diff --git a/.dockerignore b/.dockerignore new file mode 100644 index 0000000000000000000000000000000000000000..d8d014df338680150ed62351e3b2b1d6a12bb734 --- /dev/null +++ b/.dockerignore @@ -0,0 +1,18 @@ +__pycache__ +*.pyc +.git +.env +.env.local +node_modules +dist +build +.DS_Store +*.log +.vscode +.idea +*.egg-info +.pytest_cache +frontend/node_modules +.next +.nuxt +.cache \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..8d9c7c99769b92ef2779ce169534615f340b77d1 --- /dev/null +++ b/.gitignore @@ -0,0 +1,62 @@ +# Model files - downloaded at build time, not stored in git +backend/models/default/*.pt +models/default/*.pt +*.pt + +# Python +__pycache__/ +*.py[cod] +*$py.class +*.so +.Python +env/ +venv/ +ENV/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg + +# Environment variables +.env +.env.local +.env.*.local +backend/.env + +# IDE +.vscode/ +.idea/ +*.swp +*.swo +*~ + +# OS +.DS_Store +Thumbs.db + +# Node/Frontend +node_modules/ +dist/ +.next/ +out/ + +# Build artifacts +outputs/ +temp_uploads/ +enrolled_voices/*.wav +enrolled_voices/*.mp3 + +# Cache +.cache/ +.pytest_cache/ diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..b1e8f7052ed0750cd286427f6b0d155c0476aa13 --- /dev/null +++ b/Dockerfile @@ -0,0 +1,25 @@ +FROM python:3.10-slim + +# Install system dependencies +RUN apt-get update && apt-get install -y \ + libsndfile1 libsndfile1-dev \ + ffmpeg \ + git \ + && rm -rf /var/lib/apt/lists/* + +WORKDIR /app + +# Copy entire project +COPY . . + +# Install Python dependencies +RUN pip install --no-cache-dir -r backend/requirements.txt + +# Download models during build +RUN cd backend && python download_models.py + +# Expose port (HF Spaces uses 7860) +EXPOSE 7860 + +# Start the application +CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "1", "--timeout", "300", "backend.wsgi:app"] diff --git a/README.md b/README.md index e8f8894b1ec94135a9ff7f2e721a86c725a1d64e..342890653a9bdc9cf3752c3a05fc4ea7d830f382 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,572 @@ +# Real-Time Voice Cloning (RTVC) + +A complete full-stack voice cloning application with React frontend and PyTorch backend that can synthesize speech in anyone's voice from just a few seconds of audio reference. + +[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue.svg)](https://www.python.org/downloads/) +[![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg)](https://pytorch.org/) +[![React](https://img.shields.io/badge/React-18.0+-61dafb.svg)](https://reactjs.org/) +[![TypeScript](https://img.shields.io/badge/TypeScript-5.0+-blue.svg)](https://www.typescriptlang.org/) +[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE) + +## Features + +- **Full Stack Application**: Modern React UI + Flask API + PyTorch backend +- **Voice Enrollment**: Record or upload voice samples directly in the browser +- **Speech Synthesis**: Generate cloned speech with intuitive interface +- **Voice Cloning**: Clone any voice with just 3-10 seconds of audio +- **Real-Time Generation**: Generate speech at 2-3x real-time speed on CPU +- **High Quality**: Natural-sounding synthetic speech using state-of-the-art models +- **Easy to Use**: Beautiful UI with 3D visualizations and audio waveforms +- **Multiple Formats**: Supports WAV, MP3, M4A, FLAC input audio +- **Multi-Language**: Supports English and Hindi text-to-speech + +## Table of Contents + +- [Demo](#demo) +- [Quick Start (Full Stack)](#quick-start-full-stack) +- [Deployment](#deployment) +- [How It Works](#how-it-works) +- [Installation](#installation) +- [Project Structure](#project-structure) +- [Usage Examples](#usage-examples) +- [API Documentation](#api-documentation) +- [Troubleshooting](#troubleshooting) +- [Technical Details](#technical-details) +- [Credits](#credits) + +## Demo + +**Frontend UI**: Modern React interface with 3D visualizations +**Voice Enrollment**: Record/upload voice samples → Backend saves to database +**Speech Synthesis**: Select voice + Enter text → Backend generates cloned speech +**Playback**: Listen to generated audio directly in browser or download + +## Quick Start (Full Stack) + +### Option 1: Using the Startup Script (Easiest) + +```powershell +# Windows PowerShell +cd rtvc +.\start_app.ps1 +``` + +This will: +1. Start the Backend API server (port 5000) +2. Start the Frontend dev server (port 8080) +3. Open your browser to http://localhost:8080 + +### Option 2: Manual Start + +**Terminal 1 - Backend API:** +```bash +cd rtvc +python api_server.py +``` + +**Terminal 2 - Frontend:** +```bash +cd "rtvc/Frontend Voice Cloning" +npm run dev +``` + +Then open http://localhost:8080 in your browser. + +## Deployment + +### Production Deployment Stack + +**Frontend**: Netlify (Free tier) +**Backend**: Render (Free tier) +**Models**: HuggingFace Hub (Free) + +See [DEPLOYMENT.md](DEPLOYMENT.md) for complete deployment guide. + +#### Quick Deployment + +1. **Deploy Backend to Render** + - Push to GitHub + - Connect Render to GitHub repo + - Use `render.yaml` configuration + - Models auto-download on first deploy (~10 minutes) + +2. **Deploy Frontend to Netlify** + - Connect Netlify to GitHub repo + - Set base directory: `frontend` + - Environment: `VITE_API_URL=your-render-backend-url` + +3. **Test** + - Visit your Netlify URL + - API calls automatically route to Render backend + +**Pricing**: Free tier for both (with optional paid upgrades) + +### Using the Application + +1. **Enroll a Voice**: + - Go to "Voice Enrollment" section + - Enter a voice name + - Record audio (3-10 seconds) or upload a file + - Click "Enroll Voice" + +2. **Generate Speech**: + - Go to "Speech Synthesis" section + - Select your enrolled voice + - Enter text to synthesize + - Click "Generate Speech" + - Play or download the result + +For detailed integration information, see [INTEGRATION_GUIDE.md](INTEGRATION_GUIDE.md). + +## How It Works + +The system uses a 3-stage pipeline based on the SV2TTS (Speaker Verification to Text-to-Speech) architecture: + +``` +Reference Audio → [Encoder] → Speaker Embedding (256-d vector) + ↓ +Text Input → [Synthesizer (Tacotron)] → Mel-Spectrogram + ↓ + [Vocoder (WaveRNN)] → Audio Output +``` + +### Pipeline Stages: + +1. **Speaker Encoder** - Extracts a unique voice "fingerprint" from reference audio +2. **Synthesizer** - Generates mel-spectrograms from text conditioned on speaker embedding +3. **Vocoder** - Converts mel-spectrograms to high-quality audio waveforms + +## Installation + +### Prerequisites + +- Python 3.11 or higher +- Windows/Linux/macOS +- ~2 GB disk space for models +- 4 GB RAM minimum (8 GB recommended) + +### Step 1: Clone the Repository + +```bash +git clone https://github.com/yourusername/rtvc.git +cd rtvc +``` + +### Step 2: Install Dependencies + +```bash +pip install torch numpy librosa scipy soundfile webrtcvad tqdm unidecode inflect matplotlib numba +``` + +Or install PyTorch with CUDA for GPU acceleration: + +```bash +pip install torch --index-url https://download.pytorch.org/whl/cu118 +pip install numpy librosa scipy soundfile webrtcvad tqdm unidecode inflect matplotlib numba +``` + +### Step 3: Download Pretrained Models + +Download the pretrained models from [Google Drive](https://drive.google.com/drive/folders/1fU6umc5uQAVR2udZdHX-lDgXYzTyqG_j): + +| Model | Size | Description | +|-------|------|-------------| +| encoder.pt | 17 MB | Speaker encoder model | +| synthesizer.pt | 370 MB | Tacotron synthesizer model | +| vocoder.pt | 53 MB | WaveRNN vocoder model | + +Place all three files in the `models/default/` directory. + +### Step 4: Verify Installation + +```bash +python clone_my_voice.py +``` + +If you see errors about missing models, check that all three `.pt` files are in `models/default/`. + +## Quick Start + +### Method 1: Simple Script (Recommended) + +1. Open `clone_my_voice.py` +2. Edit these lines: + +```python +# Your voice sample file +VOICE_FILE = r"sample\your_voice.mp3" + +# The text you want to be spoken +TEXT_TO_CLONE = """ +Your text here. Can be multiple sentences or even paragraphs! +""" + +# Output location +OUTPUT_FILE = r"outputs\cloned_voice.wav" +``` + +3. Run it: + +```bash +python clone_my_voice.py +``` + +### Method 2: Command Line + +```bash +python run_cli.py --voice "path/to/voice.wav" --text "Text to synthesize" --out "output.wav" +``` + +### Method 3: Advanced Runner Script + +```bash +python run_voice_cloning.py +``` + +Edit the paths and text inside the script before running. + +## Project Structure + +``` +rtvc/ +├── clone_my_voice.py # Simple script - EDIT THIS to clone your voice! +├── run_cli.py # Command-line interface +│ +├── encoder/ # Speaker Encoder Module +│ ├── __init__.py +│ ├── audio.py # Audio preprocessing for encoder +│ ├── inference.py # Encoder inference functions +│ ├── model.py # SpeakerEncoder neural network +│ ├── params_data.py # Data hyperparameters +│ └── params_model.py # Model hyperparameters +│ +├── synthesizer/ # Tacotron Synthesizer Module +│ ├── __init__.py +│ ├── audio.py # Audio processing for synthesizer +│ ├── hparams.py # All synthesizer hyperparameters +│ ├── inference.py # Synthesizer inference class +│ │ +│ ├── models/ +│ │ └── tacotron.py # Tacotron 2 architecture +│ │ +│ └── utils/ +│ ├── cleaners.py # Text cleaning functions +│ ├── numbers.py # Number-to-text conversion +│ ├── symbols.py # Character/phoneme symbols +│ └── text.py # Text-to-sequence conversion +│ +├── vocoder/ # WaveRNN Vocoder Module +│ ├── audio.py # Audio utilities for vocoder +│ ├── display.py # Progress display utilities +│ ├── distribution.py # Probability distributions +│ ├── hparams.py # Vocoder hyperparameters +│ ├── inference.py # Vocoder inference functions +│ │ +│ └── models/ +│ └── fatchord_version.py # WaveRNN architecture +│ +├── utils/ +│ └── default_models.py # Model download utilities +│ +├── models/ +│ └── default/ # Pretrained models go here +│ ├── encoder.pt # (17 MB) +│ ├── synthesizer.pt # (370 MB) - Must download! +│ └── vocoder.pt # (53 MB) +│ +├── sample/ # Put your voice samples here +│ └── your_voice.mp3 +│ +└── outputs/ # Generated audio outputs + └── cloned_voice.wav +``` + +### Key Files Explained + +| File | Purpose | +|------|---------| +| `clone_my_voice.py` | **START HERE** - Simplest way to clone your voice | +| `run_cli.py` | Command-line tool for voice cloning | +| `encoder/inference.py` | Loads encoder and extracts speaker embeddings | +| `synthesizer/inference.py` | Loads synthesizer and generates mel-spectrograms | +| `vocoder/inference.py` | Loads vocoder and generates waveforms | +| `**/hparams.py` | Configuration files for each module | + +## Usage Examples + +### Example 1: Basic Voice Cloning + +```bash +python clone_my_voice.py +``` + +Edit `clone_my_voice.py` first: +```python +VOICE_FILE = r"sample\my_voice.mp3" +TEXT_TO_CLONE = "Hello, this is my cloned voice!" +``` + +### Example 2: Multiple Outputs + +```bash +# Generate first output +python run_cli.py --voice "voice.wav" --text "First message" --out "output1.wav" + +# Generate second output with same voice +python run_cli.py --voice "voice.wav" --text "Second message" --out "output2.wav" +``` + +### Example 3: Long Text + +```bash +python run_cli.py --voice "voice.wav" --text "This is a very long text that spans multiple sentences. The voice cloning system will synthesize all of it in the reference voice. You can make it as long as you need." +``` + +### Example 4: Different Voice Samples + +```bash +# Clone voice A +python run_cli.py --voice "person_a.wav" --text "Message from person A" + +# Clone voice B +python run_cli.py --voice "person_b.wav" --text "Message from person B" +``` + +## Troubleshooting + +### Common Issues + +#### "Model file not found" + +**Solution**: Download the models from Google Drive and place them in `models/default/`: +- https://drive.google.com/drive/folders/1fU6umc5uQAVR2udZdHX-lDgXYzTyqG_j + +Verify file sizes: +```bash +# Windows +dir models\default\*.pt + +# Linux/Mac +ls -lh models/default/*.pt +``` + +Expected sizes: +- encoder.pt: 17,090,379 bytes (17 MB) +- synthesizer.pt: 370,554,559 bytes (370 MB) - Most common issue! +- vocoder.pt: 53,845,290 bytes (53 MB) + +#### "Reference voice file not found" + +**Solution**: Use absolute paths or check current directory: +```python +# Use absolute path +VOICE_FILE = r"C:\Users\YourName\Desktop\voice.mp3" + +# Or relative from project root +VOICE_FILE = r"sample\voice.mp3" +``` + +#### Output sounds robotic or unclear + +**Solutions**: +- Use a higher quality voice sample (16kHz+ sample rate) +- Ensure voice sample is 3-10 seconds long +- Remove background noise from voice sample +- Speak clearly and naturally in the reference audio + +#### "AttributeError: module 'numpy' has no attribute 'cumproduct'" + +**Solution**: This is already fixed in the code. If you see this: +```bash +pip install --upgrade numpy +``` + +#### Slow generation on CPU + +**Solutions**: +- Normal speed: 2-3x real-time on modern CPUs +- For faster generation, install PyTorch with CUDA: +```bash +pip install torch --index-url https://download.pytorch.org/whl/cu118 +``` + +Then the system will automatically use GPU if available. + +### Getting Help + +If you encounter other issues: +1. Check the `HOW_TO_RUN.md` file for detailed instructions +2. Verify all models are downloaded correctly +3. Ensure Python 3.11+ is installed +4. Check that all dependencies are installed + +## Technical Details + +### Audio Specifications + +| Parameter | Value | +|-----------|-------| +| Sample Rate | 16,000 Hz | +| Channels | Mono | +| Bit Depth | 16-bit | +| FFT Size | 800 samples (50ms) | +| Hop Size | 200 samples (12.5ms) | +| Mel Channels | 80 (synthesizer/vocoder), 40 (encoder) | + +### Model Architectures + +#### Speaker Encoder +- **Type**: LSTM + Linear Projection +- **Input**: 40-channel mel-spectrogram +- **Output**: 256-dimensional speaker embedding +- **Parameters**: ~5M + +#### Synthesizer (Tacotron 2) +- **Encoder**: CBHG (Convolution Bank + Highway + GRU) +- **Decoder**: Attention-based LSTM +- **PostNet**: 5-layer Residual CNN +- **Parameters**: ~31M + +#### Vocoder (WaveRNN) +- **Type**: Recurrent Neural Vocoder +- **Mode**: Raw 9-bit with mu-law +- **Upsample Factors**: (5, 5, 8) +- **Parameters**: ~4.5M + +### Text Processing + +The system includes sophisticated text normalization: +- **Numbers**: "123" → "one hundred twenty three" +- **Currency**: "$5.50" → "five dollars, fifty cents" +- **Ordinals**: "1st" → "first" +- **Abbreviations**: "Dr." → "doctor" +- **Unicode**: Automatic transliteration to ASCII + +### Performance + +| Hardware | Generation Speed | +|----------|------------------| +| CPU (Intel i7) | 2-3x real-time | +| GPU (GTX 1060) | 10-15x real-time | +| GPU (RTX 3080) | 30-50x real-time | + +Example: Generating 10 seconds of audio takes ~3-5 seconds on CPU. + +## How to Use for Different Applications + +### Podcast/Narration +```python +TEXT_TO_CLONE = """ +Welcome to today's episode. In this podcast, we'll be discussing +the fascinating world of artificial intelligence and voice synthesis. +Let's dive right in! +""" +``` + +### Audiobook +```python +TEXT_TO_CLONE = """ +Chapter One: The Beginning. +It was a dark and stormy night when everything changed. +The old house stood alone on the hill, its windows dark and unwelcoming. +""" +``` + +### Voiceover +```python +TEXT_TO_CLONE = """ +Introducing the all-new product that will change your life. +With advanced features and intuitive design, it's the perfect solution. +""" +``` + +### Multiple Languages +The system supports English out of the box. For other languages: +1. Use English transliteration for best results +2. Or modify `synthesizer/utils/cleaners.py` for your language + +## Comparison with Other Methods + +| Method | Quality | Speed | Setup | +|--------|---------|-------|-------| +| Traditional TTS | Low | Fast | Easy | +| Commercial APIs | High | Fast | API Key Required | +| **This Project** | High | Medium | One-time Setup | +| Training from Scratch | High | Slow | Very Complex | + +## Best Practices + +### For Best Voice Quality: + +1. **Reference Audio**: + - 3-10 seconds long + - Clear speech, no background noise + - Natural speaking tone (not reading/singing) + - 16kHz+ sample rate if possible + +2. **Text Input**: + - Use proper punctuation for natural pauses + - Break very long texts into paragraphs + - Avoid excessive special characters + +3. **Output**: + - Generate shorter clips for better quality + - Concatenate multiple clips if needed + - Post-process with audio editing software for polish + +## Known Limitations + +- Works best with English text +- Requires good quality reference audio +- May not perfectly capture very unique voice characteristics +- Background noise in reference affects output quality +- Very short reference audio (<3 seconds) may produce inconsistent results + +## Future Improvements + +- [ ] Add GUI interface +- [ ] Support for multiple languages +- [ ] Real-time streaming mode +- [ ] Voice mixing/morphing capabilities +- [ ] Fine-tuning on custom datasets +- [ ] Mobile app version + +## Credits + +This implementation is based on: +- **SV2TTS**: Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis +- **Tacotron 2**: Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions +- **WaveRNN**: Efficient Neural Audio Synthesis + +Original research papers: +- [SV2TTS Paper](https://arxiv.org/abs/1806.04558) +- [Tacotron 2 Paper](https://arxiv.org/abs/1712.05884) +- [WaveRNN Paper](https://arxiv.org/abs/1802.08435) + +## License + +This project is licensed under the MIT License - see the LICENSE file for details. + +## Contributing + +Contributions are welcome! Please feel free to submit a Pull Request. + +1. Fork the repository +2. Create your feature branch (`git checkout -b feature/AmazingFeature`) +3. Commit your changes (`git commit -m 'Add some AmazingFeature'`) +4. Push to the branch (`git push origin feature/AmazingFeature`) +5. Open a Pull Request + +## Show Your Support + +If this project helped you, please give it a star! + +## Contact + +For questions or support, please open an issue on GitHub. + --- -title: Voice Cloning Backend -emoji: 💻 -colorFrom: red -colorTo: green -sdk: docker -pinned: false -license: mit -short_description: 'AI-powered Voice Cloning ' ---- -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +**Made with love by the Voice Cloning Community** + +*Last Updated: October 30, 2025* diff --git a/backend/.env.example b/backend/.env.example new file mode 100644 index 0000000000000000000000000000000000000000..0349e06c8261f579aa4dd886d81cce13fdd1a89c --- /dev/null +++ b/backend/.env.example @@ -0,0 +1,15 @@ +# Flask backend environment variables +FLASK_APP=backend.app +FLASK_ENV=production +DEBUG=false + +# HuggingFace configuration +HF_HOME=.cache/huggingface + +# CORS configuration for production +CORS_ORIGINS=https://your-netlify-site.netlify.app + +# Model configuration +MODEL_REPO_ENCODER=AJ50/voice-clone-encoder +MODEL_REPO_SYNTHESIZER=AJ50/voice-clone-synthesizer +MODEL_REPO_VOCODER=AJ50/voice-clone-vocoder diff --git a/backend/__init__.py b/backend/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..58db6a79220d41762fb2b528c91b6c541d9e6c1d --- /dev/null +++ b/backend/__init__.py @@ -0,0 +1 @@ +"""Backend package root to support relative imports.""" diff --git a/backend/app/__init__.py b/backend/app/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6735783e2f9826131b1c8502059c89d418152bb7 --- /dev/null +++ b/backend/app/__init__.py @@ -0,0 +1,34 @@ +"""Application factory for the voice cloning backend.""" + +import os +from flask import Flask +from flask_cors import CORS + + +def create_app(): + """Create and configure the Flask application.""" + + app = Flask(__name__) + + # CORS configuration - allow specific frontend URL or all origins + allowed_origins = os.getenv('FRONTEND_URL', '*').split(',') + cors_config = { + "origins": allowed_origins if allowed_origins != ['*'] else '*', + "methods": ["GET", "POST", "DELETE", "OPTIONS"], + "allow_headers": ["Content-Type", "Authorization"] + } + CORS(app, resources={r"/api/*": cors_config}) + + from .routes import bp + + app.register_blueprint(bp) + + # Root endpoint + @app.route('/') + def index(): + return {'message': 'Voice Cloning API', 'status': 'running', 'api_prefix': '/api'} + + return app + + +app = create_app() diff --git a/backend/app/routes.py b/backend/app/routes.py new file mode 100644 index 0000000000000000000000000000000000000000..833a9a7fae4745acbfeae4805210714f8ab6ae6a --- /dev/null +++ b/backend/app/routes.py @@ -0,0 +1,409 @@ +""" +Flask API Backend for Voice Cloning +Integrates the Python voice cloning backend with the React frontend +""" + +from flask import Blueprint, request, jsonify, send_file +from pathlib import Path +import uuid +import json +from datetime import datetime +import sys + +from .voice_cloning import synthesize + +bp = Blueprint('voice_cloning', __name__, url_prefix='/api') + +BASE_DIR = Path(__file__).resolve().parents[1] + +# Configuration +UPLOAD_FOLDER = BASE_DIR / 'enrolled_voices' +OUTPUT_FOLDER = BASE_DIR / 'outputs' +MODELS_DIR = BASE_DIR / 'models' +VOICES_DB = UPLOAD_FOLDER / 'voices.json' + +# Create directories with parents +try: + UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True) + OUTPUT_FOLDER.mkdir(parents=True, exist_ok=True) + VOICES_DB.parent.mkdir(parents=True, exist_ok=True) +except Exception as e: + print(f"Failed to create directories: {e}") + sys.exit(1) + +# Allowed audio extensions +ALLOWED_EXTENSIONS = {'mp3', 'wav', 'm4a', 'flac', 'ogg', 'webm'} + +def allowed_file(filename): + return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS + +def load_voices_db(): + """Load the voices database""" + if VOICES_DB.exists(): + with open(VOICES_DB, 'r') as f: + return json.load(f) + return [] + +def save_voices_db(voices): + """Save the voices database""" + with open(VOICES_DB, 'w') as f: + json.dump(voices, f, indent=2) + +@bp.route('/health', methods=['GET']) +def health_check(): + """Health check endpoint""" + return jsonify({ + 'status': 'healthy', + 'message': 'Voice Cloning API is running' + }) + +@bp.route('/enroll', methods=['POST']) +def enroll_voice(): + """ + Enroll a new voice by accepting audio file and voice name + Frontend sends: FormData with 'audio' (File) and 'voice_name' (string) + """ + try: + # Check if audio file is present + if 'audio' not in request.files: + return jsonify({'error': 'No audio file provided'}), 400 + + audio_file = request.files['audio'] + voice_name = request.form.get('voice_name', 'Unnamed Voice').strip() + + if audio_file.filename == '': + return jsonify({'error': 'No file selected'}), 400 + + if not allowed_file(audio_file.filename): + return jsonify({'error': 'Invalid file type. Supported: mp3, wav, m4a, flac, ogg, webm'}), 400 + + # Ensure upload folder exists + UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True) + + # Generate unique ID and secure filename + voice_id = f"voice_{uuid.uuid4().hex[:8]}" + file_extension = audio_file.filename.rsplit('.', 1)[1].lower() + filename = f"{voice_id}.{file_extension}" + filepath = UPLOAD_FOLDER / filename + + # Save the audio file with error handling + try: + audio_file.save(str(filepath)) + print(f"✓ Audio file saved: {filepath}") + except Exception as file_err: + print(f"✗ Failed to save audio file: {file_err}") + return jsonify({'error': f'Failed to save audio: {str(file_err)}'}), 500 + + # Create voice entry + voice_entry = { + 'id': voice_id, + 'name': voice_name, + 'filename': filename, + 'createdAt': datetime.now().isoformat() + } + + # Update voices database with error handling + try: + VOICES_DB.parent.mkdir(parents=True, exist_ok=True) + voices = load_voices_db() + voices.append(voice_entry) + save_voices_db(voices) + print(f"✓ Voice '{voice_name}' (ID: {voice_id}) enrolled successfully") + except Exception as db_err: + print(f"✗ Failed to update voices DB: {db_err}") + return jsonify({'error': f'Failed to save voice metadata: {str(db_err)}'}), 500 + + return jsonify({ + 'success': True, + 'message': f'Voice "{voice_name}" enrolled successfully', + 'voice_id': voice_id, + 'voice_name': voice_name, + 'created_at': voice_entry['createdAt'] + }), 201 + + except Exception as e: + print(f"✗ Error enrolling voice: {e}") + import traceback + traceback.print_exc() + return jsonify({'error': f'Failed to enroll voice: {str(e)}'}), 500 + +@bp.route('/voices', methods=['GET']) +def get_voices(): + """ + Get list of all enrolled voices + Frontend uses this to populate the voice selection dropdown + """ + try: + voices = load_voices_db() + # Return only necessary info for frontend + voices_list = [ + { + 'id': v['id'], + 'name': v['name'], + 'createdAt': v['createdAt'] + } + for v in voices + ] + return jsonify({'voices': voices_list}), 200 + except Exception as e: + print(f"Error getting voices: {e}") + return jsonify({'error': f'Failed to get voices: {str(e)}'}), 500 + +@bp.route('/synthesize', methods=['POST']) +def synthesize_speech(): + """ + Synthesize speech from text using enrolled voice + Frontend sends: { "text": "...", "voiceId": "voice_xxx" } + """ + try: + data = request.get_json() + + if not data: + return jsonify({'error': 'No data provided'}), 400 + + text = data.get('text', '').strip() + voice_id = data.get('voice_id', '') # Changed from 'voiceId' to 'voice_id' + + if not text: + return jsonify({'error': 'No text provided'}), 400 + + if not voice_id: + return jsonify({'error': 'No voice selected'}), 400 + + # Find the voice in database + voices = load_voices_db() + voice = next((v for v in voices if v['id'] == voice_id), None) + + if not voice: + return jsonify({'error': 'Voice not found'}), 404 + + # Reconstruct path from UPLOAD_FOLDER (server-agnostic) + voice_filepath = UPLOAD_FOLDER / voice['filename'] + + if not voice_filepath.exists(): + return jsonify({'error': f'Voice file not found: {voice_filepath}'}), 404 + + # Generate unique output filename + output_filename = f"synthesis_{uuid.uuid4().hex[:8]}.wav" + output_path = OUTPUT_FOLDER / output_filename + + # Call the voice cloning synthesis function + print(f"Synthesizing: '{text}' with voice '{voice['name']}'") + print(f"Voice file: {voice_filepath}") + print(f"Output path: {output_path}") + print(f"Models dir: {MODELS_DIR}") + print("Starting synthesis... This may take 30-60 seconds...") + + try: + # Flush output to see logs immediately + sys.stdout.flush() + + synthesize( + voice_path=voice_filepath, + text=text, + models_dir=MODELS_DIR, + out_path=output_path + ) + + print(f"Synthesis completed! Output saved to: {output_path}") + sys.stdout.flush() + except Exception as synth_error: + print(f"Synthesis error: {synth_error}") + import traceback + traceback.print_exc() + sys.stdout.flush() + return jsonify({'error': f'Synthesis failed: {str(synth_error)}'}), 500 + + if not output_path.exists(): + error_msg = 'Synthesis failed - output not generated' + return jsonify({'error': error_msg}), 500 + + # Return the audio file URL + return jsonify({ + 'success': True, + 'message': 'Speech synthesized successfully', + 'audio_url': f'/api/audio/{output_filename}' + }), 200 + + except Exception as e: + print(f"Error synthesizing speech: {e}") + import traceback + traceback.print_exc() + return jsonify({'error': f'Failed to synthesize speech: {str(e)}'}), 500 + +@bp.route('/audio/', methods=['GET']) +def get_audio(filename): + """ + Serve synthesized audio files + Frontend uses this URL to play/download the generated audio + """ + try: + filepath = OUTPUT_FOLDER / filename + if not filepath.exists(): + return jsonify({'error': 'Audio file not found'}), 404 + + return send_file( + str(filepath), + mimetype='audio/wav', + as_attachment=False, + download_name=filename + ) + except Exception as e: + print(f"Error serving audio: {e}") + return jsonify({'error': f'Failed to serve audio: {str(e)}'}), 500 + +@bp.route('/voices/', methods=['DELETE']) +def delete_voice(voice_id): + """ + Delete an enrolled voice + Optional: Frontend can call this to remove voices + """ + try: + voices = load_voices_db() + voice = next((v for v in voices if v['id'] == voice_id), None) + + if not voice: + return jsonify({'error': 'Voice not found'}), 404 + + # Delete the audio file + voice_filepath = UPLOAD_FOLDER / voice['filename'] + if voice_filepath.exists(): + voice_filepath.unlink() + + # Remove from database + voices = [v for v in voices if v['id'] != voice_id] + save_voices_db(voices) + + return jsonify({ + 'success': True, + 'message': f'Voice "{voice["name"]}" deleted successfully' + }), 200 + + except Exception as e: + print(f"Error deleting voice: {e}") + return jsonify({'error': f'Failed to delete voice: {str(e)}'}), 500 + +@bp.route('/spectrogram/', methods=['GET']) +def get_spectrogram(audio_filename): + """ + Generate and return mel-spectrogram data for visualization + Frontend can use this to display real-time mel-spectrogram + """ + try: + print(f"[Spectrogram] Requested file: {audio_filename}") + filepath = OUTPUT_FOLDER / audio_filename + print(f"[Spectrogram] Full path: {filepath}") + print(f"[Spectrogram] File exists: {filepath.exists()}") + + if not filepath.exists(): + print(f"[Spectrogram] ERROR: File not found: {filepath}") + return jsonify({'error': f'Audio file {audio_filename} not found'}), 404 + + # Import librosa for mel-spectrogram generation + import librosa + import numpy as np + + print(f"[Spectrogram] Loading audio file...") + # Load audio file + y, sr = librosa.load(str(filepath), sr=None) + print(f"[Spectrogram] Audio loaded: shape={y.shape}, sr={sr}") + + # Generate mel-spectrogram + # 80 mel bands (common for Tacotron2), hop_length varies with sample rate + mel_spec = librosa.feature.melspectrogram( + y=y, + sr=sr, + n_mels=80, + hop_length=512 + ) + print(f"[Spectrogram] Mel-spec generated: shape={mel_spec.shape}") + + # Convert to dB scale (log scale for better visualization) + mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max) + + # Normalize to 0-255 range for visualization + mel_spec_normalized = np.clip( + ((mel_spec_db + 80) / 80 * 255), + 0, + 255 + ).astype(np.uint8) + + # Convert to list for JSON serialization + # Transpose to time x frequency format for frontend + spectrogram_data = mel_spec_normalized.T.tolist() + + print(f"[Spectrogram] Successfully generated spectrogram: {len(spectrogram_data)} time steps") + + return jsonify({ + 'spectrogram': spectrogram_data, + 'n_mels': 80, + 'shape': { + 'time_steps': len(spectrogram_data), + 'frequency_bins': 80 + } + }), 200 + + except Exception as e: + print(f"[Spectrogram] ERROR: {str(e)}") + import traceback + traceback.print_exc() + return jsonify({'error': f'Failed to generate spectrogram: {str(e)}'}), 500 + +@bp.route('/waveform/', methods=['GET']) +def get_waveform(audio_filename): + """ + Serve audio waveform as numeric array for real-time FFT visualization + Frontend fetches this and computes FFT using Web Audio API + """ + try: + filepath = OUTPUT_FOLDER / audio_filename + if not filepath.exists(): + return jsonify({'error': 'Audio file not found'}), 404 + + import soundfile as sf + import numpy as np + + # Load audio file + # soundfile returns (data, sample_rate) + y, sr = sf.read(str(filepath)) + + # If stereo, convert to mono by taking first channel or averaging + if len(y.shape) > 1: + y = np.mean(y, axis=1) + + # Ensure float32 for compatibility + y = np.asarray(y, dtype=np.float32) + + # Downsample if very long to reduce JSON payload + # Typical waveform for 60s at 22050Hz = 1.3M samples + # For FFT we can use 8000 Hz safely (captures up to 4 kHz) + target_sr = 8000 + if sr > target_sr: + # Calculate downsample factor + resample_ratio = target_sr / sr + new_length = int(len(y) * resample_ratio) + # Simple linear interpolation for downsampling + indices = np.linspace(0, len(y) - 1, new_length) + y = np.interp(indices, np.arange(len(y)), y) + sr = target_sr + + # Convert to list for JSON serialization + waveform_data = y.tolist() + + return jsonify({ + 'waveform': waveform_data, + 'sample_rate': sr, + 'duration': len(y) / sr, + 'samples': len(y) + }), 200 + + except ImportError as ie: + err_msg = f'Soundfile library not available: {str(ie)}' + return jsonify({'error': err_msg}), 500 + except Exception as e: + print(f"Error serving waveform: {e}") + import traceback + traceback.print_exc() + err_msg = f'Failed to generate waveform: {str(e)}' + return jsonify({'error': err_msg}), 500 + diff --git a/backend/app/vocoder/audio.py b/backend/app/vocoder/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..f555dbf1151d58e5f0e6c4fb655e30d798ab52c9 --- /dev/null +++ b/backend/app/vocoder/audio.py @@ -0,0 +1,108 @@ +import math +import numpy as np +import librosa +from . import hparams as hp +from scipy.signal import lfilter +import soundfile as sf + + +def label_2_float(x, bits) : + return 2 * x / (2**bits - 1.) - 1. + + +def float_2_label(x, bits) : + assert abs(x).max() <= 1.0 + x = (x + 1.) * (2**bits - 1) / 2 + return x.clip(0, 2**bits - 1) + + +def load_wav(path) : + return librosa.load(str(path), sr=hp.sample_rate)[0] + + +def save_wav(x, path) : + sf.write(path, x.astype(np.float32), hp.sample_rate) + + +def split_signal(x) : + unsigned = x + 2**15 + coarse = unsigned // 256 + fine = unsigned % 256 + return coarse, fine + + +def combine_signal(coarse, fine) : + return coarse * 256 + fine - 2**15 + + +def encode_16bits(x) : + return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16) + + +mel_basis = None + + +def linear_to_mel(spectrogram): + global mel_basis + if mel_basis is None: + mel_basis = build_mel_basis() + return np.dot(mel_basis, spectrogram) + + +def build_mel_basis(): + return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin) + + +def normalize(S): + return np.clip((S - hp.min_level_db) / -hp.min_level_db, 0, 1) + + +def denormalize(S): + return (np.clip(S, 0, 1) * -hp.min_level_db) + hp.min_level_db + + +def amp_to_db(x): + return 20 * np.log10(np.maximum(1e-5, x)) + + +def db_to_amp(x): + return np.power(10.0, x * 0.05) + + +def spectrogram(y): + D = stft(y) + S = amp_to_db(np.abs(D)) - hp.ref_level_db + return normalize(S) + + +def melspectrogram(y): + D = stft(y) + S = amp_to_db(linear_to_mel(np.abs(D))) + return normalize(S) + + +def stft(y): + return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length) + + +def pre_emphasis(x): + return lfilter([1, -hp.preemphasis], [1], x) + + +def de_emphasis(x): + return lfilter([1], [1, -hp.preemphasis], x) + + +def encode_mu_law(x, mu) : + mu = mu - 1 + fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu) + return np.floor((fx + 1) / 2 * mu + 0.5) + + +def decode_mu_law(y, mu, from_labels=True) : + if from_labels: + y = label_2_float(y, math.log2(mu)) + mu = mu - 1 + x = np.sign(y) / mu * ((1 + mu) ** np.abs(y) - 1) + return x + diff --git a/backend/app/vocoder/display.py b/backend/app/vocoder/display.py new file mode 100644 index 0000000000000000000000000000000000000000..3b416095a38879b3e3f479d1df7944667ad70d40 --- /dev/null +++ b/backend/app/vocoder/display.py @@ -0,0 +1,127 @@ +import time +import numpy as np +import sys + + +def progbar(i, n, size=16): + done = (i * size) // n + bar = '' + for i in range(size): + bar += '█' if i <= done else '░' + return bar + + +def stream(message) : + try: + sys.stdout.write("\r{%s}" % message) + except: + #Remove non-ASCII characters from message + message = ''.join(i for i in message if ord(i)<128) + sys.stdout.write("\r{%s}" % message) + + +def simple_table(item_tuples) : + + border_pattern = '+---------------------------------------' + whitespace = ' ' + + headings, cells, = [], [] + + for item in item_tuples : + + heading, cell = str(item[0]), str(item[1]) + + pad_head = True if len(heading) < len(cell) else False + + pad = abs(len(heading) - len(cell)) + pad = whitespace[:pad] + + pad_left = pad[:len(pad)//2] + pad_right = pad[len(pad)//2:] + + if pad_head : + heading = pad_left + heading + pad_right + else : + cell = pad_left + cell + pad_right + + headings += [heading] + cells += [cell] + + border, head, body = '', '', '' + + for i in range(len(item_tuples)) : + + temp_head = f'| {headings[i]} ' + temp_body = f'| {cells[i]} ' + + border += border_pattern[:len(temp_head)] + head += temp_head + body += temp_body + + if i == len(item_tuples) - 1 : + head += '|' + body += '|' + border += '+' + + print(border) + print(head) + print(border) + print(body) + print(border) + print(' ') + + +def time_since(started) : + elapsed = time.time() - started + m = int(elapsed // 60) + s = int(elapsed % 60) + if m >= 60 : + h = int(m // 60) + m = m % 60 + return f'{h}h {m}m {s}s' + else : + return f'{m}m {s}s' + + +def save_attention(attn, path): + import matplotlib.pyplot as plt + + fig = plt.figure(figsize=(12, 6)) + plt.imshow(attn.T, interpolation='nearest', aspect='auto') + fig.savefig(f'{path}.png', bbox_inches='tight') + plt.close(fig) + + +def save_spectrogram(M, path, length=None): + import matplotlib.pyplot as plt + + M = np.flip(M, axis=0) + if length : M = M[:, :length] + fig = plt.figure(figsize=(12, 6)) + plt.imshow(M, interpolation='nearest', aspect='auto') + fig.savefig(f'{path}.png', bbox_inches='tight') + plt.close(fig) + + +def plot(array): + import matplotlib.pyplot as plt + + fig = plt.figure(figsize=(30, 5)) + ax = fig.add_subplot(111) + ax.xaxis.label.set_color('grey') + ax.yaxis.label.set_color('grey') + ax.xaxis.label.set_fontsize(23) + ax.yaxis.label.set_fontsize(23) + ax.tick_params(axis='x', colors='grey', labelsize=23) + ax.tick_params(axis='y', colors='grey', labelsize=23) + plt.plot(array) + + +def plot_spec(M): + import matplotlib.pyplot as plt + + M = np.flip(M, axis=0) + plt.figure(figsize=(18,4)) + plt.imshow(M, interpolation='nearest', aspect='auto') + plt.show() + diff --git a/backend/app/vocoder/distribution.py b/backend/app/vocoder/distribution.py new file mode 100644 index 0000000000000000000000000000000000000000..d3119a5ba1e77bc25a92d2664f83d366f12399c0 --- /dev/null +++ b/backend/app/vocoder/distribution.py @@ -0,0 +1,132 @@ +import numpy as np +import torch +import torch.nn.functional as F + + +def log_sum_exp(x): + """ numerically stable log_sum_exp implementation that prevents overflow """ + # TF ordering + axis = len(x.size()) - 1 + m, _ = torch.max(x, dim=axis) + m2, _ = torch.max(x, dim=axis, keepdim=True) + return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis)) + + +# It is adapted from https://github.com/r9y9/wavenet_vocoder/blob/master/wavenet_vocoder/mixture.py +def discretized_mix_logistic_loss(y_hat, y, num_classes=65536, + log_scale_min=None, reduce=True): + if log_scale_min is None: + log_scale_min = float(np.log(1e-14)) + y_hat = y_hat.permute(0,2,1) + assert y_hat.dim() == 3 + assert y_hat.size(1) % 3 == 0 + nr_mix = y_hat.size(1) // 3 + + # (B x T x C) + y_hat = y_hat.transpose(1, 2) + + # unpack parameters. (B, T, num_mixtures) x 3 + logit_probs = y_hat[:, :, :nr_mix] + means = y_hat[:, :, nr_mix:2 * nr_mix] + log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min) + + # B x T x 1 -> B x T x num_mixtures + y = y.expand_as(means) + + centered_y = y - means + inv_stdv = torch.exp(-log_scales) + plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1)) + cdf_plus = torch.sigmoid(plus_in) + min_in = inv_stdv * (centered_y - 1. / (num_classes - 1)) + cdf_min = torch.sigmoid(min_in) + + # log probability for edge case of 0 (before scaling) + # equivalent: torch.log(F.sigmoid(plus_in)) + log_cdf_plus = plus_in - F.softplus(plus_in) + + # log probability for edge case of 255 (before scaling) + # equivalent: (1 - F.sigmoid(min_in)).log() + log_one_minus_cdf_min = -F.softplus(min_in) + + # probability for all other cases + cdf_delta = cdf_plus - cdf_min + + mid_in = inv_stdv * centered_y + # log probability in the center of the bin, to be used in extreme cases + # (not actually used in our code) + log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in) + + # tf equivalent + """ + log_probs = tf.where(x < -0.999, log_cdf_plus, + tf.where(x > 0.999, log_one_minus_cdf_min, + tf.where(cdf_delta > 1e-5, + tf.log(tf.maximum(cdf_delta, 1e-12)), + log_pdf_mid - np.log(127.5)))) + """ + # TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value + # for num_classes=65536 case? 1e-7? not sure.. + inner_inner_cond = (cdf_delta > 1e-5).float() + + inner_inner_out = inner_inner_cond * \ + torch.log(torch.clamp(cdf_delta, min=1e-12)) + \ + (1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2)) + inner_cond = (y > 0.999).float() + inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond) * inner_inner_out + cond = (y < -0.999).float() + log_probs = cond * log_cdf_plus + (1. - cond) * inner_out + + log_probs = log_probs + F.log_softmax(logit_probs, -1) + + if reduce: + return -torch.mean(log_sum_exp(log_probs)) + else: + return -log_sum_exp(log_probs).unsqueeze(-1) + + +def sample_from_discretized_mix_logistic(y, log_scale_min=None): + """ + Sample from discretized mixture of logistic distributions + Args: + y (Tensor): B x C x T + log_scale_min (float): Log scale minimum value + Returns: + Tensor: sample in range of [-1, 1]. + """ + if log_scale_min is None: + log_scale_min = float(np.log(1e-14)) + assert y.size(1) % 3 == 0 + nr_mix = y.size(1) // 3 + + # B x T x C + y = y.transpose(1, 2) + logit_probs = y[:, :, :nr_mix] + + # sample mixture indicator from softmax + temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5) + temp = logit_probs.data - torch.log(- torch.log(temp)) + _, argmax = temp.max(dim=-1) + + # (B, T) -> (B, T, nr_mix) + one_hot = to_one_hot(argmax, nr_mix) + # select logistic parameters + means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1) + log_scales = torch.clamp(torch.sum( + y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min) + # sample from logistic & clip to interval + # we don't actually round to the nearest 8bit value when sampling + u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5) + x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u)) + + x = torch.clamp(torch.clamp(x, min=-1.), max=1.) + + return x + + +def to_one_hot(tensor, n, fill_with=1.): + # we perform one hot encore with respect to the last axis + one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_() + if tensor.is_cuda: + one_hot = one_hot.cuda() + one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with) + return one_hot diff --git a/backend/app/vocoder/hparams.py b/backend/app/vocoder/hparams.py new file mode 100644 index 0000000000000000000000000000000000000000..c1de9f7dcc2926735b80a28ed1226ff1b5824753 --- /dev/null +++ b/backend/app/vocoder/hparams.py @@ -0,0 +1,44 @@ +from synthesizer.hparams import hparams as _syn_hp + + +# Audio settings------------------------------------------------------------------------ +# Match the values of the synthesizer +sample_rate = _syn_hp.sample_rate +n_fft = _syn_hp.n_fft +num_mels = _syn_hp.num_mels +hop_length = _syn_hp.hop_size +win_length = _syn_hp.win_size +fmin = _syn_hp.fmin +min_level_db = _syn_hp.min_level_db +ref_level_db = _syn_hp.ref_level_db +mel_max_abs_value = _syn_hp.max_abs_value +preemphasis = _syn_hp.preemphasis +apply_preemphasis = _syn_hp.preemphasize + +bits = 9 # bit depth of signal +mu_law = True # Recommended to suppress noise if using raw bits in hp.voc_mode + # below + + +# WAVERNN / VOCODER -------------------------------------------------------------------------------- +voc_mode = 'RAW' # either 'RAW' (softmax on raw bits) or 'MOL' (sample from +# mixture of logistics) +voc_upsample_factors = (5, 5, 8) # NB - this needs to correctly factorise hop_length +voc_rnn_dims = 512 +voc_fc_dims = 512 +voc_compute_dims = 128 +voc_res_out_dims = 128 +voc_res_blocks = 10 + +# Training +voc_batch_size = 100 +voc_lr = 1e-4 +voc_gen_at_checkpoint = 5 # number of samples to generate at each checkpoint +voc_pad = 2 # this will pad the input so that the resnet can 'see' wider + # than input length +voc_seq_len = hop_length * 5 # must be a multiple of hop_length + +# Generating / Synthesizing +voc_gen_batched = True # very fast (realtime+) single utterance batched generation +voc_target = 8000 # target number of samples to be generated in each batch entry +voc_overlap = 400 # number of samples for crossfading between batches diff --git a/backend/app/vocoder/inference.py b/backend/app/vocoder/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..723d76027ff33ca15f0e26ca7da8aeafa865fda3 --- /dev/null +++ b/backend/app/vocoder/inference.py @@ -0,0 +1,83 @@ +from .models.fatchord_version import WaveRNN +from . import hparams as hp +import torch + + +_model = None # type: WaveRNN + +def load_model(weights_fpath, verbose=True): + global _model, _device + + if verbose: + print("Building Wave-RNN") + _model = WaveRNN( + rnn_dims=hp.voc_rnn_dims, + fc_dims=hp.voc_fc_dims, + bits=hp.bits, + pad=hp.voc_pad, + upsample_factors=hp.voc_upsample_factors, + feat_dims=hp.num_mels, + compute_dims=hp.voc_compute_dims, + res_out_dims=hp.voc_res_out_dims, + res_blocks=hp.voc_res_blocks, + hop_length=hp.hop_length, + sample_rate=hp.sample_rate, + mode=hp.voc_mode + ) + + if torch.cuda.is_available(): + _model = _model.cuda() + _device = torch.device('cuda') + else: + _device = torch.device('cpu') + + if verbose: + print("Loading model weights at %s" % weights_fpath) + checkpoint = torch.load(weights_fpath, _device) + _model.load_state_dict(checkpoint['model_state']) + _model.eval() + + +def is_loaded(): + return _model is not None + + +def infer_waveform(mel, normalize=True, batched=True, target=8000, overlap=800, + progress_callback=None): + """ + Infers the waveform of a mel spectrogram output by the synthesizer (the format must match + that of the synthesizer!) + + :param normalize: + :param batched: + :param target: + :param overlap: + :return: + """ + import sys + if _model is None: + raise Exception("Please load Wave-RNN in memory before using it") + + print(f"[Vocoder] Input mel-spectrogram shape: {mel.shape}") + print(f"[Vocoder] Normalize: {normalize}, Batched: {batched}, Target: {target}, Overlap: {overlap}") + print(f"[Vocoder] Device: {_device}, Model on: {next(_model.parameters()).device}") + + try: + if normalize: + mel = mel / hp.mel_max_abs_value + mel = torch.from_numpy(mel[None, ...]) + print(f"[Vocoder] Mel tensor shape after processing: {mel.shape}, dtype: {mel.dtype}") + + print("[Vocoder] Starting waveform generation (this may take a while on CPU)...") + sys.stdout.flush() + + wav = _model.generate(mel, batched, target, overlap, hp.mu_law, progress_callback) + + print(f"[Vocoder] Waveform generated successfully, shape: {wav.shape}") + return wav + except Exception as e: + print(f"[Vocoder] ✗ Error during vocoding: {e}") + import traceback + traceback.print_exc() + sys.stdout.flush() + raise diff --git a/backend/app/vocoder/models/fatchord_version.py b/backend/app/vocoder/models/fatchord_version.py new file mode 100644 index 0000000000000000000000000000000000000000..14b442578199291ceec5dda5b82fa1d979d93fc3 --- /dev/null +++ b/backend/app/vocoder/models/fatchord_version.py @@ -0,0 +1,434 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from ..distribution import sample_from_discretized_mix_logistic +from ..display import * +from ..audio import * + + +class ResBlock(nn.Module): + def __init__(self, dims): + super().__init__() + self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) + self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) + self.batch_norm1 = nn.BatchNorm1d(dims) + self.batch_norm2 = nn.BatchNorm1d(dims) + + def forward(self, x): + residual = x + x = self.conv1(x) + x = self.batch_norm1(x) + x = F.relu(x) + x = self.conv2(x) + x = self.batch_norm2(x) + return x + residual + + +class MelResNet(nn.Module): + def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad): + super().__init__() + k_size = pad * 2 + 1 + self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) + self.batch_norm = nn.BatchNorm1d(compute_dims) + self.layers = nn.ModuleList() + for i in range(res_blocks): + self.layers.append(ResBlock(compute_dims)) + self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) + + def forward(self, x): + x = self.conv_in(x) + x = self.batch_norm(x) + x = F.relu(x) + for f in self.layers: x = f(x) + x = self.conv_out(x) + return x + + +class Stretch2d(nn.Module): + def __init__(self, x_scale, y_scale): + super().__init__() + self.x_scale = x_scale + self.y_scale = y_scale + + def forward(self, x): + b, c, h, w = x.size() + x = x.unsqueeze(-1).unsqueeze(3) + x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) + return x.view(b, c, h * self.y_scale, w * self.x_scale) + + +class UpsampleNetwork(nn.Module): + def __init__(self, feat_dims, upsample_scales, compute_dims, + res_blocks, res_out_dims, pad): + super().__init__() + total_scale = np.cumprod(upsample_scales)[-1] + self.indent = pad * total_scale + self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad) + self.resnet_stretch = Stretch2d(total_scale, 1) + self.up_layers = nn.ModuleList() + for scale in upsample_scales: + k_size = (1, scale * 2 + 1) + padding = (0, scale) + stretch = Stretch2d(scale, 1) + conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) + conv.weight.data.fill_(1. / k_size[1]) + self.up_layers.append(stretch) + self.up_layers.append(conv) + + def forward(self, m): + aux = self.resnet(m).unsqueeze(1) + aux = self.resnet_stretch(aux) + aux = aux.squeeze(1) + m = m.unsqueeze(1) + for f in self.up_layers: m = f(m) + m = m.squeeze(1)[:, :, self.indent:-self.indent] + return m.transpose(1, 2), aux.transpose(1, 2) + + +class WaveRNN(nn.Module): + def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors, + feat_dims, compute_dims, res_out_dims, res_blocks, + hop_length, sample_rate, mode='RAW'): + super().__init__() + self.mode = mode + self.pad = pad + if self.mode == 'RAW' : + self.n_classes = 2 ** bits + elif self.mode == 'MOL' : + self.n_classes = 30 + else : + RuntimeError("Unknown model mode value - ", self.mode) + + self.rnn_dims = rnn_dims + self.aux_dims = res_out_dims // 4 + self.hop_length = hop_length + self.sample_rate = sample_rate + + self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad) + self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims) + self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True) + self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True) + self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims) + self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims) + self.fc3 = nn.Linear(fc_dims, self.n_classes) + + self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False) + self.num_params() + + def forward(self, x, mels): + self.step += 1 + bsize = x.size(0) + if torch.cuda.is_available(): + h1 = torch.zeros(1, bsize, self.rnn_dims).cuda() + h2 = torch.zeros(1, bsize, self.rnn_dims).cuda() + else: + h1 = torch.zeros(1, bsize, self.rnn_dims).cpu() + h2 = torch.zeros(1, bsize, self.rnn_dims).cpu() + mels, aux = self.upsample(mels) + + aux_idx = [self.aux_dims * i for i in range(5)] + a1 = aux[:, :, aux_idx[0]:aux_idx[1]] + a2 = aux[:, :, aux_idx[1]:aux_idx[2]] + a3 = aux[:, :, aux_idx[2]:aux_idx[3]] + a4 = aux[:, :, aux_idx[3]:aux_idx[4]] + + x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2) + x = self.I(x) + res = x + x, _ = self.rnn1(x, h1) + + x = x + res + res = x + x = torch.cat([x, a2], dim=2) + x, _ = self.rnn2(x, h2) + + x = x + res + x = torch.cat([x, a3], dim=2) + x = F.relu(self.fc1(x)) + + x = torch.cat([x, a4], dim=2) + x = F.relu(self.fc2(x)) + return self.fc3(x) + + def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None): + mu_law = mu_law if self.mode == 'RAW' else False + progress_callback = progress_callback or self.gen_display + + self.eval() + output = [] + start = time.time() + rnn1 = self.get_gru_cell(self.rnn1) + rnn2 = self.get_gru_cell(self.rnn2) + + with torch.no_grad(): + if torch.cuda.is_available(): + mels = mels.cuda() + else: + mels = mels.cpu() + wave_len = (mels.size(-1) - 1) * self.hop_length + mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both') + mels, aux = self.upsample(mels.transpose(1, 2)) + + if batched: + mels = self.fold_with_overlap(mels, target, overlap) + aux = self.fold_with_overlap(aux, target, overlap) + + b_size, seq_len, _ = mels.size() + + if torch.cuda.is_available(): + h1 = torch.zeros(b_size, self.rnn_dims).cuda() + h2 = torch.zeros(b_size, self.rnn_dims).cuda() + x = torch.zeros(b_size, 1).cuda() + else: + h1 = torch.zeros(b_size, self.rnn_dims).cpu() + h2 = torch.zeros(b_size, self.rnn_dims).cpu() + x = torch.zeros(b_size, 1).cpu() + + d = self.aux_dims + aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)] + + for i in range(seq_len): + + m_t = mels[:, i, :] + + a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) + + x = torch.cat([x, m_t, a1_t], dim=1) + x = self.I(x) + h1 = rnn1(x, h1) + + x = x + h1 + inp = torch.cat([x, a2_t], dim=1) + h2 = rnn2(inp, h2) + + x = x + h2 + x = torch.cat([x, a3_t], dim=1) + x = F.relu(self.fc1(x)) + + x = torch.cat([x, a4_t], dim=1) + x = F.relu(self.fc2(x)) + + logits = self.fc3(x) + + if self.mode == 'MOL': + sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) + output.append(sample.view(-1)) + if torch.cuda.is_available(): + # x = torch.FloatTensor([[sample]]).cuda() + x = sample.transpose(0, 1).cuda() + else: + x = sample.transpose(0, 1) + + elif self.mode == 'RAW' : + posterior = F.softmax(logits, dim=1) + distrib = torch.distributions.Categorical(posterior) + + sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1. + output.append(sample) + x = sample.unsqueeze(-1) + else: + raise RuntimeError("Unknown model mode value - ", self.mode) + + if i % 100 == 0: + gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 + progress_callback(i, seq_len, b_size, gen_rate) + + output = torch.stack(output).transpose(0, 1) + output = output.cpu().numpy() + output = output.astype(np.float64) + + if batched: + output = self.xfade_and_unfold(output, target, overlap) + else: + output = output[0] + + if mu_law: + output = decode_mu_law(output, self.n_classes, False) + if hp.apply_preemphasis: + output = de_emphasis(output) + + # Fade-out at the end to avoid signal cutting out suddenly + fade_out = np.linspace(1, 0, 20 * self.hop_length) + output = output[:wave_len] + output[-20 * self.hop_length:] *= fade_out + + self.train() + + return output + + + def gen_display(self, i, seq_len, b_size, gen_rate): + pbar = progbar(i, seq_len) + msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | ' + stream(msg) + + def get_gru_cell(self, gru): + gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) + gru_cell.weight_hh.data = gru.weight_hh_l0.data + gru_cell.weight_ih.data = gru.weight_ih_l0.data + gru_cell.bias_hh.data = gru.bias_hh_l0.data + gru_cell.bias_ih.data = gru.bias_ih_l0.data + return gru_cell + + def pad_tensor(self, x, pad, side='both'): + # NB - this is just a quick method i need right now + # i.e., it won't generalise to other shapes/dims + b, t, c = x.size() + total = t + 2 * pad if side == 'both' else t + pad + if torch.cuda.is_available(): + padded = torch.zeros(b, total, c).cuda() + else: + padded = torch.zeros(b, total, c).cpu() + if side == 'before' or side == 'both': + padded[:, pad:pad + t, :] = x + elif side == 'after': + padded[:, :t, :] = x + return padded + + def fold_with_overlap(self, x, target, overlap): + + ''' Fold the tensor with overlap for quick batched inference. + Overlap will be used for crossfading in xfade_and_unfold() + + Args: + x (tensor) : Upsampled conditioning features. + shape=(1, timesteps, features) + target (int) : Target timesteps for each index of batch + overlap (int) : Timesteps for both xfade and rnn warmup + + Return: + (tensor) : shape=(num_folds, target + 2 * overlap, features) + + Details: + x = [[h1, h2, ... hn]] + + Where each h is a vector of conditioning features + + Eg: target=2, overlap=1 with x.size(1)=10 + + folded = [[h1, h2, h3, h4], + [h4, h5, h6, h7], + [h7, h8, h9, h10]] + ''' + + _, total_len, features = x.size() + + # Calculate variables needed + num_folds = (total_len - overlap) // (target + overlap) + extended_len = num_folds * (overlap + target) + overlap + remaining = total_len - extended_len + + # Pad if some time steps poking out + if remaining != 0: + num_folds += 1 + padding = target + 2 * overlap - remaining + x = self.pad_tensor(x, padding, side='after') + + if torch.cuda.is_available(): + folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda() + else: + folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu() + + # Get the values for the folded tensor + for i in range(num_folds): + start = i * (target + overlap) + end = start + target + 2 * overlap + folded[i] = x[:, start:end, :] + + return folded + + def xfade_and_unfold(self, y, target, overlap): + + ''' Applies a crossfade and unfolds into a 1d array. + + Args: + y (ndarry) : Batched sequences of audio samples + shape=(num_folds, target + 2 * overlap) + dtype=np.float64 + overlap (int) : Timesteps for both xfade and rnn warmup + + Return: + (ndarry) : audio samples in a 1d array + shape=(total_len) + dtype=np.float64 + + Details: + y = [[seq1], + [seq2], + [seq3]] + + Apply a gain envelope at both ends of the sequences + + y = [[seq1_in, seq1_target, seq1_out], + [seq2_in, seq2_target, seq2_out], + [seq3_in, seq3_target, seq3_out]] + + Stagger and add up the groups of samples: + + [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] + + ''' + + num_folds, length = y.shape + target = length - 2 * overlap + total_len = num_folds * (target + overlap) + overlap + + # Need some silence for the rnn warmup + silence_len = overlap // 2 + fade_len = overlap - silence_len + silence = np.zeros((silence_len), dtype=np.float64) + + # Equal power crossfade + t = np.linspace(-1, 1, fade_len, dtype=np.float64) + fade_in = np.sqrt(0.5 * (1 + t)) + fade_out = np.sqrt(0.5 * (1 - t)) + + # Concat the silence to the fades + fade_in = np.concatenate([silence, fade_in]) + fade_out = np.concatenate([fade_out, silence]) + + # Apply the gain to the overlap samples + y[:, :overlap] *= fade_in + y[:, -overlap:] *= fade_out + + unfolded = np.zeros((total_len), dtype=np.float64) + + # Loop to add up all the samples + for i in range(num_folds): + start = i * (target + overlap) + end = start + target + 2 * overlap + unfolded[start:end] += y[i] + + return unfolded + + def get_step(self) : + return self.step.data.item() + + def checkpoint(self, model_dir, optimizer) : + k_steps = self.get_step() // 1000 + self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer) + + def log(self, path, msg) : + with open(path, 'a') as f: + print(msg, file=f) + + def load(self, path, optimizer) : + checkpoint = torch.load(path) + if "optimizer_state" in checkpoint: + self.load_state_dict(checkpoint["model_state"]) + optimizer.load_state_dict(checkpoint["optimizer_state"]) + else: + # Backwards compatibility + self.load_state_dict(checkpoint) + + def save(self, path, optimizer) : + torch.save({ + "model_state": self.state_dict(), + "optimizer_state": optimizer.state_dict(), + }, path) + + def num_params(self, print_out=True): + parameters = filter(lambda p: p.requires_grad, self.parameters()) + parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 + if print_out : + print('Trainable Parameters: %.3fM' % parameters) diff --git a/backend/app/voice_cloning.py b/backend/app/voice_cloning.py new file mode 100644 index 0000000000000000000000000000000000000000..59a1b009d6a73690dee84cd3f1f74a2bb6aa0742 --- /dev/null +++ b/backend/app/voice_cloning.py @@ -0,0 +1,108 @@ +"""Core voice cloning logic shared by the API routes.""" + +from __future__ import annotations + +import shutil +import gc +import torch +from pathlib import Path +from typing import Dict, Tuple + +import numpy as np +import soundfile as sf +from huggingface_hub import hf_hub_download + +from encoder import inference as encoder_infer +from synthesizer import inference as synthesizer_infer +from synthesizer.hparams import hparams as syn_hp +from app.vocoder import inference as vocoder_infer + + +MODEL_SPECS: Dict[str, Tuple[str, str]] = { + "encoder.pt": ("AJ50/voice-clone-encoder", "encoder.pt"), + "synthesizer.pt": ("AJ50/voice-clone-synthesizer", "synthesizer.pt"), + "vocoder.pt": ("AJ50/voice-clone-vocoder", "vocoder.pt"), +} + + +def ensure_default_models(models_dir: Path) -> None: + """Download the required pretrained weights if they are missing.""" + + target_dir = models_dir / "default" + target_dir.mkdir(parents=True, exist_ok=True) + + for filename, (repo_id, repo_filename) in MODEL_SPECS.items(): + destination = target_dir / filename + if destination.exists(): + continue + + print(f"[Models] Downloading {filename} from {repo_id}...") + downloaded_path = Path( + hf_hub_download(repo_id=repo_id, filename=repo_filename) + ) + shutil.copy2(downloaded_path, destination) + print(f"[Models] Saved to {destination}") + + +def synthesize(voice_path: Path, text: str, models_dir: Path, out_path: Path) -> Path: + """Run end-to-end voice cloning and return the generated audio path.""" + + ensure_default_models(models_dir) + + enc_path = models_dir / "default" / "encoder.pt" + syn_path = models_dir / "default" / "synthesizer.pt" + voc_path = models_dir / "default" / "vocoder.pt" + + for model_path in (enc_path, syn_path, voc_path): + if not model_path.exists(): + raise RuntimeError(f"Model file missing: {model_path}") + + print("[VoiceCloning] Loading encoder...") + encoder_infer.load_model(enc_path) + print("[VoiceCloning] Loading synthesizer...") + synthesizer = synthesizer_infer.Synthesizer(syn_path) + print("[VoiceCloning] Loading vocoder...") + vocoder_infer.load_model(voc_path) + + if not voice_path.exists(): + raise RuntimeError(f"Reference voice file not found: {voice_path}") + + print("[VoiceCloning] Preprocessing reference audio...") + wav = encoder_infer.preprocess_wav(voice_path) + embed = encoder_infer.embed_utterance(wav) + + print("[VoiceCloning] Generating mel-spectrogram...") + mels = synthesizer.synthesize_spectrograms([text], [embed]) + mel = mels[0] + + print("[VoiceCloning] Vocoding waveform...") + try: + waveform = synthesizer.griffin_lim(mel).astype(np.float32) + except Exception: + waveform = vocoder_infer.infer_waveform( + mel, normalize=True, batched=False, target=8000, overlap=800 + ).astype(np.float32) + + out_path.parent.mkdir(parents=True, exist_ok=True) + sf.write(out_path.as_posix(), waveform, syn_hp.sample_rate) + print(f"[VoiceCloning] Audio saved to {out_path}") + + # Memory optimization for Render free tier + print("[VoiceCloning] Cleaning up models to free memory...") + try: + # Clear model caches + if hasattr(encoder_infer, '_model'): + encoder_infer._model = None + if hasattr(synthesizer_infer, '_model'): + synthesizer_infer._model = None + if hasattr(vocoder_infer, '_model'): + vocoder_infer._model = None + + # Force garbage collection + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + except Exception as e: + print(f"[VoiceCloning] Warning during cleanup: {e}") + + return out_path diff --git a/backend/download_models.py b/backend/download_models.py new file mode 100644 index 0000000000000000000000000000000000000000..2300fca2d950cc1153d9238a8750a7489d61174a --- /dev/null +++ b/backend/download_models.py @@ -0,0 +1,54 @@ +""" +Download models from HuggingFace on startup +Run this once or on container startup for Render +""" + +from pathlib import Path +from huggingface_hub import hf_hub_download +import shutil +import sys + +MODEL_SPECS = { + "encoder.pt": ("AJ50/voice-clone-encoder", "encoder.pt"), + "synthesizer.pt": ("AJ50/voice-clone-synthesizer", "synthesizer.pt"), + "vocoder.pt": ("AJ50/voice-clone-vocoder", "vocoder.pt"), +} + +def download_models(models_dir: Path) -> None: + """Download required models from HuggingFace if missing""" + + target_dir = models_dir / "default" + target_dir.mkdir(parents=True, exist_ok=True) + + print(f"[Models] Target directory: {target_dir}") + + for filename, (repo_id, repo_filename) in MODEL_SPECS.items(): + destination = target_dir / filename + + # Skip if already exists + if destination.exists(): + size_mb = destination.stat().st_size / (1024 * 1024) + print(f"✓ {filename} already exists ({size_mb:.1f} MB)") + continue + + print(f"[Models] Downloading {filename} from {repo_id}...") + try: + downloaded_path = Path( + hf_hub_download(repo_id=repo_id, filename=repo_filename) + ) + shutil.copy2(downloaded_path, destination) + size_mb = destination.stat().st_size / (1024 * 1024) + print(f"✓ Saved {filename} ({size_mb:.1f} MB) to {destination}") + except Exception as e: + print(f"✗ Failed to download {filename}: {e}") + return False + + print("[Models] All models downloaded successfully!") + return True + +if __name__ == "__main__": + backend_dir = Path(__file__).parent + models_dir = backend_dir / "models" + + success = download_models(models_dir) + sys.exit(0 if success else 1) diff --git a/backend/encoder/__init__.py b/backend/encoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/backend/encoder/audio.py b/backend/encoder/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..a51e0b86fe60ebafd39f09a8af5cc6691aa8a5e3 --- /dev/null +++ b/backend/encoder/audio.py @@ -0,0 +1,117 @@ +from scipy.ndimage.morphology import binary_dilation +from encoder.params_data import * +from pathlib import Path +from typing import Optional, Union +from warnings import warn +import numpy as np +import librosa +import struct + +try: + import webrtcvad +except: + warn("Unable to import 'webrtcvad'. This package enables noise removal and is recommended.") + webrtcvad=None + +int16_max = (2 ** 15) - 1 + + +def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray], + source_sr: Optional[int] = None, + normalize: Optional[bool] = True, + trim_silence: Optional[bool] = True): + """ + Applies the preprocessing operations used in training the Speaker Encoder to a waveform + either on disk or in memory. The waveform will be resampled to match the data hyperparameters. + + :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not + just .wav), either the waveform as a numpy array of floats. + :param source_sr: if passing an audio waveform, the sampling rate of the waveform before + preprocessing. After preprocessing, the waveform's sampling rate will match the data + hyperparameters. If passing a filepath, the sampling rate will be automatically detected and + this argument will be ignored. + """ + # Load the wav from disk if needed + if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): + wav, source_sr = librosa.load(str(fpath_or_wav), sr=None) + else: + wav = fpath_or_wav + + # Resample the wav if needed + if source_sr is not None and source_sr != sampling_rate: + wav = librosa.resample(y=wav, orig_sr=source_sr, target_sr=sampling_rate) + + # Apply the preprocessing: normalize volume and shorten long silences + if normalize: + wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True) + if webrtcvad and trim_silence: + wav = trim_long_silences(wav) + + return wav + + +def wav_to_mel_spectrogram(wav): + """ + Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. + Note: this not a log-mel spectrogram. + """ + frames = librosa.feature.melspectrogram( + y=wav, + sr=sampling_rate, + n_fft=int(sampling_rate * mel_window_length / 1000), + hop_length=int(sampling_rate * mel_window_step / 1000), + n_mels=mel_n_channels + ) + return frames.astype(np.float32).T + + +def trim_long_silences(wav): + """ + Ensures that segments without voice in the waveform remain no longer than a + threshold determined by the VAD parameters in params.py. + + :param wav: the raw waveform as a numpy array of floats + :return: the same waveform with silences trimmed away (length <= original wav length) + """ + # Compute the voice detection window size + samples_per_window = (vad_window_length * sampling_rate) // 1000 + + # Trim the end of the audio to have a multiple of the window size + wav = wav[:len(wav) - (len(wav) % samples_per_window)] + + # Convert the float waveform to 16-bit mono PCM + pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) + + # Perform voice activation detection + voice_flags = [] + vad = webrtcvad.Vad(mode=3) + for window_start in range(0, len(wav), samples_per_window): + window_end = window_start + samples_per_window + voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], + sample_rate=sampling_rate)) + voice_flags = np.array(voice_flags) + + # Smooth the voice detection with a moving average + def moving_average(array, width): + array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) + ret = np.cumsum(array_padded, dtype=float) + ret[width:] = ret[width:] - ret[:-width] + return ret[width - 1:] / width + + audio_mask = moving_average(voice_flags, vad_moving_average_width) + audio_mask = np.round(audio_mask).astype(bool) + + # Dilate the voiced regions + audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) + audio_mask = np.repeat(audio_mask, samples_per_window) + + return wav[audio_mask == True] + + +def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False): + if increase_only and decrease_only: + raise ValueError("Both increase only and decrease only are set") + dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2)) + if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only): + return wav + return wav * (10 ** (dBFS_change / 20)) diff --git a/backend/encoder/inference.py b/backend/encoder/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..43862e43e663dc5b2053c0f784dfac98cb0bacb3 --- /dev/null +++ b/backend/encoder/inference.py @@ -0,0 +1,178 @@ +from encoder.params_data import * +from encoder.model import SpeakerEncoder +from encoder.audio import preprocess_wav # We want to expose this function from here +from matplotlib import cm +from encoder import audio +from pathlib import Path +import numpy as np +import torch + +_model = None # type: SpeakerEncoder +_device = None # type: torch.device + + +def load_model(weights_fpath: Path, device=None): + """ + Loads the model in memory. If this function is not explicitely called, it will be run on the + first call to embed_frames() with the default weights file. + + :param weights_fpath: the path to saved model weights. + :param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda"). The + model will be loaded and will run on this device. Outputs will however always be on the cpu. + If None, will default to your GPU if it"s available, otherwise your CPU. + """ + # TODO: I think the slow loading of the encoder might have something to do with the device it + # was saved on. Worth investigating. + global _model, _device + if device is None: + _device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + elif isinstance(device, str): + _device = torch.device(device) + _model = SpeakerEncoder(_device, torch.device("cpu")) + checkpoint = torch.load(weights_fpath, _device) + _model.load_state_dict(checkpoint["model_state"]) + _model.eval() + print("Loaded encoder \"%s\" trained to step %d" % (weights_fpath.name, checkpoint["step"])) + + +def is_loaded(): + return _model is not None + + +def embed_frames_batch(frames_batch): + """ + Computes embeddings for a batch of mel spectrogram. + + :param frames_batch: a batch mel of spectrogram as a numpy array of float32 of shape + (batch_size, n_frames, n_channels) + :return: the embeddings as a numpy array of float32 of shape (batch_size, model_embedding_size) + """ + if _model is None: + raise Exception("Model was not loaded. Call load_model() before inference.") + + frames = torch.from_numpy(frames_batch).to(_device) + embed = _model.forward(frames).detach().cpu().numpy() + return embed + + +def compute_partial_slices(n_samples, partial_utterance_n_frames=partials_n_frames, + min_pad_coverage=0.75, overlap=0.5): + """ + Computes where to split an utterance waveform and its corresponding mel spectrogram to obtain + partial utterances of each. Both the waveform and the mel + spectrogram slices are returned, so as to make each partial utterance waveform correspond to + its spectrogram. This function assumes that the mel spectrogram parameters used are those + defined in params_data.py. + + The returned ranges may be indexing further than the length of the waveform. It is + recommended that you pad the waveform with zeros up to wave_slices[-1].stop. + + :param n_samples: the number of samples in the waveform + :param partial_utterance_n_frames: the number of mel spectrogram frames in each partial + utterance + :param min_pad_coverage: when reaching the last partial utterance, it may or may not have + enough frames. If at least of are present, + then the last partial utterance will be considered, as if we padded the audio. Otherwise, + it will be discarded, as if we trimmed the audio. If there aren't enough frames for 1 partial + utterance, this parameter is ignored so that the function always returns at least 1 slice. + :param overlap: by how much the partial utterance should overlap. If set to 0, the partial + utterances are entirely disjoint. + :return: the waveform slices and mel spectrogram slices as lists of array slices. Index + respectively the waveform and the mel spectrogram with these slices to obtain the partial + utterances. + """ + assert 0 <= overlap < 1 + assert 0 < min_pad_coverage <= 1 + + samples_per_frame = int((sampling_rate * mel_window_step / 1000)) + n_frames = int(np.ceil((n_samples + 1) / samples_per_frame)) + frame_step = max(int(np.round(partial_utterance_n_frames * (1 - overlap))), 1) + + # Compute the slices + wav_slices, mel_slices = [], [] + steps = max(1, n_frames - partial_utterance_n_frames + frame_step + 1) + for i in range(0, steps, frame_step): + mel_range = np.array([i, i + partial_utterance_n_frames]) + wav_range = mel_range * samples_per_frame + mel_slices.append(slice(*mel_range)) + wav_slices.append(slice(*wav_range)) + + # Evaluate whether extra padding is warranted or not + last_wav_range = wav_slices[-1] + coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start) + if coverage < min_pad_coverage and len(mel_slices) > 1: + mel_slices = mel_slices[:-1] + wav_slices = wav_slices[:-1] + + return wav_slices, mel_slices + + +def embed_utterance(wav, using_partials=True, return_partials=False, **kwargs): + """ + Computes an embedding for a single utterance. + + # TODO: handle multiple wavs to benefit from batching on GPU + :param wav: a preprocessed (see audio.py) utterance waveform as a numpy array of float32 + :param using_partials: if True, then the utterance is split in partial utterances of + frames and the utterance embedding is computed from their + normalized average. If False, the utterance is instead computed from feeding the entire + spectogram to the network. + :param return_partials: if True, the partial embeddings will also be returned along with the + wav slices that correspond to the partial embeddings. + :param kwargs: additional arguments to compute_partial_splits() + :return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If + is True, the partial utterances as a numpy array of float32 of shape + (n_partials, model_embedding_size) and the wav partials as a list of slices will also be + returned. If is simultaneously set to False, both these values will be None + instead. + """ + # Process the entire utterance if not using partials + if not using_partials: + frames = audio.wav_to_mel_spectrogram(wav) + embed = embed_frames_batch(frames[None, ...])[0] + if return_partials: + return embed, None, None + return embed + + # Compute where to split the utterance into partials and pad if necessary + wave_slices, mel_slices = compute_partial_slices(len(wav), **kwargs) + max_wave_length = wave_slices[-1].stop + if max_wave_length >= len(wav): + wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant") + + # Split the utterance into partials + frames = audio.wav_to_mel_spectrogram(wav) + frames_batch = np.array([frames[s] for s in mel_slices]) + partial_embeds = embed_frames_batch(frames_batch) + + # Compute the utterance embedding from the partial embeddings + raw_embed = np.mean(partial_embeds, axis=0) + embed = raw_embed / np.linalg.norm(raw_embed, 2) + + if return_partials: + return embed, partial_embeds, wave_slices + return embed + + +def embed_speaker(wavs, **kwargs): + raise NotImplemented() + + +def plot_embedding_as_heatmap(embed, ax=None, title="", shape=None, color_range=(0, 0.30)): + import matplotlib.pyplot as plt + if ax is None: + ax = plt.gca() + + if shape is None: + height = int(np.sqrt(len(embed))) + shape = (height, -1) + embed = embed.reshape(shape) + + cmap = cm.get_cmap() + mappable = ax.imshow(embed, cmap=cmap) + cbar = plt.colorbar(mappable, ax=ax, fraction=0.046, pad=0.04) + sm = cm.ScalarMappable(cmap=cmap) + sm.set_clim(*color_range) + + ax.set_xticks([]), ax.set_yticks([]) + ax.set_title(title) diff --git a/backend/encoder/model.py b/backend/encoder/model.py new file mode 100644 index 0000000000000000000000000000000000000000..e050d3204d8f1becdf0f8b3133470708e5420cea --- /dev/null +++ b/backend/encoder/model.py @@ -0,0 +1,135 @@ +from encoder.params_model import * +from encoder.params_data import * +from scipy.interpolate import interp1d +from sklearn.metrics import roc_curve +from torch.nn.utils import clip_grad_norm_ +from scipy.optimize import brentq +from torch import nn +import numpy as np +import torch + + +class SpeakerEncoder(nn.Module): + def __init__(self, device, loss_device): + super().__init__() + self.loss_device = loss_device + + # Network defition + self.lstm = nn.LSTM(input_size=mel_n_channels, + hidden_size=model_hidden_size, + num_layers=model_num_layers, + batch_first=True).to(device) + self.linear = nn.Linear(in_features=model_hidden_size, + out_features=model_embedding_size).to(device) + self.relu = torch.nn.ReLU().to(device) + + # Cosine similarity scaling (with fixed initial parameter values) + self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device) + self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device) + + # Loss + self.loss_fn = nn.CrossEntropyLoss().to(loss_device) + + def do_gradient_ops(self): + # Gradient scale + self.similarity_weight.grad *= 0.01 + self.similarity_bias.grad *= 0.01 + + # Gradient clipping + clip_grad_norm_(self.parameters(), 3, norm_type=2) + + def forward(self, utterances, hidden_init=None): + """ + Computes the embeddings of a batch of utterance spectrograms. + + :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape + (batch_size, n_frames, n_channels) + :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, + batch_size, hidden_size). Will default to a tensor of zeros if None. + :return: the embeddings as a tensor of shape (batch_size, embedding_size) + """ + # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state + # and the final cell state. + out, (hidden, cell) = self.lstm(utterances, hidden_init) + + # We take only the hidden state of the last layer + embeds_raw = self.relu(self.linear(hidden[-1])) + + # L2-normalize it + embeds = embeds_raw / (torch.norm(embeds_raw, dim=1, keepdim=True) + 1e-5) + + return embeds + + def similarity_matrix(self, embeds): + """ + Computes the similarity matrix according the section 2.1 of GE2E. + + :param embeds: the embeddings as a tensor of shape (speakers_per_batch, + utterances_per_speaker, embedding_size) + :return: the similarity matrix as a tensor of shape (speakers_per_batch, + utterances_per_speaker, speakers_per_batch) + """ + speakers_per_batch, utterances_per_speaker = embeds.shape[:2] + + # Inclusive centroids (1 per speaker). Cloning is needed for reverse differentiation + centroids_incl = torch.mean(embeds, dim=1, keepdim=True) + centroids_incl = centroids_incl.clone() / (torch.norm(centroids_incl, dim=2, keepdim=True) + 1e-5) + + # Exclusive centroids (1 per utterance) + centroids_excl = (torch.sum(embeds, dim=1, keepdim=True) - embeds) + centroids_excl /= (utterances_per_speaker - 1) + centroids_excl = centroids_excl.clone() / (torch.norm(centroids_excl, dim=2, keepdim=True) + 1e-5) + + # Similarity matrix. The cosine similarity of already 2-normed vectors is simply the dot + # product of these vectors (which is just an element-wise multiplication reduced by a sum). + # We vectorize the computation for efficiency. + sim_matrix = torch.zeros(speakers_per_batch, utterances_per_speaker, + speakers_per_batch).to(self.loss_device) + mask_matrix = 1 - np.eye(speakers_per_batch, dtype=np.int) + for j in range(speakers_per_batch): + mask = np.where(mask_matrix[j])[0] + sim_matrix[mask, :, j] = (embeds[mask] * centroids_incl[j]).sum(dim=2) + sim_matrix[j, :, j] = (embeds[j] * centroids_excl[j]).sum(dim=1) + + ## Even more vectorized version (slower maybe because of transpose) + # sim_matrix2 = torch.zeros(speakers_per_batch, speakers_per_batch, utterances_per_speaker + # ).to(self.loss_device) + # eye = np.eye(speakers_per_batch, dtype=np.int) + # mask = np.where(1 - eye) + # sim_matrix2[mask] = (embeds[mask[0]] * centroids_incl[mask[1]]).sum(dim=2) + # mask = np.where(eye) + # sim_matrix2[mask] = (embeds * centroids_excl).sum(dim=2) + # sim_matrix2 = sim_matrix2.transpose(1, 2) + + sim_matrix = sim_matrix * self.similarity_weight + self.similarity_bias + return sim_matrix + + def loss(self, embeds): + """ + Computes the softmax loss according the section 2.1 of GE2E. + + :param embeds: the embeddings as a tensor of shape (speakers_per_batch, + utterances_per_speaker, embedding_size) + :return: the loss and the EER for this batch of embeddings. + """ + speakers_per_batch, utterances_per_speaker = embeds.shape[:2] + + # Loss + sim_matrix = self.similarity_matrix(embeds) + sim_matrix = sim_matrix.reshape((speakers_per_batch * utterances_per_speaker, + speakers_per_batch)) + ground_truth = np.repeat(np.arange(speakers_per_batch), utterances_per_speaker) + target = torch.from_numpy(ground_truth).long().to(self.loss_device) + loss = self.loss_fn(sim_matrix, target) + + # EER (not backpropagated) + with torch.no_grad(): + inv_argmax = lambda i: np.eye(1, speakers_per_batch, i, dtype=np.int)[0] + labels = np.array([inv_argmax(i) for i in ground_truth]) + preds = sim_matrix.detach().cpu().numpy() + + # Snippet from https://yangcha.github.io/EER-ROC/ + fpr, tpr, thresholds = roc_curve(labels.flatten(), preds.flatten()) + eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.) + + return loss, eer diff --git a/backend/encoder/params_data.py b/backend/encoder/params_data.py new file mode 100644 index 0000000000000000000000000000000000000000..bdb1716ed45617f2b127a7fb8885afe6cc74fb71 --- /dev/null +++ b/backend/encoder/params_data.py @@ -0,0 +1,29 @@ + +## Mel-filterbank +mel_window_length = 25 # In milliseconds +mel_window_step = 10 # In milliseconds +mel_n_channels = 40 + + +## Audio +sampling_rate = 16000 +# Number of spectrogram frames in a partial utterance +partials_n_frames = 160 # 1600 ms +# Number of spectrogram frames at inference +inference_n_frames = 80 # 800 ms + + +## Voice Activation Detection +# Window size of the VAD. Must be either 10, 20 or 30 milliseconds. +# This sets the granularity of the VAD. Should not need to be changed. +vad_window_length = 30 # In milliseconds +# Number of frames to average together when performing the moving average smoothing. +# The larger this value, the larger the VAD variations must be to not get smoothed out. +vad_moving_average_width = 8 +# Maximum number of consecutive silent frames a segment can have. +vad_max_silence_length = 6 + + +## Audio volume normalization +audio_norm_target_dBFS = -30 + diff --git a/backend/encoder/params_model.py b/backend/encoder/params_model.py new file mode 100644 index 0000000000000000000000000000000000000000..3e356472fb5a27f370cb3920976a11d12a76c1b7 --- /dev/null +++ b/backend/encoder/params_model.py @@ -0,0 +1,11 @@ + +## Model parameters +model_hidden_size = 256 +model_embedding_size = 256 +model_num_layers = 3 + + +## Training parameters +learning_rate_init = 1e-4 +speakers_per_batch = 64 +utterances_per_speaker = 10 diff --git a/backend/enrolled_voices/voice_26bfa1ef.mp3 b/backend/enrolled_voices/voice_26bfa1ef.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..d3cf4e95c82d9e2aba50a50f7a89644484fb9225 Binary files /dev/null and b/backend/enrolled_voices/voice_26bfa1ef.mp3 differ diff --git a/backend/enrolled_voices/voice_72beeda9.mp3 b/backend/enrolled_voices/voice_72beeda9.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..d3cf4e95c82d9e2aba50a50f7a89644484fb9225 Binary files /dev/null and b/backend/enrolled_voices/voice_72beeda9.mp3 differ diff --git a/backend/enrolled_voices/voices.json b/backend/enrolled_voices/voices.json new file mode 100644 index 0000000000000000000000000000000000000000..dfb753ee14dcb5c8660e155eacabea8dd4cdae04 --- /dev/null +++ b/backend/enrolled_voices/voices.json @@ -0,0 +1,100 @@ +[ + { + "id": "voice_705f524b", + "name": "Pragyan", + "filename": "voice_705f524b.wav", + "filepath": "enrolled_voices\\voice_705f524b.wav", + "createdAt": "2025-11-05T11:15:58.834934" + }, + { + "id": "voice_5b7e198d", + "name": "Pragyan", + "filename": "voice_5b7e198d.wav", + "filepath": "enrolled_voices\\voice_5b7e198d.wav", + "createdAt": "2025-11-05T11:23:18.943413" + }, + { + "id": "voice_e0a7c06e", + "name": "Pragyan", + "filename": "voice_e0a7c06e.mp3", + "filepath": "enrolled_voices\\voice_e0a7c06e.mp3", + "createdAt": "2025-11-05T11:31:33.094765" + }, + { + "id": "voice_7d278c5f", + "name": "mY", + "filename": "voice_7d278c5f.mp3", + "filepath": "enrolled_voices\\voice_7d278c5f.mp3", + "createdAt": "2025-11-05T11:49:35.933861" + }, + { + "id": "voice_44c22d65", + "name": "My1", + "filename": "voice_44c22d65.mp3", + "filepath": "enrolled_voices\\voice_44c22d65.mp3", + "createdAt": "2025-11-05T11:49:52.844973" + }, + { + "id": "voice_eb54f62d", + "name": "MY2", + "filename": "voice_eb54f62d.mp3", + "filepath": "enrolled_voices\\voice_eb54f62d.mp3", + "createdAt": "2025-11-05T11:50:13.886497" + }, + { + "id": "voice_ecb824ec", + "name": "Monu", + "filename": "voice_ecb824ec.wav", + "filepath": "enrolled_voices\\voice_ecb824ec.wav", + "createdAt": "2025-11-06T10:28:22.279407" + }, + { + "id": "voice_0adf8594", + "name": "Pragyan1", + "filename": "voice_0adf8594.wav", + "filepath": "enrolled_voices\\voice_0adf8594.wav", + "createdAt": "2025-11-06T14:22:06.737234" + }, + { + "id": "voice_fd577924", + "name": "MY3", + "filename": "voice_fd577924.wav", + "filepath": "enrolled_voices\\voice_fd577924.wav", + "createdAt": "2025-11-20T15:15:40.488404" + }, + { + "id": "voice_a51275b7", + "name": "Testing Voice", + "filename": "voice_a51275b7.wav", + "filepath": "enrolled_voices\\voice_a51275b7.wav", + "createdAt": "2025-11-20T15:23:43.665441" + }, + { + "id": "voice_ea85f251", + "name": "test", + "filename": "voice_ea85f251.wav", + "filepath": "enrolled_voices\\voice_ea85f251.wav", + "createdAt": "2025-11-25T09:47:22.148753" + }, + { + "id": "voice_a4e34f00", + "name": "Class", + "filename": "voice_a4e34f00.wav", + "filepath": "enrolled_voices\\voice_a4e34f00.wav", + "createdAt": "2025-11-25T10:32:08.525704" + }, + { + "id": "voice_26bfa1ef", + "name": "Saksham voice", + "filename": "voice_26bfa1ef.mp3", + "filepath": "E:\\Sem 5\\mini proejct main\\pragyan branch\\backend\\enrolled_voices\\voice_26bfa1ef.mp3", + "createdAt": "2025-11-28T11:08:59.773738" + }, + { + "id": "voice_72beeda9", + "name": "Saksham voice", + "filename": "voice_72beeda9.mp3", + "filepath": "E:\\Sem 5\\mini proejct main\\pragyan branch\\backend\\enrolled_voices\\voice_72beeda9.mp3", + "createdAt": "2025-11-28T11:16:33.409663" + } +] \ No newline at end of file diff --git a/backend/requirements.txt b/backend/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e63fdd44b5c88b5a295bcae48453ec63b54cb8da --- /dev/null +++ b/backend/requirements.txt @@ -0,0 +1,14 @@ +flask==2.3.3 +flask-cors==4.0.0 +gunicorn==21.2.0 +torch>=2.5.0 +librosa>=0.10.0 +soundfile>=0.12.0 +numpy>=1.21.0 +huggingface_hub>=0.19.0 +matplotlib>=3.5.0 +webrtcvad==2.0.10 +scipy>=1.6.0 +scikit-learn>=1.1.0 +unidecode>=1.2.0 +inflect>=6.0.0 diff --git a/backend/runtime.txt b/backend/runtime.txt new file mode 100644 index 0000000000000000000000000000000000000000..fadb070244cda09f85f1b0627a4b3f91d3a225f0 --- /dev/null +++ b/backend/runtime.txt @@ -0,0 +1 @@ +python-3.10.0 diff --git a/backend/synthesizer/__init__.py b/backend/synthesizer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4287ca8617970fa8fc025b75cb319c7032706910 --- /dev/null +++ b/backend/synthesizer/__init__.py @@ -0,0 +1 @@ +# \ No newline at end of file diff --git a/backend/synthesizer/audio.py b/backend/synthesizer/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..7745994e3144279a3011e06c2692b1e342f5ad48 --- /dev/null +++ b/backend/synthesizer/audio.py @@ -0,0 +1,211 @@ +import librosa +import librosa.filters +import numpy as np +from scipy import signal +from scipy.io import wavfile +import soundfile as sf + + +def load_wav(path, sr): + return librosa.core.load(path, sr=sr)[0] + +def save_wav(wav, path, sr): + wav *= 32767 / max(0.01, np.max(np.abs(wav))) + #proposed by @dsmiller + wavfile.write(path, sr, wav.astype(np.int16)) + +def save_wavenet_wav(wav, path, sr): + sf.write(path, wav.astype(np.float32), sr) + +def preemphasis(wav, k, preemphasize=True): + if preemphasize: + return signal.lfilter([1, -k], [1], wav) + return wav + +def inv_preemphasis(wav, k, inv_preemphasize=True): + if inv_preemphasize: + return signal.lfilter([1], [1, -k], wav) + return wav + +#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py +def start_and_end_indices(quantized, silence_threshold=2): + for start in range(quantized.size): + if abs(quantized[start] - 127) > silence_threshold: + break + for end in range(quantized.size - 1, 1, -1): + if abs(quantized[end] - 127) > silence_threshold: + break + + assert abs(quantized[start] - 127) > silence_threshold + assert abs(quantized[end] - 127) > silence_threshold + + return start, end + +def get_hop_size(hparams): + hop_size = hparams.hop_size + if hop_size is None: + assert hparams.frame_shift_ms is not None + hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) + return hop_size + +def linearspectrogram(wav, hparams): + D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) + S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db + + if hparams.signal_normalization: + return _normalize(S, hparams) + return S + +def melspectrogram(wav, hparams): + D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) + S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db + + if hparams.signal_normalization: + return _normalize(S, hparams) + return S + +def inv_linear_spectrogram(linear_spectrogram, hparams): + """Converts linear spectrogram to waveform using librosa""" + if hparams.signal_normalization: + D = _denormalize(linear_spectrogram, hparams) + else: + D = linear_spectrogram + + S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear + + if hparams.use_lws: + processor = _lws_processor(hparams) + D = processor.run_lws(S.astype(np.float64).T ** hparams.power) + y = processor.istft(D).astype(np.float32) + return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) + else: + return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) + +def inv_mel_spectrogram(mel_spectrogram, hparams): + """Converts mel spectrogram to waveform using librosa""" + if hparams.signal_normalization: + D = _denormalize(mel_spectrogram, hparams) + else: + D = mel_spectrogram + + S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear + + if hparams.use_lws: + processor = _lws_processor(hparams) + D = processor.run_lws(S.astype(np.float64).T ** hparams.power) + y = processor.istft(D).astype(np.float32) + return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) + else: + return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) + +def _lws_processor(hparams): + import lws + return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech") + +def _griffin_lim(S, hparams): + """librosa implementation of Griffin-Lim + Based on https://github.com/librosa/librosa/issues/434 + """ + angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) + S_complex = np.abs(S).astype(np.complex) + y = _istft(S_complex * angles, hparams) + for i in range(hparams.griffin_lim_iters): + angles = np.exp(1j * np.angle(_stft(y, hparams))) + y = _istft(S_complex * angles, hparams) + return y + +def _stft(y, hparams): + if hparams.use_lws: + return _lws_processor(hparams).stft(y).T + else: + return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size) + +def _istft(y, hparams): + return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size) + +########################################################## +#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) +def num_frames(length, fsize, fshift): + """Compute number of time frames of spectrogram + """ + pad = (fsize - fshift) + if length % fshift == 0: + M = (length + pad * 2 - fsize) // fshift + 1 + else: + M = (length + pad * 2 - fsize) // fshift + 2 + return M + + +def pad_lr(x, fsize, fshift): + """Compute left and right padding + """ + M = num_frames(len(x), fsize, fshift) + pad = (fsize - fshift) + T = len(x) + 2 * pad + r = (M - 1) * fshift + fsize - T + return pad, pad + r +########################################################## +#Librosa correct padding +def librosa_pad_lr(x, fsize, fshift): + return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] + +# Conversions +_mel_basis = None +_inv_mel_basis = None + +def _linear_to_mel(spectogram, hparams): + global _mel_basis + if _mel_basis is None: + _mel_basis = _build_mel_basis(hparams) + return np.dot(_mel_basis, spectogram) + +def _mel_to_linear(mel_spectrogram, hparams): + global _inv_mel_basis + if _inv_mel_basis is None: + _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams)) + return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) + +def _build_mel_basis(hparams): + assert hparams.fmax <= hparams.sample_rate // 2 + return librosa.filters.mel( + sr=hparams.sample_rate, + n_fft=hparams.n_fft, + n_mels=hparams.num_mels, + fmin=hparams.fmin, + fmax=hparams.fmax + ) + +def _amp_to_db(x, hparams): + min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) + return 20 * np.log10(np.maximum(min_level, x)) + +def _db_to_amp(x): + return np.power(10.0, (x) * 0.05) + +def _normalize(S, hparams): + if hparams.allow_clipping_in_normalization: + if hparams.symmetric_mels: + return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value, + -hparams.max_abs_value, hparams.max_abs_value) + else: + return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value) + + assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0 + if hparams.symmetric_mels: + return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value + else: + return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)) + +def _denormalize(D, hparams): + if hparams.allow_clipping_in_normalization: + if hparams.symmetric_mels: + return (((np.clip(D, -hparams.max_abs_value, + hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + + hparams.min_level_db) + else: + return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) + + if hparams.symmetric_mels: + return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db) + else: + return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) diff --git a/backend/synthesizer/hparams.py b/backend/synthesizer/hparams.py new file mode 100644 index 0000000000000000000000000000000000000000..f7d38f0aa4c34d11349e40dbb9861b1aec2dcb8b --- /dev/null +++ b/backend/synthesizer/hparams.py @@ -0,0 +1,92 @@ +import ast +import pprint + +class HParams(object): + def __init__(self, **kwargs): self.__dict__.update(kwargs) + def __setitem__(self, key, value): setattr(self, key, value) + def __getitem__(self, key): return getattr(self, key) + def __repr__(self): return pprint.pformat(self.__dict__) + + def parse(self, string): + # Overrides hparams from a comma-separated string of name=value pairs + if len(string) > 0: + overrides = [s.split("=") for s in string.split(",")] + keys, values = zip(*overrides) + keys = list(map(str.strip, keys)) + values = list(map(str.strip, values)) + for k in keys: + self.