Must Refactor Code :)
Browse files- s5-how-to-umap.py +48 -35
s5-how-to-umap.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from IPython.display import display
|
| 2 |
from umap import UMAP
|
| 3 |
from sklearn.preprocessing import MinMaxScaler
|
|
@@ -9,7 +10,8 @@ from s2_download_data import load_data_from_huggingface
|
|
| 9 |
from utils import prepare_dataset_for_umap_visualization as data_prep
|
| 10 |
from s3_data_to_vector_embedding import bt_embeddings_from_local
|
| 11 |
import random
|
| 12 |
-
|
|
|
|
| 13 |
# prompt templates
|
| 14 |
templates = [
|
| 15 |
'a picture of {}',
|
|
@@ -35,54 +37,63 @@ def data_prep(hf_dataset_name, templates=templates, test_size=1000):
|
|
| 35 |
})
|
| 36 |
return img_txt_pairs
|
| 37 |
|
| 38 |
-
#
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
# for the first 50 data of Huggingface dataset
|
| 41 |
-
# "yashikota/cat-image-dataset"
|
| 42 |
-
cat_img_txt_pairs = data_prep("yashikota/cat-image-dataset",
|
| 43 |
-
|
| 44 |
|
| 45 |
-
# for the first 50 data of Huggingface dataset
|
| 46 |
-
# "tanganke/stanford_cars"
|
| 47 |
-
car_img_txt_pairs = data_prep("tanganke/stanford_cars",
|
| 48 |
-
|
| 49 |
|
| 50 |
-
# display an example of a cat image-text pair data
|
| 51 |
-
display(cat_img_txt_pairs[0]['caption'])
|
| 52 |
-
display(cat_img_txt_pairs[0]['pil_img'])
|
| 53 |
|
| 54 |
-
# display an example of a car image-text pair data
|
| 55 |
-
display(car_img_txt_pairs[0]['caption'])
|
| 56 |
-
display(car_img_txt_pairs[0]['pil_img'])
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# compute BridgeTower embeddings for cat image-text pairs
|
| 59 |
-
def load_cat_and_car_embeddings():
|
| 60 |
-
|
| 61 |
def load_embeddings(img_txt_pair):
|
| 62 |
pil_img = img_txt_pair['pil_img']
|
| 63 |
caption = img_txt_pair['caption']
|
| 64 |
return bt_embeddings_from_local(caption, pil_img)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
cat_img_txt_pairs,
|
| 69 |
total=len(cat_img_txt_pairs)
|
| 70 |
):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
car_embeddings = []
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
return cat_embeddings, car_embeddings
|
| 87 |
|
| 88 |
|
|
@@ -123,4 +134,6 @@ def show_umap_visualization():
|
|
| 123 |
plt.title('Scatter plot of images of cats and cars using UMAP')
|
| 124 |
plt.xlabel('X')
|
| 125 |
plt.ylabel('Y')
|
| 126 |
-
plt.show()
|
|
|
|
|
|
|
|
|
| 1 |
+
from os import path
|
| 2 |
from IPython.display import display
|
| 3 |
from umap import UMAP
|
| 4 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
| 10 |
from utils import prepare_dataset_for_umap_visualization as data_prep
|
| 11 |
from s3_data_to_vector_embedding import bt_embeddings_from_local
|
| 12 |
import random
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
# prompt templates
|
| 16 |
templates = [
|
| 17 |
'a picture of {}',
|
|
|
|
| 37 |
})
|
| 38 |
return img_txt_pairs
|
| 39 |
|
| 40 |
+
# compute BridgeTower embeddings for cat image-text pairs
|
| 41 |
+
def load_cat_and_car_embeddings():
|
| 42 |
+
|
| 43 |
+
# prepare image_text pairs
|
| 44 |
|
| 45 |
+
# for the first 50 data of Huggingface dataset
|
| 46 |
+
# "yashikota/cat-image-dataset"
|
| 47 |
+
cat_img_txt_pairs = data_prep("yashikota/cat-image-dataset",
|
| 48 |
+
"cat", test_size=50)
|
| 49 |
|
| 50 |
+
# for the first 50 data of Huggingface dataset
|
| 51 |
+
# "tanganke/stanford_cars"
|
| 52 |
+
car_img_txt_pairs = data_prep("tanganke/stanford_cars",
|
| 53 |
+
"car", test_size=50)
|
| 54 |
|
| 55 |
+
# display an example of a cat image-text pair data
|
| 56 |
+
display(cat_img_txt_pairs[0]['caption'])
|
| 57 |
+
display(cat_img_txt_pairs[0]['pil_img'])
|
| 58 |
|
| 59 |
+
# display an example of a car image-text pair data
|
| 60 |
+
display(car_img_txt_pairs[0]['caption'])
|
| 61 |
+
display(car_img_txt_pairs[0]['pil_img'])
|
| 62 |
+
|
| 63 |
+
def save_embeddings(embedding, path):
|
| 64 |
+
torch.save(embedding, path)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
def load_embeddings(img_txt_pair):
|
| 67 |
pil_img = img_txt_pair['pil_img']
|
| 68 |
caption = img_txt_pair['caption']
|
| 69 |
return bt_embeddings_from_local(caption, pil_img)
|
| 70 |
|
| 71 |
+
def load_all_embeddings_from_image_text_pairs(file_name):
|
| 72 |
+
cat_embeddings = []
|
| 73 |
+
for img_txt_pair in tqdm(
|
| 74 |
cat_img_txt_pairs,
|
| 75 |
total=len(cat_img_txt_pairs)
|
| 76 |
):
|
| 77 |
+
pil_img = img_txt_pair['pil_img']
|
| 78 |
+
caption = img_txt_pair['caption']
|
| 79 |
+
embedding = load_embeddings(caption, pil_img)
|
| 80 |
+
cat_embeddings.append(embedding)
|
| 81 |
+
save_embeddings(cat_embeddings, file_name)
|
| 82 |
+
return cat_embeddings
|
| 83 |
+
|
| 84 |
|
| 85 |
+
cat_embeddings = []
|
| 86 |
car_embeddings = []
|
| 87 |
+
if (path.exists('./shared_data/cat_embeddings.pt')):
|
| 88 |
+
cat_embeddings = torch.load('./shared_data/cat_embeddings.pt')
|
| 89 |
+
else:
|
| 90 |
+
cat_embeddings = load_all_embeddings_from_image_text_pairs('./shared_data/cat_embeddings.pt')
|
| 91 |
+
|
| 92 |
+
if (path.exists('./shared_data/car_embeddings.pt')):
|
| 93 |
+
car_embeddings = torch.load('./shared_data/car_embeddings.pt')
|
| 94 |
+
else:
|
| 95 |
+
car_embeddings = load_all_embeddings_from_image_text_pairs('./shared_data/car_embeddings.pt')
|
| 96 |
+
|
| 97 |
return cat_embeddings, car_embeddings
|
| 98 |
|
| 99 |
|
|
|
|
| 134 |
plt.title('Scatter plot of images of cats and cars using UMAP')
|
| 135 |
plt.xlabel('X')
|
| 136 |
plt.ylabel('Y')
|
| 137 |
+
plt.show()
|
| 138 |
+
|
| 139 |
+
load_cat_and_car_embeddings()
|