Spaces:
Sleeping
Sleeping
Implement Silero TTS for Hindi - natural neural voice (v3_en_indic + hindi_female)
Browse files- backend/app/multilingual_tts.py +44 -40
- backend/requirements.txt +1 -1
backend/app/multilingual_tts.py
CHANGED
|
@@ -110,26 +110,41 @@ class MultilingualTTSService:
|
|
| 110 |
print("[MultilingualTTSService] ✓ English vocoder loaded")
|
| 111 |
|
| 112 |
def _load_hindi_models(self):
|
| 113 |
-
"""Load Hindi
|
| 114 |
if self._xtts_model is None:
|
| 115 |
-
print("[MultilingualTTSService] Loading Hindi
|
| 116 |
try:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
except ImportError:
|
| 126 |
raise ImportError(
|
| 127 |
-
"
|
| 128 |
-
"Install with: pip install
|
| 129 |
)
|
| 130 |
except Exception as e:
|
| 131 |
-
print(f"[MultilingualTTSService] Error loading
|
| 132 |
-
raise RuntimeError(f"Failed to load Hindi
|
| 133 |
|
| 134 |
def synthesize(self, text: str, voice_sample_path: Union[str, Path],
|
| 135 |
language: str = "english") -> np.ndarray:
|
|
@@ -188,41 +203,30 @@ class MultilingualTTSService:
|
|
| 188 |
return np.clip(synthesized, -1.0, 1.0)
|
| 189 |
|
| 190 |
def _synthesize_hindi(self, text: str, voice_sample_path: Union[str, Path]) -> np.ndarray:
|
| 191 |
-
"""Synthesize Hindi speech using
|
| 192 |
self._load_hindi_models()
|
| 193 |
|
| 194 |
print(f"[MultilingualTTSService] Synthesizing Hindi: {text[:50]}...")
|
| 195 |
|
| 196 |
try:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
tts = gTTS(text=text, lang='hi', slow=False)
|
| 203 |
-
|
| 204 |
-
# Save to BytesIO buffer
|
| 205 |
-
buffer = io.BytesIO()
|
| 206 |
-
tts.write_to_fp(buffer)
|
| 207 |
-
buffer.seek(0)
|
| 208 |
-
|
| 209 |
-
# Load audio from buffer
|
| 210 |
-
audio_segment = AudioSegment.from_mp3(buffer)
|
| 211 |
|
| 212 |
-
# Convert to numpy
|
| 213 |
-
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
if audio_segment.channels == 2:
|
| 217 |
-
# Convert stereo to mono by averaging channels
|
| 218 |
-
samples = samples.reshape((-1, 2)).mean(axis=1)
|
| 219 |
|
| 220 |
-
# Normalize to [-1, 1] range
|
| 221 |
-
max_val = np.max(np.abs(
|
| 222 |
-
if max_val > 0:
|
| 223 |
-
|
| 224 |
|
| 225 |
-
return np.clip(
|
| 226 |
|
| 227 |
except Exception as e:
|
| 228 |
print(f"[MultilingualTTSService] Error during Hindi synthesis: {e}")
|
|
|
|
| 110 |
print("[MultilingualTTSService] ✓ English vocoder loaded")
|
| 111 |
|
| 112 |
def _load_hindi_models(self):
|
| 113 |
+
"""Load Hindi Silero TTS model - natural neural voice."""
|
| 114 |
if self._xtts_model is None:
|
| 115 |
+
print("[MultilingualTTSService] Loading Hindi Silero TTS model...")
|
| 116 |
try:
|
| 117 |
+
import torch
|
| 118 |
+
|
| 119 |
+
# Load Silero TTS v3_en_indic model for Indic languages (includes Hindi)
|
| 120 |
+
# Returns (model, example_text) tuple
|
| 121 |
+
result = torch.hub.load(
|
| 122 |
+
repo_or_dir='snakers4/silero-models',
|
| 123 |
+
model='silero_tts',
|
| 124 |
+
language='en',
|
| 125 |
+
speaker='v3_en_indic',
|
| 126 |
+
trust_repo=True
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
if isinstance(result, tuple):
|
| 130 |
+
self._xtts_model, _ = result
|
| 131 |
+
else:
|
| 132 |
+
self._xtts_model = result
|
| 133 |
+
|
| 134 |
+
print("[MultilingualTTSService] ✓ Hindi Silero TTS loaded successfully")
|
| 135 |
+
print("[MultilingualTTSService] Engine: Silero TTS (Neural v3_en_indic)")
|
| 136 |
+
print("[MultilingualTTSService] Language: Hindi (hindi_female speaker)")
|
| 137 |
+
print("[MultilingualTTSService] Voice: Natural female voice")
|
| 138 |
+
print("[MultilingualTTSService] TOS: No (Open source)")
|
| 139 |
|
| 140 |
+
except ImportError as e:
|
| 141 |
raise ImportError(
|
| 142 |
+
"Torch required for Silero TTS. "
|
| 143 |
+
"Install with: pip install torch"
|
| 144 |
)
|
| 145 |
except Exception as e:
|
| 146 |
+
print(f"[MultilingualTTSService] Error loading Silero TTS: {e}")
|
| 147 |
+
raise RuntimeError(f"Failed to load Hindi Silero model: {e}")
|
| 148 |
|
| 149 |
def synthesize(self, text: str, voice_sample_path: Union[str, Path],
|
| 150 |
language: str = "english") -> np.ndarray:
|
|
|
|
| 203 |
return np.clip(synthesized, -1.0, 1.0)
|
| 204 |
|
| 205 |
def _synthesize_hindi(self, text: str, voice_sample_path: Union[str, Path]) -> np.ndarray:
|
| 206 |
+
"""Synthesize Hindi speech using Silero TTS neural model."""
|
| 207 |
self._load_hindi_models()
|
| 208 |
|
| 209 |
print(f"[MultilingualTTSService] Synthesizing Hindi: {text[:50]}...")
|
| 210 |
|
| 211 |
try:
|
| 212 |
+
# Silero TTS returns Tensor directly
|
| 213 |
+
audio = self._xtts_model.apply_tts(
|
| 214 |
+
text=text,
|
| 215 |
+
speaker='hindi_female'
|
| 216 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
# Convert Tensor to numpy
|
| 219 |
+
if isinstance(audio, torch.Tensor):
|
| 220 |
+
audio = audio.numpy()
|
| 221 |
|
| 222 |
+
audio = np.asarray(audio, dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
# Normalize to [-1, 1] range (audio is in [-1, 1] from Silero already)
|
| 225 |
+
max_val = np.max(np.abs(audio))
|
| 226 |
+
if max_val > 1.0:
|
| 227 |
+
audio = audio / max_val
|
| 228 |
|
| 229 |
+
return np.clip(audio, -1.0, 1.0)
|
| 230 |
|
| 231 |
except Exception as e:
|
| 232 |
print(f"[MultilingualTTSService] Error during Hindi synthesis: {e}")
|
backend/requirements.txt
CHANGED
|
@@ -15,4 +15,4 @@ inflect==7.0.0
|
|
| 15 |
unidecode>=1.3.2
|
| 16 |
webrtcvad==2.0.10
|
| 17 |
demucs==4.0.1
|
| 18 |
-
|
|
|
|
| 15 |
unidecode>=1.3.2
|
| 16 |
webrtcvad==2.0.10
|
| 17 |
demucs==4.0.1
|
| 18 |
+
omegaconf==2.3.0
|