example-submission / scripts /generate_test_datasets.py
sachin sharma
added test case generation
ebbcd26
raw
history blame
17.4 kB
#!/usr/bin/env python3
"""
PyArrow Dataset Generator for ML Inference Service
Generates test datasets for academic challenges and model validation.
Creates 100 PyArrow datasets with various image types and test scenarios.
"""
import base64
import json
import random
from pathlib import Path
from typing import Dict, List, Any, Tuple
import io
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from PIL import Image, ImageDraw, ImageFont
class TestDatasetGenerator:
def __init__(self, output_dir: str = "test_datasets"):
self.output_dir = Path(output_dir)
self.output_dir.mkdir(exist_ok=True)
# ImageNet class labels (sample for testing)
self.imagenet_labels = [
"tench", "goldfish", "great_white_shark", "tiger_shark", "hammerhead",
"electric_ray", "stingray", "cock", "hen", "ostrich", "brambling",
"goldfinch", "house_finch", "junco", "indigo_bunting", "robin",
"bulbul", "jay", "magpie", "chickadee", "water_ouzel", "kite",
"bald_eagle", "vulture", "great_grey_owl", "European_fire_salamander",
"common_newt", "eft", "spotted_salamander", "axolotl", "bullfrog",
"tree_frog", "tailed_frog", "loggerhead", "leatherback_turtle",
"mud_turtle", "terrapin", "box_turtle", "banded_gecko", "common_iguana",
"American_chameleon", "whiptail", "agama", "frilled_lizard", "alligator_lizard",
"Gila_monster", "green_lizard", "African_chameleon", "Komodo_dragon",
"African_crocodile", "American_alligator", "triceratops", "thunder_snake"
]
def create_synthetic_image(self, width: int = 224, height: int = 224,
image_type: str = "random") -> Image.Image:
"""Create synthetic images for testing."""
if image_type == "random":
# Random noise image
array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
return Image.fromarray(array)
elif image_type == "geometric":
# Geometric patterns
img = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(img)
# Draw random shapes
for _ in range(random.randint(3, 8)):
color = tuple(random.randint(0, 255) for _ in range(3))
shape_type = random.choice(['rectangle', 'ellipse'])
x1, y1 = random.randint(0, width//2), random.randint(0, height//2)
x2, y2 = x1 + random.randint(20, width//2), y1 + random.randint(20, height//2)
if shape_type == 'rectangle':
draw.rectangle([x1, y1, x2, y2], fill=color)
else:
draw.ellipse([x1, y1, x2, y2], fill=color)
return img
elif image_type == "gradient":
array = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(height):
for j in range(width):
array[i, j] = [i * 255 // height, j * 255 // width, (i + j) * 255 // (height + width)]
return Image.fromarray(array)
elif image_type == "text":
img = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(img)
try:
font = ImageFont.load_default()
except:
font = None
text = f"Test Image {random.randint(1, 1000)}"
draw.text((width//4, height//2), text, fill='black', font=font)
return img
else:
color = tuple(random.randint(0, 255) for _ in range(3))
return Image.new('RGB', (width, height), color=color)
def image_to_base64(self, image: Image.Image, format: str = "JPEG") -> str:
"""Convert PIL image to base64 string."""
buffer = io.BytesIO()
image.save(buffer, format=format)
image_bytes = buffer.getvalue()
return base64.b64encode(image_bytes).decode('utf-8')
def create_api_request(self, image_b64: str, media_type: str = "image/jpeg") -> Dict[str, Any]:
"""Create API request structure matching your service."""
return {
"image": {
"mediaType": media_type,
"data": image_b64
}
}
def create_expected_response(self, model_name: str = "microsoft/resnet-18",
media_type: str = "image/jpeg") -> Dict[str, Any]:
"""Create expected response structure."""
prediction = random.choice(self.imagenet_labels)
return {
"prediction": prediction,
"confidence": round(random.uniform(0.3, 0.99), 4),
"predicted_label": random.randint(0, len(self.imagenet_labels) - 1),
"model": model_name,
"mediaType": media_type
}
def generate_standard_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate standard test cases with normal images."""
