Spaces:
Runtime error
Runtime error
| import requests | |
| import os | |
| import gradio as gr | |
| import json | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_name = 'facebook/incoder-1B' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True) | |
| print('load ok') | |
| def completion(prompt, max_tokens, temperature, top_k, top_p): | |
| inpt = tokenizer.encode(prompt, return_tensors="pt") | |
| tok = len(tokenizer(prompt)['input_ids']) | |
| out = model.generate(inpt, max_length=tok+max_tokens, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=2, repetition_penalty=2.0) | |
| res = tokenizer.decode(out[0]) | |
| return res | |
| demo = gr.Interface( | |
| fn=completion, | |
| inputs=[ | |
| gr.inputs.Textbox(lines=10,placeholder='Write some code..'), | |
| gr.inputs.Slider(10,200,10,100,'Max Tokens',False), | |
| gr.inputs.Slider(0,1.0,0.1,1.0,'temperature',False), | |
| gr.inputs.Slider(0,50,1,40,'top_k',True), | |
| gr.inputs.Slider(0,1.0,0.1,0.9,'top_p',True) | |
| ], | |
| outputs="text", | |
| allow_flagging=False, | |
| ) | |
| demo.launch() |