File size: 17,433 Bytes
ebbcd26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
#!/usr/bin/env python3
"""
PyArrow Dataset Generator for ML Inference Service
Generates test datasets for academic challenges and model validation.
Creates 100 PyArrow datasets with various image types and test scenarios.
"""
import base64
import json
import random
from pathlib import Path
from typing import Dict, List, Any, Tuple
import io
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from PIL import Image, ImageDraw, ImageFont
class TestDatasetGenerator:
def __init__(self, output_dir: str = "test_datasets"):
self.output_dir = Path(output_dir)
self.output_dir.mkdir(exist_ok=True)
# ImageNet class labels (sample for testing)
self.imagenet_labels = [
"tench", "goldfish", "great_white_shark", "tiger_shark", "hammerhead",
"electric_ray", "stingray", "cock", "hen", "ostrich", "brambling",
"goldfinch", "house_finch", "junco", "indigo_bunting", "robin",
"bulbul", "jay", "magpie", "chickadee", "water_ouzel", "kite",
"bald_eagle", "vulture", "great_grey_owl", "European_fire_salamander",
"common_newt", "eft", "spotted_salamander", "axolotl", "bullfrog",
"tree_frog", "tailed_frog", "loggerhead", "leatherback_turtle",
"mud_turtle", "terrapin", "box_turtle", "banded_gecko", "common_iguana",
"American_chameleon", "whiptail", "agama", "frilled_lizard", "alligator_lizard",
"Gila_monster", "green_lizard", "African_chameleon", "Komodo_dragon",
"African_crocodile", "American_alligator", "triceratops", "thunder_snake"
]
def create_synthetic_image(self, width: int = 224, height: int = 224,
image_type: str = "random") -> Image.Image:
"""Create synthetic images for testing."""
if image_type == "random":
# Random noise image
array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
return Image.fromarray(array)
elif image_type == "geometric":
# Geometric patterns
img = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(img)
# Draw random shapes
for _ in range(random.randint(3, 8)):
color = tuple(random.randint(0, 255) for _ in range(3))
shape_type = random.choice(['rectangle', 'ellipse'])
x1, y1 = random.randint(0, width//2), random.randint(0, height//2)
x2, y2 = x1 + random.randint(20, width//2), y1 + random.randint(20, height//2)
if shape_type == 'rectangle':
draw.rectangle([x1, y1, x2, y2], fill=color)
else:
draw.ellipse([x1, y1, x2, y2], fill=color)
return img
elif image_type == "gradient":
array = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(height):
for j in range(width):
array[i, j] = [i * 255 // height, j * 255 // width, (i + j) * 255 // (height + width)]
return Image.fromarray(array)
elif image_type == "text":
img = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(img)
try:
font = ImageFont.load_default()
except:
font = None
text = f"Test Image {random.randint(1, 1000)}"
draw.text((width//4, height//2), text, fill='black', font=font)
return img
else:
color = tuple(random.randint(0, 255) for _ in range(3))
return Image.new('RGB', (width, height), color=color)
def image_to_base64(self, image: Image.Image, format: str = "JPEG") -> str:
"""Convert PIL image to base64 string."""
buffer = io.BytesIO()
image.save(buffer, format=format)
image_bytes = buffer.getvalue()
return base64.b64encode(image_bytes).decode('utf-8')
def create_api_request(self, image_b64: str, media_type: str = "image/jpeg") -> Dict[str, Any]:
"""Create API request structure matching your service."""
return {
"image": {
"mediaType": media_type,
"data": image_b64
}
}
def create_expected_response(self, model_name: str = "microsoft/resnet-18",
media_type: str = "image/jpeg") -> Dict[str, Any]:
"""Create expected response structure."""
prediction = random.choice(self.imagenet_labels)
return {
"prediction": prediction,
"confidence": round(random.uniform(0.3, 0.99), 4),
"predicted_label": random.randint(0, len(self.imagenet_labels) - 1),
"model": model_name,
"mediaType": media_type
}
def generate_standard_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate standard test cases with normal images."""