__dict__[k] = ast.literal_eval(values[keys.index(k)]) + return self + +hparams = HParams( + ### Signal Processing (used in both synthesizer and vocoder) + sample_rate = 16000, + n_fft = 800, + num_mels = 80, + hop_size = 200, # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125) + win_size = 800, # Tacotron uses 50 ms frame length (set to sample_rate * 0.050) + fmin = 55, + min_level_db = -100, + ref_level_db = 20, + max_abs_value = 4., # Gradient explodes if too big, premature convergence if too small. + preemphasis = 0.97, # Filter coefficient to use if preemphasize is True + preemphasize = True, + + ### Tacotron Text-to-Speech (TTS) + tts_embed_dims = 512, # Embedding dimension for the graphemes/phoneme inputs + tts_encoder_dims = 256, + tts_decoder_dims = 128, + tts_postnet_dims = 512, + tts_encoder_K = 5, + tts_lstm_dims = 1024, + tts_postnet_K = 5, + tts_num_highways = 4, + tts_dropout = 0.5, + tts_cleaner_names = ["english_cleaners"], + tts_stop_threshold = -3.4, # Value below which audio generation ends. + # For example, for a range of [-4, 4], this + # will terminate the sequence at the first + # frame that has all values < -3.4 + + ### Tacotron Training + tts_schedule = [(2, 1e-3, 20_000, 12), # Progressive training schedule + (2, 5e-4, 40_000, 12), # (r, lr, step, batch_size) + (2, 2e-4, 80_000, 12), # + (2, 1e-4, 160_000, 12), # r = reduction factor (# of mel frames + (2, 3e-5, 320_000, 12), # synthesized for each decoder iteration) + (2, 1e-5, 640_000, 12)], # lr = learning rate + + tts_clip_grad_norm = 1.0, # clips the gradient norm to prevent explosion - set to None if not needed + tts_eval_interval = 500, # Number of steps between model evaluation (sample generation) + # Set to -1 to generate after completing epoch, or 0 to disable + + tts_eval_num_samples = 1, # Makes this number of samples + + ### Data Preprocessing + max_mel_frames = 900, + rescale = True, + rescaling_max = 0.9, + synthesis_batch_size = 16, # For vocoder preprocessing and inference. + + ### Mel Visualization and Griffin-Lim + signal_normalization = True, + power = 1.5, + griffin_lim_iters = 60, + + ### Audio processing options + fmax = 7600, # Should not exceed (sample_rate // 2) + allow_clipping_in_normalization = True, # Used when signal_normalization = True + clip_mels_length = True, # If true, discards samples exceeding max_mel_frames + use_lws = False, # "Fast spectrogram phase recovery using local weighted sums" + symmetric_mels = True, # Sets mel range to [-max_abs_value, max_abs_value] if True, + # and [0, max_abs_value] if False + trim_silence = True, # Use with sample_rate of 16000 for best results + + ### SV2TTS + speaker_embedding_size = 256, # Dimension for the speaker embedding + silence_min_duration_split = 0.4, # Duration in seconds of a silence for an utterance to be split + utterance_min_duration = 1.6, # Duration in seconds below which utterances are discarded + ) + +def hparams_debug_string(): + return str(hparams) diff --git a/backend/synthesizer/inference.py b/backend/synthesizer/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..449ba6029c5a6e1cc7f9942166a03f068e713556 --- /dev/null +++ b/backend/synthesizer/inference.py @@ -0,0 +1,165 @@ +import torch +from synthesizer import audio +from synthesizer.hparams import hparams +from synthesizer.models.tacotron import Tacotron +from synthesizer.utils.symbols import symbols +from synthesizer.utils.text import text_to_sequence +from app.vocoder.display import simple_table +from pathlib import Path +from typing import Union, List +import numpy as np +import librosa + + +class Synthesizer: + sample_rate = hparams.sample_rate + hparams = hparams + + def __init__(self, model_fpath: Path, verbose=True): + """ + The model isn't instantiated and loaded in memory until needed or until load() is called. + + :param model_fpath: path to the trained model file + :param verbose: if False, prints less information when using the model + """ + self.model_fpath = model_fpath + self.verbose = verbose + + # Check for GPU + if torch.cuda.is_available(): + self.device = torch.device("cuda") + else: + self.device = torch.device("cpu") + if self.verbose: + print("Synthesizer using device:", self.device) + + # Tacotron model will be instantiated later on first use. + self._model = None + + def is_loaded(self): + """ + Whether the model is loaded in memory. + """ + return self._model is not None + + def load(self): + """ + Instantiates and loads the model given the weights file that was passed in the constructor. + """ + self._model = Tacotron(embed_dims=hparams.tts_embed_dims, + num_chars=len(symbols), + encoder_dims=hparams.tts_encoder_dims, + decoder_dims=hparams.tts_decoder_dims, + n_mels=hparams.num_mels, + fft_bins=hparams.num_mels, + postnet_dims=hparams.tts_postnet_dims, + encoder_K=hparams.tts_encoder_K, + lstm_dims=hparams.tts_lstm_dims, + postnet_K=hparams.tts_postnet_K, + num_highways=hparams.tts_num_highways, + dropout=hparams.tts_dropout, + stop_threshold=hparams.tts_stop_threshold, + speaker_embedding_size=hparams.speaker_embedding_size).to(self.device) + + self._model.load(self.model_fpath) + self._model.eval() + + if self.verbose: + print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"])) + + def synthesize_spectrograms(self, texts: List[str], + embeddings: Union[np.ndarray, List[np.ndarray]], + return_alignments=False): + """ + Synthesizes mel spectrograms from texts and speaker embeddings. + + :param texts: a list of N text prompts to be synthesized + :param embeddings: a numpy array or list of speaker embeddings of shape (N, 256) + :param return_alignments: if True, a matrix representing the alignments between the + characters + and each decoder output step will be returned for each spectrogram + :return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the + sequence length of spectrogram i, and possibly the alignments. + """ + # Load the model on the first request. + if not self.is_loaded(): + self.load() + + # Preprocess text inputs + inputs = [text_to_sequence(text.strip(), hparams.tts_cleaner_names) for text in texts] + if not isinstance(embeddings, list): + embeddings = [embeddings] + + # Batch inputs + batched_inputs = [inputs[i:i+hparams.synthesis_batch_size] + for i in range(0, len(inputs), hparams.synthesis_batch_size)] + batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size] + for i in range(0, len(embeddings), hparams.synthesis_batch_size)] + + specs = [] + for i, batch in enumerate(batched_inputs, 1): + if self.verbose: + print(f"\n| Generating {i}/{len(batched_inputs)}") + + # Pad texts so they are all the same length + text_lens = [len(text) for text in batch] + max_text_len = max(text_lens) + chars = [pad1d(text, max_text_len) for text in batch] + chars = np.stack(chars) + + # Stack speaker embeddings into 2D array for batch processing + speaker_embeds = np.stack(batched_embeds[i-1]) + + # Convert to tensor + chars = torch.tensor(chars).long().to(self.device) + speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device) + + # Inference + _, mels, alignments = self._model.generate(chars, speaker_embeddings) + mels = mels.detach().cpu().numpy() + for m in mels: + # Trim silence from end of each spectrogram + while np.max(m[:, -1]) < hparams.tts_stop_threshold: + m = m[:, :-1] + specs.append(m) + + if self.verbose: + print("\n\nDone.\n") + return (specs, alignments) if return_alignments else specs + + @staticmethod + def load_preprocess_wav(fpath): + """ + Loads and preprocesses an audio file under the same conditions the audio files were used to + train the synthesizer. + """ + wav = librosa.load(str(fpath), hparams.sample_rate)[0] + if hparams.rescale: + wav = wav / np.abs(wav).max() * hparams.rescaling_max + return wav + + @staticmethod + def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]): + """ + Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that + were fed to the synthesizer when training. + """ + if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): + wav = Synthesizer.load_preprocess_wav(fpath_or_wav) + else: + wav = fpath_or_wav + + mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32) + return mel_spectrogram + + @staticmethod + def griffin_lim(mel): + """ + Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built + with the same parameters present in hparams.py. + """ + return audio.inv_mel_spectrogram(mel, hparams) + + +def pad1d(x, max_len, pad_value=0): + return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value) diff --git a/backend/synthesizer/models/tacotron.py b/backend/synthesizer/models/tacotron.py new file mode 100644 index 0000000000000000000000000000000000000000..caa1e500e735d4c3a99580541272d93eba41739b --- /dev/null +++ b/backend/synthesizer/models/tacotron.py @@ -0,0 +1,542 @@ +import os +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from pathlib import Path +from typing import Union + + +class HighwayNetwork(nn.Module): + def __init__(self, size): + super().__init__() + self.W1 = nn.Linear(size, size) + self.W2 = nn.Linear(size, size) + self.W1.bias.data.fill_(0.) + + def forward(self, x): + x1 = self.W1(x) + x2 = self.W2(x) + g = torch.sigmoid(x2) + y = g * F.relu(x1) + (1. - g) * x + return y + + +class Encoder(nn.Module): + def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout): + super().__init__() + prenet_dims = (encoder_dims, encoder_dims) + cbhg_channels = encoder_dims + self.embedding = nn.Embedding(num_chars, embed_dims) + self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1], + dropout=dropout) + self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels, + proj_channels=[cbhg_channels, cbhg_channels], + num_highways=num_highways) + + def forward(self, x, speaker_embedding=None): + x = self.embedding(x) + x = self.pre_net(x) + x.transpose_(1, 2) + x = self.cbhg(x) + if speaker_embedding is not None: + x = self.add_speaker_embedding(x, speaker_embedding) + return x + + def add_speaker_embedding(self, x, speaker_embedding): + # SV2TTS + # The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims) + # When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size) + # (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size)) + # This concats the speaker embedding for each char in the encoder output + + # Save the dimensions as human-readable names + batch_size = x.size()[0] + num_chars = x.size()[1] + + if speaker_embedding.dim() == 1: + idx = 0 + else: + idx = 1 + + # Start by making a copy of each speaker embedding to match the input text length + # The output of this has size (batch_size, num_chars * tts_embed_dims) + speaker_embedding_size = speaker_embedding.size()[idx] + e = speaker_embedding.repeat_interleave(num_chars, dim=idx) + + # Reshape it and transpose + e = e.reshape(batch_size, speaker_embedding_size, num_chars) + e = e.transpose(1, 2) + + # Concatenate the tiled speaker embedding with the encoder output + x = torch.cat((x, e), 2) + return x + + +class BatchNormConv(nn.Module): + def __init__(self, in_channels, out_channels, kernel, relu=True): + super().__init__() + self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False) + self.bnorm = nn.BatchNorm1d(out_channels) + self.relu = relu + + def forward(self, x): + x = self.conv(x) + x = F.relu(x) if self.relu is True else x + return self.bnorm(x) + + +class CBHG(nn.Module): + def __init__(self, K, in_channels, channels, proj_channels, num_highways): + super().__init__() + + # List of all rnns to call `flatten_parameters()` on + self._to_flatten = [] + + self.bank_kernels = [i for i in range(1, K + 1)] + self.conv1d_bank = nn.ModuleList() + for k in self.bank_kernels: + conv = BatchNormConv(in_channels, channels, k) + self.conv1d_bank.append(conv) + + self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1) + + self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3) + self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False) + + # Fix the highway input if necessary + if proj_channels[-1] != channels: + self.highway_mismatch = True + self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False) + else: + self.highway_mismatch = False + + self.highways = nn.ModuleList() + for i in range(num_highways): + hn = HighwayNetwork(channels) + self.highways.append(hn) + + self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True) + self._to_flatten.append(self.rnn) + + # Avoid fragmentation of RNN parameters and associated warning + self._flatten_parameters() + + def forward(self, x): + # Although we `_flatten_parameters()` on init, when using DataParallel + # the model gets replicated, making it no longer guaranteed that the + # weights are contiguous in GPU memory. Hence, we must call it again + self._flatten_parameters() + + # Save these for later + residual = x + seq_len = x.size(-1) + conv_bank = [] + + # Convolution Bank + for conv in self.conv1d_bank: + c = conv(x) # Convolution + conv_bank.append(c[:, :, :seq_len]) + + # Stack along the channel axis + conv_bank = torch.cat(conv_bank, dim=1) + + # dump the last padding to fit residual + x = self.maxpool(conv_bank)[:, :, :seq_len] + + # Conv1d projections + x = self.conv_project1(x) + x = self.conv_project2(x) + + # Residual Connect + x = x + residual + + # Through the highways + x = x.transpose(1, 2) + if self.highway_mismatch is True: + x = self.pre_highway(x) + for h in self.highways: x = h(x) + + # And then the RNN + x, _ = self.rnn(x) + return x + + def _flatten_parameters(self): + """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used + to improve efficiency and avoid PyTorch yelling at us.""" + [m.flatten_parameters() for m in self._to_flatten] + +class PreNet(nn.Module): + def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): + super().__init__() + self.fc1 = nn.Linear(in_dims, fc1_dims) + self.fc2 = nn.Linear(fc1_dims, fc2_dims) + self.p = dropout + + def forward(self, x): + x = self.fc1(x) + x = F.relu(x) + x = F.dropout(x, self.p, training=True) + x = self.fc2(x) + x = F.relu(x) + x = F.dropout(x, self.p, training=True) + return x + + +class Attention(nn.Module): + def __init__(self, attn_dims): + super().__init__() + self.W = nn.Linear(attn_dims, attn_dims, bias=False) + self.v = nn.Linear(attn_dims, 1, bias=False) + + def forward(self, encoder_seq_proj, query, t): + + # print(encoder_seq_proj.shape) + # Transform the query vector + query_proj = self.W(query).unsqueeze(1) + + # Compute the scores + u = self.v(torch.tanh(encoder_seq_proj + query_proj)) + scores = F.softmax(u, dim=1) + + return scores.transpose(1, 2) + + +class LSA(nn.Module): + def __init__(self, attn_dim, kernel_size=31, filters=32): + super().__init__() + self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True) + self.L = nn.Linear(filters, attn_dim, bias=False) + self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term + self.v = nn.Linear(attn_dim, 1, bias=False) + self.cumulative = None + self.attention = None + + def init_attention(self, encoder_seq_proj): + device = next(self.parameters()).device # use same device as parameters + b, t, c = encoder_seq_proj.size() + self.cumulative = torch.zeros(b, t, device=device) + self.attention = torch.zeros(b, t, device=device) + + def forward(self, encoder_seq_proj, query, t, chars): + + if t == 0: self.init_attention(encoder_seq_proj) + + processed_query = self.W(query).unsqueeze(1) + + location = self.cumulative.unsqueeze(1) + processed_loc = self.L(self.conv(location).transpose(1, 2)) + + u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc)) + u = u.squeeze(-1) + + # Mask zero padding chars + u = u * (chars != 0).float() + + # Smooth Attention + # scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True) + scores = F.softmax(u, dim=1) + self.attention = scores + self.cumulative = self.cumulative + self.attention + + return scores.unsqueeze(-1).transpose(1, 2) + + +class Decoder(nn.Module): + # Class variable because its value doesn't change between classes + # yet ought to be scoped by class because its a property of a Decoder + max_r = 20 + def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims, + dropout, speaker_embedding_size): + super().__init__() + self.register_buffer("r", torch.tensor(1, dtype=torch.int)) + self.n_mels = n_mels + prenet_dims = (decoder_dims * 2, decoder_dims * 2) + self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1], + dropout=dropout) + self.attn_net = LSA(decoder_dims) + self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims) + self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims) + self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims) + self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims) + self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False) + self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1) + + def zoneout(self, prev, current, p=0.1): + device = next(self.parameters()).device # Use same device as parameters + mask = torch.zeros(prev.size(), device=device).bernoulli_(p) + return prev * mask + current * (1 - mask) + + def forward(self, encoder_seq, encoder_seq_proj, prenet_in, + hidden_states, cell_states, context_vec, t, chars): + + # Need this for reshaping mels + batch_size = encoder_seq.size(0) + + # Unpack the hidden and cell states + attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states + rnn1_cell, rnn2_cell = cell_states + + # PreNet for the Attention RNN + prenet_out = self.prenet(prenet_in) + + # Compute the Attention RNN hidden state + attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1) + attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden) + + # Compute the attention scores + scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars) + + # Dot product to create the context vector + context_vec = scores @ encoder_seq + context_vec = context_vec.squeeze(1) + + # Concat Attention RNN output w. Context Vector & project + x = torch.cat([context_vec, attn_hidden], dim=1) + x = self.rnn_input(x) + + # Compute first Residual RNN + rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell)) + if self.training: + rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next) + else: + rnn1_hidden = rnn1_hidden_next + x = x + rnn1_hidden + + # Compute second Residual RNN + rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell)) + if self.training: + rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next) + else: + rnn2_hidden = rnn2_hidden_next + x = x + rnn2_hidden + + # Project Mels + mels = self.mel_proj(x) + mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r] + hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) + cell_states = (rnn1_cell, rnn2_cell) + + # Stop token prediction + s = torch.cat((x, context_vec), dim=1) + s = self.stop_proj(s) + stop_tokens = torch.sigmoid(s) + + return mels, scores, hidden_states, cell_states, context_vec, stop_tokens + + +class Tacotron(nn.Module): + def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels, + fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways, + dropout, stop_threshold, speaker_embedding_size): + super().__init__() + self.n_mels = n_mels + self.lstm_dims = lstm_dims + self.encoder_dims = encoder_dims + self.decoder_dims = decoder_dims + self.speaker_embedding_size = speaker_embedding_size + self.encoder = Encoder(embed_dims, num_chars, encoder_dims, + encoder_K, num_highways, dropout) + self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False) + self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims, + dropout, speaker_embedding_size) + self.postnet = CBHG(postnet_K, n_mels, postnet_dims, + [postnet_dims, fft_bins], num_highways) + self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False) + + self.init_model() + self.num_params() + + self.register_buffer("step", torch.zeros(1, dtype=torch.long)) + self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32)) + + @property + def r(self): + return self.decoder.r.item() + + @r.setter + def r(self, value): + self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False) + + def forward(self, x, m, speaker_embedding): + device = next(self.parameters()).device # use same device as parameters + + self.step += 1 + batch_size, _, steps = m.size() + + # Initialise all hidden states and pack into tuple + attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) + rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) + rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) + hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) + + # Initialise all lstm cell states and pack into tuple + rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) + rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) + cell_states = (rnn1_cell, rnn2_cell) + + # Frame for start of decoder loop + go_frame = torch.zeros(batch_size, self.n_mels, device=device) + + # Need an initial context vector + context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) + + # SV2TTS: Run the encoder with the speaker embedding + # The projection avoids unnecessary matmuls in the decoder loop + encoder_seq = self.encoder(x, speaker_embedding) + encoder_seq_proj = self.encoder_proj(encoder_seq) + + # Need a couple of lists for outputs + mel_outputs, attn_scores, stop_outputs = [], [], [] + + # Run the decoder loop + for t in range(0, steps, self.r): + prenet_in = m[:, :, t - 1] if t > 0 else go_frame + mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \ + self.decoder(encoder_seq, encoder_seq_proj, prenet_in, + hidden_states, cell_states, context_vec, t, x) + mel_outputs.append(mel_frames) + attn_scores.append(scores) + stop_outputs.extend([stop_tokens] * self.r) + + # Concat the mel outputs into sequence + mel_outputs = torch.cat(mel_outputs, dim=2) + + # Post-Process for Linear Spectrograms + postnet_out = self.postnet(mel_outputs) + linear = self.post_proj(postnet_out) + linear = linear.transpose(1, 2) + + # For easy visualisation + attn_scores = torch.cat(attn_scores, 1) + # attn_scores = attn_scores.cpu().data.numpy() + stop_outputs = torch.cat(stop_outputs, 1) + + return mel_outputs, linear, attn_scores, stop_outputs + + def generate(self, x, speaker_embedding=None, steps=2000): + import sys + + self.eval() + device = next(self.parameters()).device # use same device as parameters + + batch_size, _ = x.size() + + # Need to initialise all hidden states and pack into tuple for tidyness + attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) + rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) + rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) + hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) + + # Need to initialise all lstm cell states and pack into tuple for tidyness + rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) + rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) + cell_states = (rnn1_cell, rnn2_cell) + + # Need a Frame for start of decoder loop + go_frame = torch.zeros(batch_size, self.n_mels, device=device) + + # Need an initial context vector + context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) + + # SV2TTS: Run the encoder with the speaker embedding + # The projection avoids unnecessary matmuls in the decoder loop + print(" [Tacotron] Running encoder...", end='', flush=True) + sys.stdout.flush() + encoder_seq = self.encoder(x, speaker_embedding) + encoder_seq_proj = self.encoder_proj(encoder_seq) + print(" OK") + sys.stdout.flush() + + # Need a couple of lists for outputs + mel_outputs, attn_scores, stop_outputs = [], [], [] + + # Run the decoder loop + print(f" [Tacotron] Decoder loop: 0/{steps} steps", end='') + sys.stdout.flush() + for t in range(0, steps, self.r): + prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame + mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \ + self.decoder(encoder_seq, encoder_seq_proj, prenet_in, + hidden_states, cell_states, context_vec, t, x) + mel_outputs.append(mel_frames) + attn_scores.append(scores) + stop_outputs.extend([stop_tokens] * self.r) + + # Progress every 100 steps + if t % 100 == 0: + print(f"\r [Tacotron] Decoder loop: {t}/{steps} steps", end='') + sys.stdout.flush() + + # Stop the loop when all stop tokens in batch exceed threshold + if (stop_tokens > 0.5).all() and t > 10: + print(f"\r [Tacotron] Decoder loop: {t}/{steps} steps (stopped early)") + sys.stdout.flush() + break + + print(f"\r [Tacotron] Decoder loop: {len(mel_outputs) * self.r}/{steps} steps (complete)") + sys.stdout.flush() + + # Concat the mel outputs into sequence + print(" [Tacotron] Concatenating and post-processing...", end='', flush=True) + sys.stdout.flush() + mel_outputs = torch.cat(mel_outputs, dim=2) + + # Post-Process for Linear Spectrograms + postnet_out = self.postnet(mel_outputs) + linear = self.post_proj(postnet_out) + + linear = linear.transpose(1, 2) + + # For easy visualisation + attn_scores = torch.cat(attn_scores, 1) + stop_outputs = torch.cat(stop_outputs, 1) + + print(" OK") + sys.stdout.flush() + self.train() + + return mel_outputs, linear, attn_scores + + def init_model(self): + for p in self.parameters(): + if p.dim() > 1: nn.init.xavier_uniform_(p) + + def get_step(self): + return self.step.data.item() + + def reset_step(self): + # assignment to parameters or buffers is overloaded, updates internal dict entry + self.step = self.step.data.new_tensor(1) + + def log(self, path, msg): + with open(path, "a") as f: + print(msg, file=f) + + def load(self, path, optimizer=None): + # Use device of model params as location for loaded state + device = next(self.parameters()).device + checkpoint = torch.load(str(path), map_location=device) + self.load_state_dict(checkpoint["model_state"]) + + if "optimizer_state" in checkpoint and optimizer is not None: + optimizer.load_state_dict(checkpoint["optimizer_state"]) + + def save(self, path, optimizer=None): + if optimizer is not None: + torch.save({ + "model_state": self.state_dict(), + "optimizer_state": optimizer.state_dict(), + }, str(path)) + else: + torch.save({ + "model_state": self.state_dict(), + }, str(path)) + + + def num_params(self, print_out=True): + parameters = filter(lambda p: p.requires_grad, self.parameters()) + parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 + if print_out: + print("Trainable Parameters: %.3fM" % parameters) + return parameters diff --git a/backend/synthesizer/utils/__init__.py b/backend/synthesizer/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5ae3e48110e61231acf1e666e5fa76af5e4ebdcd --- /dev/null +++ b/backend/synthesizer/utils/__init__.py @@ -0,0 +1,45 @@ +import torch + + +_output_ref = None +_replicas_ref = None + +def data_parallel_workaround(model, *input): + global _output_ref + global _replicas_ref + device_ids = list(range(torch.cuda.device_count())) + output_device = device_ids[0] + replicas = torch.nn.parallel.replicate(model, device_ids) + # input.shape = (num_args, batch, ...) + inputs = torch.nn.parallel.scatter(input, device_ids) + # inputs.shape = (num_gpus, num_args, batch/num_gpus, ...) + replicas = replicas[:len(inputs)] + outputs = torch.nn.parallel.parallel_apply(replicas, inputs) + y_hat = torch.nn.parallel.gather(outputs, output_device) + _output_ref = outputs + _replicas_ref = replicas + return y_hat + + +class ValueWindow(): + def __init__(self, window_size=100): + self._window_size = window_size + self._values = [] + + def append(self, x): + self._values = self._values[-(self._window_size - 1):] + [x] + + @property + def sum(self): + return sum(self._values) + + @property + def count(self): + return len(self._values) + + @property + def average(self): + return self.sum / max(1, self.count) + + def reset(self): + self._values = [] diff --git a/backend/synthesizer/utils/cleaners.py b/backend/synthesizer/utils/cleaners.py new file mode 100644 index 0000000000000000000000000000000000000000..05474520fa66f58ec305be4a126e5107e9a6fbe1 --- /dev/null +++ b/backend/synthesizer/utils/cleaners.py @@ -0,0 +1,88 @@ +""" +Cleaners are transformations that run over the input text at both training and eval time. + +Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" +hyperparameter. Some cleaners are English-specific. You"ll typically want to use: + 1. "english_cleaners" for English text + 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using + the Unidecode library (https://pypi.python.org/pypi/Unidecode) + 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update + the symbols in symbols.py to match your data). +""" +import re +from unidecode import unidecode +from .numbers import normalize_numbers + + +# Regular expression matching whitespace: +_whitespace_re = re.compile(r"\s+") + +# List of (regular expression, replacement) pairs for abbreviations: +_abbreviations = [(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ + ("mrs", "misess"), + ("mr", "mister"), + ("dr", "doctor"), + ("st", "saint"), + ("co", "company"), + ("jr", "junior"), + ("maj", "major"), + ("gen", "general"), + ("drs", "doctors"), + ("rev", "reverend"), + ("lt", "lieutenant"), + ("hon", "honorable"), + ("sgt", "sergeant"), + ("capt", "captain"), + ("esq", "esquire"), + ("ltd", "limited"), + ("col", "colonel"), + ("ft", "fort"), +]] + + +def expand_abbreviations(text): + for regex, replacement in _abbreviations: + text = re.sub(regex, replacement, text) + return text + + +def expand_numbers(text): + return normalize_numbers(text) + + +def lowercase(text): + """lowercase input tokens.""" + return text.lower() + + +def collapse_whitespace(text): + return re.sub(_whitespace_re, " ", text) + + +def convert_to_ascii(text): + return unidecode(text) + + +def basic_cleaners(text): + """Basic pipeline that lowercases and collapses whitespace without transliteration.""" + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def transliteration_cleaners(text): + """Pipeline for non-English text that transliterates to ASCII.""" + text = convert_to_ascii(text) + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def english_cleaners(text): + """Pipeline for English text, including number and abbreviation expansion.""" + text = convert_to_ascii(text) + text = lowercase(text) + text = expand_numbers(text) + text = expand_abbreviations(text) + text = collapse_whitespace(text) + return text diff --git a/backend/synthesizer/utils/numbers.py b/backend/synthesizer/utils/numbers.py new file mode 100644 index 0000000000000000000000000000000000000000..1534daa3f6aee11ac5115260b8800f7459348c0c --- /dev/null +++ b/backend/synthesizer/utils/numbers.py @@ -0,0 +1,69 @@ +import re +import inflect + + +_inflect = inflect.engine() +_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") +_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") +_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)") +_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") +_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") +_number_re = re.compile(r"[0-9]+") + + +def _remove_commas(m): + return m.group(1).replace(",", "") + + +def _expand_decimal_point(m): + return m.group(1).replace(".", " point ") + + +def _expand_dollars(m): + match = m.group(1) + parts = match.split(".") + if len(parts) > 2: + return match + " dollars" # Unexpected format + dollars = int(parts[0]) if parts[0] else 0 + cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 + if dollars and cents: + dollar_unit = "dollar" if dollars == 1 else "dollars" + cent_unit = "cent" if cents == 1 else "cents" + return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) + elif dollars: + dollar_unit = "dollar" if dollars == 1 else "dollars" + return "%s %s" % (dollars, dollar_unit) + elif cents: + cent_unit = "cent" if cents == 1 else "cents" + return "%s %s" % (cents, cent_unit) + else: + return "zero dollars" + + +def _expand_ordinal(m): + return _inflect.number_to_words(m.group(0)) + + +def _expand_number(m): + num = int(m.group(0)) + if num > 1000 and num < 3000: + if num == 2000: + return "two thousand" + elif num > 2000 and num < 2010: + return "two thousand " + _inflect.number_to_words(num % 100) + elif num % 100 == 0: + return _inflect.number_to_words(num // 100) + " hundred" + else: + return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ") + else: + return _inflect.number_to_words(num, andword="") + + +def normalize_numbers(text): + text = re.sub(_comma_number_re, _remove_commas, text) + text = re.sub(_pounds_re, r"\1 pounds", text) + text = re.sub(_dollars_re, _expand_dollars, text) + text = re.sub(_decimal_number_re, _expand_decimal_point, text) + text = re.sub(_ordinal_re, _expand_ordinal, text) + text = re.sub(_number_re, _expand_number, text) + return text diff --git a/backend/synthesizer/utils/symbols.py b/backend/synthesizer/utils/symbols.py new file mode 100644 index 0000000000000000000000000000000000000000..132d3a612c3b13e2ada905a706001cff29a4f63a --- /dev/null +++ b/backend/synthesizer/utils/symbols.py @@ -0,0 +1,17 @@ +""" +Defines the set of symbols used in text input to the model. + +The default is a set of ASCII characters that works well for English or text that has been run +through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. +""" +# from . import cmudict + +_pad = "_" +_eos = "~" +_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'\"(),-.:;? " + +# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): +#_arpabet = ["@' + s for s in cmudict.valid_symbols] + +# Export all symbols: +symbols = [_pad, _eos] + list(_characters) #+ _arpabet diff --git a/backend/synthesizer/utils/text.py b/backend/synthesizer/utils/text.py new file mode 100644 index 0000000000000000000000000000000000000000..9fa00185e07de230de121ec4d3aca7029778e64d --- /dev/null +++ b/backend/synthesizer/utils/text.py @@ -0,0 +1,75 @@ +from .symbols import symbols +from . import cleaners +import re + + +# Mappings from symbol to numeric ID and vice versa: +_symbol_to_id = {s: i for i, s in enumerate(symbols)} +_id_to_symbol = {i: s for i, s in enumerate(symbols)} + +# Regular expression matching text enclosed in curly braces: +_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)") + + +def text_to_sequence(text, cleaner_names): + """Converts a string of text to a sequence of IDs corresponding to the symbols in the text. + + The text can optionally have ARPAbet sequences enclosed in curly braces embedded + in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." + + Args: + text: string to convert to a sequence + cleaner_names: names of the cleaner functions to run the text through + + Returns: + List of integers corresponding to the symbols in the text + """ + sequence = [] + + # Check for curly braces and treat their contents as ARPAbet: + while len(text): + m = _curly_re.match(text) + if