datasets = []
for i in range(count):
image_types = ["random", "geometric", "gradient", "text", "solid"]
sizes = [(224, 224), (256, 256), (299, 299), (384, 384)]
formats = [("JPEG", "image/jpeg"), ("PNG", "image/png")]
records = []
for j in range(random.randint(5, 20)): # 5-20 images per dataset
img_type = random.choice(image_types)
size = random.choice(sizes)
format_info = random.choice(formats)
image = self.create_synthetic_image(size[0], size[1], img_type)
image_b64 = self.image_to_base64(image, format_info[0])
api_request = self.create_api_request(image_b64, format_info[1])
expected_response = self.create_expected_response()
record = {
"dataset_id": f"standard_{i:03d}",
"image_id": f"img_{j:03d}",
"image_type": img_type,
"image_size": f"{size[0]}x{size[1]}",
"format": format_info[0],
"media_type": format_info[1],
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "standard",
"difficulty": "normal"
}
records.append(record)
datasets.append({
"name": f"standard_test_{i:03d}",
"category": "standard",
"description": f"Standard test dataset {i+1} with {len(records)} images",
"records": records
})
return datasets
def generate_edge_case_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate datasets for edge case scenarios."""
datasets = []
for i in range(count):
records = []
edge_cases = [
{"type": "tiny", "size": (32, 32), "difficulty": "high"},
{"type": "huge", "size": (2048, 2048), "difficulty": "high"},
{"type": "extreme_aspect", "size": (1000, 50), "difficulty": "medium"},
{"type": "single_pixel", "size": (1, 1), "difficulty": "extreme"},
{"type": "corrupted_base64", "size": (224, 224), "difficulty": "extreme"}
]
for j, edge_case in enumerate(edge_cases):
if edge_case["type"] == "corrupted_base64":
image = self.create_synthetic_image(224, 224, "random")
image_b64 = self.image_to_base64(image, "JPEG")
corrupted_b64 = image_b64[:-20] + "CORRUPTED_DATA"
api_request = self.create_api_request(corrupted_b64)
expected_response = {
"error": "Invalid image data",
"status": "failed"
}
else:
image = self.create_synthetic_image(
edge_case["size"][0], edge_case["size"][1], "random"
)
image_b64 = self.image_to_base64(image, "PNG")
api_request = self.create_api_request(image_b64, "image/png")
expected_response = self.create_expected_response()
record = {
"dataset_id": f"edge_{i:03d}",
"image_id": f"edge_{j:03d}",
"image_type": edge_case["type"],
"image_size": f"{edge_case['size'][0]}x{edge_case['size'][1]}",
"format": "PNG",
"media_type": "image/png",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "edge_case",
"difficulty": edge_case["difficulty"]
}
records.append(record)
datasets.append({
"name": f"edge_case_{i:03d}",
"category": "edge_case",
"description": f"Edge case dataset {i+1} with challenging scenarios",
"records": records
})
return datasets
def generate_performance_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate performance benchmark datasets."""
datasets = []
for i in range(count):
batch_sizes = [1, 5, 10, 25, 50, 100]
batch_size = random.choice(batch_sizes)
records = []
for j in range(batch_size):
image = self.create_synthetic_image(224, 224, "random")
image_b64 = self.image_to_base64(image, "JPEG")
api_request = self.create_api_request(image_b64)
expected_response = self.create_expected_response()
record = {
"dataset_id": f"perf_{i:03d}",
"image_id": f"batch_{j:03d}",
"image_type": "performance_test",
"image_size": "224x224",
"format": "JPEG",
"media_type": "image/jpeg",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "performance",
"difficulty": "normal",
"batch_size": batch_size,
"expected_max_latency_ms": batch_size * 100
}
records.append(record)
datasets.append({
"name": f"performance_test_{i:03d}",
"category": "performance",
"description": f"Performance dataset {i+1} with batch size {batch_size}",
"records": records
})
return datasets
def generate_model_comparison_datasets(self, count: int = 25) -> List[Dict[str, Any]]:
"""Generate datasets for comparing different models."""
