File size: 17,433 Bytes
ebbcd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python3
"""
PyArrow Dataset Generator for ML Inference Service

Generates test datasets for academic challenges and model validation.
Creates 100 PyArrow datasets with various image types and test scenarios.
"""

import base64
import json
import random
from pathlib import Path
from typing import Dict, List, Any, Tuple
import io

import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from PIL import Image, ImageDraw, ImageFont


class TestDatasetGenerator:
    def __init__(self, output_dir: str = "test_datasets"):
        self.output_dir = Path(output_dir)
        self.output_dir.mkdir(exist_ok=True)

        # ImageNet class labels (sample for testing)
        self.imagenet_labels = [
            "tench", "goldfish", "great_white_shark", "tiger_shark", "hammerhead",
            "electric_ray", "stingray", "cock", "hen", "ostrich", "brambling",
            "goldfinch", "house_finch", "junco", "indigo_bunting", "robin",
            "bulbul", "jay", "magpie", "chickadee", "water_ouzel", "kite",
            "bald_eagle", "vulture", "great_grey_owl", "European_fire_salamander",
            "common_newt", "eft", "spotted_salamander", "axolotl", "bullfrog",
            "tree_frog", "tailed_frog", "loggerhead", "leatherback_turtle",
            "mud_turtle", "terrapin", "box_turtle", "banded_gecko", "common_iguana",
            "American_chameleon", "whiptail", "agama", "frilled_lizard", "alligator_lizard",
            "Gila_monster", "green_lizard", "African_chameleon", "Komodo_dragon",
            "African_crocodile", "American_alligator", "triceratops", "thunder_snake"
        ]

    def create_synthetic_image(self, width: int = 224, height: int = 224,
                             image_type: str = "random") -> Image.Image:
        """Create synthetic images for testing."""
        if image_type == "random":
            # Random noise image
            array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
            return Image.fromarray(array)

        elif image_type == "geometric":
            # Geometric patterns
            img = Image.new('RGB', (width, height), color='white')
            draw = ImageDraw.Draw(img)

            # Draw random shapes
            for _ in range(random.randint(3, 8)):
                color = tuple(random.randint(0, 255) for _ in range(3))
                shape_type = random.choice(['rectangle', 'ellipse'])
                x1, y1 = random.randint(0, width//2), random.randint(0, height//2)
                x2, y2 = x1 + random.randint(20, width//2), y1 + random.randint(20, height//2)

                if shape_type == 'rectangle':
                    draw.rectangle([x1, y1, x2, y2], fill=color)
                else:
                    draw.ellipse([x1, y1, x2, y2], fill=color)

            return img

        elif image_type == "gradient":
            array = np.zeros((height, width, 3), dtype=np.uint8)
            for i in range(height):
                for j in range(width):
                    array[i, j] = [i * 255 // height, j * 255 // width, (i + j) * 255 // (height + width)]
            return Image.fromarray(array)

        elif image_type == "text":
            img = Image.new('RGB', (width, height), color='white')
            draw = ImageDraw.Draw(img)

            try:
                font = ImageFont.load_default()
            except:
                font = None

            text = f"Test Image {random.randint(1, 1000)}"
            draw.text((width//4, height//2), text, fill='black', font=font)
            return img

        else:
            color = tuple(random.randint(0, 255) for _ in range(3))
            return Image.new('RGB', (width, height), color=color)

    def image_to_base64(self, image: Image.Image, format: str = "JPEG") -> str:
        """Convert PIL image to base64 string."""
        buffer = io.BytesIO()
        image.save(buffer, format=format)
        image_bytes = buffer.getvalue()
        return base64.b64encode(image_bytes).decode('utf-8')

    def create_api_request(self, image_b64: str, media_type: str = "image/jpeg") -> Dict[str, Any]:
        """Create API request structure matching your service."""
        return {
            "image": {
                "mediaType": media_type,
                "data": image_b64
            }
        }

    def create_expected_response(self, model_name: str = "microsoft/resnet-18",
                               media_type: str = "image/jpeg") -> Dict[str, Any]:
        """Create expected response structure."""
        prediction = random.choice(self.imagenet_labels)
        return {
            "prediction": prediction,
            "confidence": round(random.uniform(0.3, 0.99), 4),
            "predicted_label": random.randint(0, len(self.imagenet_labels) - 1),
            "model": model_name,
            "mediaType": media_type
        }

    def generate_standard_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
        """Generate standard test cases with normal images."""
        datasets = []

        for i in range(count):
            image_types = ["random", "geometric", "gradient", "text", "solid"]
            sizes = [(224, 224), (256, 256), (299, 299), (384, 384)]
            formats = [("JPEG", "image/jpeg"), ("PNG", "image/png")]

            records = []
            for j in range(random.randint(5, 20)):  # 5-20 images per dataset
                img_type = random.choice(image_types)
                size = random.choice(sizes)
                format_info = random.choice(formats)