datasets = []
for i in range(count):
image_types = ["random", "geometric", "gradient", "text", "solid"]
sizes = [(224, 224), (256, 256), (299, 299), (384, 384)]
formats = [("JPEG", "image/jpeg"), ("PNG", "image/png")]
records = []
for j in range(random.randint(5, 20)): # 5-20 images per dataset
img_type = random.choice(image_types)
size = random.choice(sizes)
format_info = random.choice(formats)
image = self.create_synthetic_image(size[0], size[1], img_type)
image_b64 = self.image_to_base64(image, format_info[0])
api_request = self.create_api_request(image_b64, format_info[1])
expected_response = self.create_expected_response()
record = {
"dataset_id": f"standard_{i:03d}",
"image_id": f"img_{j:03d}",
"image_type": img_type,
"image_size": f"{size[0]}x{size[1]}",
"format": format_info[0],
"media_type": format_info[1],
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "standard",
"difficulty": "normal"
}
records.append(record)
datasets.append({
"name": f"standard_test_{i:03d}",
"category": "standard",
"description": f"Standard test dataset {i+1} with {len(records)} images",
"records": records
})
return datasets
def generate_edge_case_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate datasets for edge case scenarios."""
datasets = []
for i in range(count):
records = []
edge_cases = [
{"type": "tiny", "size": (32, 32), "difficulty": "high"},
{"type": "huge", "size": (2048, 2048), "difficulty": "high"},
{"type": "extreme_aspect", "size": (1000, 50), "difficulty": "medium"},
{"type": "single_pixel", "size": (1, 1), "difficulty": "extreme"},
{"type": "corrupted_base64", "size": (224, 224), "difficulty": "extreme"}
]
for j, edge_case in enumerate(edge_cases):
if edge_case["type"] == "corrupted_base64":
image = self.create_synthetic_image(224, 224, "random")
image_b64 = self.image_to_base64(image, "JPEG")
corrupted_b64 = image_b64[:-20] + "CORRUPTED_DATA"
api_request = self.create_api_request(corrupted_b64)
expected_response = {
"error": "Invalid image data",
"status": "failed"
}
else:
image = self.create_synthetic_image(
edge_case["size"][0], edge_case["size"][1], "random"
)
image_b64 = self.image_to_base64(image, "PNG")
api_request = self.create_api_request(image_b64, "image/png")
expected_response = self.create_expected_response()
record = {
"dataset_id": f"edge_{i:03d}",
"image_id": f"edge_{j:03d}",
"image_type": edge_case["type"],
"image_size": f"{edge_case['size'][0]}x{edge_case['size'][1]}",
"format": "PNG",
"media_type": "image/png",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "edge_case",
"difficulty": edge_case["difficulty"]
}
records.append(record)
datasets.append({
"name": f"edge_case_{i:03d}",
"category": "edge_case",
"description": f"Edge case dataset {i+1} with challenging scenarios",
"records": records
})
return datasets
def generate_performance_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate performance benchmark datasets."""
datasets = []
for i in range(count):
batch_sizes = [1, 5, 10, 25, 50, 100]
batch_size = random.choice(batch_sizes)
records = []
for j in range(batch_size):
image = self.create_synthetic_image(224, 224, "random")
image_b64 = self.image_to_base64(image, "JPEG")
api_request = self.create_api_request(image_b64)
expected_response = self.create_expected_response()
record = {
"dataset_id": f"perf_{i:03d}",
"image_id": f"batch_{j:03d}",
"image_type": "performance_test",
"image_size": "224x224",
"format": "JPEG",
"media_type": "image/jpeg",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "performance",
"difficulty": "normal",
"batch_size": batch_size,
"expected_max_latency_ms": batch_size * 100
}
records.append(record)
datasets.append({
"name": f"performance_test_{i:03d}",
"category": "performance",
"description": f"Performance dataset {i+1} with batch size {batch_size}",
"records": records
})
return datasets
def generate_model_comparison_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate datasets for comparing different models."""
