File size: 8,781 Bytes
b3e1b1c ac4cb23 b3e1b1c ac4cb23 b3e1b1c ac4cb23 b3e1b1c 789798d b3e1b1c 789798d b3e1b1c 789798d f0d7b8f 789798d b3e1b1c 789798d b3e1b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# SPDX-FileCopyrightText: 2025 UL Research Institutes
# SPDX-License-Identifier: Apache-2.0
import functools
import time
from datetime import datetime, timedelta, timezone
from pathlib import Path
import click
import httpx
from dyff.client import Client, errors
from dyff.schema.platform import *
from dyff.schema.requests import *
from app.api.models import PredictionResponse
# ----------------------------------------------------------------------------
def _wait_for_status(
get_entity_fn, target_status: str | list[str], *, timeout: timedelta
) -> str:
if isinstance(target_status, str):
target_status = [target_status]
then = datetime.now(timezone.utc)
while True:
try:
status = get_entity_fn().status
if status in target_status:
return status
except errors.HTTPError as ex:
if ex.status != 404:
raise
except httpx.HTTPStatusError as ex:
if ex.response.status_code != 404:
raise
if (datetime.now(timezone.utc) - then) >= timeout:
break
time.sleep(5)
raise AssertionError("timeout")
def _common_options(f):
@click.option(
"--account",
type=str,
required=True,
help="Your account ID",
metavar="ID",
)
@functools.wraps(f)
def wrapper(*args, **kwargs):
return f(*args, **kwargs)
return wrapper
@click.group()
def cli():
pass
@cli.command()
@_common_options
@click.option(
"--name",
type=str,
required=True,
help="The name of your detector model. For display and querying purposes only.",
)
@click.option(
"--image",
type=str,
default=None,
help="The Docker image to upload (e.g., 'some/image:latest')."
" Must exist in your local Docker deamon."
" Required if --artifact is not specified.",
)
@click.option(
"--endpoint",
type=str,
default="predict",
help="The endpoint to call on your service to make a prediction.",
)
@click.option(
"--volume",
type=click.Path(exists=True, file_okay=False, readable=True, resolve_path=True, path_type=Path),
default=None,
help="A local directory path containing files to upload and mount in the running Docker container."
" You should use this if your submission includes large files like neural network weights."
)
@click.option(
"--volume-mount",
type=click.Path(exists=False, path_type=Path),
default=None,
help="The path to mount your uploaded directory in the running Docker container."
" Must be an absolute path."
" Required if --volume is specified.")
@click.option(
"--artifact",
"artifact_id",
type=str,
default=None,
help="The ID of the Artifact (i.e., Docker image) to use in the submission, if it already exists."
" You can pass the artifact.id from a previous invocation.",
metavar="ID",
)
@click.option(
"--model",
"model_id",
type=str,
default=None,
help="The ID of the Model (i.e., neural network weights) to use in the submission, if it already exists."
" You can pass the model.id from a previous invocation.",
metavar="ID",
)
@click.option(
"--gpu",
is_flag=True,
default=False,
help="Request a GPU (NVIDIA L4) for the inference service.",
)
def upload_submission(
account: str,
name: str,
image: str | None,
endpoint: str,
volume: Path | None,
volume_mount: Path | None,
artifact_id: str | None,
model_id: str | None,
gpu: bool,
) -> None:
dyffapi = Client()
# Upload the image
if artifact_id is None:
# Create an Artifact resource
click.echo("creating Artifact ...")
artifact = dyffapi.artifacts.create(ArtifactCreateRequest(account=account))
click.echo(f"artifact.id: \"{artifact.id}\"")
_wait_for_status(
lambda: dyffapi.artifacts.get(artifact.id),
"WaitingForUpload",
timeout=timedelta(seconds=30),
)
# Push the image from the local Docker daemon
click.echo("pushing Artifact ...")