                image = self.create_synthetic_image(size[0], size[1], img_type)
                image_b64 = self.image_to_base64(image, format_info[0])

                api_request = self.create_api_request(image_b64, format_info[1])
                expected_response = self.create_expected_response()

                record = {
                    "dataset_id": f"standard_{i:03d}",
                    "image_id": f"img_{j:03d}",
                    "image_type": img_type,
                    "image_size": f"{size[0]}x{size[1]}",
                    "format": format_info[0],
                    "media_type": format_info[1],
                    "api_request": json.dumps(api_request),
                    "expected_response": json.dumps(expected_response),
                    "test_category": "standard",
                    "difficulty": "normal"
                }
                records.append(record)

            datasets.append({
                "name": f"standard_test_{i:03d}",
                "category": "standard",
                "description": f"Standard test dataset {i+1} with {len(records)} images",
                "records": records
            })

        return datasets

    def generate_edge_case_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
        """Generate datasets for edge case scenarios."""
        datasets = []

        for i in range(count):
            records = []
            edge_cases = [
                {"type": "tiny", "size": (32, 32), "difficulty": "high"},
                {"type": "huge", "size": (2048, 2048), "difficulty": "high"},
                {"type": "extreme_aspect", "size": (1000, 50), "difficulty": "medium"},
                {"type": "single_pixel", "size": (1, 1), "difficulty": "extreme"},
                {"type": "corrupted_base64", "size": (224, 224), "difficulty": "extreme"}
            ]

            for j, edge_case in enumerate(edge_cases):
                if edge_case["type"] == "corrupted_base64":
                    image = self.create_synthetic_image(224, 224, "random")
                    image_b64 = self.image_to_base64(image, "JPEG")
                    corrupted_b64 = image_b64[:-20] + "CORRUPTED_DATA"
                    api_request = self.create_api_request(corrupted_b64)
                    expected_response = {
                        "error": "Invalid image data",
                        "status": "failed"
                    }
                else:
                    image = self.create_synthetic_image(
                        edge_case["size"][0], edge_case["size"][1], "random"
                    )
                    image_b64 = self.image_to_base64(image, "PNG")
                    api_request = self.create_api_request(image_b64, "image/png")
                    expected_response = self.create_expected_response()

                record = {
                    "dataset_id": f"edge_{i:03d}",
                    "image_id": f"edge_{j:03d}",
                    "image_type": edge_case["type"],
                    "image_size": f"{edge_case['size'][0]}x{edge_case['size'][1]}",
                    "format": "PNG",
                    "media_type": "image/png",
                    "api_request": json.dumps(api_request),
                    "expected_response": json.dumps(expected_response),
                    "test_category": "edge_case",
                    "difficulty": edge_case["difficulty"]
                }
                records.append(record)

            datasets.append({
                "name": f"edge_case_{i:03d}",
                "category": "edge_case",
                "description": f"Edge case dataset {i+1} with challenging scenarios",
                "records": records
            })

        return datasets

    def generate_performance_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
        """Generate performance benchmark datasets."""
        datasets = []

        for i in range(count):
            batch_sizes = [1, 5, 10, 25, 50, 100]
            batch_size = random.choice(batch_sizes)

            records = []
            for j in range(batch_size):
                image = self.create_synthetic_image(224, 224, "random")
                image_b64 = self.image_to_base64(image, "JPEG")
                api_request = self.create_api_request(image_b64)
                expected_response = self.create_expected_response()

                record = {
                    "dataset_id": f"perf_{i:03d}",
                    "image_id": f"batch_{j:03d}",
                    "image_type": "performance_test",
                    "image_size": "224x224",
                    "format": "JPEG",
                    "media_type": "image/jpeg",
                    "api_request": json.dumps(api_request),
                    "expected_response": json.dumps(expected_response),
                    "test_category": "performance",
                    "difficulty": "normal",
                    "batch_size": batch_size,
                    "expected_max_latency_ms": batch_size * 100
                }
                records.append(record)

            datasets.append({
                "name": f"performance_test_{i:03d}",
                "category": "performance",
                "description": f"Performance dataset {i+1} with batch size {batch_size}",
                "records": records
            })

        return datasets

    def generate_model_comparison_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
        """Generate datasets for comparing different models."""
        datasets = []

        model_types = [
            "microsoft/resnet-18", "microsoft/resnet-50", "google/vit-base-patch16-224",
            "facebook/convnext-tiny-224", "microsoft/swin-tiny-patch4-window7-224"
        ]

        for i in range(count):
            # Same images tested across different model types
            base_images = []
            for _ in range(10):  # 10 base images per comparison dataset
                image = self.create_synthetic_image(224, 224, "geometric")
                base_images.append(self.image_to_base64(image, "JPEG"))