datasets = []
model_types = [
"microsoft/resnet-18", "microsoft/resnet-50", "google/vit-base-patch16-224",
"facebook/convnext-tiny-224", "microsoft/swin-tiny-patch4-window7-224"
]
for i in range(count):
# Same images tested across different model types
base_images = []
for _ in range(10): # 10 base images per comparison dataset
image = self.create_synthetic_image(224, 224, "geometric")
base_images.append(self.image_to_base64(image, "JPEG"))
records = []
for j, model in enumerate(model_types):
for k, image_b64 in enumerate(base_images):
api_request = self.create_api_request(image_b64)
expected_response = self.create_expected_response(model)
record = {
"dataset_id": f"comparison_{i:03d}",
"image_id": f"img_{k:03d}_model_{j}",
"image_type": "comparison_base",
"image_size": "224x224",
"format": "JPEG",
"media_type": "image/jpeg",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "model_comparison",
"difficulty": "normal",
"model_type": model,
"comparison_group": k
}
records.append(record)
datasets.append({
"name": f"model_comparison_{i:03d}",
"category": "model_comparison",
"description": f"Model comparison dataset {i+1} testing {len(model_types)} models",
"records": records
})
return datasets
def save_dataset_to_parquet(self, dataset: Dict[str, Any]):
"""Save a dataset to PyArrow Parquet format."""
records = dataset["records"]
# Convert to PyArrow table
table = pa.table({
"dataset_id": [r["dataset_id"] for r in records],
"image_id": [r["image_id"] for r in records],
"image_type": [r["image_type"] for r in records],
"image_size": [r["image_size"] for r in records],
"format": [r["format"] for r in records],
"media_type": [r["media_type"] for r in records],
"api_request": [r["api_request"] for r in records],
"expected_response": [r["expected_response"] for r in records],
"test_category": [r["test_category"] for r in records],
"difficulty": [r["difficulty"] for r in records],
# Optional fields with defaults
"batch_size": [r.get("batch_size", 1) for r in records],
"expected_max_latency_ms": [r.get("expected_max_latency_ms", 1000) for r in records],
"model_type": [r.get("model_type", "microsoft/resnet-18") for r in records],
"comparison_group": [r.get("comparison_group", 0) for r in records]
})
output_path = self.output_dir / f"{dataset['name']}.parquet"
pq.write_table(table, output_path)
# Save metadata as JSON
metadata = {
"name": dataset["name"],
"category": dataset["category"],
"description": dataset["description"],
"record_count": len(records),
"file_size_mb": round(output_path.stat().st_size / (1024 * 1024), 2),
"schema": [field.name for field in table.schema]
}
metadata_path = self.output_dir / f"{dataset['name']}_metadata.json"
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
def generate_all_datasets(self):
"""Generate all 100 datasets."""
print(" Starting dataset generation...")
print("π Generating standard test datasets (25)...")
standard_datasets = self.generate_standard_datasets(25)
for dataset in standard_datasets:
self.save_dataset_to_parquet(dataset)
print("β‘ Generating edge case datasets (25)...")
edge_datasets = self.generate_edge_case_datasets(25)
for dataset in edge_datasets:
self.save_dataset_to_parquet(dataset)
print("π Generating performance datasets (25)...")
performance_datasets = self.generate_performance_datasets(25)
for dataset in performance_datasets:
self.save_dataset_to_parquet(dataset)
print("π Generating model comparison datasets (25)...")
comparison_datasets = self.generate_model_comparison_datasets(25)
for dataset in comparison_datasets:
self.save_dataset_to_parquet(dataset)
print(f"β
Generated 100 datasets in {self.output_dir}/")
self.generate_summary()
def generate_summary(self):
"""Generate a summary of all datasets."""
summary = {
"total_datasets": 100,
"categories": {
"standard": 25,
"edge_case": 25,
"performance": 25,
"model_comparison": 25
},
"dataset_info": [],
"usage_instructions": {
"loading": "Use pyarrow.parquet.read_table('dataset.parquet')",
"testing": "Run python scripts/test_datasets.py",
"api_endpoint": "POST /predict/resnet",
"request_format": "See api_request column in datasets"
}
}
# Add individual dataset info
for parquet_file in self.output_dir.glob("*.parquet"):
metadata_file = self.output_dir / f"{parquet_file.stem}_metadata.json"
if metadata_file.exists():
with open(metadata_file, 'r') as f:
metadata = json.load(f)
summary["dataset_info"].append(metadata)
summary_path = self.output_dir / "datasets_summary.json"
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2)
print(f"π Summary saved to {summary_path}")
if __name__ == "__main__":
generator = TestDatasetGenerator()
generator.generate_all_datasets() |