not m: + sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) + break + sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) + sequence += _arpabet_to_sequence(m.group(2)) + text = m.group(3) + + # Append EOS token + sequence.append(_symbol_to_id["~"]) + return sequence + + +def sequence_to_text(sequence): + """Converts a sequence of IDs back to a string""" + result = "" + for symbol_id in sequence: + if symbol_id in _id_to_symbol: + s = _id_to_symbol[symbol_id] + # Enclose ARPAbet back in curly braces: + if len(s) > 1 and s[0] == "@": + s = "{%s}" % s[1:] + result += s + return result.replace("}{", " ") + + +def _clean_text(text, cleaner_names): + for name in cleaner_names: + cleaner = getattr(cleaners, name) + if not cleaner: + raise Exception("Unknown cleaner: %s" % name) + text = cleaner(text) + return text + + +def _symbols_to_sequence(symbols): + return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] + + +def _arpabet_to_sequence(text): + return _symbols_to_sequence(["@" + s for s in text.split()]) + + +def _should_keep_symbol(s): + return s in _symbol_to_id and s not in ("_", "~") diff --git a/backend/wsgi.py b/backend/wsgi.py new file mode 100644 index 0000000000000000000000000000000000000000..0a47cd9099a8af4b06d06faf86737a86d3752077 --- /dev/null +++ b/backend/wsgi.py @@ -0,0 +1,15 @@ +"""Gunicorn entry point for the voice cloning backend.""" + +import sys +from pathlib import Path + +# Ensure backend directory is in the path for imports +backend_dir = Path(__file__).parent +if str(backend_dir) not in sys.path: + sys.path.insert(0, str(backend_dir)) + +from app import app + + +if __name__ == "__main__": + app.run() diff --git a/frontend/.env.development b/frontend/.env.development new file mode 100644 index 0000000000000000000000000000000000000000..363f4046792f769f1971a2751d1f4a5d59315131 --- /dev/null +++ b/frontend/.env.development @@ -0,0 +1,4 @@ +# Local development +VITE_API_URL=http://localhost:5000 +FLASK_ENV=development +DEBUG=true diff --git a/frontend/.env.production b/frontend/.env.production new file mode 100644 index 0000000000000000000000000000000000000000..37b33b21d2d9fb782899dc98093067ac0d9d6bad --- /dev/null +++ b/frontend/.env.production @@ -0,0 +1,2 @@ +# Production deployment +VITE_API_URL=https://voice-cloning-personalized-speech.onrender.com \ No newline at end of file diff --git a/frontend/.gitignore b/frontend/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..50f326db03cb9780a18796aea00c0973ba3d7c83 --- /dev/null +++ b/frontend/.gitignore @@ -0,0 +1,99 @@ +# Logs +logs +*.log +npm-debug.log* +yarn-debug.log* +yarn-error.log* +pnpm-debug.log* +lerna-debug.log* + +# Dependencies +/node_modules +/.pnp +.pnp.js + +# Testing +/coverage + +# Next.js +/.next/ +/out/ + +# Production +/build +/dist +/dist-ssr + +# Local env files +.env*.local +.env + +# Debug logs +npm-debug.log* +yarn-debug.log* +yarn-error.log* +pnpm-debug.log* + +# Editor directories and files +.idea +.vscode/* +!.vscode/extensions.json +.DS_Store +*.suo +*.ntvs* +*.njsproj +*.sln +*.sw? + +# System Files +.DS_Store +Thumbs.db + +# Cache +.cache/ +.temp/ +.tmp/ + +# Misc +.vercel +.next +.vercel_build_output + +# Local Netlify folder +.netlify + +# Optional npm cache directory +.npm + +# Optional eslint cache +.eslintcache + +# Optional REPL history +.node_repl_history + +# Output of 'npm pack' +*.tgz + +# Yarn Integrity file +.yarn-integrity + +# dotenv environment variables file +.env*.local +.env + +# parcel-bundler cache (https://parceljs.org/) +.parcel-cache + +# Next.js build output +.next +out + +# Vercel +.vercel + +# TypeScript +*.tsbuildinfo +next-env.d.ts + +# Optional stylelint cache +.stylelintcache diff --git a/frontend/README.md b/frontend/README.md new file mode 100644 index 0000000000000000000000000000000000000000..8e7a4516bae1b46e839afb41abcbcbbe15770260 --- /dev/null +++ b/frontend/README.md @@ -0,0 +1,111 @@ +# Voice Cloning – Personalized Speech Synthesis (Frontend) + + > Note: On first load, please wait 2–3 minutes. The app initializes several 3D elements which can take time to fetch and compile in the browser, including examples like: + > - Spline-powered scenes and backgrounds + > - Interactive Orb (Three.js) with real-time interaction + > - Particle Field and Floating Elements + > - Speaker/Microphone 3D scenes and visualizers + + This repository contains the fully custom-built frontend for a Voice Cloning and Personalized Speech Synthesis application. + + - Modern, responsive UI with smooth 3D visuals and an accessible design system. + + --- + + ## Overview + +The frontend provides: + +- A clean interface to enroll voice samples and synthesize speech. +- Real-time audio recording, waveform visualization, and playback controls. +- Rich 3D/animated visuals to enhance the user experience (Spline and Three.js). +- A component-driven architecture for maintainability and reusability. + + --- + + ## Features + +- Audio + - Audio recorder and waveform visualization + - Error boundaries and robust UI states + +- 3D & Visuals + - Spline background scenes + - Interactive Orb, Particle Field, Floating Elements + - Speaker/Microphone scenes and animated transitions + +- UI/UX + - shadcn/ui components with Tailwind CSS + - Responsive, accessible design + - Theming and utility-first styling + + --- + + ## Tech Stack + + - Vite (bundler & dev server) + - React (UI) + TypeScript + - Tailwind CSS + PostCSS + - shadcn/ui component library + - Three.js & Spline (3D scenes and interactions) + - ESLint (code quality) and modern TS configs + + --- + + ## Getting Started + +Prerequisites: + + - Node.js and npm installed (recommend using nvm) + +Install and run: + +```bash +npm install +npm run dev +``` + +Open the local URL printed in the terminal. First load may take 2–3 minutes due to 3D assets. + + --- + + ## Available Scripts + + - `npm run dev` – Start the development server + - `npm run build` – Build for production into `dist/` + - `npm run preview` – Preview the production build locally + + --- + + ## Project Structure (high level) + + - `src/` + - `components/` + - `audio/` – Recorder, waveform, audio UI + - `three/` – Interactive Orb, Particle Field, Speaker/Mic scenes, Spline background + - `ui/` – shadcn/ui component wrappers and utilities + - `pages/` – App pages and routing + - `lib/` – Utility functions + + - `public/` – Static assets (icons, placeholders, robots.txt) + - `tailwind.config.ts`, `postcss.config.js` – Styling configuration + - `eslint.config.js` – Linting configuration + + --- + + ## Deployment + +Build a production bundle: + +```bash +npm run build +npm run preview +``` + +Deploy the contents of `dist/` to your hosting of choice (e.g., Netlify, Vercel, GitHub Pages, or a static server). + + --- + +## License + +Copyright The project owner. All rights reserved. diff --git a/frontend/components.json b/frontend/components.json new file mode 100644 index 0000000000000000000000000000000000000000..f29e3f1610677762f3d97aaefc9ce40a9d410948 --- /dev/null +++ b/frontend/components.json @@ -0,0 +1,20 @@ +{ + "$schema": "https://ui.shadcn.com/schema.json", + "style": "default", + "rsc": false, + "tsx": true, + "tailwind": { + "config": "tailwind.config.ts", + "css": "src/index.css", + "baseColor": "slate", + "cssVariables": true, + "prefix": "" + }, + "aliases": { + "components": "@/components", + "utils": "@/lib/utils", + "ui": "@/components/ui", + "lib": "@/lib", + "hooks": "@/hooks" + } +} \ No newline at end of file diff --git a/frontend/eslint.config.js b/frontend/eslint.config.js new file mode 100644 index 0000000000000000000000000000000000000000..e67846f70fbbe40407fc84875913595ab31c4a47 --- /dev/null +++ b/frontend/eslint.config.js @@ -0,0 +1,29 @@ +import js from "@eslint/js"; +import globals from "globals"; +import reactHooks from "eslint-plugin-react-hooks"; +import reactRefresh from "eslint-plugin-react-refresh"; +import tseslint from "typescript-eslint"; + +export default tseslint.config( + { ignores: ["dist"] }, + { + extends: [js.configs.recommended, ...tseslint.configs.recommended], + files: ["**/*.{ts,tsx}"], + languageOptions: { + ecmaVersion: 2020, + globals: globals.browser, + }, + plugins: { + "react-hooks": reactHooks, + "react-refresh": reactRefresh, + }, + rules: { + ...reactHooks.configs.recommended.rules, + "react-refresh/only-export-components": [ + "warn", + { allowConstantExport: true }, + ], + "@typescript-eslint/no-unused-vars": "off", + }, + } +); diff --git a/frontend/index.html b/frontend/index.html new file mode 100644 index 0000000000000000000000000000000000000000..e06b5fe444203963863ae54f1dfcc20d4c6d3e96 --- /dev/null +++ b/frontend/index.html @@ -0,0 +1,24 @@ + + + + + + Dhwanii Voice Cloning AI + + + + + + + + + + + + + + +
+ + + diff --git a/frontend/package-lock.json b/frontend/package-lock.json new file mode 100644 index 0000000000000000000000000000000000000000..2931f2e5480c2b7b9ba811573ea296f7846bcaef --- /dev/null +++ b/frontend/package-lock.json @@ -0,0 +1,7320 @@ +{ + "name": "vite_react_shadcn_ts", + "version": "0.0.0", + "lockfileVersion": 3, + "requires": true, + "packages": { + "": { + "name": "vite_react_shadcn_ts", + "version": "0.0.0", + "dependencies": { + "@hookform/resolvers": "^3.10.0", + "@radix-ui/react-accordion": "^1.2.11", + "@radix-ui/react-alert-dialog": "^1.1.14", + "@radix-ui/react-aspect-ratio": "^1.1.7", + "@radix-ui/react-avatar": "^1.1.10", + "@radix-ui/react-checkbox": "^1.3.2", + "@radix-ui/react-collapsible": "^1.1.11", + "@radix-ui/react-context-menu": "^2.2.15", + "@radix-ui/react-dialog": "^1.1.14", + "@radix-ui/react-dropdown-menu": "^2.1.15", + "@radix-ui/react-hover-card": "^1.1.14", + "@radix-ui/react-label": "^2.1.7", + "@radix-ui/react-menubar": "^1.1.15", + "@radix-ui/react-navigation-menu": "^1.2.13", + "@radix-ui/react-popover": "^1.1.14", + "@radix-ui/react-progress": "^1.1.7", + "@radix-ui/react-radio-group": "^1.3.7", + "@radix-ui/react-scroll-area": "^1.2.9", + "@radix-ui/react-select": "^2.2.5", + "@radix-ui/react-separator": "^1.1.7", + "@radix-ui/react-slider": "^1.3.5", + "@radix-ui/react-slot": "^1.2.3", + "@radix-ui/react-switch": "^1.2.5", + "@radix-ui/react-tabs": "^1.1.12", + "@radix-ui/react-toast": "^1.2.14", + "@radix-ui/react-toggle": "^1.1.9", + "@radix-ui/react-toggle-group": "^1.1.10", + "@radix-ui/react-tooltip": "^1.2.7", + "@react-three/drei": "^9.122.0", + "@react-three/fiber": "^8.18.0", + "@react-three/postprocessing": "^2.19.1", + "@splinetool/react-spline": "^4.1.0", + "@splinetool/runtime": "^1.10.55", + "@tanstack/react-query": "^5.83.0", + "class-variance-authority": "^0.7.1", + "clsx": "^2.1.1", + "cmdk": "^1.1.1", + "date-fns": "^3.6.0", + "embla-carousel-react": "^8.6.0", + "input-otp": "^1.4.2", + "lucide-react": "^0.462.0", + "next-themes": "^0.3.0", + "react": "^18.3.1", + "react-day-picker": "^8.10.1", + "react-dom": "^18.3.1", + "react-hook-form": "^7.61.1", + "react-resizable-panels": "^2.1.9", + "react-router-dom": "^6.30.1", + "recharts": "^2.15.4", + "sonner": "^1.7.4", + "tailwind-merge": "^2.6.0", + "tailwindcss-animate": "^1.0.7", + "three": "^0.169.0", + "vaul": "^0.9.9", + "zod": "^3.25.76" + }, + "devDependencies": { + "@eslint/js": "^9.32.0", + "@tailwindcss/typography": "^0.5.16", + "@types/node": "^22.16.5", + "@types/react": "^18.3.23", + "@types/react-dom": "^18.3.7", + "@vitejs/plugin-react-swc": "^3.11.0", + "autoprefixer": "^10.4.21", + "eslint": "^9.32.0", + "eslint-plugin-react-hooks": "^5.2.0", + "eslint-plugin-react-refresh": "^0.4.20", + "globals": "^15.15.0", + "postcss": "^8.5.6", + "tailwindcss": "^3.4.17", + "typescript": "^5.8.3", + "typescript-eslint": "^8.38.0", + "vite": "^7.1.4" + } + }, + "node_modules/@alloc/quick-lru": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/@alloc/quick-lru/-/quick-lru-5.2.0.tgz", + "integrity": "sha512-UrcABB+4bUrFABwbluTIBErXwvbsU/V7TZWfmbgJfbkwiBuziS9gxdODUyuiecfdGQ85jglMW6juS3+z5TsKLw==", + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/@babel/runtime": { + "version": "7.28.3", + "resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.28.3.tgz", + "integrity": "sha512-9uIQ10o0WGdpP6GDhXcdOJPJuDgFtIDtN/9+ArJQ2NAfAmiuhTQdzkaTGR33v43GYS2UrSA0eX2pPPHoFVvpxA==", + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@dimforge/rapier3d-compat": { + "version": "0.12.0", + "resolved": "https://registry.npmjs.org/@dimforge/rapier3d-compat/-/rapier3d-compat-0.12.0.tgz", + "integrity": "sha512-uekIGetywIgopfD97oDL5PfeezkFpNhwlzlaEYNOA0N6ghdsOvh/HYjSMek5Q2O1PYvRSDFcqFVJl4r4ZBwOow==", + "license": "Apache-2.0" + }, + "node_modules/@esbuild/aix-ppc64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/aix-ppc64/-/aix-ppc64-0.25.9.tgz", + "integrity": "sha512-OaGtL73Jck6pBKjNIe24BnFE6agGl+6KxDtTfHhy1HmhthfKouEcOhqpSL64K4/0WCtbKFLOdzD/44cJ4k9opA==", + "cpu": [ + "ppc64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "aix" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/android-arm": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/android-arm/-/android-arm-0.25.9.tgz", + "integrity": "sha512-5WNI1DaMtxQ7t7B6xa572XMXpHAaI/9Hnhk8lcxF4zVN4xstUgTlvuGDorBguKEnZO70qwEcLpfifMLoxiPqHQ==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/android-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/android-arm64/-/android-arm64-0.25.9.tgz", + "integrity": "sha512-IDrddSmpSv51ftWslJMvl3Q2ZT98fUSL2/rlUXuVqRXHCs5EUF1/f+jbjF5+NG9UffUDMCiTyh8iec7u8RlTLg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/android-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/android-x64/-/android-x64-0.25.9.tgz", + "integrity": "sha512-I853iMZ1hWZdNllhVZKm34f4wErd4lMyeV7BLzEExGEIZYsOzqDWDf+y082izYUE8gtJnYHdeDpN/6tUdwvfiw==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/darwin-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/darwin-arm64/-/darwin-arm64-0.25.9.tgz", + "integrity": "sha512-XIpIDMAjOELi/9PB30vEbVMs3GV1v2zkkPnuyRRURbhqjyzIINwj+nbQATh4H9GxUgH1kFsEyQMxwiLFKUS6Rg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/darwin-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/darwin-x64/-/darwin-x64-0.25.9.tgz", + "integrity": "sha512-jhHfBzjYTA1IQu8VyrjCX4ApJDnH+ez+IYVEoJHeqJm9VhG9Dh2BYaJritkYK3vMaXrf7Ogr/0MQ8/MeIefsPQ==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/freebsd-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/freebsd-arm64/-/freebsd-arm64-0.25.9.tgz", + "integrity": "sha512-z93DmbnY6fX9+KdD4Ue/H6sYs+bhFQJNCPZsi4XWJoYblUqT06MQUdBCpcSfuiN72AbqeBFu5LVQTjfXDE2A6Q==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "freebsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/freebsd-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/freebsd-x64/-/freebsd-x64-0.25.9.tgz", + "integrity": "sha512-mrKX6H/vOyo5v71YfXWJxLVxgy1kyt1MQaD8wZJgJfG4gq4DpQGpgTB74e5yBeQdyMTbgxp0YtNj7NuHN0PoZg==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "freebsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-arm": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-arm/-/linux-arm-0.25.9.tgz", + "integrity": "sha512-HBU2Xv78SMgaydBmdor38lg8YDnFKSARg1Q6AT0/y2ezUAKiZvc211RDFHlEZRFNRVhcMamiToo7bDx3VEOYQw==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-arm64/-/linux-arm64-0.25.9.tgz", + "integrity": "sha512-BlB7bIcLT3G26urh5Dmse7fiLmLXnRlopw4s8DalgZ8ef79Jj4aUcYbk90g8iCa2467HX8SAIidbL7gsqXHdRw==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-ia32": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-ia32/-/linux-ia32-0.25.9.tgz", + "integrity": "sha512-e7S3MOJPZGp2QW6AK6+Ly81rC7oOSerQ+P8L0ta4FhVi+/j/v2yZzx5CqqDaWjtPFfYz21Vi1S0auHrap3Ma3A==", + "cpu": [ + "ia32" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-loong64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-loong64/-/linux-loong64-0.25.9.tgz", + "integrity": "sha512-Sbe10Bnn0oUAB2AalYztvGcK+o6YFFA/9829PhOCUS9vkJElXGdphz0A3DbMdP8gmKkqPmPcMJmJOrI3VYB1JQ==", + "cpu": [ + "loong64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-mips64el": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-mips64el/-/linux-mips64el-0.25.9.tgz", + "integrity": "sha512-YcM5br0mVyZw2jcQeLIkhWtKPeVfAerES5PvOzaDxVtIyZ2NUBZKNLjC5z3/fUlDgT6w89VsxP2qzNipOaaDyA==", + "cpu": [ + "mips64el" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-ppc64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-ppc64/-/linux-ppc64-0.25.9.tgz", + "integrity": "sha512-++0HQvasdo20JytyDpFvQtNrEsAgNG2CY1CLMwGXfFTKGBGQT3bOeLSYE2l1fYdvML5KUuwn9Z8L1EWe2tzs1w==", + "cpu": [ + "ppc64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-riscv64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-riscv64/-/linux-riscv64-0.25.9.tgz", + "integrity": "sha512-uNIBa279Y3fkjV+2cUjx36xkx7eSjb8IvnL01eXUKXez/CBHNRw5ekCGMPM0BcmqBxBcdgUWuUXmVWwm4CH9kg==", + "cpu": [ + "riscv64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-s390x": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-s390x/-/linux-s390x-0.25.9.tgz", + "integrity": "sha512-Mfiphvp3MjC/lctb+7D287Xw1DGzqJPb/J2aHHcHxflUo+8tmN/6d4k6I2yFR7BVo5/g7x2Monq4+Yew0EHRIA==", + "cpu": [ + "s390x" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/linux-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/linux-x64/-/linux-x64-0.25.9.tgz", + "integrity": "sha512-iSwByxzRe48YVkmpbgoxVzn76BXjlYFXC7NvLYq+b+kDjyyk30J0JY47DIn8z1MO3K0oSl9fZoRmZPQI4Hklzg==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/netbsd-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/netbsd-arm64/-/netbsd-arm64-0.25.9.tgz", + "integrity": "sha512-9jNJl6FqaUG+COdQMjSCGW4QiMHH88xWbvZ+kRVblZsWrkXlABuGdFJ1E9L7HK+T0Yqd4akKNa/lO0+jDxQD4Q==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "netbsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/netbsd-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/netbsd-x64/-/netbsd-x64-0.25.9.tgz", + "integrity": "sha512-RLLdkflmqRG8KanPGOU7Rpg829ZHu8nFy5Pqdi9U01VYtG9Y0zOG6Vr2z4/S+/3zIyOxiK6cCeYNWOFR9QP87g==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "netbsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/openbsd-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/openbsd-arm64/-/openbsd-arm64-0.25.9.tgz", + "integrity": "sha512-YaFBlPGeDasft5IIM+CQAhJAqS3St3nJzDEgsgFixcfZeyGPCd6eJBWzke5piZuZ7CtL656eOSYKk4Ls2C0FRQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "openbsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/openbsd-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/openbsd-x64/-/openbsd-x64-0.25.9.tgz", + "integrity": "sha512-1MkgTCuvMGWuqVtAvkpkXFmtL8XhWy+j4jaSO2wxfJtilVCi0ZE37b8uOdMItIHz4I6z1bWWtEX4CJwcKYLcuA==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "openbsd" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/openharmony-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/openharmony-arm64/-/openharmony-arm64-0.25.9.tgz", + "integrity": "sha512-4Xd0xNiMVXKh6Fa7HEJQbrpP3m3DDn43jKxMjxLLRjWnRsfxjORYJlXPO4JNcXtOyfajXorRKY9NkOpTHptErg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "openharmony" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/sunos-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/sunos-x64/-/sunos-x64-0.25.9.tgz", + "integrity": "sha512-WjH4s6hzo00nNezhp3wFIAfmGZ8U7KtrJNlFMRKxiI9mxEK1scOMAaa9i4crUtu+tBr+0IN6JCuAcSBJZfnphw==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "sunos" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/win32-arm64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/win32-arm64/-/win32-arm64-0.25.9.tgz", + "integrity": "sha512-mGFrVJHmZiRqmP8xFOc6b84/7xa5y5YvR1x8djzXpJBSv/UsNK6aqec+6JDjConTgvvQefdGhFDAs2DLAds6gQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/win32-ia32": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/win32-ia32/-/win32-ia32-0.25.9.tgz", + "integrity": "sha512-b33gLVU2k11nVx1OhX3C8QQP6UHQK4ZtN56oFWvVXvz2VkDoe6fbG8TOgHFxEvqeqohmRnIHe5A1+HADk4OQww==", + "cpu": [ + "ia32" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@esbuild/win32-x64": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/@esbuild/win32-x64/-/win32-x64-0.25.9.tgz", + "integrity": "sha512-PPOl1mi6lpLNQxnGoyAfschAodRFYXJ+9fs6WHXz7CSWKbOqiMZsubC+BQsVKuul+3vKLuwTHsS2c2y9EoKwxQ==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=18" + } + }, + "node_modules/@eslint-community/eslint-utils": { + "version": "4.7.0", + "resolved": "https://registry.npmjs.org/@eslint-community/eslint-utils/-/eslint-utils-4.7.0.tgz", + "integrity": "sha512-dyybb3AcajC7uha6CvhdVRJqaKyn7w2YKqKyAN37NKYgZT36w+iRb0Dymmc5qEJ549c/S31cMMSFd75bteCpCw==", + "dev": true, + "license": "MIT", + "dependencies": { + "eslint-visitor-keys": "^3.4.3" + }, + "engines": { + "node": "^12.22.0 || ^14.17.0 || >=16.0.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + }, + "peerDependencies": { + "eslint": "^6.0.0 || ^7.0.0 || >=8.0.0" + } + }, + "node_modules/@eslint-community/eslint-utils/node_modules/eslint-visitor-keys": { + "version": "3.4.3", + "resolved": "https://registry.npmjs.org/eslint-visitor-keys/-/eslint-visitor-keys-3.4.3.tgz", + "integrity": "sha512-wpc+LXeiyiisxPlEkUzU6svyS1frIO3Mgxj1fdy7Pm8Ygzguax2N3Fa/D/ag1WqbOprdI+uY6wMUl8/a2G+iag==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": "^12.22.0 || ^14.17.0 || >=16.0.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + } + }, + "node_modules/@eslint-community/regexpp": { + "version": "4.12.1", + "resolved": "https://registry.npmjs.org/@eslint-community/regexpp/-/regexpp-4.12.1.tgz", + "integrity": "sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^12.0.0 || ^14.0.0 || >=16.0.0" + } + }, + "node_modules/@eslint/config-array": { + "version": "0.21.0", + "resolved": "https://registry.npmjs.org/@eslint/config-array/-/config-array-0.21.0.tgz", + "integrity": "sha512-ENIdc4iLu0d93HeYirvKmrzshzofPw6VkZRKQGe9Nv46ZnWUzcF1xV01dcvEg/1wXUR61OmmlSfyeyO7EvjLxQ==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@eslint/object-schema": "^2.1.6", + "debug": "^4.3.1", + "minimatch": "^3.1.2" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + } + }, + "node_modules/@eslint/config-helpers": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/@eslint/config-helpers/-/config-helpers-0.3.1.tgz", + "integrity": "sha512-xR93k9WhrDYpXHORXpxVL5oHj3Era7wo6k/Wd8/IsQNnZUTzkGS29lyn3nAT05v6ltUuTFVCCYDEGfy2Or/sPA==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + } + }, + "node_modules/@eslint/core": { + "version": "0.15.2", + "resolved": "https://registry.npmjs.org/@eslint/core/-/core-0.15.2.tgz", + "integrity": "sha512-78Md3/Rrxh83gCxoUc0EiciuOHsIITzLy53m3d9UyiW8y9Dj2D29FeETqyKA+BRK76tnTp6RXWb3pCay8Oyomg==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@types/json-schema": "^7.0.15" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + } + }, + "node_modules/@eslint/eslintrc": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/@eslint/eslintrc/-/eslintrc-3.3.1.tgz", + "integrity": "sha512-gtF186CXhIl1p4pJNGZw8Yc6RlshoePRvE0X91oPGb3vZ8pM3qOS9W9NGPat9LziaBV7XrJWGylNQXkGcnM3IQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "ajv": "^6.12.4", + "debug": "^4.3.2", + "espree": "^10.0.1", + "globals": "^14.0.0", + "ignore": "^5.2.0", + "import-fresh": "^3.2.1", + "js-yaml": "^4.1.0", + "minimatch": "^3.1.2", + "strip-json-comments": "^3.1.1" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + } + }, + "node_modules/@eslint/eslintrc/node_modules/globals": { + "version": "14.0.0", + "resolved": "https://registry.npmjs.org/globals/-/globals-14.0.0.tgz", + "integrity": "sha512-oahGvuMGQlPw/ivIYBjVSrWAfWLBeku5tpPE2fOPLi+WHffIWbuh2tCjhyQhTBPMf5E9jDEH4FOmTYgYwbKwtQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=18" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/@eslint/js": { + "version": "9.34.0", + "resolved": "https://registry.npmjs.org/@eslint/js/-/js-9.34.0.tgz", + "integrity": "sha512-EoyvqQnBNsV1CWaEJ559rxXL4c8V92gxirbawSmVUOWXlsRxxQXl6LmCpdUblgxgSkDIqKnhzba2SjRTI/A5Rw==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://eslint.org/donate" + } + }, + "node_modules/@eslint/object-schema": { + "version": "2.1.6", + "resolved": "https://registry.npmjs.org/@eslint/object-schema/-/object-schema-2.1.6.tgz", + "integrity": "sha512-RBMg5FRL0I0gs51M/guSAj5/e14VQ4tpZnQNWwuDT66P14I43ItmPfIZRhO9fUVIPOAQXU47atlywZ/czoqFPA==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + } + }, + "node_modules/@eslint/plugin-kit": { + "version": "0.3.5", + "resolved": "https://registry.npmjs.org/@eslint/plugin-kit/-/plugin-kit-0.3.5.tgz", + "integrity": "sha512-Z5kJ+wU3oA7MMIqVR9tyZRtjYPr4OC004Q4Rw7pgOKUOKkJfZ3O24nz3WYfGRpMDNmcOi3TwQOmgm7B7Tpii0w==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@eslint/core": "^0.15.2", + "levn": "^0.4.1" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + } + }, + "node_modules/@floating-ui/core": { + "version": "1.7.3", + "resolved": "https://registry.npmjs.org/@floating-ui/core/-/core-1.7.3.tgz", + "integrity": "sha512-sGnvb5dmrJaKEZ+LDIpguvdX3bDlEllmv4/ClQ9awcmCZrlx5jQyyMWFM5kBI+EyNOCDDiKk8il0zeuX3Zlg/w==", + "license": "MIT", + "dependencies": { + "@floating-ui/utils": "^0.2.10" + } + }, + "node_modules/@floating-ui/dom": { + "version": "1.7.4", + "resolved": "https://registry.npmjs.org/@floating-ui/dom/-/dom-1.7.4.tgz", + "integrity": "sha512-OOchDgh4F2CchOX94cRVqhvy7b3AFb+/rQXyswmzmGakRfkMgoWVjfnLWkRirfLEfuD4ysVW16eXzwt3jHIzKA==", + "license": "MIT", + "dependencies": { + "@floating-ui/core": "^1.7.3", + "@floating-ui/utils": "^0.2.10" + } + }, + "node_modules/@floating-ui/react-dom": { + "version": "2.1.6", + "resolved": "https://registry.npmjs.org/@floating-ui/react-dom/-/react-dom-2.1.6.tgz", + "integrity": "sha512-4JX6rEatQEvlmgU80wZyq9RT96HZJa88q8hp0pBd+LrczeDI4o6uA2M+uvxngVHo4Ihr8uibXxH6+70zhAFrVw==", + "license": "MIT", + "dependencies": { + "@floating-ui/dom": "^1.7.4" + }, + "peerDependencies": { + "react": ">=16.8.0", + "react-dom": ">=16.8.0" + } + }, + "node_modules/@floating-ui/utils": { + "version": "0.2.10", + "resolved": "https://registry.npmjs.org/@floating-ui/utils/-/utils-0.2.10.tgz", + "integrity": "sha512-aGTxbpbg8/b5JfU1HXSrbH3wXZuLPJcNEcZQFMxLs3oSzgtVu6nFPkbbGGUvBcUjKV2YyB9Wxxabo+HEH9tcRQ==", + "license": "MIT" + }, + "node_modules/@hookform/resolvers": { + "version": "3.10.0", + "resolved": "https://registry.npmjs.org/@hookform/resolvers/-/resolvers-3.10.0.tgz", + "integrity": "sha512-79Dv+3mDF7i+2ajj7SkypSKHhl1cbln1OGavqrsF7p6mbUv11xpqpacPsGDCTRvCSjEEIez2ef1NveSVL3b0Ag==", + "license": "MIT", + "peerDependencies": { + "react-hook-form": "^7.0.0" + } + }, + "node_modules/@humanfs/core": { + "version": "0.19.1", + "resolved": "https://registry.npmjs.org/@humanfs/core/-/core-0.19.1.tgz", + "integrity": "sha512-5DyQ4+1JEUzejeK1JGICcideyfUbGixgS9jNgex5nqkW+cY7WZhxBigmieN5Qnw9ZosSNVC9KQKyb+GUaGyKUA==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": ">=18.18.0" + } + }, + "node_modules/@humanfs/node": { + "version": "0.16.6", + "resolved": "https://registry.npmjs.org/@humanfs/node/-/node-0.16.6.tgz", + "integrity": "sha512-YuI2ZHQL78Q5HbhDiBA1X4LmYdXCKCMQIfw0pw7piHJwyREFebJUvrQN4cMssyES6x+vfUbx1CIpaQUKYdQZOw==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@humanfs/core": "^0.19.1", + "@humanwhocodes/retry": "^0.3.0" + }, + "engines": { + "node": ">=18.18.0" + } + }, + "node_modules/@humanfs/node/node_modules/@humanwhocodes/retry": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/@humanwhocodes/retry/-/retry-0.3.1.tgz", + "integrity": "sha512-JBxkERygn7Bv/GbN5Rv8Ul6LVknS+5Bp6RgDC/O8gEBU/yeH5Ui5C/OlWrTb6qct7LjjfT6Re2NxB0ln0yYybA==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": ">=18.18" + }, + "funding": { + "type": "github", + "url": "https://github.com/sponsors/nzakas" + } + }, + "node_modules/@humanwhocodes/module-importer": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/@humanwhocodes/module-importer/-/module-importer-1.0.1.tgz", + "integrity": "sha512-bxveV4V8v5Yb4ncFTT3rPSgZBOpCkjfK0y4oVVVJwIuDVBRMDXrPyXRL988i5ap9m9bnyEEjWfm5WkBmtffLfA==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": ">=12.22" + }, + "funding": { + "type": "github", + "url": "https://github.com/sponsors/nzakas" + } + }, + "node_modules/@humanwhocodes/retry": { + "version": "0.4.3", + "resolved": "https://registry.npmjs.org/@humanwhocodes/retry/-/retry-0.4.3.tgz", + "integrity": "sha512-bV0Tgo9K4hfPCek+aMAn81RppFKv2ySDQeMoSZuvTASywNTnVJCArCZE2FWqpvIatKu7VMRLWlR1EazvVhDyhQ==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": ">=18.18" + }, + "funding": { + "type": "github", + "url": "https://github.com/sponsors/nzakas" + } + }, + "node_modules/@isaacs/cliui": { + "version": "8.0.2", + "resolved": "https://registry.npmjs.org/@isaacs/cliui/-/cliui-8.0.2.tgz", + "integrity": "sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA==", + "license": "ISC", + "dependencies": { + "string-width": "^5.1.2", + "string-width-cjs": "npm:string-width@^4.2.0", + "strip-ansi": "^7.0.1", + "strip-ansi-cjs": "npm:strip-ansi@^6.0.1", + "wrap-ansi": "^8.1.0", + "wrap-ansi-cjs": "npm:wrap-ansi@^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/@jridgewell/gen-mapping": { + "version": "0.3.13", + "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.13.tgz", + "integrity": "sha512-2kkt/7niJ6MgEPxF0bYdQ6etZaA+fQvDcLKckhy1yIQOzaoKjBBjSj63/aLVjYE3qhRt5dvM+uUyfCg6UKCBbA==", + "license": "MIT", + "dependencies": { + "@jridgewell/sourcemap-codec": "^1.5.0", + "@jridgewell/trace-mapping": "^0.3.24" + } + }, + "node_modules/@jridgewell/resolve-uri": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz", + "integrity": "sha512-bRISgCIjP20/tbWSPWMEi54QVPRZExkuD9lJL+UIxUKtwVJA8wW1Trb1jMs1RFXo1CBTNZ/5hpC9QvmKWdopKw==", + "license": "MIT", + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/sourcemap-codec": { + "version": "1.5.5", + "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.5.tgz", + "integrity": "sha512-cYQ9310grqxueWbl+WuIUIaiUaDcj7WOq5fVhEljNVgRfOUhY9fy2zTvfoqWsnebh8Sl70VScFbICvJnLKB0Og==", + "license": "MIT" + }, + "node_modules/@jridgewell/trace-mapping": { + "version": "0.3.30", + "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.30.tgz", + "integrity": "sha512-GQ7Nw5G2lTu/BtHTKfXhKHok2WGetd4XYcVKGx00SjAk8GMwgJM3zr6zORiPGuOE+/vkc90KtTosSSvaCjKb2Q==", + "license": "MIT", + "dependencies": { + "@jridgewell/resolve-uri": "^3.1.0", + "@jridgewell/sourcemap-codec": "^1.4.14" + } + }, + "node_modules/@mediapipe/tasks-vision": { + "version": "0.10.17", + "resolved": "https://registry.npmjs.org/@mediapipe/tasks-vision/-/tasks-vision-0.10.17.tgz", + "integrity": "sha512-CZWV/q6TTe8ta61cZXjfnnHsfWIdFhms03M9T7Cnd5y2mdpylJM0rF1qRq+wsQVRMLz1OYPVEBU9ph2Bx8cxrg==", + "license": "Apache-2.0" + }, + "node_modules/@monogrid/gainmap-js": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/@monogrid/gainmap-js/-/gainmap-js-3.1.0.tgz", + "integrity": "sha512-Obb0/gEd/HReTlg8ttaYk+0m62gQJmCblMOjHSMHRrBP2zdfKMHLCRbh/6ex9fSUJMKdjjIEiohwkbGD3wj2Nw==", + "license": "MIT", + "dependencies": { + "promise-worker-transferable": "^1.0.4" + }, + "peerDependencies": { + "three": ">= 0.159.0" + } + }, + "node_modules/@nodelib/fs.scandir": { + "version": "2.1.5", + "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", + "integrity": "sha512-vq24Bq3ym5HEQm2NKCr3yXDwjc7vTsEThRDnkp2DK9p1uqLR+DHurm/NOTo0KG7HYHU7eppKZj3MyqYuMBf62g==", + "license": "MIT", + "dependencies": { + "@nodelib/fs.stat": "2.0.5", + "run-parallel": "^1.1.9" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/@nodelib/fs.stat": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/@nodelib/fs.stat/-/fs.stat-2.0.5.tgz", + "integrity": "sha512-RkhPPp2zrqDAQA/2jNhnztcPAlv64XdhIp7a7454A5ovI7Bukxgt7MX7udwAu3zg1DcpPU0rz3VV1SeaqvY4+A==", + "license": "MIT", + "engines": { + "node": ">= 8" + } + }, + "node_modules/@nodelib/fs.walk": { + "version": "1.2.8", + "resolved": "https://registry.npmjs.org/@nodelib/fs.walk/-/fs.walk-1.2.8.tgz", + "integrity": "sha512-oGB+UxlgWcgQkgwo8GcEGwemoTFt3FIO9ababBmaGwXIoBKZ+GTy0pP185beGg7Llih/NSHSV2XAs1lnznocSg==", + "license": "MIT", + "dependencies": { + "@nodelib/fs.scandir": "2.1.5", + "fastq": "^1.6.0" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/@pkgjs/parseargs": { + "version": "0.11.0", + "resolved": "https://registry.npmjs.org/@pkgjs/parseargs/-/parseargs-0.11.0.tgz", + "integrity": "sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg==", + "license": "MIT", + "optional": true, + "engines": { + "node": ">=14" + } + }, + "node_modules/@radix-ui/number": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/number/-/number-1.1.1.tgz", + "integrity": "sha512-MkKCwxlXTgz6CFoJx3pCwn07GKp36+aZyu/u2Ln2VrA5DcdyCZkASEDBTd8x5whTQQL5CiYf4prXKLcgQdv29g==", + "license": "MIT" + }, + "node_modules/@radix-ui/primitive": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/@radix-ui/primitive/-/primitive-1.1.3.tgz", + "integrity": "sha512-JTF99U/6XIjCBo0wqkU5sK10glYe27MRRsfwoiq5zzOEZLHU3A3KCMa5X/azekYRCJ0HlwI0crAXS/5dEHTzDg==", + "license": "MIT" + }, + "node_modules/@radix-ui/react-accordion": { + "version": "1.2.12", + "resolved": "https://registry.npmjs.org/@radix-ui/react-accordion/-/react-accordion-1.2.12.tgz", + "integrity": "sha512-T4nygeh9YE9dLRPhAHSeOZi7HBXo+0kYIPJXayZfvWOWA0+n3dESrZbjfDPUABkUNym6Hd+f2IR113To8D2GPA==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collapsible": "1.1.12", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-alert-dialog": { + "version": "1.1.15", + "resolved": "https://registry.npmjs.org/@radix-ui/react-alert-dialog/-/react-alert-dialog-1.1.15.tgz", + "integrity": "sha512-oTVLkEw5GpdRe29BqJ0LSDFWI3qu0vR1M0mUkOQWDIUnY/QIkLpgDMWuKxP94c2NAC2LGcgVhG1ImF3jkZ5wXw==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dialog": "1.1.15", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-arrow": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-arrow/-/react-arrow-1.1.7.tgz", + "integrity": "sha512-F+M1tLhO+mlQaOWspE8Wstg+z6PwxwRd8oQ8IXceWz92kfAmalTRf0EjrouQeo7QssEPfCn05B4Ihs1K9WQ/7w==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-aspect-ratio": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-aspect-ratio/-/react-aspect-ratio-1.1.7.tgz", + "integrity": "sha512-Yq6lvO9HQyPwev1onK1daHCHqXVLzPhSVjmsNjCa2Zcxy2f7uJD2itDtxknv6FzAKCwD1qQkeVDmX/cev13n/g==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-avatar": { + "version": "1.1.10", + "resolved": "https://registry.npmjs.org/@radix-ui/react-avatar/-/react-avatar-1.1.10.tgz", + "integrity": "sha512-V8piFfWapM5OmNCXTzVQY+E1rDa53zY+MQ4Y7356v4fFz6vqCyUtIz2rUD44ZEdwg78/jKmMJHj07+C/Z/rcog==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-is-hydrated": "0.1.0", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-checkbox": { + "version": "1.3.3", + "resolved": "https://registry.npmjs.org/@radix-ui/react-checkbox/-/react-checkbox-1.3.3.tgz", + "integrity": "sha512-wBbpv+NQftHDdG86Qc0pIyXk5IR3tM8Vd0nWLKDcX8nNn4nXFOFwsKuqw2okA/1D/mpaAkmuyndrPJTYDNZtFw==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-use-size": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-collapsible": { + "version": "1.1.12", + "resolved": "https://registry.npmjs.org/@radix-ui/react-collapsible/-/react-collapsible-1.1.12.tgz", + "integrity": "sha512-Uu+mSh4agx2ib1uIGPP4/CKNULyajb3p92LsVXmH2EHVMTfZWpll88XJ0j4W0z3f8NK1eYl1+Mf/szHPmcHzyA==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-collection": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-collection/-/react-collection-1.1.7.tgz", + "integrity": "sha512-Fh9rGN0MoI4ZFUNyfFVNU4y9LUz93u9/0K+yLgA2bwRojxM8JU1DyvvMBabnZPBgMWREAJvU2jjVzq+LrFUglw==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-compose-refs": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/@radix-ui/react-compose-refs/-/react-compose-refs-1.1.2.tgz", + "integrity": "sha512-z4eqJvfiNnFMHIIvXP3CY57y2WJs5g2v3X0zm9mEJkrkNv4rDxu+sg9Jh8EkXyeqBkB7SOcboo9dMVqhyrACIg==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-context": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/@radix-ui/react-context/-/react-context-1.1.2.tgz", + "integrity": "sha512-jCi/QKUM2r1Ju5a3J64TH2A5SpKAgh0LpknyqdQ4m6DCV0xJ2HG1xARRwNGPQfi1SLdLWZ1OJz6F4OMBBNiGJA==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-context-menu": { + "version": "2.2.16", + "resolved": "https://registry.npmjs.org/@radix-ui/react-context-menu/-/react-context-menu-2.2.16.tgz", + "integrity": "sha512-O8morBEW+HsVG28gYDZPTrT9UUovQUlJue5YO836tiTJhuIWBm/zQHc7j388sHWtdH/xUZurK9olD2+pcqx5ww==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-menu": "2.1.16", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-dialog": { + "version": "1.1.15", + "resolved": "https://registry.npmjs.org/@radix-ui/react-dialog/-/react-dialog-1.1.15.tgz", + "integrity": "sha512-TCglVRtzlffRNxRMEyR36DGBLJpeusFcgMVD9PZEzAKnUs1lKCgX5u9BmC2Yg+LL9MgZDugFFs1Vl+Jp4t/PGw==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-focus-guards": "1.1.3", + "@radix-ui/react-focus-scope": "1.1.7", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "aria-hidden": "^1.2.4", + "react-remove-scroll": "^2.6.