datasets = []
model_types = [
"microsoft/resnet-18", "microsoft/resnet-50", "google/vit-base-patch16-224",
"facebook/convnext-tiny-224", "microsoft/swin-tiny-patch4-window7-224"
]
for i in range(count):
# Same images tested across different model types
base_images = []
for _ in range(10): # 10 base images per comparison dataset
image = self.create_synthetic_image(224, 224, "geometric")
base_images.append(self.image_to_base64(image, "JPEG"))
records = []
for j, model in enumerate(model_types):
for k, image_b64 in enumerate(base_images):
api_request = self.create_api_request(image_b64)
expected_response = self.create_expected_response(model)
record = {
"dataset_id": f"comparison_{i:03d}",
"image_id": f"img_{k:03d}_model_{j}",
"image_type": "comparison_base",
"image_size": "224x224",
"format": "JPEG",
"media_type": "image/jpeg",
"api_request": json.dumps(api_request),
"expected_response": json.dumps(expected_response),
"test_category": "model_comparison",
"difficulty": "normal",
"model_type": model,
"comparison_group": k
}
records.append(record)
datasets.append({
"name": f"model_comparison_{i:03d}",
"category": "model_comparison",
"description": f"Model comparison dataset {i+1} testing {len(model_types)} models",
"records": records
})
return datasets
def save_dataset_to_parquet(self, dataset: Dict[str, Any]):
"""Save a dataset to PyArrow Parquet format."""
records = dataset["records"]
# Convert to PyArrow table
table = pa.table({
"dataset_id": [r["dataset_id"] for r in records],
"image_id": [r["image_id"] for r in records],
"image_type": [r["image_type"] for r in records],
"image_size": [r["image_size"] for r in records],
"format": [r["format"] for r in records],
"media_type": [r["media_type"] for r in records],
"api_request": [r["api_request"] for r in records],
"expected_response": [r["expected_response"] for r in records],
"test_category": [r["test_category"] for r in records],
"difficulty": [r["difficulty"] for r in records],
# Optional fields with defaults
"batch_size": [r.get("batch_size", 1) for r in records],
"expected_max_latency_ms": [r.get("expected_max_latency_ms", 1000) for r in records],
"model_type": [r.get("model_type", "microsoft/resnet-18") for r in records],
"comparison_group": [r.get("comparison_group", 0) for r in records]
})
output_path = self.output_dir / f"{dataset['name']}.parquet"
pq.write_table(table, output_path)
# Save metadata as JSON
metadata = {
"name": dataset["name"],
"category": dataset["category"],
"description": dataset["description"],
"record_count": len(records),
"file_size_mb": round(output_path.stat().st_size / (1024 * 1024), 2),
"schema": [field.name for field in table.schema]
}
metadata_path = self.output_dir / f"{dataset['name']}_metadata.json"
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
def generate_all_datasets(self):
"""Generate all 100 datasets."""
print(" Starting dataset generation...")
print("πŸ“Š Generating standard test datasets (25)...")
standard_datasets = self.generate_standard_datasets(25)
for dataset in standard_datasets:
self.save_dataset_to_parquet(dataset)
print("⚑ Generating edge case datasets (25)...")
edge_datasets = self.generate_edge_case_datasets(25)
for dataset in edge_datasets:
self.save_dataset_to_parquet(dataset)
print("🏁 Generating performance datasets (25)...")
performance_datasets = self.generate_performance_datasets(25)
for dataset in performance_datasets:
self.save_dataset_to_parquet(dataset)
print("πŸ”„ Generating model comparison datasets (25)...")
comparison_datasets = self.generate_model_comparison_datasets(25)
for dataset in comparison_datasets:
self.save_dataset_to_parquet(dataset)
print(f"βœ… Generated 100 datasets in {self.output_dir}/")
self.generate_summary()
def generate_summary(self):
"""Generate a summary of all datasets."""
summary = {
"total_datasets": 100,
"categories": {
"standard": 25,
"edge_case": 25,
"performance": 25,
"model_comparison": 25
},
"dataset_info": [],
"usage_instructions": {
"loading": "Use pyarrow.parquet.read_table('dataset.parquet')",
"testing": "Run python scripts/test_datasets.py",
"api_endpoint": "POST /predict/resnet",
"request_format": "See api_request column in datasets"
}
}
# Add individual dataset info
for parquet_file in self.output_dir.glob("*.parquet"):
metadata_file = self.output_dir / f"{parquet_file.stem}_metadata.json"
if metadata_file.exists():
with open(metadata_file, 'r') as f:
metadata = json.load(f)
summary["dataset_info"].append(metadata)
summary_path = self.output_dir / "datasets_summary.json"
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2)
print(f"πŸ“‹ Summary saved to {summary_path}")
if __name__ == "__main__":
generator = TestDatasetGenerator()
generator.generate_all_datasets()