dyffapi.artifacts.push(artifact, source=f"docker-daemon:{image}")
time.sleep(5)
# Indicate that we're done pushing
dyffapi.artifacts.finalize(artifact.id)
_wait_for_status(
lambda: dyffapi.artifacts.get(artifact.id),
"Ready",
timeout=timedelta(seconds=30),
)
click.echo("... done")
else:
artifact = dyffapi.artifacts.get(artifact_id)
assert artifact is not None
model: Model | None = None
if model_id is None:
if volume is not None:
if volume_mount is None:
raise click.UsageError("--volume-mount is required when --volume is used")
click.echo("creating Model from local directory ...")
model = dyffapi.models.create_from_volume(
volume, name="model_volume", account=account, resources=ModelResources()
)
click.echo(f"model.id: \"{model.id}\"")
_wait_for_status(
lambda: dyffapi.models.get(model.id),
"WaitingForUpload",
timeout=timedelta(seconds=30),
)
click.echo("uploading Model ...")
dyffapi.models.upload_volume(model, volume)
_wait_for_status(
lambda: dyffapi.models.get(model.id),
"Ready",
timeout=timedelta(seconds=30),
)
click.echo("... done")
else:
model = None
else:
model = dyffapi.models.get(model_id)
assert model is not None
# Create a runnable InferenceService
if volume_mount is not None:
if model is None:
raise click.UsageError("--volume-mount requires --volume or --model")
if not volume_mount.is_absolute():
raise click.UsageError("--volume-mount must be an absolute path")
volumeMounts=[
VolumeMount(
kind=VolumeMountKind.data,
name="model",
mountPath=volume_mount,
data=VolumeMountData(
source=EntityIdentifier.of(model),
),
),
]
else:
volumeMounts = None
accelerator: Accelerator | None = None
if gpu:
accelerator = Accelerator(
kind="GPU",
gpu=AcceleratorGPU(
hardwareTypes=["nvidia.com/gpu-l4"],
count=1,
),
)
# Don't change this
service_request = InferenceServiceCreateRequest(
account=account,
name=name,
model=None,
runner=InferenceServiceRunner(
kind=InferenceServiceRunnerKind.CONTAINER,
imageRef=EntityIdentifier.of(artifact),
resources=ModelResources(),
volumeMounts=volumeMounts,
accelerator=accelerator,
),
interface=InferenceInterface(
endpoint=endpoint,
outputSchema=DataSchema.make_output_schema(PredictionResponse),
),
)
click.echo("creating InferenceService ...")
service = dyffapi.inferenceservices.create(service_request)
click.echo(f"service.id: \"{service.id}\"")
click.echo("... done")
@cli.command()
@_common_options
@click.option(
"--task",
"task_id",
type=str,
required=True,
help="The Task ID to submit to.",
metavar="ID",
)
@click.option(
"--team",
"team_id",
type=str,
required=True,
help="The Team ID making the submission.",
metavar="ID",
)
@click.option(
"--service",
"service_id",
type=str,
required=True,
help="The InferenceService ID to submit.",
metavar="ID",
)
@click.option(
"--challenge",
"challenge_id",
type=str,
default="dc509a8c771b492b90c43012fde9a04f",
help="The Challenge ID to submit to.",
metavar="ID",
)
def submit(account: str, task_id: str, team_id: str, service_id: str, challenge_id: str) -> None:
dyffapi = Client()
challenge = dyffapi.challenges.get(challenge_id)
challengetask = challenge.tasks[task_id]
team = dyffapi.teams.get(team_id)
service = dyffapi.inferenceservices.get(service_id)
submission = dyffapi.challenges.submit(
challenge.id,
challengetask.id,
SubmissionCreateRequest(
account=account,
team=team.id,
submission=EntityIdentifier(kind="InferenceService", id=service.id),
),
)
click.echo(submission.model_dump_json(indent=2))
click.echo(f"submission.id: \"{submission.id}\"")
if __name__ == "__main__":
cli(show_default=True)
|