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-direction": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-direction/-/react-direction-1.1.1.tgz", + "integrity": "sha512-1UEWRX6jnOA2y4H5WczZ44gOOjTEmlqv1uNW4GAJEO5+bauCBhv8snY65Iw5/VOS/ghKN9gr2KjnLKxrsvoMVw==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-dismissable-layer": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/@radix-ui/react-dismissable-layer/-/react-dismissable-layer-1.1.11.tgz", + "integrity": "sha512-Nqcp+t5cTB8BinFkZgXiMJniQH0PsUt2k51FUhbdfeKvc4ACcG2uQniY/8+h1Yv6Kza4Q7lD7PQV0z0oicE0Mg==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-escape-keydown": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-dropdown-menu": { + "version": "2.1.16", + "resolved": "https://registry.npmjs.org/@radix-ui/react-dropdown-menu/-/react-dropdown-menu-2.1.16.tgz", + "integrity": "sha512-1PLGQEynI/3OX/ftV54COn+3Sud/Mn8vALg2rWnBLnRaGtJDduNW/22XjlGgPdpcIbiQxjKtb7BkcjP00nqfJw==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-menu": "2.1.16", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-focus-guards": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/@radix-ui/react-focus-guards/-/react-focus-guards-1.1.3.tgz", + "integrity": "sha512-0rFg/Rj2Q62NCm62jZw0QX7a3sz6QCQU0LpZdNrJX8byRGaGVTqbrW9jAoIAHyMQqsNpeZ81YgSizOt5WXq0Pw==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-focus-scope": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-focus-scope/-/react-focus-scope-1.1.7.tgz", + "integrity": "sha512-t2ODlkXBQyn7jkl6TNaw/MtVEVvIGelJDCG41Okq/KwUsJBwQ4XVZsHAVUkK4mBv3ewiAS3PGuUWuY2BoK4ZUw==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-hover-card": { + "version": "1.1.15", + "resolved": "https://registry.npmjs.org/@radix-ui/react-hover-card/-/react-hover-card-1.1.15.tgz", + "integrity": "sha512-qgTkjNT1CfKMoP0rcasmlH2r1DAiYicWsDsufxl940sT2wHNEWWv6FMWIQXWhVdmC1d/HYfbhQx60KYyAtKxjg==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-popper": "1.2.8", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-id": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-id/-/react-id-1.1.1.tgz", + "integrity": "sha512-kGkGegYIdQsOb4XjsfM97rXsiHaBwco+hFI66oO4s9LU+PLAC5oJ7khdOVFxkhsmlbpUqDAvXw11CluXP+jkHg==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-label": { + "version": "2.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-label/-/react-label-2.1.7.tgz", + "integrity": "sha512-YT1GqPSL8kJn20djelMX7/cTRp/Y9w5IZHvfxQTVHrOqa2yMl7i/UfMqKRU5V7mEyKTrUVgJXhNQPVCG8PBLoQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-menu": { + "version": "2.1.16", + "resolved": "https://registry.npmjs.org/@radix-ui/react-menu/-/react-menu-2.1.16.tgz", + "integrity": "sha512-72F2T+PLlphrqLcAotYPp0uJMr5SjP5SL01wfEspJbru5Zs5vQaSHb4VB3ZMJPimgHHCHG7gMOeOB9H3Hdmtxg==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-focus-guards": "1.1.3", + "@radix-ui/react-focus-scope": "1.1.7", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-popper": "1.2.8", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-roving-focus": "1.1.11", + "@radix-ui/react-slot": "1.2.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "aria-hidden": "^1.2.4", + "react-remove-scroll": "^2.6.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-menubar": { + "version": "1.1.16", + "resolved": "https://registry.npmjs.org/@radix-ui/react-menubar/-/react-menubar-1.1.16.tgz", + "integrity": "sha512-EB1FktTz5xRRi2Er974AUQZWg2yVBb1yjip38/lgwtCVRd3a+maUoGHN/xs9Yv8SY8QwbSEb+YrxGadVWbEutA==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-menu": "2.1.16", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-roving-focus": "1.1.11", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-navigation-menu": { + "version": "1.2.14", + "resolved": "https://registry.npmjs.org/@radix-ui/react-navigation-menu/-/react-navigation-menu-1.2.14.tgz", + "integrity": "sha512-YB9mTFQvCOAQMHU+C/jVl96WmuWeltyUEpRJJky51huhds5W2FQr1J8D/16sQlf0ozxkPK8uF3niQMdUwZPv5w==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-layout-effect": "1.1.1", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-visually-hidden": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-popover": { + "version": "1.1.15", + "resolved": "https://registry.npmjs.org/@radix-ui/react-popover/-/react-popover-1.1.15.tgz", + "integrity": "sha512-kr0X2+6Yy/vJzLYJUPCZEc8SfQcf+1COFoAqauJm74umQhta9M7lNJHP7QQS3vkvcGLQUbWpMzwrXYwrYztHKA==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-focus-guards": "1.1.3", + "@radix-ui/react-focus-scope": "1.1.7", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-popper": "1.2.8", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "aria-hidden": "^1.2.4", + "react-remove-scroll": "^2.6.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-popper": { + "version": "1.2.8", + "resolved": "https://registry.npmjs.org/@radix-ui/react-popper/-/react-popper-1.2.8.tgz", + "integrity": "sha512-0NJQ4LFFUuWkE7Oxf0htBKS6zLkkjBH+hM1uk7Ng705ReR8m/uelduy1DBo0PyBXPKVnBA6YBlU94MBGXrSBCw==", + "license": "MIT", + "dependencies": { + "@floating-ui/react-dom": "^2.0.0", + "@radix-ui/react-arrow": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-layout-effect": "1.1.1", + "@radix-ui/react-use-rect": "1.1.1", + "@radix-ui/react-use-size": "1.1.1", + "@radix-ui/rect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-portal": { + "version": "1.1.9", + "resolved": "https://registry.npmjs.org/@radix-ui/react-portal/-/react-portal-1.1.9.tgz", + "integrity": "sha512-bpIxvq03if6UNwXZ+HTK71JLh4APvnXntDc6XOX8UVq4XQOVl7lwok0AvIl+b8zgCw3fSaVTZMpAPPagXbKmHQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-presence": { + "version": "1.1.5", + "resolved": "https://registry.npmjs.org/@radix-ui/react-presence/-/react-presence-1.1.5.tgz", + "integrity": "sha512-/jfEwNDdQVBCNvjkGit4h6pMOzq8bHkopq458dPt2lMjx+eBQUohZNG9A7DtO/O5ukSbxuaNGXMjHicgwy6rQQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-primitive": { + "version": "2.1.3", + "resolved": "https://registry.npmjs.org/@radix-ui/react-primitive/-/react-primitive-2.1.3.tgz", + "integrity": "sha512-m9gTwRkhy2lvCPe6QJp4d3G1TYEUHn/FzJUtq9MjH46an1wJU+GdoGC5VLof8RX8Ft/DlpshApkhswDLZzHIcQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-slot": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-progress": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-progress/-/react-progress-1.1.7.tgz", + "integrity": "sha512-vPdg/tF6YC/ynuBIJlk1mm7Le0VgW6ub6J2UWnTQ7/D23KXcPI1qy+0vBkgKgd38RCMJavBXpB83HPNFMTb0Fg==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-radio-group": { + "version": "1.3.8", + "resolved": "https://registry.npmjs.org/@radix-ui/react-radio-group/-/react-radio-group-1.3.8.tgz", + "integrity": "sha512-VBKYIYImA5zsxACdisNQ3BjCBfmbGH3kQlnFVqlWU4tXwjy7cGX8ta80BcrO+WJXIn5iBylEH3K6ZTlee//lgQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-roving-focus": "1.1.11", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-use-size": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-roving-focus": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/@radix-ui/react-roving-focus/-/react-roving-focus-1.1.11.tgz", + "integrity": "sha512-7A6S9jSgm/S+7MdtNDSb+IU859vQqJ/QAtcYQcfFC6W8RS4IxIZDldLR0xqCFZ6DCyrQLjLPsxtTNch5jVA4lA==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-scroll-area": { + "version": "1.2.10", + "resolved": "https://registry.npmjs.org/@radix-ui/react-scroll-area/-/react-scroll-area-1.2.10.tgz", + "integrity": "sha512-tAXIa1g3sM5CGpVT0uIbUx/U3Gs5N8T52IICuCtObaos1S8fzsrPXG5WObkQN3S6NVl6wKgPhAIiBGbWnvc97A==", + "license": "MIT", + "dependencies": { + "@radix-ui/number": "1.1.1", + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-select": { + "version": "2.2.6", + "resolved": "https://registry.npmjs.org/@radix-ui/react-select/-/react-select-2.2.6.tgz", + "integrity": "sha512-I30RydO+bnn2PQztvo25tswPH+wFBjehVGtmagkU78yMdwTwVf12wnAOF+AeP8S2N8xD+5UPbGhkUfPyvT+mwQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/number": "1.1.1", + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-focus-guards": "1.1.3", + "@radix-ui/react-focus-scope": "1.1.7", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-popper": "1.2.8", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-layout-effect": "1.1.1", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-visually-hidden": "1.2.3", + "aria-hidden": "^1.2.4", + "react-remove-scroll": "^2.6.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-separator": { + "version": "1.1.7", + "resolved": "https://registry.npmjs.org/@radix-ui/react-separator/-/react-separator-1.1.7.tgz", + "integrity": "sha512-0HEb8R9E8A+jZjvmFCy/J4xhbXy3TV+9XSnGJ3KvTtjlIUy/YQ/p6UYZvi7YbeoeXdyU9+Y3scizK6hkY37baA==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-slider": { + "version": "1.3.6", + "resolved": "https://registry.npmjs.org/@radix-ui/react-slider/-/react-slider-1.3.6.tgz", + "integrity": "sha512-JPYb1GuM1bxfjMRlNLE+BcmBC8onfCi60Blk7OBqi2MLTFdS+8401U4uFjnwkOr49BLmXxLC6JHkvAsx5OJvHw==", + "license": "MIT", + "dependencies": { + "@radix-ui/number": "1.1.1", + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-layout-effect": "1.1.1", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-use-size": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-slot": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/@radix-ui/react-slot/-/react-slot-1.2.3.tgz", + "integrity": "sha512-aeNmHnBxbi2St0au6VBVC7JXFlhLlOnvIIlePNniyUNAClzmtAUEY8/pBiK3iHjufOlwA+c20/8jngo7xcrg8A==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-compose-refs": "1.1.2" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-switch": { + "version": "1.2.6", + "resolved": "https://registry.npmjs.org/@radix-ui/react-switch/-/react-switch-1.2.6.tgz", + "integrity": "sha512-bByzr1+ep1zk4VubeEVViV592vu2lHE2BZY5OnzehZqOOgogN80+mNtCqPkhn2gklJqOpxWgPoYTSnhBCqpOXQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-previous": "1.1.1", + "@radix-ui/react-use-size": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-tabs": { + "version": "1.1.13", + "resolved": "https://registry.npmjs.org/@radix-ui/react-tabs/-/react-tabs-1.1.13.tgz", + "integrity": "sha512-7xdcatg7/U+7+Udyoj2zodtI9H/IIopqo+YOIcZOq1nJwXWBZ9p8xiu5llXlekDbZkca79a/fozEYQXIA4sW6A==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-roving-focus": "1.1.11", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-toast": { + "version": "1.2.15", + "resolved": "https://registry.npmjs.org/@radix-ui/react-toast/-/react-toast-1.2.15.tgz", + "integrity": "sha512-3OSz3TacUWy4WtOXV38DggwxoqJK4+eDkNMl5Z/MJZaoUPaP4/9lf81xXMe1I2ReTAptverZUpbPY4wWwWyL5g==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-collection": "1.1.7", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-callback-ref": "1.1.1", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-use-layout-effect": "1.1.1", + "@radix-ui/react-visually-hidden": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-toggle": { + "version": "1.1.10", + "resolved": "https://registry.npmjs.org/@radix-ui/react-toggle/-/react-toggle-1.1.10.tgz", + "integrity": "sha512-lS1odchhFTeZv3xwHH31YPObmJn8gOg7Lq12inrr0+BH/l3Tsq32VfjqH1oh80ARM3mlkfMic15n0kg4sD1poQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-toggle-group": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/@radix-ui/react-toggle-group/-/react-toggle-group-1.1.11.tgz", + "integrity": "sha512-5umnS0T8JQzQT6HbPyO7Hh9dgd82NmS36DQr+X/YJ9ctFNCiiQd6IJAYYZ33LUwm8M+taCz5t2ui29fHZc4Y6Q==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-direction": "1.1.1", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-roving-focus": "1.1.11", + "@radix-ui/react-toggle": "1.1.10", + "@radix-ui/react-use-controllable-state": "1.2.2" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-tooltip": { + "version": "1.2.8", + "resolved": "https://registry.npmjs.org/@radix-ui/react-tooltip/-/react-tooltip-1.2.8.tgz", + "integrity": "sha512-tY7sVt1yL9ozIxvmbtN5qtmH2krXcBCfjEiCgKGLqunJHvgvZG2Pcl2oQ3kbcZARb1BGEHdkLzcYGO8ynVlieg==", + "license": "MIT", + "dependencies": { + "@radix-ui/primitive": "1.1.3", + "@radix-ui/react-compose-refs": "1.1.2", + "@radix-ui/react-context": "1.1.2", + "@radix-ui/react-dismissable-layer": "1.1.11", + "@radix-ui/react-id": "1.1.1", + "@radix-ui/react-popper": "1.2.8", + "@radix-ui/react-portal": "1.1.9", + "@radix-ui/react-presence": "1.1.5", + "@radix-ui/react-primitive": "2.1.3", + "@radix-ui/react-slot": "1.2.3", + "@radix-ui/react-use-controllable-state": "1.2.2", + "@radix-ui/react-visually-hidden": "1.2.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-callback-ref": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-callback-ref/-/react-use-callback-ref-1.1.1.tgz", + "integrity": "sha512-FkBMwD+qbGQeMu1cOHnuGB6x4yzPjho8ap5WtbEJ26umhgqVXbhekKUQO+hZEL1vU92a3wHwdp0HAcqAUF5iDg==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-controllable-state": { + "version": "1.2.2", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-controllable-state/-/react-use-controllable-state-1.2.2.tgz", + "integrity": "sha512-BjasUjixPFdS+NKkypcyyN5Pmg83Olst0+c6vGov0diwTEo6mgdqVR6hxcEgFuh4QrAs7Rc+9KuGJ9TVCj0Zzg==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-use-effect-event": "0.0.2", + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-effect-event": { + "version": "0.0.2", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-effect-event/-/react-use-effect-event-0.0.2.tgz", + "integrity": "sha512-Qp8WbZOBe+blgpuUT+lw2xheLP8q0oatc9UpmiemEICxGvFLYmHm9QowVZGHtJlGbS6A6yJ3iViad/2cVjnOiA==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-escape-keydown": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-escape-keydown/-/react-use-escape-keydown-1.1.1.tgz", + "integrity": "sha512-Il0+boE7w/XebUHyBjroE+DbByORGR9KKmITzbR7MyQ4akpORYP/ZmbhAr0DG7RmmBqoOnZdy2QlvajJ2QA59g==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-use-callback-ref": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-is-hydrated": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-is-hydrated/-/react-use-is-hydrated-0.1.0.tgz", + "integrity": "sha512-U+UORVEq+cTnRIaostJv9AGdV3G6Y+zbVd+12e18jQ5A3c0xL03IhnHuiU4UV69wolOQp5GfR58NW/EgdQhwOA==", + "license": "MIT", + "dependencies": { + "use-sync-external-store": "^1.5.0" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-layout-effect": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-layout-effect/-/react-use-layout-effect-1.1.1.tgz", + "integrity": "sha512-RbJRS4UWQFkzHTTwVymMTUv8EqYhOp8dOOviLj2ugtTiXRaRQS7GLGxZTLL1jWhMeoSCf5zmcZkqTl9IiYfXcQ==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-previous": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-previous/-/react-use-previous-1.1.1.tgz", + "integrity": "sha512-2dHfToCj/pzca2Ck724OZ5L0EVrr3eHRNsG/b3xQJLA2hZpVCS99bLAX+hm1IHXDEnzU6by5z/5MIY794/a8NQ==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-rect": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-rect/-/react-use-rect-1.1.1.tgz", + "integrity": "sha512-QTYuDesS0VtuHNNvMh+CjlKJ4LJickCMUAqjlE3+j8w+RlRpwyX3apEQKGFzbZGdo7XNG1tXa+bQqIE7HIXT2w==", + "license": "MIT", + "dependencies": { + "@radix-ui/rect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-use-size": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/react-use-size/-/react-use-size-1.1.1.tgz", + "integrity": "sha512-ewrXRDTAqAXlkl6t/fkXWNAhFX9I+CkKlw6zjEwk86RSPKwZr3xpBRso655aqYafwtnbpHLj6toFzmd6xdVptQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-use-layout-effect": "1.1.1" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/@radix-ui/react-visually-hidden": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/@radix-ui/react-visually-hidden/-/react-visually-hidden-1.2.3.tgz", + "integrity": "sha512-pzJq12tEaaIhqjbzpCuv/OypJY/BPavOofm+dbab+MHLajy277+1lLm6JFcGgF5eskJ6mquGirhXY2GD/8u8Ug==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-primitive": "2.1.3" + }, + "peerDependencies": { + "@types/react": "*", + "@types/react-dom": "*", + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "@types/react-dom": { + "optional": true + } + } + }, + "node_modules/@radix-ui/rect": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@radix-ui/rect/-/rect-1.1.1.tgz", + "integrity": "sha512-HPwpGIzkl28mWyZqG52jiqDJ12waP11Pa1lGoiyUkIEuMLBP0oeK/C89esbXrxsky5we7dfd8U58nm0SgAWpVw==", + "license": "MIT" + }, + "node_modules/@react-spring/animated": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/animated/-/animated-9.7.5.tgz", + "integrity": "sha512-Tqrwz7pIlsSDITzxoLS3n/v/YCUHQdOIKtOJf4yL6kYVSDTSmVK1LI1Q3M/uu2Sx4X3pIWF3xLUhlsA6SPNTNg==", + "license": "MIT", + "dependencies": { + "@react-spring/shared": "~9.7.5", + "@react-spring/types": "~9.7.5" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17.0.0 || ^18.0.0" + } + }, + "node_modules/@react-spring/core": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/core/-/core-9.7.5.tgz", + "integrity": "sha512-rmEqcxRcu7dWh7MnCcMXLvrf6/SDlSokLaLTxiPlAYi11nN3B5oiCUAblO72o+9z/87j2uzxa2Inm8UbLjXA+w==", + "license": "MIT", + "dependencies": { + "@react-spring/animated": "~9.7.5", + "@react-spring/shared": "~9.7.5", + "@react-spring/types": "~9.7.5" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/react-spring/donate" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17.0.0 || ^18.0.0" + } + }, + "node_modules/@react-spring/rafz": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/rafz/-/rafz-9.7.5.tgz", + "integrity": "sha512-5ZenDQMC48wjUzPAm1EtwQ5Ot3bLIAwwqP2w2owG5KoNdNHpEJV263nGhCeKKmuA3vG2zLLOdu3or6kuDjA6Aw==", + "license": "MIT" + }, + "node_modules/@react-spring/shared": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/shared/-/shared-9.7.5.tgz", + "integrity": "sha512-wdtoJrhUeeyD/PP/zo+np2s1Z820Ohr/BbuVYv+3dVLW7WctoiN7std8rISoYoHpUXtbkpesSKuPIw/6U1w1Pw==", + "license": "MIT", + "dependencies": { + "@react-spring/rafz": "~9.7.5", + "@react-spring/types": "~9.7.5" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17.0.0 || ^18.0.0" + } + }, + "node_modules/@react-spring/three": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/three/-/three-9.7.5.tgz", + "integrity": "sha512-RxIsCoQfUqOS3POmhVHa1wdWS0wyHAUway73uRLp3GAL5U2iYVNdnzQsep6M2NZ994BlW8TcKuMtQHUqOsy6WA==", + "license": "MIT", + "dependencies": { + "@react-spring/animated": "~9.7.5", + "@react-spring/core": "~9.7.5", + "@react-spring/shared": "~9.7.5", + "@react-spring/types": "~9.7.5" + }, + "peerDependencies": { + "@react-three/fiber": ">=6.0", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0", + "three": ">=0.126" + } + }, + "node_modules/@react-spring/types": { + "version": "9.7.5", + "resolved": "https://registry.npmjs.org/@react-spring/types/-/types-9.7.5.tgz", + "integrity": "sha512-HVj7LrZ4ReHWBimBvu2SKND3cDVUPWKLqRTmWe/fNY6o1owGOX0cAHbdPDTMelgBlVbrTKrre6lFkhqGZErK/g==", + "license": "MIT" + }, + "node_modules/@react-three/drei": { + "version": "9.122.0", + "resolved": "https://registry.npmjs.org/@react-three/drei/-/drei-9.122.0.tgz", + "integrity": "sha512-SEO/F/rBCTjlLez7WAlpys+iGe9hty4rNgjZvgkQeXFSiwqD4Hbk/wNHMAbdd8vprO2Aj81mihv4dF5bC7D0CA==", + "license": "MIT", + "dependencies": { + "@babel/runtime": "^7.26.0", + "@mediapipe/tasks-vision": "0.10.17", + "@monogrid/gainmap-js": "^3.0.6", + "@react-spring/three": "~9.7.5", + "@use-gesture/react": "^10.3.1", + "camera-controls": "^2.9.0", + "cross-env": "^7.0.3", + "detect-gpu": "^5.0.56", + "glsl-noise": "^0.0.0", + "hls.js": "^1.5.17", + "maath": "^0.10.8", + "meshline": "^3.3.1", + "react-composer": "^5.0.3", + "stats-gl": "^2.2.8", + "stats.js": "^0.17.0", + "suspend-react": "^0.1.3", + "three-mesh-bvh": "^0.7.8", + "three-stdlib": "^2.35.6", + "troika-three-text": "^0.52.0", + "tunnel-rat": "^0.1.2", + "utility-types": "^3.11.0", + "zustand": "^5.0.1" + }, + "peerDependencies": { + "@react-three/fiber": "^8", + "react": "^18", + "react-dom": "^18", + "three": ">=0.137" + }, + "peerDependenciesMeta": { + "react-dom": { + "optional": true + } + } + }, + "node_modules/@react-three/fiber": { + "version": "8.18.0", + "resolved": "https://registry.npmjs.org/@react-three/fiber/-/fiber-8.18.0.tgz", + "integrity": "sha512-FYZZqD0UUHUswKz3LQl2Z7H24AhD14XGTsIRw3SJaXUxyfVMi+1yiZGmqTcPt/CkPpdU7rrxqcyQ1zJE5DjvIQ==", + "license": "MIT", + "dependencies": { + "@babel/runtime": "^7.17.8", + "@types/react-reconciler": "^0.26.7", + "@types/webxr": "*", + "base64-js": "^1.5.1", + "buffer": "^6.0.3", + "its-fine": "^1.0.6", + "react-reconciler": "^0.27.0", + "react-use-measure": "^2.1.7", + "scheduler": "^0.21.0", + "suspend-react": "^0.1.3", + "zustand": "^3.7.1" + }, + "peerDependencies": { + "expo": ">=43.0", + "expo-asset": ">=8.4", + "expo-file-system": ">=11.0", + "expo-gl": ">=11.0", + "react": ">=18 <19", + "react-dom": ">=18 <19", + "react-native": ">=0.64", + "three": ">=0.133" + }, + "peerDependenciesMeta": { + "expo": { + "optional": true + }, + "expo-asset": { + "optional": true + }, + "expo-file-system": { + "optional": true + }, + "expo-gl": { + "optional": true + }, + "react-dom": { + "optional": true + }, + "react-native": { + "optional": true + } + } + }, + "node_modules/@react-three/fiber/node_modules/zustand": { + "version": "3.7.2", + "resolved": "https://registry.npmjs.org/zustand/-/zustand-3.7.2.tgz", + "integrity": "sha512-PIJDIZKtokhof+9+60cpockVOq05sJzHCriyvaLBmEJixseQ1a5Kdov6fWZfWOu5SK9c+FhH1jU0tntLxRJYMA==", + "license": "MIT", + "engines": { + "node": ">=12.7.0" + }, + "peerDependencies": { + "react": ">=16.8" + }, + "peerDependenciesMeta": { + "react": { + "optional": true + } + } + }, + "node_modules/@react-three/postprocessing": { + "version": "2.19.1", + "resolved": "https://registry.npmjs.org/@react-three/postprocessing/-/postprocessing-2.19.1.tgz", + "integrity": "sha512-7P25LOSToH/I6b3UipNK17IIFlX4FDUmWcaomfwu82+CzhXTOz8Fcc1ZXEZ7vFA/5Fr/2peNlXgXZJvoa+aCdA==", + "license": "MIT", + "dependencies": { + "buffer": "^6.0.3", + "maath": "^0.6.0", + "n8ao": "^1.6.6", + "postprocessing": "^6.32.1", + "three-stdlib": "^2.23.4" + }, + "peerDependencies": { + "@react-three/fiber": "^8.0", + "react": "^18.0", + "three": ">= 0.138.0" + } + }, + "node_modules/@react-three/postprocessing/node_modules/maath": { + "version": "0.6.0", + "resolved": "https://registry.npmjs.org/maath/-/maath-0.6.0.tgz", + "integrity": "sha512-dSb2xQuP7vDnaYqfoKzlApeRcR2xtN8/f7WV/TMAkBC8552TwTLtOO0JTcSygkYMjNDPoo6V01jTw/aPi4JrMw==", + "license": "MIT", + "peerDependencies": { + "@types/three": ">=0.144.0", + "three": ">=0.144.0" + } + }, + "node_modules/@remix-run/router": { + "version": "1.23.0", + "resolved": "https://registry.npmjs.org/@remix-run/router/-/router-1.23.0.tgz", + "integrity": "sha512-O3rHJzAQKamUz1fvE0Qaw0xSFqsA/yafi2iqeE0pvdFtCO1viYx8QL6f3Ln/aCCTLxs68SLf0KPM9eSeM8yBnA==", + "license": "MIT", + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/@rolldown/pluginutils": { + "version": "1.0.0-beta.27", + "resolved": "https://registry.npmjs.org/@rolldown/pluginutils/-/pluginutils-1.0.0-beta.27.tgz", + "integrity": "sha512-+d0F4MKMCbeVUJwG96uQ4SgAznZNSq93I3V+9NHA4OpvqG8mRCpGdKmK8l/dl02h2CCDHwW2FqilnTyDcAnqjA==", + "dev": true, + "license": "MIT" + }, + "node_modules/@rollup/rollup-android-arm-eabi": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-android-arm-eabi/-/rollup-android-arm-eabi-4.50.0.tgz", + "integrity": "sha512-lVgpeQyy4fWN5QYebtW4buT/4kn4p4IJ+kDNB4uYNT5b8c8DLJDg6titg20NIg7E8RWwdWZORW6vUFfrLyG3KQ==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ] + }, + "node_modules/@rollup/rollup-android-arm64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-android-arm64/-/rollup-android-arm64-4.50.0.tgz", + "integrity": "sha512-2O73dR4Dc9bp+wSYhviP6sDziurB5/HCym7xILKifWdE9UsOe2FtNcM+I4xZjKrfLJnq5UR8k9riB87gauiQtw==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ] + }, + "node_modules/@rollup/rollup-darwin-arm64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-darwin-arm64/-/rollup-darwin-arm64-4.50.0.tgz", + "integrity": "sha512-vwSXQN8T4sKf1RHr1F0s98Pf8UPz7pS6P3LG9NSmuw0TVh7EmaE+5Ny7hJOZ0M2yuTctEsHHRTMi2wuHkdS6Hg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ] + }, + "node_modules/@rollup/rollup-darwin-x64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-darwin-x64/-/rollup-darwin-x64-4.50.0.tgz", + "integrity": "sha512-cQp/WG8HE7BCGyFVuzUg0FNmupxC+EPZEwWu2FCGGw5WDT1o2/YlENbm5e9SMvfDFR6FRhVCBePLqj0o8MN7Vw==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ] + }, + "node_modules/@rollup/rollup-freebsd-arm64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-freebsd-arm64/-/rollup-freebsd-arm64-4.50.0.tgz", + "integrity": "sha512-UR1uTJFU/p801DvvBbtDD7z9mQL8J80xB0bR7DqW7UGQHRm/OaKzp4is7sQSdbt2pjjSS72eAtRh43hNduTnnQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "freebsd" + ] + }, + "node_modules/@rollup/rollup-freebsd-x64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-freebsd-x64/-/rollup-freebsd-x64-4.50.0.tgz", + "integrity": "sha512-G/DKyS6PK0dD0+VEzH/6n/hWDNPDZSMBmqsElWnCRGrYOb2jC0VSupp7UAHHQ4+QILwkxSMaYIbQ72dktp8pKA==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "freebsd" + ] + }, + "node_modules/@rollup/rollup-linux-arm-gnueabihf": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-arm-gnueabihf/-/rollup-linux-arm-gnueabihf-4.50.0.tgz", + "integrity": "sha512-u72Mzc6jyJwKjJbZZcIYmd9bumJu7KNmHYdue43vT1rXPm2rITwmPWF0mmPzLm9/vJWxIRbao/jrQmxTO0Sm9w==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-arm-musleabihf": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-arm-musleabihf/-/rollup-linux-arm-musleabihf-4.50.0.tgz", + "integrity": "sha512-S4UefYdV0tnynDJV1mdkNawp0E5Qm2MtSs330IyHgaccOFrwqsvgigUD29uT+B/70PDY1eQ3t40+xf6wIvXJyg==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-arm64-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-arm64-gnu/-/rollup-linux-arm64-gnu-4.50.0.tgz", + "integrity": "sha512-1EhkSvUQXJsIhk4msxP5nNAUWoB4MFDHhtc4gAYvnqoHlaL9V3F37pNHabndawsfy/Tp7BPiy/aSa6XBYbaD1g==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-arm64-musl": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-arm64-musl/-/rollup-linux-arm64-musl-4.50.0.tgz", + "integrity": "sha512-EtBDIZuDtVg75xIPIK1l5vCXNNCIRM0OBPUG+tbApDuJAy9mKago6QxX+tfMzbCI6tXEhMuZuN1+CU8iDW+0UQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-loongarch64-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-loongarch64-gnu/-/rollup-linux-loongarch64-gnu-4.50.0.tgz", + "integrity": "sha512-BGYSwJdMP0hT5CCmljuSNx7+k+0upweM2M4YGfFBjnFSZMHOLYR0gEEj/dxyYJ6Zc6AiSeaBY8dWOa11GF/ppQ==", + "cpu": [ + "loong64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-ppc64-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-ppc64-gnu/-/rollup-linux-ppc64-gnu-4.50.0.tgz", + "integrity": "sha512-I1gSMzkVe1KzAxKAroCJL30hA4DqSi+wGc5gviD0y3IL/VkvcnAqwBf4RHXHyvH66YVHxpKO8ojrgc4SrWAnLg==", + "cpu": [ + "ppc64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-riscv64-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-riscv64-gnu/-/rollup-linux-riscv64-gnu-4.50.0.tgz", + "integrity": "sha512-bSbWlY3jZo7molh4tc5dKfeSxkqnf48UsLqYbUhnkdnfgZjgufLS/NTA8PcP/dnvct5CCdNkABJ56CbclMRYCA==", + "cpu": [ + "riscv64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-riscv64-musl": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-riscv64-musl/-/rollup-linux-riscv64-musl-4.50.0.tgz", + "integrity": "sha512-LSXSGumSURzEQLT2e4sFqFOv3LWZsEF8FK7AAv9zHZNDdMnUPYH3t8ZlaeYYZyTXnsob3htwTKeWtBIkPV27iQ==", + "cpu": [ + "riscv64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-s390x-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-s390x-gnu/-/rollup-linux-s390x-gnu-4.50.0.tgz", + "integrity": "sha512-CxRKyakfDrsLXiCyucVfVWVoaPA4oFSpPpDwlMcDFQvrv3XY6KEzMtMZrA+e/goC8xxp2WSOxHQubP8fPmmjOQ==", + "cpu": [ + "s390x" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-x64-gnu": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-x64-gnu/-/rollup-linux-x64-gnu-4.50.0.tgz", + "integrity": "sha512-8PrJJA7/VU8ToHVEPu14FzuSAqVKyo5gg/J8xUerMbyNkWkO9j2ExBho/68RnJsMGNJq4zH114iAttgm7BZVkA==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-linux-x64-musl": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-linux-x64-musl/-/rollup-linux-x64-musl-4.50.0.tgz", + "integrity": "sha512-SkE6YQp+CzpyOrbw7Oc4MgXFvTw2UIBElvAvLCo230pyxOLmYwRPwZ/L5lBe/VW/qT1ZgND9wJfOsdy0XptRvw==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ] + }, + "node_modules/@rollup/rollup-openharmony-arm64": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-openharmony-arm64/-/rollup-openharmony-arm64-4.50.0.tgz", + "integrity": "sha512-PZkNLPfvXeIOgJWA804zjSFH7fARBBCpCXxgkGDRjjAhRLOR8o0IGS01ykh5GYfod4c2yiiREuDM8iZ+pVsT+Q==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "openharmony" + ] + }, + "node_modules/@rollup/rollup-win32-arm64-msvc": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-win32-arm64-msvc/-/rollup-win32-arm64-msvc-4.50.0.tgz", + "integrity": "sha512-q7cIIdFvWQoaCbLDUyUc8YfR3Jh2xx3unO8Dn6/TTogKjfwrax9SyfmGGK6cQhKtjePI7jRfd7iRYcxYs93esg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ] + }, + "node_modules/@rollup/rollup-win32-ia32-msvc": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-win32-ia32-msvc/-/rollup-win32-ia32-msvc-4.50.0.tgz", + "integrity": "sha512-XzNOVg/YnDOmFdDKcxxK410PrcbcqZkBmz+0FicpW5jtjKQxcW1BZJEQOF0NJa6JO7CZhett8GEtRN/wYLYJuw==", + "cpu": [ + "ia32" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ] + }, + "node_modules/@rollup/rollup-win32-x64-msvc": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/@rollup/rollup-win32-x64-msvc/-/rollup-win32-x64-msvc-4.50.0.tgz", + "integrity": "sha512-xMmiWRR8sp72Zqwjgtf3QbZfF1wdh8X2ABu3EaozvZcyHJeU0r+XAnXdKgs4cCAp6ORoYoCygipYP1mjmbjrsg==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ] + }, + "node_modules/@splinetool/react-spline": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/@splinetool/react-spline/-/react-spline-4.1.0.tgz", + "integrity": "sha512-Y379gm17gw+1nxT/YXTCJnVIWuu7tsUH1tp/YxsYb0pZnc9Gljk7Om4Kpq7WPq0bZ4zidVCxf6xn6jgDcbHifQ==", + "dependencies": { + "blurhash": "2.0.5", + "lodash.debounce": "4.0.8", + "react-merge-refs": "2.1.1", + "thumbhash": "0.1.1" + }, + "peerDependencies": { + "@splinetool/runtime": "*", + "next": ">=14.2.0", + "react": "*", + "react-dom": "*" + }, + "peerDependenciesMeta": { + "next": { + "optional": true + } + } + }, + "node_modules/@splinetool/runtime": { + "version": "1.10.55", + "resolved": "https://registry.npmjs.org/@splinetool/runtime/-/runtime-1.10.55.tgz", + "integrity": "sha512-uBoeypTreLfU0hocqw2YCWgI3wmrRaxHd8Q3OoZb2eALSd0rjyUQno7nutWLRH1KAMW/tVPWDfwIsj+Wy42aeA==", + "dependencies": { + "on-change": "^4.0.0", + "semver-compare": "^1.0.0" + } + }, + "node_modules/@swc/core": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core/-/core-1.13.5.tgz", + "integrity": "sha512-WezcBo8a0Dg2rnR82zhwoR6aRNxeTGfK5QCD6TQ+kg3xx/zNT02s/0o+81h/3zhvFSB24NtqEr8FTw88O5W/JQ==", + "dev": true, + "hasInstallScript": true, + "license": "Apache-2.0", + "dependencies": { + "@swc/counter": "^0.1.3", + "@swc/types": "^0.1.24" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/swc" + }, + "optionalDependencies": { + "@swc/core-darwin-arm64": "1.13.5", + "@swc/core-darwin-x64": "1.13.5", + "@swc/core-linux-arm-gnueabihf": "1.13.5", + "@swc/core-linux-arm64-gnu": "1.13.5", + "@swc/core-linux-arm64-musl": "1.13.5", + "@swc/core-linux-x64-gnu": "1.13.5", + "@swc/core-linux-x64-musl": "1.13.5", + "@swc/core-win32-arm64-msvc": "1.13.5", + "@swc/core-win32-ia32-msvc": "1.13.5", + "@swc/core-win32-x64-msvc": "1.13.5" + }, + "peerDependencies": { + "@swc/helpers": ">=0.5.17" + }, + "peerDependenciesMeta": { + "@swc/helpers": { + "optional": true + } + } + }, + "node_modules/@swc/core-darwin-arm64": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-darwin-arm64/-/core-darwin-arm64-1.13.5.tgz", + "integrity": "sha512-lKNv7SujeXvKn16gvQqUQI5DdyY8v7xcoO3k06/FJbHJS90zEwZdQiMNRiqpYw/orU543tPaWgz7cIYWhbopiQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-darwin-x64": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-darwin-x64/-/core-darwin-x64-1.13.5.tgz", + "integrity": "sha512-ILd38Fg/w23vHb0yVjlWvQBoE37ZJTdlLHa8LRCFDdX4WKfnVBiblsCU9ar4QTMNdeTBEX9iUF4IrbNWhaF1Ng==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-linux-arm-gnueabihf": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-linux-arm-gnueabihf/-/core-linux-arm-gnueabihf-1.13.5.tgz", + "integrity": "sha512-Q6eS3Pt8GLkXxqz9TAw+AUk9HpVJt8Uzm54MvPsqp2yuGmY0/sNaPPNVqctCX9fu/Nu8eaWUen0si6iEiCsazQ==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "Apache-2.0", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-linux-arm64-gnu": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-gnu/-/core-linux-arm64-gnu-1.13.5.tgz", + "integrity": "sha512-aNDfeN+9af+y+M2MYfxCzCy/VDq7Z5YIbMqRI739o8Ganz6ST+27kjQFd8Y/57JN/hcnUEa9xqdS3XY7WaVtSw==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-linux-arm64-musl": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-musl/-/core-linux-arm64-musl-1.13.5.tgz", + "integrity": "sha512-9+ZxFN5GJag4CnYnq6apKTnnezpfJhCumyz0504/JbHLo+Ue+ZtJnf3RhyA9W9TINtLE0bC4hKpWi8ZKoETyOQ==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-linux-x64-gnu": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-linux-x64-gnu/-/core-linux-x64-gnu-1.13.5.tgz", + "integrity": "sha512-WD530qvHrki8Ywt/PloKUjaRKgstQqNGvmZl54g06kA+hqtSE2FTG9gngXr3UJxYu/cNAjJYiBifm7+w4nbHbA==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-linux-x64-musl": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-linux-x64-musl/-/core-linux-x64-musl-1.13.5.tgz", + "integrity": "sha512-Luj8y4OFYx4DHNQTWjdIuKTq2f5k6uSXICqx+FSabnXptaOBAbJHNbHT/06JZh6NRUouaf0mYXN0mcsqvkhd7Q==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-win32-arm64-msvc": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-win32-arm64-msvc/-/core-win32-arm64-msvc-1.13.5.tgz", + "integrity": "sha512-cZ6UpumhF9SDJvv4DA2fo9WIzlNFuKSkZpZmPG1c+4PFSEMy5DFOjBSllCvnqihCabzXzpn6ykCwBmHpy31vQw==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-win32-ia32-msvc": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-win32-ia32-msvc/-/core-win32-ia32-msvc-1.13.5.tgz", + "integrity": "sha512-C5Yi/xIikrFUzZcyGj9L3RpKljFvKiDMtyDzPKzlsDrKIw2EYY+bF88gB6oGY5RGmv4DAX8dbnpRAqgFD0FMEw==", + "cpu": [ + "ia32" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/core-win32-x64-msvc": { + "version": "1.13.5", + "resolved": "https://registry.npmjs.org/@swc/core-win32-x64-msvc/-/core-win32-x64-msvc-1.13.5.tgz", + "integrity": "sha512-YrKdMVxbYmlfybCSbRtrilc6UA8GF5aPmGKBdPvjrarvsmf4i7ZHGCEnLtfOMd3Lwbs2WUZq3WdMbozYeLU93Q==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "Apache-2.0 AND MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=10" + } + }, + "node_modules/@swc/counter": { + "version": "0.1.3", + "resolved": "https://registry.npmjs.org/@swc/counter/-/counter-0.1.3.tgz", + "integrity": "sha512-e2BR4lsJkkRlKZ/qCHPw9ZaSxc0MVUd7gtbtaB7aMvHeJVYe8sOB8DBZkP2DtISHGSku9sCK6T6cnY0CtXrOCQ==", + "dev": true, + "license": "Apache-2.0" + }, + "node_modules/@swc/types": { + "version": "0.1.24", + "resolved": "https://registry.npmjs.org/@swc/types/-/types-0.1.24.tgz", + "integrity": "sha512-tjTMh3V4vAORHtdTprLlfoMptu1WfTZG9Rsca6yOKyNYsRr+MUXutKmliB17orgSZk5DpnDxs8GUdd/qwYxOng==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@swc/counter": "^0.1.3" + } + }, + "node_modules/@tailwindcss/typography": { + "version": "0.5.16", + "resolved": "https://registry.npmjs.org/@tailwindcss/typography/-/typography-0.5.16.tgz", + "integrity": "sha512-0wDLwCVF5V3x3b1SGXPCDcdsbDHMBe+lkFzBRaHeLvNi+nrrnZ1lA18u+OTWO8iSWU2GxUOCvlXtDuqftc1oiA==", + "dev": true, + "license": "MIT", + "dependencies": { + "lodash.castarray": "^4.4.0", + "lodash.isplainobject": "^4.0.6", + "lodash.merge": "^4.6.2", + "postcss-selector-parser": "6.0.10" + }, + "peerDependencies": { + "tailwindcss": ">=3.0.0 || insiders || >=4.0.0-alpha.20 || >=4.0.0-beta.1" + } + }, + "node_modules/@tanstack/query-core": { + "version": "5.85.9", + "resolved": "https://registry.npmjs.org/@tanstack/query-core/-/query-core-5.85.9.tgz", + "integrity": "sha512-5fxb9vwyftYE6KFLhhhDyLr8NO75+Wpu7pmTo+TkwKmMX2oxZDoLwcqGP8ItKSpUMwk3urWgQDZfyWr5Jm9LsQ==", + "license": "MIT", + "funding": { + "type": "github", + "url": "https://github.com/sponsors/tannerlinsley" + } + }, + "node_modules/@tanstack/react-query": { + "version": "5.85.9", + "resolved": "https://registry.npmjs.org/@tanstack/react-query/-/react-query-5.85.9.tgz", + "integrity": "sha512-2T5zgSpcOZXGkH/UObIbIkGmUPQqZqn7esVQFXLOze622h4spgWf5jmvrqAo9dnI13/hyMcNsF1jsoDcb59nJQ==", + "license": "MIT", + "dependencies": { + "@tanstack/query-core": "5.85.9" + }, + "funding": { + "type": "github", + "url": "https://github.com/sponsors/tannerlinsley" + }, + "peerDependencies": { + "react": "^18 || ^19" + } + }, + "node_modules/@tweenjs/tween.js": { + "version": "23.1.3", + "resolved": "https://registry.npmjs.org/@tweenjs/tween.js/-/tween.js-23.1.3.tgz", + "integrity": "sha512-vJmvvwFxYuGnF2axRtPYocag6Clbb5YS7kLL+SO/TeVFzHqDIWrNKYtcsPMibjDx9O+bu+psAy9NKfWklassUA==", + "license": "MIT" + }, + "node_modules/@types/d3-array": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/@types/d3-array/-/d3-array-3.2.1.tgz", + "integrity": "sha512-Y2Jn2idRrLzUfAKV2LyRImR+y4oa2AntrgID95SHJxuMUrkNXmanDSed71sRNZysveJVt1hLLemQZIady0FpEg==", + "license": "MIT" + }, + "node_modules/@types/d3-color": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/@types/d3-color/-/d3-color-3.1.3.tgz", + "integrity": "sha512-iO90scth9WAbmgv7ogoq57O9YpKmFBbmoEoCHDB2xMBY0+/KVrqAaCDyCE16dUspeOvIxFFRI+0sEtqDqy2b4A==", + "license": "MIT" + }, + "node_modules/@types/d3-ease": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/@types/d3-ease/-/d3-ease-3.0.2.tgz", + "integrity": "sha512-NcV1JjO5oDzoK26oMzbILE6HW7uVXOHLQvHshBUW4UMdZGfiY6v5BeQwh9a9tCzv+CeefZQHJt5SRgK154RtiA==", + "license": "MIT" + }, + "node_modules/@types/d3-interpolate": { + "version": "3.0.4", + "resolved": "https://registry.npmjs.org/@types/d3-interpolate/-/d3-interpolate-3.0.4.tgz", + "integrity": "sha512-mgLPETlrpVV1YRJIglr4Ez47g7Yxjl1lj7YKsiMCb27VJH9W8NVM6Bb9d8kkpG/uAQS5AmbA48q2IAolKKo1MA==", + "license": "MIT", + "dependencies": { + "@types/d3-color": "*" + } + }, + "node_modules/@types/d3-path": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/@types/d3-path/-/d3-path-3.1.1.tgz", + "integrity": "sha512-VMZBYyQvbGmWyWVea0EHs/BwLgxc+MKi1zLDCONksozI4YJMcTt8ZEuIR4Sb1MMTE8MMW49v0IwI5+b7RmfWlg==", + "license": "MIT" + }, + "node_modules/@types/d3-scale": { + "version": "4.0.9", + "resolved": "https://registry.npmjs.org/@types/d3-scale/-/d3-scale-4.0.9.tgz", + "integrity": "sha512-dLmtwB8zkAeO/juAMfnV+sItKjlsw2lKdZVVy6LRr0cBmegxSABiLEpGVmSJJ8O08i4+sGR6qQtb6WtuwJdvVw==", + "license": "MIT", + "dependencies": { + "@types/d3-time": "*" + } + }, + "node_modules/@types/d3-shape": { + "version": "3.1.7", + "resolved": "https://registry.npmjs.org/@types/d3-shape/-/d3-shape-3.1.7.tgz", + "integrity": "sha512-VLvUQ33C+3J+8p+Daf+nYSOsjB4GXp19/S/aGo60m9h1v6XaxjiT82lKVWJCfzhtuZ3yD7i/TPeC/fuKLLOSmg==", + "license": "MIT", + "dependencies": { + "@types/d3-path": "*" + } + }, + "node_modules/@types/d3-time": { + "version": "3.0.4", + "resolved": "https://registry.npmjs.org/@types/d3-time/-/d3-time-3.0.4.tgz", + "integrity": "sha512-yuzZug1nkAAaBlBBikKZTgzCeA+k1uy4ZFwWANOfKw5z5LRhV0gNA7gNkKm7HoK+HRN0wX3EkxGk0fpbWhmB7g==", + "license": "MIT" + }, + "node_modules/@types/d3-timer": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/@types/d3-timer/-/d3-timer-3.0.2.tgz", + "integrity": "sha512-Ps3T8E8dZDam6fUyNiMkekK3XUsaUEik+idO9/YjPtfj2qruF8tFBXS7XhtE4iIXBLxhmLjP3SXpLhVf21I9Lw==", + "license": "MIT" + }, + "node_modules/@types/draco3d": { + "version": "1.4.10", + "resolved": "https://registry.npmjs.org/@types/draco3d/-/draco3d-1.4.10.tgz", + "integrity": "sha512-AX22jp8Y7wwaBgAixaSvkoG4M/+PlAcm3Qs4OW8yT9DM4xUpWKeFhLueTAyZF39pviAdcDdeJoACapiAceqNcw==", + "license": "MIT" + }, + "node_modules/@types/estree": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/@types/estree/-/estree-1.0.8.tgz", + "integrity": "sha512-dWHzHa2WqEXI/O1E9OjrocMTKJl2mSrEolh1Iomrv6U+JuNwaHXsXx9bLu5gG7BUWFIN0skIQJQ/L1rIex4X6w==", + "dev": true, + "license": "MIT" + }, + "node_modules/@types/json-schema": { + "version": "7.0.15", + "resolved": "https://registry.npmjs.org/@types/json-schema/-/json-schema-7.0.15.tgz", + "integrity": "sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA==", + "dev": true, + "license": "MIT" + }, + "node_modules/@types/node": { + "version": "22.18.0", + "resolved": "https://registry.npmjs.org/@types/node/-/node-22.18.0.tgz", + "integrity": "sha512-m5ObIqwsUp6BZzyiy4RdZpzWGub9bqLJMvZDD0QMXhxjqMHMENlj+SqF5QxoUwaQNFe+8kz8XM8ZQhqkQPTgMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "undici-types": "~6.21.0" + } + }, + "node_modules/@types/offscreencanvas": { + "version": "2019.7.3", + "resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.7.3.tgz", + "integrity": "sha512-ieXiYmgSRXUDeOntE1InxjWyvEelZGP63M+cGuquuRLuIKKT1osnkXjxev9B7d1nXSug5vpunx+gNlbVxMlC9A==", + "license": "MIT" + }, + "node_modules/@types/prop-types": { + "version": "15.7.15", + "resolved": "https://registry.npmjs.org/@types/prop-types/-/prop-types-15.7.15.tgz", + "integrity": "sha512-F6bEyamV9jKGAFBEmlQnesRPGOQqS2+Uwi0Em15xenOxHaf2hv6L8YCVn3rPdPJOiJfPiCnLIRyvwVaqMY3MIw==", + "license": "MIT" + }, + "node_modules/@types/react": { + "version": "18.3.24", + "resolved": "https://registry.npmjs.org/@types/react/-/react-18.3.24.tgz", + "integrity": "sha512-0dLEBsA1kI3OezMBF8nSsb7Nk19ZnsyE1LLhB8r27KbgU5H4pvuqZLdtE+aUkJVoXgTVuA+iLIwmZ0TuK4tx6A==", + "license": "MIT", + "dependencies": { + "@types/prop-types": "*", + "csstype": "^3.0.2" + } + }, + "node_modules/@types/react-dom": { + "version": "18.3.7", + "resolved": "https://registry.npmjs.org/@types/react-dom/-/react-dom-18.3.7.tgz", + "integrity": "sha512-MEe3UeoENYVFXzoXEWsvcpg6ZvlrFNlOQ7EOsvhI3CfAXwzPfO8Qwuxd40nepsYKqyyVQnTdEfv68q91yLcKrQ==", + "devOptional": true, + "license": "MIT", + "peerDependencies": { + "@types/react": "^18.0.0" + } + }, + "node_modules/@types/react-reconciler": { + "version": "0.26.7", + "resolved": "https://registry.npmjs.org/@types/react-reconciler/-/react-reconciler-0.26.7.tgz", + "integrity": "sha512-mBDYl8x+oyPX/VBb3E638N0B7xG+SPk/EAMcVPeexqus/5aTpTphQi0curhhshOqRrc9t6OPoJfEUkbymse/lQ==", + "license": "MIT", + "dependencies": { + "@types/react": "*" + } + }, + "node_modules/@types/stats.js": { + "version": "0.17.4", + "resolved": "https://registry.npmjs.org/@types/stats.js/-/stats.js-0.17.4.tgz", + "integrity": "sha512-jIBvWWShCvlBqBNIZt0KAshWpvSjhkwkEu4ZUcASoAvhmrgAUI2t1dXrjSL4xXVLB4FznPrIsX3nKXFl/Dt4vA==", + "license": "MIT" + }, + "node_modules/@types/three": { + "version": "0.179.0", + "resolved": "https://registry.npmjs.org/@types/three/-/three-0.179.0.tgz", + "integrity": "sha512-VgbFG2Pgsm84BqdegZzr7w2aKbQxmgzIu4Dy7/75ygiD/0P68LKmp5ie08KMPNqGTQwIge8s6D1guZf1RnZE0A==", + "license": "MIT", + "dependencies": { + "@dimforge/rapier3d-compat": "~0.12.0", + "@tweenjs/tween.js": "~23.1.3", + "@types/stats.js": "*", + "@types/webxr": "*", + "@webgpu/types": "*", + "fflate": "~0.8.2", + "meshoptimizer": "~0.22.0" + } + }, + "node_modules/@types/webxr": { + "version": "0.5.23", + "resolved": "https://registry.npmjs.org/@types/webxr/-/webxr-0.5.23.tgz", + "integrity": "sha512-GPe4AsfOSpqWd3xA/0gwoKod13ChcfV67trvxaW2krUbgb9gxQjnCx8zGshzMl8LSHZlNH5gQ8LNScsDuc7nGQ==", + "license": "MIT" + }, + "node_modules/@typescript-eslint/eslint-plugin": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-8.42.0.tgz", + "integrity": "sha512-Aq2dPqsQkxHOLfb2OPv43RnIvfj05nw8v/6n3B2NABIPpHnjQnaLo9QGMTvml+tv4korl/Cjfrb/BYhoL8UUTQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@eslint-community/regexpp": "^4.10.0", + "@typescript-eslint/scope-manager": "8.42.0", + "@typescript-eslint/type-utils": "8.42.0", + "@typescript-eslint/utils": "8.42.0", + "@typescript-eslint/visitor-keys": "8.42.0", + "graphemer": "^1.4.0", + "ignore": "^7.0.0", + "natural-compare": "^1.4.0", + "ts-api-utils": "^2.1.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "@typescript-eslint/parser": "^8.42.0", + "eslint": "^8.57.0 || ^9.0.0", + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/eslint-plugin/node_modules/ignore": { + "version": "7.0.5", + "resolved": "https://registry.npmjs.org/ignore/-/ignore-7.0.5.tgz", + "integrity": "sha512-Hs59xBNfUIunMFgWAbGX5cq6893IbWg4KnrjbYwX3tx0ztorVgTDA6B2sxf8ejHJ4wz8BqGUMYlnzNBer5NvGg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 4" + } + }, + "node_modules/@typescript-eslint/parser": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/parser/-/parser-8.42.0.tgz", + "integrity": "sha512-r1XG74QgShUgXph1BYseJ+KZd17bKQib/yF3SR+demvytiRXrwd12Blnz5eYGm8tXaeRdd4x88MlfwldHoudGg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/scope-manager": "8.42.0", + "@typescript-eslint/types": "8.42.0", + "@typescript-eslint/typescript-estree": "8.42.0", + "@typescript-eslint/visitor-keys": "8.42.0", + "debug": "^4.3.4" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "eslint": "^8.57.0 || ^9.0.0", + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/project-service": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/project-service/-/project-service-8.42.0.tgz", + "integrity": "sha512-vfVpLHAhbPjilrabtOSNcUDmBboQNrJUiNAGoImkZKnMjs2TIcWG33s4Ds0wY3/50aZmTMqJa6PiwkwezaAklg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/tsconfig-utils": "^8.42.0", + "@typescript-eslint/types": "^8.42.0", + "debug": "^4.3.4" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/scope-manager": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/scope-manager/-/scope-manager-8.42.0.tgz", + "integrity": "sha512-51+x9o78NBAVgQzOPd17DkNTnIzJ8T/O2dmMBLoK9qbY0Gm52XJcdJcCl18ExBMiHo6jPMErUQWUv5RLE51zJw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/types": "8.42.0", + "@typescript-eslint/visitor-keys": "8.42.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + } + }, + "node_modules/@typescript-eslint/tsconfig-utils": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/tsconfig-utils/-/tsconfig-utils-8.42.0.tgz", + "integrity": "sha512-kHeFUOdwAJfUmYKjR3CLgZSglGHjbNTi1H8sTYRYV2xX6eNz4RyJ2LIgsDLKf8Yi0/GL1WZAC/DgZBeBft8QAQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/type-utils": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/type-utils/-/type-utils-8.42.0.tgz", + "integrity": "sha512-9KChw92sbPTYVFw3JLRH1ockhyR3zqqn9lQXol3/YbI6jVxzWoGcT3AsAW0mu1MY0gYtsXnUGV/AKpkAj5tVlQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/types": "8.42.0", + "@typescript-eslint/typescript-estree": "8.42.0", + "@typescript-eslint/utils": "8.42.0", + "debug": "^4.3.4", + "ts-api-utils": "^2.1.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "eslint": "^8.57.0 || ^9.0.0", + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/types": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/types/-/types-8.42.0.tgz", + "integrity": "sha512-LdtAWMiFmbRLNP7JNeY0SqEtJvGMYSzfiWBSmx+VSZ1CH+1zyl8Mmw1TT39OrtsRvIYShjJWzTDMPWZJCpwBlw==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + } + }, + "node_modules/@typescript-eslint/typescript-estree": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/typescript-estree/-/typescript-estree-8.42.0.tgz", + "integrity": "sha512-ku/uYtT4QXY8sl9EDJETD27o3Ewdi72hcXg1ah/kkUgBvAYHLwj2ofswFFNXS+FL5G+AGkxBtvGt8pFBHKlHsQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/project-service": "8.42.0", + "@typescript-eslint/tsconfig-utils": "8.42.0", + "@typescript-eslint/types": "8.42.0", + "@typescript-eslint/visitor-keys": "8.42.0", + "debug": "^4.3.4", + "fast-glob": "^3.3.2", + "is-glob": "^4.0.3", + "minimatch": "^9.0.4", + "semver": "^7.6.0", + "ts-api-utils": "^2.1.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/typescript-estree/node_modules/brace-expansion": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.2.tgz", + "integrity": "sha512-Jt0vHyM+jmUBqojB7E1NIYadt0vI0Qxjxd2TErW94wDz+E2LAm5vKMXXwg6ZZBTHPuUlDgQHKXvjGBdfcF1ZDQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0" + } + }, + "node_modules/@typescript-eslint/typescript-estree/node_modules/minimatch": { + "version": "9.0.5", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.5.tgz", + "integrity": "sha512-G6T0ZX48xgozx7587koeX9Ys2NYy6Gmv//P89sEte9V9whIapMNF4idKxnW2QtCcLiTWlb/wfCabAtAFWhhBow==", + "dev": true, + "license": "ISC", + "dependencies": { + "brace-expansion": "^2.0.1" + }, + "engines": { + "node": ">=16 || 14 >=14.17" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/@typescript-eslint/utils": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/utils/-/utils-8.42.0.tgz", + "integrity": "sha512-JnIzu7H3RH5BrKC4NoZqRfmjqCIS1u3hGZltDYJgkVdqAezl4L9d1ZLw+36huCujtSBSAirGINF/S4UxOcR+/g==", + "dev": true, + "license": "MIT", + "dependencies": { + "@eslint-community/eslint-utils": "^4.7.0", + "@typescript-eslint/scope-manager": "8.42.0", + "@typescript-eslint/types": "8.42.0", + "@typescript-eslint/typescript-estree": "8.42.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "eslint": "^8.57.0 || ^9.0.0", + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/@typescript-eslint/visitor-keys": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/@typescript-eslint/visitor-keys/-/visitor-keys-8.42.0.tgz", + "integrity": "sha512-3WbiuzoEowaEn8RSnhJBrxSwX8ULYE9CXaPepS2C2W3NSA5NNIvBaslpBSBElPq0UGr0xVJlXFWOAKIkyylydQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/types": "8.42.0", + "eslint-visitor-keys": "^4.2.1" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + } + }, + "node_modules/@use-gesture/core": { + "version": "10.3.1", + "resolved": "https://registry.npmjs.org/@use-gesture/core/-/core-10.3.1.tgz", + "integrity": "sha512-WcINiDt8WjqBdUXye25anHiNxPc0VOrlT8F6LLkU6cycrOGUDyY/yyFmsg3k8i5OLvv25llc0QC45GhR/C8llw==", + "license": "MIT" + }, + "node_modules/@use-gesture/react": { + "version": "10.3.1", + "resolved": "https://registry.npmjs.org/@use-gesture/react/-/react-10.3.1.tgz", + "integrity": "sha512-Yy19y6O2GJq8f7CHf7L0nxL8bf4PZCPaVOCgJrusOeFHY1LvHgYXnmnXg6N5iwAnbgbZCDjo60SiM6IPJi9C5g==", + "license": "MIT", + "dependencies": { + "@use-gesture/core": "10.3.1" + }, + "peerDependencies": { + "react": ">= 16.8.0" + } + }, + "node_modules/@vitejs/plugin-react-swc": { + "version": "3.11.0", + "resolved": "https://registry.npmjs.org/@vitejs/plugin-react-swc/-/plugin-react-swc-3.11.0.tgz", + "integrity": "sha512-YTJCGFdNMHCMfjODYtxRNVAYmTWQ1Lb8PulP/2/f/oEEtglw8oKxKIZmmRkyXrVrHfsKOaVkAc3NT9/dMutO5w==", + "dev": true, + "license": "MIT", + "dependencies": { + "@rolldown/pluginutils": "1.0.0-beta.27", + "@swc/core": "^1.12.11" + }, + "peerDependencies": { + "vite": "^4 || ^5 || ^6 || ^7" + } + }, + "node_modules/@webgpu/types": { + "version": "0.1.64", + "resolved": "https://registry.npmjs.org/@webgpu/types/-/types-0.1.64.tgz", + "integrity": "sha512-84kRIAGV46LJTlJZWxShiOrNL30A+9KokD7RB3dRCIqODFjodS5tCD5yyiZ8kIReGVZSDfA3XkkwyyOIF6K62A==", + "license": "BSD-3-Clause" + }, + "node_modules/acorn": { + "version": "8.15.0", + "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz", + "integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==", + "dev": true, + "license": "MIT", + "bin": { + "acorn": "bin/acorn" + }, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/acorn-jsx": { + "version": "5.3.2", + "resolved": "https://registry.npmjs.org/acorn-jsx/-/acorn-jsx-5.3.2.tgz", + "integrity": "sha512-rq9s+JNhf0IChjtDXxllJ7g41oZk5SlXtp0LHwyA5cejwn7vKmKp4pPri6YEePv2PU65sAsegbXtIinmDFDXgQ==", + "dev": true, + "license": "MIT", + "peerDependencies": { + "acorn": "^6.0.0 || ^7.0.0 || ^8.0.0" + } + }, + "node_modules/ajv": { + "version": "6.12.6", + "resolved": "https://registry.npmjs.org/ajv/-/ajv-6.12.6.tgz", + "integrity": "sha512-j3fVLgvTo527anyYyJOGTYJbG+vnnQYvE0m5mmkc1TK+nxAppkCLMIL0aZ4dblVCNoGShhm+kzE4ZUykBoMg4g==", + "dev": true, + "license": "MIT", + "dependencies": { + "fast-deep-equal": "^3.1.1", + "fast-json-stable-stringify": "^2.0.0", + "json-schema-traverse": "^0.4.1", + "uri-js": "^4.2.2" + }, + "funding": { + "type": "github", + "url": "https://github.com/sponsors/epoberezkin" + } + }, + "node_modules/ansi-regex": { + "version": "6.2.0", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.2.0.tgz", + "integrity": "sha512-TKY5pyBkHyADOPYlRT9Lx6F544mPl0vS5Ew7BJ45hA08Q+t3GjbueLliBWN3sMICk6+y7HdyxSzC4bWS8baBdg==", + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/ansi-regex?sponsor=1" + } + }, + "node_modules/ansi-styles": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", + "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", + "license": "MIT", + "dependencies": { + "color-convert": "^2.0.1" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/any-promise": { + "version": "1.3.0", + "resolved": "https://registry.npmjs.org/any-promise/-/any-promise-1.3.0.tgz", + "integrity": "sha512-7UvmKalWRt1wgjL1RrGxoSJW/0QZFIegpeGvZG9kjp8vrRu55XTHbwnqq2GpXm9uLbcuhxm3IqX9OB4MZR1b2A==", + "license": "MIT" + }, + "node_modules/anymatch": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/anymatch/-/anymatch-3.1.3.tgz", + "integrity": "sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==", + "license": "ISC", + "dependencies": { + "normalize-path": "^3.0.0", + "picomatch": "^2.0.4" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/arg": { + "version": "5.0.2", + "resolved": "https://registry.npmjs.org/arg/-/arg-5.0.2.tgz", + "integrity": "sha512-PYjyFOLKQ9y57JvQ6QLo8dAgNqswh8M1RMJYdQduT6xbWSgK36P/Z/v+p888pM69jMMfS8Xd8F6I1kQ/I9HUGg==", + "license": "MIT" + }, + "node_modules/argparse": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/argparse/-/argparse-2.0.1.tgz", + "integrity": "sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q==", + "dev": true, + "license": "Python-2.0" + }, + "node_modules/aria-hidden": { + "version": "1.2.6", + "resolved": "https://registry.npmjs.org/aria-hidden/-/aria-hidden-1.2.6.tgz", + "integrity": "sha512-ik3ZgC9dY/lYVVM++OISsaYDeg1tb0VtP5uL3ouh1koGOaUMDPpbFIei4JkFimWUFPn90sbMNMXQAIVOlnYKJA==", + "license": "MIT", + "dependencies": { + "tslib": "^2.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/autoprefixer": { + "version": "10.4.21", + "resolved": "https://registry.npmjs.org/autoprefixer/-/autoprefixer-10.4.21.tgz", + "integrity": "sha512-O+A6LWV5LDHSJD3LjHYoNi4VLsj/Whi7k6zG12xTYaU4cQ8oxQGckXNX8cRHK5yOZ/ppVHe0ZBXGzSV9jXdVbQ==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/postcss/" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/autoprefixer" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "browserslist": "^4.24.4", + "caniuse-lite": "^1.0.30001702", + "fraction.js": "^4.3.7", + "normalize-range": "^0.1.2", + "picocolors": "^1.1.1", + "postcss-value-parser": "^4.2.0" + }, + "bin": { + "autoprefixer": "bin/autoprefixer" + }, + "engines": { + "node": "^10 || ^12 || >=14" + }, + "peerDependencies": { + "postcss": "^8.1.0" + } + }, + "node_modules/balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "license": "MIT" + }, + "node_modules/base64-js": { + "version": "1.5.1", + "resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz", + "integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/feross" + }, + { + "type": "patreon", + "url": "https://www.patreon.com/feross" + }, + { + "type": "consulting", + "url": "https://feross.org/support" + } + ], + "license": "MIT" + }, + "node_modules/bidi-js": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/bidi-js/-/bidi-js-1.0.3.tgz", + "integrity": "sha512-RKshQI1R3YQ+n9YJz2QQ147P66ELpa1FQEg20Dk8oW9t2KgLbpDLLp9aGZ7y8WHSshDknG0bknqGw5/tyCs5tw==", + "license": "MIT", + "dependencies": { + "require-from-string": "^2.0.2" + } + }, + "node_modules/binary-extensions": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/binary-extensions/-/binary-extensions-2.3.0.tgz", + "integrity": "sha512-Ceh+7ox5qe7LJuLHoY0feh3pHuUDHAcRUeyL2VYghZwfpkNIy/+8Ocg0a3UuSoYzavmylwuLWQOf3hl0jjMMIw==", + "license": "MIT", + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/blurhash": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/blurhash/-/blurhash-2.0.5.tgz", + "integrity": "sha512-cRygWd7kGBQO3VEhPiTgq4Wc43ctsM+o46urrmPOiuAe+07fzlSB9OJVdpgDL0jPqXUVQ9ht7aq7kxOeJHRK+w==", + "license": "MIT" + }, + "node_modules/brace-expansion": { + "version": "1.1.12", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.12.tgz", + "integrity": "sha512-9T9UjW3r0UW5c1Q7GTwllptXwhvYmEzFhzMfZ9H7FQWt+uZePjZPjBP/W1ZEyZ1twGWom5/56TF4lPcqjnDHcg==", + "dev": true, + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "node_modules/braces": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/braces/-/braces-3.0.3.tgz", + "integrity": "sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==", + "license": "MIT", + "dependencies": { + "fill-range": "^7.1.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/browserslist": { + "version": "4.25.4", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.25.4.tgz", + "integrity": "sha512-4jYpcjabC606xJ3kw2QwGEZKX0Aw7sgQdZCvIK9dhVSPh76BKo+C+btT1RRofH7B+8iNpEbgGNVWiLki5q93yg==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "caniuse-lite": "^1.0.30001737", + "electron-to-chromium": "^1.5.211", + "node-releases": "^2.0.19", + "update-browserslist-db": "^1.1.3" + }, + "bin": { + "browserslist": "cli.js" + }, + "engines": { + "node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7" + } + }, + "node_modules/buffer": { + "version": "6.0.3", + "resolved": "https://registry.npmjs.org/buffer/-/buffer-6.0.3.tgz", + "integrity": "sha512-FTiCpNxtwiZZHEZbcbTIcZjERVICn9yq/pDFkTl95/AxzD1naBctN7YO68riM/gLSDY7sdrMby8hofADYuuqOA==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/feross" + }, + { + "type": "patreon", + "url": "https://www.patreon.com/feross" + }, + { + "type": "consulting", + "url": "https://feross.org/support" + } + ], + "license": "MIT", + "dependencies": { + "base64-js": "^1.3.1", + "ieee754": "^1.2.1" + } + }, + "node_modules/callsites": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", + "integrity": "sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/camelcase-css": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/camelcase-css/-/camelcase-css-2.0.1.tgz", + "integrity": "sha512-QOSvevhslijgYwRx6Rv7zKdMF8lbRmx+uQGx2+vDc+KI/eBnsy9kit5aj23AgGu3pa4t9AgwbnXWqS+iOY+2aA==", + "license": "MIT", + "engines": { + "node": ">= 6" + } + }, + "node_modules/camera-controls": { + "version": "2.10.1", + "resolved": "https://registry.npmjs.org/camera-controls/-/camera-controls-2.10.1.tgz", + "integrity": "sha512-KnaKdcvkBJ1Irbrzl8XD6WtZltkRjp869Jx8c0ujs9K+9WD+1D7ryBsCiVqJYUqt6i/HR5FxT7RLASieUD+Q5w==", + "license": "MIT", + "peerDependencies": { + "three": ">=0.126.1" + } + }, + "node_modules/caniuse-lite": { + "version": "1.0.30001739", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001739.tgz", + "integrity": "sha512-y+j60d6ulelrNSwpPyrHdl+9mJnQzHBr08xm48Qno0nSk4h3Qojh+ziv2qE6rXf4k3tadF4o1J/1tAbVm1NtnA==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/caniuse-lite" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "CC-BY-4.0" + }, + "node_modules/chalk": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", + "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^4.1.