.1:8000", datasets_dir: str = "test_datasets"):
        self.base_url = base_url.rstrip('/')
        self.datasets_dir = Path(datasets_dir)
        self.endpoint = f"{self.base_url}/predict"
        self.results = []

    def load_dataset(self, dataset_path: Path) -> pd.DataFrame:
        """Load a PyArrow dataset."""
        table = pq.read_table(dataset_path)
        return table.to_pandas()

    def test_api_connection(self) -> bool:
        """Test if the API is running and accessible."""
        try:
            response = requests.get(f"{self.base_url}/docs", timeout=5)
            return response.status_code == 200
        except requests.RequestException:
            return False

    def send_prediction_request(self, api_request_json: str) -> Dict[str, Any]:
        """Send a single prediction request to the API."""
        try:
            request_data = json.loads(api_request_json)
            start_time = time.time()

            response = requests.post(
                self.endpoint,
                json=request_data,
                headers={"Content-Type": "application/json"},
                timeout=30
            )

            end_time = time.time()
            latency_ms = (end_time - start_time) * 1000

            return {
                "success": response.status_code == 200,
                "status_code": response.status_code,
                "response": response.json() if response.status_code == 200 else response.text,
                "latency_ms": round(latency_ms, 2),
                "error": None
            }

        except requests.RequestException as e:
            return {
                "success": False,
                "status_code": None,
                "response": None,
                "latency_ms": None,
                "error": str(e)
            }
        except json.JSONDecodeError as e:
            return {
                "success": False,
                "status_code": None,
                "response": None,
                "latency_ms": None,
                "error": f"JSON decode error: {str(e)}"
            }

    def validate_response(self, actual_response: Dict[str, Any],
                         expected_response_json: str) -> Dict[str, Any]:
        """Validate API response against expected response."""
        try:
            expected = json.loads(expected_response_json)

            validation = {
                "structure_valid": True,
                "field_errors": []
            }

            # Check required fields exist
            required_fields = ["prediction", "confidence", "predicted_label", "model", "mediaType"]
            for field in required_fields:
                if field not in actual_response:
                    validation["structure_valid"] = False
                    validation["field_errors"].append(f"Missing field: {field}")

            # Validate field types
            if "confidence" in actual_response:
                if not isinstance(actual_response["confidence"], (int, float)):
                    validation["field_errors"].append("confidence must be numeric")
                elif not (0 <= actual_response["confidence"] <= 1):
                    validation["field_errors"].append("confidence must be between 0 and 1")

            if "predicted_label" in actual_response:
                if not isinstance(actual_response["predicted_label"], int):
                    validation["field_errors"].append("predicted_label must be integer")

            return validation

        except json.JSONDecodeError:
            return {
                "structure_valid": False,
                "field_errors": ["Invalid expected response JSON"]
            }

    def test_dataset(self, dataset_path: Path, max_samples: Optional[int] = None) -> Dict[str, Any]:
        """Test a single dataset."""
        print(f"πŸ“Š Testing dataset: {dataset_path.name}")

        try:
            df = self.load_dataset(dataset_path)
            if max_samples:
                df = df.head(max_samples)

            results = {
                "dataset_name": dataset_path.stem,
                "total_samples": len(df),
                "tested_samples": 0,
                "successful_requests": 0,
                "failed_requests": 0,
                "validation_errors": 0,
                "latencies_ms": [],
                "errors": [],
                "category": df['test_category'].iloc[0] if not df.empty else "unknown"
            }

            for idx, row in df.iterrows():
                print(f"  Testing sample {idx + 1}/{len(df)}", end="\r")

                # Send API request
                api_result = self.send_prediction_request(row['api_request'])
                results["tested_samples"] += 1

                if api_result["success"]:
                    results["successful_requests"] += 1
                    results["latencies_ms"].append(api_result["latency_ms"])