            records = []
            for j, model in enumerate(model_types):
                for k, image_b64 in enumerate(base_images):
                    api_request = self.create_api_request(image_b64)
                    expected_response = self.create_expected_response(model)

                    record = {
                        "dataset_id": f"comparison_{i:03d}",
                        "image_id": f"img_{k:03d}_model_{j}",
                        "image_type": "comparison_base",
                        "image_size": "224x224",
                        "format": "JPEG",
                        "media_type": "image/jpeg",
                        "api_request": json.dumps(api_request),
                        "expected_response": json.dumps(expected_response),
                        "test_category": "model_comparison",
                        "difficulty": "normal",
                        "model_type": model,
                        "comparison_group": k
                    }
                    records.append(record)

            datasets.append({
                "name": f"model_comparison_{i:03d}",
                "category": "model_comparison",
                "description": f"Model comparison dataset {i+1} testing {len(model_types)} models",
                "records": records
            })

        return datasets

    def save_dataset_to_parquet(self, dataset: Dict[str, Any]):
        """Save a dataset to PyArrow Parquet format."""
        records = dataset["records"]

        # Convert to PyArrow table
        table = pa.table({
            "dataset_id": [r["dataset_id"] for r in records],
            "image_id": [r["image_id"] for r in records],
            "image_type": [r["image_type"] for r in records],
            "image_size": [r["image_size"] for r in records],
            "format": [r["format"] for r in records],
            "media_type": [r["media_type"] for r in records],
            "api_request": [r["api_request"] for r in records],
            "expected_response": [r["expected_response"] for r in records],
            "test_category": [r["test_category"] for r in records],
            "difficulty": [r["difficulty"] for r in records],
            # Optional fields with defaults
            "batch_size": [r.get("batch_size", 1) for r in records],
            "expected_max_latency_ms": [r.get("expected_max_latency_ms", 1000) for r in records],
            "model_type": [r.get("model_type", "microsoft/resnet-18") for r in records],
            "comparison_group": [r.get("comparison_group", 0) for r in records]
        })

        output_path = self.output_dir / f"{dataset['name']}.parquet"
        pq.write_table(table, output_path)

        # Save metadata as JSON
        metadata = {
            "name": dataset["name"],
            "category": dataset["category"],
            "description": dataset["description"],
            "record_count": len(records),
            "file_size_mb": round(output_path.stat().st_size / (1024 * 1024), 2),
            "schema": [field.name for field in table.schema]
        }

        metadata_path = self.output_dir / f"{dataset['name']}_metadata.json"
        with open(metadata_path, 'w') as f:
            json.dump(metadata, f, indent=2)

    def generate_all_datasets(self):
        """Generate all 100 datasets."""
        print(" Starting dataset generation...")

        print("πŸ“Š Generating standard test datasets (25)...")
        standard_datasets = self.generate_standard_datasets(25)
        for dataset in standard_datasets:
            self.save_dataset_to_parquet(dataset)

        print("⚑ Generating edge case datasets (25)...")
        edge_datasets = self.generate_edge_case_datasets(25)
        for dataset in edge_datasets:
            self.save_dataset_to_parquet(dataset)

        print("🏁 Generating performance datasets (25)...")
        performance_datasets = self.generate_performance_datasets(25)
        for dataset in performance_datasets:
            self.save_dataset_to_parquet(dataset)

        print("πŸ”„ Generating model comparison datasets (25)...")
        comparison_datasets = self.generate_model_comparison_datasets(25)
        for dataset in comparison_datasets:
            self.save_dataset_to_parquet(dataset)

        print(f"βœ… Generated 100 datasets in {self.output_dir}/")

        self.generate_summary()

    def generate_summary(self):
        """Generate a summary of all datasets."""
        summary = {
            "total_datasets": 100,
            "categories": {
                "standard": 25,
                "edge_case": 25,
                "performance": 25,
                "model_comparison": 25
            },
            "dataset_info": [],
            "usage_instructions": {
                "loading": "Use pyarrow.parquet.read_table('dataset.parquet')",
                "testing": "Run python scripts/test_datasets.py",
                "api_endpoint": "POST /predict/resnet",
                "request_format": "See api_request column in datasets"
            }
        }

        # Add individual dataset info
        for parquet_file in self.output_dir.glob("*.parquet"):
            metadata_file = self.output_dir / f"{parquet_file.stem}_metadata.json"
            if metadata_file.exists():
                with open(metadata_file, 'r') as f:
                    metadata = json.load(f)
                    summary["dataset_info"].append(metadata)

        summary_path = self.output_dir / "datasets_summary.json"
        with open(summary_path, 'w') as f:
            json.dump(summary, f, indent=2)

        print(f"πŸ“‹ Summary saved to {summary_path}")


if __name__ == "__main__":
    generator = TestDatasetGenerator()
    generator.generate_all_datasets()