                    # Validate response structure
                    validation = self.validate_response(
                        api_result["response"],
                        row['expected_response']
                    )

                    if not validation["structure_valid"]:
                        results["validation_errors"] += 1
                        results["errors"].append({
                            "sample_id": row['image_id'],
                            "type": "validation_error",
                            "details": validation["field_errors"]
                        })

                else:
                    results["failed_requests"] += 1
                    results["errors"].append({
                        "sample_id": row['image_id'],
                        "type": "request_failed",
                        "status_code": api_result["status_code"],
                        "error": api_result["error"]
                    })

            # Calculate statistics
            if results["latencies_ms"]:
                results["avg_latency_ms"] = round(statistics.mean(results["latencies_ms"]), 2)
                results["min_latency_ms"] = round(min(results["latencies_ms"]), 2)
                results["max_latency_ms"] = round(max(results["latencies_ms"]), 2)
                results["median_latency_ms"] = round(statistics.median(results["latencies_ms"]), 2)
            else:
                results.update({
                    "avg_latency_ms": None,
                    "min_latency_ms": None,
                    "max_latency_ms": None,
                    "median_latency_ms": None
                })

            results["success_rate"] = round(
                results["successful_requests"] / results["tested_samples"] * 100, 2
            ) if results["tested_samples"] > 0 else 0

            print(f"\n  βœ… Completed: {results['success_rate']}% success rate")
            return results

        except Exception as e:
            print(f"\n  ❌ Failed to test dataset: {str(e)}")
            return {
                "dataset_name": dataset_path.stem,
                "error": str(e),
                "success_rate": 0
            }

    def test_all_datasets(self, max_samples_per_dataset: Optional[int] = None,
                         category_filter: Optional[str] = None) -> Dict[str, Any]:
        """Test all datasets or filtered by category."""
        if not self.test_api_connection():
            print("❌ API is not accessible. Please start the service first:")
            print("   uvicorn main:app --reload")
            return {"error": "API not accessible"}

        print(f" Starting dataset testing against {self.endpoint}")

        parquet_files = list(self.datasets_dir.glob("*.parquet"))
        if not parquet_files:
            print(f"❌ No datasets found in {self.datasets_dir}")
            return {"error": "No datasets found"}

        if category_filter:
            parquet_files = [f for f in parquet_files if category_filter in f.name]

        print(f" Found {len(parquet_files)} datasets to test")

        all_results = []
        start_time = time.time()

        for dataset_file in parquet_files:
            result = self.test_dataset(dataset_file, max_samples_per_dataset)
            all_results.append(result)

        end_time = time.time()
        total_time = end_time - start_time

        summary = self.generate_summary(all_results, total_time)

        self.save_results(summary, all_results)

        return summary

    def generate_summary(self, results: List[Dict[str, Any]], total_time: float) -> Dict[str, Any]:
        """Generate summary of all test results."""
        successful_datasets = [r for r in results if r.get("success_rate", 0) > 0]
        failed_datasets = [r for r in results if r.get("error") or r.get("success_rate", 0) == 0]

        total_samples = sum(r.get("tested_samples", 0) for r in results)
        total_successful = sum(r.get("successful_requests", 0) for r in results)
        total_failed = sum(r.get("failed_requests", 0) for r in results)

        all_latencies = []
        for r in results:
            all_latencies.extend(r.get("latencies_ms", []))

        summary = {
            "test_summary": {
                "total_datasets": len(results),
                "successful_datasets": len(successful_datasets),
                "failed_datasets": len(failed_datasets),
                "total_samples_tested": total_samples,
                "total_successful_requests": total_successful,
                "total_failed_requests": total_failed,
                "overall_success_rate": round(
                    total_successful / total_samples * 100, 2
                ) if total_samples > 0 else 0,
                "total_test_time_seconds": round(total_time, 2)
            },
            "performance_metrics": {
                "avg_latency_ms": round(statistics.mean(all_latencies), 2) if all_latencies else None,
                "median_latency_ms": round(statistics.median(all_latencies), 2) if all_latencies else None,
                "min_latency_ms": round(min(all_latencies), 2) if all_latencies else None,
                "max_latency_ms": round(max(all_latencies), 2) if all_latencies else None,
                "requests_per_second": round(
                    total_successful / total_time, 2
                ) if total_time > 0 else 0
            },
            "category_breakdown": {},
            "failed_datasets": [r["dataset_name"] for r in failed_datasets]
        }

        categories = {}
        for result in results:
            category = result.get("category", "unknown")
            if category not in categories:
                categories[category] = {
                    "count": 0,
                    "success_rates": [],
                    "avg_success_rate": 0
                }
            categories[category]["count"] += 1
            categories[category]["success_rates"].append(result.get("success_rate", 0))

        for category, data in categories.items():
            data["avg_success_rate"] = round(
                statistics.mean(data["success_rates"]), 2
            ) if data["success_rates"] else 0

        summary["category_breakdown"] = categories

        return summary

    def save_results(self, summary: Dict[str, Any], detailed_results: List[Dict[str, Any]]):
        """Save test results to files."""
        results_dir = Path("test_results")
        results_dir.mkdir(exist_ok=True)

        timestamp = int(time.time())

        # Save summary
        summary_path = results_dir / f"test_summary_{timestamp}.json"
        with open(summary_path, 'w') as f:
            json.dump(summary, f, indent=2)

        # Save detailed results
        detailed_path = results_dir / f"test_detailed_{timestamp}.json"
        with open(detailed_path, 'w') as f:
            json.dump(detailed_results, f, indent=2)

        print(f" Results saved:")
        print(f"   Summary: {summary_path}")
        print(f"   Details: {detailed_path}")

    def print_summary(self, summary: Dict[str, Any]):
        """Print test summary to console."""
        print("\n" + "="*60)
        print("🏁 DATASET TESTING SUMMARY")
        print("="*60)

        ts = summary["test_summary"]
        print(f"Datasets tested: {ts['total_datasets']}")
        print(f"Successful datasets: {ts['successful_datasets']}")
        print(f"Failed datasets: {ts['failed_datasets']}")
        print(f"Total samples: {ts['total_samples_tested']}")
        print(f"Overall success rate: {ts['overall_success_rate']}%")
        print(f"Test duration: {ts['total_test_time_seconds']}s")

        pm = summary["performance_metrics"]
        if pm["avg_latency_ms"]:
            print(f"\nPerformance:")
            print(f"  Avg latency: {pm['avg_latency_ms']}ms")
            print(f"  Median latency: {pm['median_latency_ms']}ms")
            print(f"  Min latency: {pm['min_latency_ms']}ms")
            print(f"  Max latency: {pm['max_latency_ms']}ms")
            print(f"  Requests/sec: {pm['requests_per_second']}")

        print(f"\nCategory breakdown:")
        for category, data in summary["category_breakdown"].items():
            print(f"  {category}: {data['count']} datasets, {data['avg_success_rate']}% avg success")

        if summary["failed_datasets"]:
            print(f"\nFailed datasets: {', '.join(summary['failed_datasets'])}")


def main():
    parser = argparse.ArgumentParser(description="Test PyArrow datasets against ML inference service")
    parser.add_argument("--base-url", default="http://127.0.0.1:8000", help="Base URL of the API")
    parser.add_argument("--datasets-dir", default="test_datasets", help="Directory containing datasets")
    parser.add_argument("--max-samples", type=int, help="Max samples per dataset to test")
    parser.add_argument("--category", help="Filter datasets by category (standard, edge_case, performance, model_comparison)")
    parser.add_argument("--quick", action="store_true", help="Quick test with max 5 samples per dataset")

    args = parser.parse_args()

    tester = DatasetTester(args.base_url, args.datasets_dir)

    max_samples = args.max_samples
    if args.quick:
        max_samples = 5

    results = tester.test_all_datasets(max_samples, args.category)

    if "error" not in results:
        tester.print_summary(results)

        if results["test_summary"]["overall_success_rate"] > 90:
            print("\nπŸŽ‰ Excellent! API is working great with the datasets!")
        elif results["test_summary"]["overall_success_rate"] > 70:
            print("\nπŸ‘ Good! API works well, minor issues detected.")
        else:
            print("\n⚠️  Warning: Several issues detected. Check the detailed results.")


if __name__ == "__main__":
    main()