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/chalk?sponsor=1" + } + }, + "node_modules/chokidar": { + "version": "3.6.0", + "resolved": "https://registry.npmjs.org/chokidar/-/chokidar-3.6.0.tgz", + "integrity": "sha512-7VT13fmjotKpGipCW9JEQAusEPE+Ei8nl6/g4FBAmIm0GOOLMua9NDDo/DWp0ZAxCr3cPq5ZpBqmPAQgDda2Pw==", + "license": "MIT", + "dependencies": { + "anymatch": "~3.1.2", + "braces": "~3.0.2", + "glob-parent": "~5.1.2", + "is-binary-path": "~2.1.0", + "is-glob": "~4.0.1", + "normalize-path": "~3.0.0", + "readdirp": "~3.6.0" + }, + "engines": { + "node": ">= 8.10.0" + }, + "funding": { + "url": "https://paulmillr.com/funding/" + }, + "optionalDependencies": { + "fsevents": "~2.3.2" + } + }, + "node_modules/chokidar/node_modules/glob-parent": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-5.1.2.tgz", + "integrity": "sha512-AOIgSQCepiJYwP3ARnGx+5VnTu2HBYdzbGP45eLw1vr3zB3vZLeyed1sC9hnbcOc9/SrMyM5RPQrkGz4aS9Zow==", + "license": "ISC", + "dependencies": { + "is-glob": "^4.0.1" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/class-variance-authority": { + "version": "0.7.1", + "resolved": "https://registry.npmjs.org/class-variance-authority/-/class-variance-authority-0.7.1.tgz", + "integrity": "sha512-Ka+9Trutv7G8M6WT6SeiRWz792K5qEqIGEGzXKhAE6xOWAY6pPH8U+9IY3oCMv6kqTmLsv7Xh/2w2RigkePMsg==", + "license": "Apache-2.0", + "dependencies": { + "clsx": "^2.1.1" + }, + "funding": { + "url": "https://polar.sh/cva" + } + }, + "node_modules/clsx": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/clsx/-/clsx-2.1.1.tgz", + "integrity": "sha512-eYm0QWBtUrBWZWG0d386OGAw16Z995PiOVo2B7bjWSbHedGl5e0ZWaq65kOGgUSNesEIDkB9ISbTg/JK9dhCZA==", + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/cmdk": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/cmdk/-/cmdk-1.1.1.tgz", + "integrity": "sha512-Vsv7kFaXm+ptHDMZ7izaRsP70GgrW9NBNGswt9OZaVBLlE0SNpDq8eu/VGXyF9r7M0azK3Wy7OlYXsuyYLFzHg==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-compose-refs": "^1.1.1", + "@radix-ui/react-dialog": "^1.1.6", + "@radix-ui/react-id": "^1.1.0", + "@radix-ui/react-primitive": "^2.0.2" + }, + "peerDependencies": { + "react": "^18 || ^19 || ^19.0.0-rc", + "react-dom": "^18 || ^19 || ^19.0.0-rc" + } + }, + "node_modules/color-convert": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", + "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", + "license": "MIT", + "dependencies": { + "color-name": "~1.1.4" + }, + "engines": { + "node": ">=7.0.0" + } + }, + "node_modules/color-name": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", + "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", + "license": "MIT" + }, + "node_modules/commander": { + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/commander/-/commander-4.1.1.tgz", + "integrity": "sha512-NOKm8xhkzAjzFx8B2v5OAHT+u5pRQc2UCa2Vq9jYL/31o2wi9mxBA7LIFs3sV5VSC49z6pEhfbMULvShKj26WA==", + "license": "MIT", + "engines": { + "node": ">= 6" + } + }, + "node_modules/concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true, + "license": "MIT" + }, + "node_modules/cross-env": { + "version": "7.0.3", + "resolved": "https://registry.npmjs.org/cross-env/-/cross-env-7.0.3.tgz", + "integrity": "sha512-+/HKd6EgcQCJGh2PSjZuUitQBQynKor4wrFbRg4DtAgS1aWO+gU52xpH7M9ScGgXSYmAVS9bIJ8EzuaGw0oNAw==", + "license": "MIT", + "dependencies": { + "cross-spawn": "^7.0.1" + }, + "bin": { + "cross-env": "src/bin/cross-env.js", + "cross-env-shell": "src/bin/cross-env-shell.js" + }, + "engines": { + "node": ">=10.14", + "npm": ">=6", + "yarn": ">=1" + } + }, + "node_modules/cross-spawn": { + "version": "7.0.6", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz", + "integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==", + "license": "MIT", + "dependencies": { + "path-key": "^3.1.0", + "shebang-command": "^2.0.0", + "which": "^2.0.1" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/cssesc": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/cssesc/-/cssesc-3.0.0.tgz", + "integrity": "sha512-/Tb/JcjK111nNScGob5MNtsntNM1aCNUDipB/TkwZFhyDrrE47SOx/18wF2bbjgc3ZzCSKW1T5nt5EbFoAz/Vg==", + "license": "MIT", + "bin": { + "cssesc": "bin/cssesc" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/csstype": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/csstype/-/csstype-3.1.3.tgz", + "integrity": "sha512-M1uQkMl8rQK/szD0LNhtqxIPLpimGm8sOBwU7lLnCpSbTyY3yeU1Vc7l4KT5zT4s/yOxHH5O7tIuuLOCnLADRw==", + "license": "MIT" + }, + "node_modules/d3-array": { + "version": "3.2.4", + "resolved": "https://registry.npmjs.org/d3-array/-/d3-array-3.2.4.tgz", + "integrity": "sha512-tdQAmyA18i4J7wprpYq8ClcxZy3SC31QMeByyCFyRt7BVHdREQZ5lpzoe5mFEYZUWe+oq8HBvk9JjpibyEV4Jg==", + "license": "ISC", + "dependencies": { + "internmap": "1 - 2" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-color": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/d3-color/-/d3-color-3.1.0.tgz", + "integrity": "sha512-zg/chbXyeBtMQ1LbD/WSoW2DpC3I0mpmPdW+ynRTj/x2DAWYrIY7qeZIHidozwV24m4iavr15lNwIwLxRmOxhA==", + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-ease": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/d3-ease/-/d3-ease-3.0.1.tgz", + "integrity": "sha512-wR/XK3D3XcLIZwpbvQwQ5fK+8Ykds1ip7A2Txe0yxncXSdq1L9skcG7blcedkOX+ZcgxGAmLX1FrRGbADwzi0w==", + "license": "BSD-3-Clause", + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-format": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/d3-format/-/d3-format-3.1.0.tgz", + "integrity": "sha512-YyUI6AEuY/Wpt8KWLgZHsIU86atmikuoOmCfommt0LYHiQSPjvX2AcFc38PX0CBpr2RCyZhjex+NS/LPOv6YqA==", + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-interpolate": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/d3-interpolate/-/d3-interpolate-3.0.1.tgz", + "integrity": "sha512-3bYs1rOD33uo8aqJfKP3JWPAibgw8Zm2+L9vBKEHJ2Rg+viTR7o5Mmv5mZcieN+FRYaAOWX5SJATX6k1PWz72g==", + "license": "ISC", + "dependencies": { + "d3-color": "1 - 3" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-path": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/d3-path/-/d3-path-3.1.0.tgz", + "integrity": "sha512-p3KP5HCf/bvjBSSKuXid6Zqijx7wIfNW+J/maPs+iwR35at5JCbLUT0LzF1cnjbCHWhqzQTIN2Jpe8pRebIEFQ==", + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-scale": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/d3-scale/-/d3-scale-4.0.2.tgz", + "integrity": "sha512-GZW464g1SH7ag3Y7hXjf8RoUuAFIqklOAq3MRl4OaWabTFJY9PN/E1YklhXLh+OQ3fM9yS2nOkCoS+WLZ6kvxQ==", + "license": "ISC", + "dependencies": { + "d3-array": "2.10.0 - 3", + "d3-format": "1 - 3", + "d3-interpolate": "1.2.0 - 3", + "d3-time": "2.1.1 - 3", + "d3-time-format": "2 - 4" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-shape": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/d3-shape/-/d3-shape-3.2.0.tgz", + "integrity": "sha512-SaLBuwGm3MOViRq2ABk3eLoxwZELpH6zhl3FbAoJ7Vm1gofKx6El1Ib5z23NUEhF9AsGl7y+dzLe5Cw2AArGTA==", + "license": "ISC", + "dependencies": { + "d3-path": "^3.1.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-time": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/d3-time/-/d3-time-3.1.0.tgz", + "integrity": "sha512-VqKjzBLejbSMT4IgbmVgDjpkYrNWUYJnbCGo874u7MMKIWsILRX+OpX/gTk8MqjpT1A/c6HY2dCA77ZN0lkQ2Q==", + "license": "ISC", + "dependencies": { + "d3-array": "2 - 3" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-time-format": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/d3-time-format/-/d3-time-format-4.1.0.tgz", + "integrity": "sha512-dJxPBlzC7NugB2PDLwo9Q8JiTR3M3e4/XANkreKSUxF8vvXKqm1Yfq4Q5dl8budlunRVlUUaDUgFt7eA8D6NLg==", + "license": "ISC", + "dependencies": { + "d3-time": "1 - 3" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/d3-timer": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/d3-timer/-/d3-timer-3.0.1.tgz", + "integrity": "sha512-ndfJ/JxxMd3nw31uyKoY2naivF+r29V+Lc0svZxe1JvvIRmi8hUsrMvdOwgS1o6uBHmiz91geQ0ylPP0aj1VUA==", + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/date-fns": { + "version": "3.6.0", + "resolved": "https://registry.npmjs.org/date-fns/-/date-fns-3.6.0.tgz", + "integrity": "sha512-fRHTG8g/Gif+kSh50gaGEdToemgfj74aRX3swtiouboip5JDLAyDE9F11nHMIcvOaXeOC6D7SpNhi7uFyB7Uww==", + "license": "MIT", + "funding": { + "type": "github", + "url": "https://github.com/sponsors/kossnocorp" + } + }, + "node_modules/debug": { + "version": "4.4.1", + "resolved": "https://registry.npmjs.org/debug/-/debug-4.4.1.tgz", + "integrity": "sha512-KcKCqiftBJcZr++7ykoDIEwSa3XWowTfNPo92BYxjXiyYEVrUQh2aLyhxBCwww+heortUFxEJYcRzosstTEBYQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "ms": "^2.1.3" + }, + "engines": { + "node": ">=6.0" + }, + "peerDependenciesMeta": { + "supports-color": { + "optional": true + } + } + }, + "node_modules/decimal.js-light": { + "version": "2.5.1", + "resolved": "https://registry.npmjs.org/decimal.js-light/-/decimal.js-light-2.5.1.tgz", + "integrity": "sha512-qIMFpTMZmny+MMIitAB6D7iVPEorVw6YQRWkvarTkT4tBeSLLiHzcwj6q0MmYSFCiVpiqPJTJEYIrpcPzVEIvg==", + "license": "MIT" + }, + "node_modules/deep-is": { + "version": "0.1.4", + "resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz", + "integrity": "sha512-oIPzksmTg4/MriiaYGO+okXDT7ztn/w3Eptv/+gSIdMdKsJo0u4CfYNFJPy+4SKMuCqGw2wxnA+URMg3t8a/bQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/detect-gpu": { + "version": "5.0.70", + "resolved": "https://registry.npmjs.org/detect-gpu/-/detect-gpu-5.0.70.tgz", + "integrity": "sha512-bqerEP1Ese6nt3rFkwPnGbsUF9a4q+gMmpTVVOEzoCyeCc+y7/RvJnQZJx1JwhgQI5Ntg0Kgat8Uu7XpBqnz1w==", + "license": "MIT", + "dependencies": { + "webgl-constants": "^1.1.1" + } + }, + "node_modules/detect-node-es": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/detect-node-es/-/detect-node-es-1.1.0.tgz", + "integrity": "sha512-ypdmJU/TbBby2Dxibuv7ZLW3Bs1QEmM7nHjEANfohJLvE0XVujisn1qPJcZxg+qDucsr+bP6fLD1rPS3AhJ7EQ==", + "license": "MIT" + }, + "node_modules/didyoumean": { + "version": "1.2.2", + "resolved": "https://registry.npmjs.org/didyoumean/-/didyoumean-1.2.2.tgz", + "integrity": "sha512-gxtyfqMg7GKyhQmb056K7M3xszy/myH8w+B4RT+QXBQsvAOdc3XymqDDPHx1BgPgsdAA5SIifona89YtRATDzw==", + "license": "Apache-2.0" + }, + "node_modules/dlv": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/dlv/-/dlv-1.1.3.tgz", + "integrity": "sha512-+HlytyjlPKnIG8XuRG8WvmBP8xs8P71y+SKKS6ZXWoEgLuePxtDoUEiH7WkdePWrQ5JBpE6aoVqfZfJUQkjXwA==", + "license": "MIT" + }, + "node_modules/dom-helpers": { + "version": "5.2.1", + "resolved": "https://registry.npmjs.org/dom-helpers/-/dom-helpers-5.2.1.tgz", + "integrity": "sha512-nRCa7CK3VTrM2NmGkIy4cbK7IZlgBE/PYMn55rrXefr5xXDP0LdtfPnblFDoVdcAfslJ7or6iqAUnx0CCGIWQA==", + "license": "MIT", + "dependencies": { + "@babel/runtime": "^7.8.7", + "csstype": "^3.0.2" + } + }, + "node_modules/draco3d": { + "version": "1.5.7", + "resolved": "https://registry.npmjs.org/draco3d/-/draco3d-1.5.7.tgz", + "integrity": "sha512-m6WCKt/erDXcw+70IJXnG7M3awwQPAsZvJGX5zY7beBqpELw6RDGkYVU0W43AFxye4pDZ5i2Lbyc/NNGqwjUVQ==", + "license": "Apache-2.0" + }, + "node_modules/eastasianwidth": { + "version": "0.2.0", + "resolved": "https://registry.npmjs.org/eastasianwidth/-/eastasianwidth-0.2.0.tgz", + "integrity": "sha512-I88TYZWc9XiYHRQ4/3c5rjjfgkjhLyW2luGIheGERbNQ6OY7yTybanSpDXZa8y7VUP9YmDcYa+eyq4ca7iLqWA==", + "license": "MIT" + }, + "node_modules/electron-to-chromium": { + "version": "1.5.213", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.5.213.tgz", + "integrity": "sha512-xr9eRzSLNa4neDO0xVFrkXu3vyIzG4Ay08dApecw42Z1NbmCt+keEpXdvlYGVe0wtvY5dhW0Ay0lY0IOfsCg0Q==", + "dev": true, + "license": "ISC" + }, + "node_modules/embla-carousel": { + "version": "8.6.0", + "resolved": "https://registry.npmjs.org/embla-carousel/-/embla-carousel-8.6.0.tgz", + "integrity": "sha512-SjWyZBHJPbqxHOzckOfo8lHisEaJWmwd23XppYFYVh10bU66/Pn5tkVkbkCMZVdbUE5eTCI2nD8OyIP4Z+uwkA==", + "license": "MIT" + }, + "node_modules/embla-carousel-react": { + "version": "8.6.0", + "resolved": "https://registry.npmjs.org/embla-carousel-react/-/embla-carousel-react-8.6.0.tgz", + "integrity": "sha512-0/PjqU7geVmo6F734pmPqpyHqiM99olvyecY7zdweCw+6tKEXnrE90pBiBbMMU8s5tICemzpQ3hi5EpxzGW+JA==", + "license": "MIT", + "dependencies": { + "embla-carousel": "8.6.0", + "embla-carousel-reactive-utils": "8.6.0" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17.0.1 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + } + }, + "node_modules/embla-carousel-reactive-utils": { + "version": "8.6.0", + "resolved": "https://registry.npmjs.org/embla-carousel-reactive-utils/-/embla-carousel-reactive-utils-8.6.0.tgz", + "integrity": "sha512-fMVUDUEx0/uIEDM0Mz3dHznDhfX+znCCDCeIophYb1QGVM7YThSWX+wz11zlYwWFOr74b4QLGg0hrGPJeG2s4A==", + "license": "MIT", + "peerDependencies": { + "embla-carousel": "8.6.0" + } + }, + "node_modules/emoji-regex": { + "version": "9.2.2", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.2.tgz", + "integrity": "sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg==", + "license": "MIT" + }, + "node_modules/esbuild": { + "version": "0.25.9", + "resolved": "https://registry.npmjs.org/esbuild/-/esbuild-0.25.9.tgz", + "integrity": "sha512-CRbODhYyQx3qp7ZEwzxOk4JBqmD/seJrzPa/cGjY1VtIn5E09Oi9/dB4JwctnfZ8Q8iT7rioVv5k/FNT/uf54g==", + "dev": true, + "hasInstallScript": true, + "license": "MIT", + "bin": { + "esbuild": "bin/esbuild" + }, + "engines": { + "node": ">=18" + }, + "optionalDependencies": { + "@esbuild/aix-ppc64": "0.25.9", + "@esbuild/android-arm": "0.25.9", + "@esbuild/android-arm64": "0.25.9", + "@esbuild/android-x64": "0.25.9", + "@esbuild/darwin-arm64": "0.25.9", + "@esbuild/darwin-x64": "0.25.9", + "@esbuild/freebsd-arm64": "0.25.9", + "@esbuild/freebsd-x64": "0.25.9", + "@esbuild/linux-arm": "0.25.9", + "@esbuild/linux-arm64": "0.25.9", + "@esbuild/linux-ia32": "0.25.9", + "@esbuild/linux-loong64": "0.25.9", + "@esbuild/linux-mips64el": "0.25.9", + "@esbuild/linux-ppc64": "0.25.9", + "@esbuild/linux-riscv64": "0.25.9", + "@esbuild/linux-s390x": "0.25.9", + "@esbuild/linux-x64": "0.25.9", + "@esbuild/netbsd-arm64": "0.25.9", + "@esbuild/netbsd-x64": "0.25.9", + "@esbuild/openbsd-arm64": "0.25.9", + "@esbuild/openbsd-x64": "0.25.9", + "@esbuild/openharmony-arm64": "0.25.9", + "@esbuild/sunos-x64": "0.25.9", + "@esbuild/win32-arm64": "0.25.9", + "@esbuild/win32-ia32": "0.25.9", + "@esbuild/win32-x64": "0.25.9" + } + }, + "node_modules/escalade": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.2.0.tgz", + "integrity": "sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/escape-string-regexp": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-4.0.0.tgz", + "integrity": "sha512-TtpcNJ3XAzx3Gq8sWRzJaVajRs0uVxA2YAkdb1jm2YkPz4G6egUFAyA3n5vtEIZefPk5Wa4UXbKuS5fKkJWdgA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/eslint": { + "version": "9.34.0", + "resolved": "https://registry.npmjs.org/eslint/-/eslint-9.34.0.tgz", + "integrity": "sha512-RNCHRX5EwdrESy3Jc9o8ie8Bog+PeYvvSR8sDGoZxNFTvZ4dlxUB3WzQ3bQMztFrSRODGrLLj8g6OFuGY/aiQg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@eslint-community/eslint-utils": "^4.2.0", + "@eslint-community/regexpp": "^4.12.1", + "@eslint/config-array": "^0.21.0", + "@eslint/config-helpers": "^0.3.1", + "@eslint/core": "^0.15.2", + "@eslint/eslintrc": "^3.3.1", + "@eslint/js": "9.34.0", + "@eslint/plugin-kit": "^0.3.5", + "@humanfs/node": "^0.16.6", + "@humanwhocodes/module-importer": "^1.0.1", + "@humanwhocodes/retry": "^0.4.2", + "@types/estree": "^1.0.6", + "@types/json-schema": "^7.0.15", + "ajv": "^6.12.4", + "chalk": "^4.0.0", + "cross-spawn": "^7.0.6", + "debug": "^4.3.2", + "escape-string-regexp": "^4.0.0", + "eslint-scope": "^8.4.0", + "eslint-visitor-keys": "^4.2.1", + "espree": "^10.4.0", + "esquery": "^1.5.0", + "esutils": "^2.0.2", + "fast-deep-equal": "^3.1.3", + "file-entry-cache": "^8.0.0", + "find-up": "^5.0.0", + "glob-parent": "^6.0.2", + "ignore": "^5.2.0", + "imurmurhash": "^0.1.4", + "is-glob": "^4.0.0", + "json-stable-stringify-without-jsonify": "^1.0.1", + "lodash.merge": "^4.6.2", + "minimatch": "^3.1.2", + "natural-compare": "^1.4.0", + "optionator": "^0.9.3" + }, + "bin": { + "eslint": "bin/eslint.js" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://eslint.org/donate" + }, + "peerDependencies": { + "jiti": "*" + }, + "peerDependenciesMeta": { + "jiti": { + "optional": true + } + } + }, + "node_modules/eslint-plugin-react-hooks": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/eslint-plugin-react-hooks/-/eslint-plugin-react-hooks-5.2.0.tgz", + "integrity": "sha512-+f15FfK64YQwZdJNELETdn5ibXEUQmW1DZL6KXhNnc2heoy/sg9VJJeT7n8TlMWouzWqSWavFkIhHyIbIAEapg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "eslint": "^3.0.0 || ^4.0.0 || ^5.0.0 || ^6.0.0 || ^7.0.0 || ^8.0.0-0 || ^9.0.0" + } + }, + "node_modules/eslint-plugin-react-refresh": { + "version": "0.4.20", + "resolved": "https://registry.npmjs.org/eslint-plugin-react-refresh/-/eslint-plugin-react-refresh-0.4.20.tgz", + "integrity": "sha512-XpbHQ2q5gUF8BGOX4dHe+71qoirYMhApEPZ7sfhF/dNnOF1UXnCMGZf79SFTBO7Bz5YEIT4TMieSlJBWhP9WBA==", + "dev": true, + "license": "MIT", + "peerDependencies": { + "eslint": ">=8.40" + } + }, + "node_modules/eslint-scope": { + "version": "8.4.0", + "resolved": "https://registry.npmjs.org/eslint-scope/-/eslint-scope-8.4.0.tgz", + "integrity": "sha512-sNXOfKCn74rt8RICKMvJS7XKV/Xk9kA7DyJr8mJik3S7Cwgy3qlkkmyS2uQB3jiJg6VNdZd/pDBJu0nvG2NlTg==", + "dev": true, + "license": "BSD-2-Clause", + "dependencies": { + "esrecurse": "^4.3.0", + "estraverse": "^5.2.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + } + }, + "node_modules/eslint-visitor-keys": { + "version": "4.2.1", + "resolved": "https://registry.npmjs.org/eslint-visitor-keys/-/eslint-visitor-keys-4.2.1.tgz", + "integrity": "sha512-Uhdk5sfqcee/9H/rCOJikYz67o0a2Tw2hGRPOG2Y1R2dg7brRe1uG0yaNQDHu+TO/uQPF/5eCapvYSmHUjt7JQ==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + } + }, + "node_modules/espree": { + "version": "10.4.0", + "resolved": "https://registry.npmjs.org/espree/-/espree-10.4.0.tgz", + "integrity": "sha512-j6PAQ2uUr79PZhBjP5C5fhl8e39FmRnOjsD5lGnWrFU8i2G776tBK7+nP8KuQUTTyAZUwfQqXAgrVH5MbH9CYQ==", + "dev": true, + "license": "BSD-2-Clause", + "dependencies": { + "acorn": "^8.15.0", + "acorn-jsx": "^5.3.2", + "eslint-visitor-keys": "^4.2.1" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "url": "https://opencollective.com/eslint" + } + }, + "node_modules/esquery": { + "version": "1.6.0", + "resolved": "https://registry.npmjs.org/esquery/-/esquery-1.6.0.tgz", + "integrity": "sha512-ca9pw9fomFcKPvFLXhBKUK90ZvGibiGOvRJNbjljY7s7uq/5YO4BOzcYtJqExdx99rF6aAcnRxHmcUHcz6sQsg==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "estraverse": "^5.1.0" + }, + "engines": { + "node": ">=0.10" + } + }, + "node_modules/esrecurse": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/esrecurse/-/esrecurse-4.3.0.tgz", + "integrity": "sha512-KmfKL3b6G+RXvP8N1vr3Tq1kL/oCFgn2NYXEtqP8/L3pKapUA4G8cFVaoF3SU323CD4XypR/ffioHmkti6/Tag==", + "dev": true, + "license": "BSD-2-Clause", + "dependencies": { + "estraverse": "^5.2.0" + }, + "engines": { + "node": ">=4.0" + } + }, + "node_modules/estraverse": { + "version": "5.3.0", + "resolved": "https://registry.npmjs.org/estraverse/-/estraverse-5.3.0.tgz", + "integrity": "sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==", + "dev": true, + "license": "BSD-2-Clause", + "engines": { + "node": ">=4.0" + } + }, + "node_modules/esutils": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/esutils/-/esutils-2.0.3.tgz", + "integrity": "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g==", + "dev": true, + "license": "BSD-2-Clause", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/eventemitter3": { + "version": "4.0.7", + "resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz", + "integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw==", + "license": "MIT" + }, + "node_modules/fast-deep-equal": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/fast-deep-equal/-/fast-deep-equal-3.1.3.tgz", + "integrity": "sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q==", + "dev": true, + "license": "MIT" + }, + "node_modules/fast-equals": { + "version": "5.2.2", + "resolved": "https://registry.npmjs.org/fast-equals/-/fast-equals-5.2.2.tgz", + "integrity": "sha512-V7/RktU11J3I36Nwq2JnZEM7tNm17eBJz+u25qdxBZeCKiX6BkVSZQjwWIr+IobgnZy+ag73tTZgZi7tr0LrBw==", + "license": "MIT", + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/fast-glob": { + "version": "3.3.3", + "resolved": "https://registry.npmjs.org/fast-glob/-/fast-glob-3.3.3.tgz", + "integrity": "sha512-7MptL8U0cqcFdzIzwOTHoilX9x5BrNqye7Z/LuC7kCMRio1EMSyqRK3BEAUD7sXRq4iT4AzTVuZdhgQ2TCvYLg==", + "license": "MIT", + "dependencies": { + "@nodelib/fs.stat": "^2.0.2", + "@nodelib/fs.walk": "^1.2.3", + "glob-parent": "^5.1.2", + "merge2": "^1.3.0", + "micromatch": "^4.0.8" + }, + "engines": { + "node": ">=8.6.0" + } + }, + "node_modules/fast-glob/node_modules/glob-parent": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-5.1.2.tgz", + "integrity": "sha512-AOIgSQCepiJYwP3ARnGx+5VnTu2HBYdzbGP45eLw1vr3zB3vZLeyed1sC9hnbcOc9/SrMyM5RPQrkGz4aS9Zow==", + "license": "ISC", + "dependencies": { + "is-glob": "^4.0.1" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/fast-json-stable-stringify": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz", + "integrity": "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==", + "dev": true, + "license": "MIT" + }, + "node_modules/fast-levenshtein": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz", + "integrity": "sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==", + "dev": true, + "license": "MIT" + }, + "node_modules/fastq": { + "version": "1.19.1", + "resolved": "https://registry.npmjs.org/fastq/-/fastq-1.19.1.tgz", + "integrity": "sha512-GwLTyxkCXjXbxqIhTsMI2Nui8huMPtnxg7krajPJAjnEG/iiOS7i+zCtWGZR9G0NBKbXKh6X9m9UIsYX/N6vvQ==", + "license": "ISC", + "dependencies": { + "reusify": "^1.0.4" + } + }, + "node_modules/fflate": { + "version": "0.8.2", + "resolved": "https://registry.npmjs.org/fflate/-/fflate-0.8.2.tgz", + "integrity": "sha512-cPJU47OaAoCbg0pBvzsgpTPhmhqI5eJjh/JIu8tPj5q+T7iLvW/JAYUqmE7KOB4R1ZyEhzBaIQpQpardBF5z8A==", + "license": "MIT" + }, + "node_modules/file-entry-cache": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/file-entry-cache/-/file-entry-cache-8.0.0.tgz", + "integrity": "sha512-XXTUwCvisa5oacNGRP9SfNtYBNAMi+RPwBFmblZEF7N7swHYQS6/Zfk7SRwx4D5j3CH211YNRco1DEMNVfZCnQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "flat-cache": "^4.0.0" + }, + "engines": { + "node": ">=16.0.0" + } + }, + "node_modules/fill-range": { + "version": "7.1.1", + "resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.1.1.tgz", + "integrity": "sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==", + "license": "MIT", + "dependencies": { + "to-regex-range": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/find-up": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/find-up/-/find-up-5.0.0.tgz", + "integrity": "sha512-78/PXT1wlLLDgTzDs7sjq9hzz0vXD+zn+7wypEe4fXQxCmdmqfGsEPQxmiCSQI3ajFV91bVSsvNtrJRiW6nGng==", + "dev": true, + "license": "MIT", + "dependencies": { + "locate-path": "^6.0.0", + "path-exists": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/flat-cache": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/flat-cache/-/flat-cache-4.0.1.tgz", + "integrity": "sha512-f7ccFPK3SXFHpx15UIGyRJ/FJQctuKZ0zVuN3frBo4HnK3cay9VEW0R6yPYFHC0AgqhukPzKjq22t5DmAyqGyw==", + "dev": true, + "license": "MIT", + "dependencies": { + "flatted": "^3.2.9", + "keyv": "^4.5.4" + }, + "engines": { + "node": ">=16" + } + }, + "node_modules/flatted": { + "version": "3.3.3", + "resolved": "https://registry.npmjs.org/flatted/-/flatted-3.3.3.tgz", + "integrity": "sha512-GX+ysw4PBCz0PzosHDepZGANEuFCMLrnRTiEy9McGjmkCQYwRq4A/X786G/fjM/+OjsWSU1ZrY5qyARZmO/uwg==", + "dev": true, + "license": "ISC" + }, + "node_modules/foreground-child": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/foreground-child/-/foreground-child-3.3.1.tgz", + "integrity": "sha512-gIXjKqtFuWEgzFRJA9WCQeSJLZDjgJUOMCMzxtvFq/37KojM1BFGufqsCy0r4qSQmYLsZYMeyRqzIWOMup03sw==", + "license": "ISC", + "dependencies": { + "cross-spawn": "^7.0.6", + "signal-exit": "^4.0.1" + }, + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/fraction.js": { + "version": "4.3.7", + "resolved": "https://registry.npmjs.org/fraction.js/-/fraction.js-4.3.7.tgz", + "integrity": "sha512-ZsDfxO51wGAXREY55a7la9LScWpwv9RxIrYABrlvOFBlH/ShPnrtsXeuUIfXKKOVicNxQ+o8JTbJvjS4M89yew==", + "dev": true, + "license": "MIT", + "engines": { + "node": "*" + }, + "funding": { + "type": "patreon", + "url": "https://github.com/sponsors/rawify" + } + }, + "node_modules/fsevents": { + "version": "2.3.3", + "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.3.tgz", + "integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==", + "hasInstallScript": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": "^8.16.0 || ^10.6.0 || >=11.0.0" + } + }, + "node_modules/function-bind": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz", + "integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==", + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-nonce": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/get-nonce/-/get-nonce-1.0.1.tgz", + "integrity": "sha512-FJhYRoDaiatfEkUK8HKlicmu/3SGFD51q3itKDGoSTysQJBnfOcxU5GxnhE1E6soB76MbT0MBtnKJuXyAx+96Q==", + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/glob": { + "version": "10.4.5", + "resolved": "https://registry.npmjs.org/glob/-/glob-10.4.5.tgz", + "integrity": "sha512-7Bv8RF0k6xjo7d4A/PxYLbUCfb6c+Vpd2/mB2yRDlew7Jb5hEXiCD9ibfO7wpk8i4sevK6DFny9h7EYbM3/sHg==", + "license": "ISC", + "dependencies": { + "foreground-child": "^3.1.0", + "jackspeak": "^3.1.2", + "minimatch": "^9.0.4", + "minipass": "^7.1.2", + "package-json-from-dist": "^1.0.0", + "path-scurry": "^1.11.1" + }, + "bin": { + "glob": "dist/esm/bin.mjs" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/glob-parent": { + "version": "6.0.2", + "resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-6.0.2.tgz", + "integrity": "sha512-XxwI8EOhVQgWp6iDL+3b0r86f4d6AX6zSU55HfB4ydCEuXLXc5FcYeOu+nnGftS4TEju/11rt4KJPTMgbfmv4A==", + "license": "ISC", + "dependencies": { + "is-glob": "^4.0.3" + }, + "engines": { + "node": ">=10.13.0" + } + }, + "node_modules/glob/node_modules/brace-expansion": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.2.tgz", + "integrity": "sha512-Jt0vHyM+jmUBqojB7E1NIYadt0vI0Qxjxd2TErW94wDz+E2LAm5vKMXXwg6ZZBTHPuUlDgQHKXvjGBdfcF1ZDQ==", + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0" + } + }, + "node_modules/glob/node_modules/minimatch": { + "version": "9.0.5", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.5.tgz", + "integrity": "sha512-G6T0ZX48xgozx7587koeX9Ys2NYy6Gmv//P89sEte9V9whIapMNF4idKxnW2QtCcLiTWlb/wfCabAtAFWhhBow==", + "license": "ISC", + "dependencies": { + "brace-expansion": "^2.0.1" + }, + "engines": { + "node": ">=16 || 14 >=14.17" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/globals": { + "version": "15.15.0", + "resolved": "https://registry.npmjs.org/globals/-/globals-15.15.0.tgz", + "integrity": "sha512-7ACyT3wmyp3I61S4fG682L0VA2RGD9otkqGJIwNUMF1SWUombIIk+af1unuDYgMm082aHYwD+mzJvv9Iu8dsgg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=18" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/glsl-noise": { + "version": "0.0.0", + "resolved": "https://registry.npmjs.org/glsl-noise/-/glsl-noise-0.0.0.tgz", + "integrity": "sha512-b/ZCF6amfAUb7dJM/MxRs7AetQEahYzJ8PtgfrmEdtw6uyGOr+ZSGtgjFm6mfsBkxJ4d2W7kg+Nlqzqvn3Bc0w==", + "license": "MIT" + }, + "node_modules/graphemer": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/graphemer/-/graphemer-1.4.0.tgz", + "integrity": "sha512-EtKwoO6kxCL9WO5xipiHTZlSzBm7WLT627TqC/uVRd0HKmq8NXyebnNYxDoBi7wt8eTWrUrKXCOVaFq9x1kgag==", + "dev": true, + "license": "MIT" + }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/hasown": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz", + "integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==", + "license": "MIT", + "dependencies": { + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/hls.js": { + "version": "1.6.11", + "resolved": "https://registry.npmjs.org/hls.js/-/hls.js-1.6.11.tgz", + "integrity": "sha512-tdDwOAgPGXohSiNE4oxGr3CI9Hx9lsGLFe6TULUvRk2TfHS+w1tSAJntrvxsHaxvjtr6BXsDZM7NOqJFhU4mmg==", + "license": "Apache-2.0" + }, + "node_modules/ieee754": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/ieee754/-/ieee754-1.2.1.tgz", + "integrity": "sha512-dcyqhDvX1C46lXZcVqCpK+FtMRQVdIMN6/Df5js2zouUsqG7I6sFxitIC+7KYK29KdXOLHdu9zL4sFnoVQnqaA==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/feross" + }, + { + "type": "patreon", + "url": "https://www.patreon.com/feross" + }, + { + "type": "consulting", + "url": "https://feross.org/support" + } + ], + "license": "BSD-3-Clause" + }, + "node_modules/ignore": { + "version": "5.3.2", + "resolved": "https://registry.npmjs.org/ignore/-/ignore-5.3.2.tgz", + "integrity": "sha512-hsBTNUqQTDwkWtcdYI2i06Y/nUBEsNEDJKjWdigLvegy8kDuJAS8uRlpkkcQpyEXL0Z/pjDy5HBmMjRCJ2gq+g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 4" + } + }, + "node_modules/immediate": { + "version": "3.0.6", + "resolved": "https://registry.npmjs.org/immediate/-/immediate-3.0.6.tgz", + "integrity": "sha512-XXOFtyqDjNDAQxVfYxuF7g9Il/IbWmmlQg2MYKOH8ExIT1qg6xc4zyS3HaEEATgs1btfzxq15ciUiY7gjSXRGQ==", + "license": "MIT" + }, + "node_modules/import-fresh": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/import-fresh/-/import-fresh-3.3.1.tgz", + "integrity": "sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "parent-module": "^1.0.0", + "resolve-from": "^4.0.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/imurmurhash": { + "version": "0.1.4", + "resolved": "https://registry.npmjs.org/imurmurhash/-/imurmurhash-0.1.4.tgz", + "integrity": "sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.8.19" + } + }, + "node_modules/input-otp": { + "version": "1.4.2", + "resolved": "https://registry.npmjs.org/input-otp/-/input-otp-1.4.2.tgz", + "integrity": "sha512-l3jWwYNvrEa6NTCt7BECfCm48GvwuZzkoeG3gBL2w4CHeOXW3eKFmf9UNYkNfYc3mxMrthMnxjIE07MT0zLBQA==", + "license": "MIT", + "peerDependencies": { + "react": "^16.8 || ^17.0 || ^18.0 || ^19.0.0 || ^19.0.0-rc", + "react-dom": "^16.8 || ^17.0 || ^18.0 || ^19.0.0 || ^19.0.0-rc" + } + }, + "node_modules/internmap": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/internmap/-/internmap-2.0.3.tgz", + "integrity": "sha512-5Hh7Y1wQbvY5ooGgPbDaL5iYLAPzMTUrjMulskHLH6wnv/A+1q5rgEaiuqEjB+oxGXIVZs1FF+R/KPN3ZSQYYg==", + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/is-binary-path": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/is-binary-path/-/is-binary-path-2.1.0.tgz", + "integrity": "sha512-ZMERYes6pDydyuGidse7OsHxtbI7WVeUEozgR/g7rd0xUimYNlvZRE/K2MgZTjWy725IfelLeVcEM97mmtRGXw==", + "license": "MIT", + "dependencies": { + "binary-extensions": "^2.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/is-core-module": { + "version": "2.16.1", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.16.1.tgz", + "integrity": "sha512-UfoeMA6fIJ8wTYFEUjelnaGI67v6+N7qXJEvQuIGa99l4xsCruSYOVSQ0uPANn4dAzm8lkYPaKLrrijLq7x23w==", + "license": "MIT", + "dependencies": { + "hasown": "^2.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-extglob": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/is-extglob/-/is-extglob-2.1.1.tgz", + "integrity": "sha512-SbKbANkN603Vi4jEZv49LeVJMn4yGwsbzZworEoyEiutsN3nJYdbO36zfhGJ6QEDpOZIFkDtnq5JRxmvl3jsoQ==", + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/is-fullwidth-code-point": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz", + "integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/is-glob": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/is-glob/-/is-glob-4.0.3.tgz", + "integrity": "sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg==", + "license": "MIT", + "dependencies": { + "is-extglob": "^2.1.1" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/is-number": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz", + "integrity": "sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==", + "license": "MIT", + "engines": { + "node": ">=0.12.0" + } + }, + "node_modules/is-promise": { + "version": "2.2.2", + "resolved": "https://registry.npmjs.org/is-promise/-/is-promise-2.2.2.tgz", + "integrity": "sha512-+lP4/6lKUBfQjZ2pdxThZvLUAafmZb8OAxFb8XXtiQmS35INgr85hdOGoEs124ez1FCnZJt6jau/T+alh58QFQ==", + "license": "MIT" + }, + "node_modules/isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "license": "ISC" + }, + "node_modules/its-fine": { + "version": "1.2.5", + "resolved": "https://registry.npmjs.org/its-fine/-/its-fine-1.2.5.tgz", + "integrity": "sha512-fXtDA0X0t0eBYAGLVM5YsgJGsJ5jEmqZEPrGbzdf5awjv0xE7nqv3TVnvtUF060Tkes15DbDAKW/I48vsb6SyA==", + "license": "MIT", + "dependencies": { + "@types/react-reconciler": "^0.28.0" + }, + "peerDependencies": { + "react": ">=18.0" + } + }, + "node_modules/its-fine/node_modules/@types/react-reconciler": { + "version": "0.28.9", + "resolved": "https://registry.npmjs.org/@types/react-reconciler/-/react-reconciler-0.28.9.tgz", + "integrity": "sha512-HHM3nxyUZ3zAylX8ZEyrDNd2XZOnQ0D5XfunJF5FLQnZbHHYq4UWvW1QfelQNXv1ICNkwYhfxjwfnqivYB6bFg==", + "license": "MIT", + "peerDependencies": { + "@types/react": "*" + } + }, + "node_modules/jackspeak": { + "version": "3.4.3", + "resolved": "https://registry.npmjs.org/jackspeak/-/jackspeak-3.4.3.tgz", + "integrity": "sha512-OGlZQpz2yfahA/Rd1Y8Cd9SIEsqvXkLVoSw/cgwhnhFMDbsQFeZYoJJ7bIZBS9BcamUW96asq/npPWugM+RQBw==", + "license": "BlueOak-1.0.0", + "dependencies": { + "@isaacs/cliui": "^8.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + }, + "optionalDependencies": { + "@pkgjs/parseargs": "^0.11.0" + } + }, + "node_modules/jiti": { + "version": "1.21.7", + "resolved": "https://registry.npmjs.org/jiti/-/jiti-1.21.7.tgz", + "integrity": "sha512-/imKNG4EbWNrVjoNC/1H5/9GFy+tqjGBHCaSsN+P2RnPqjsLmv6UD3Ej+Kj8nBWaRAwyk7kK5ZUc+OEatnTR3A==", + "license": "MIT", + "bin": { + "jiti": "bin/jiti.js" + } + }, + "node_modules/js-tokens": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz", + "integrity": "sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==", + "license": "MIT" + }, + "node_modules/js-yaml": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-4.1.0.tgz", + "integrity": "sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==", + "dev": true, + "license": "MIT", + "dependencies": { + "argparse": "^2.0.1" + }, + "bin": { + "js-yaml": "bin/js-yaml.js" + } + }, + "node_modules/json-buffer": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/json-buffer/-/json-buffer-3.0.1.tgz", + "integrity": "sha512-4bV5BfR2mqfQTJm+V5tPPdf+ZpuhiIvTuAB5g8kcrXOZpTT/QwwVRWBywX1ozr6lEuPdbHxwaJlm9G6mI2sfSQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/json-schema-traverse": { + "version": "0.4.1", + "resolved": "https://registry.npmjs.org/json-schema-traverse/-/json-schema-traverse-0.4.1.tgz", + "integrity": "sha512-xbbCH5dCYU5T8LcEhhuh7HJ88HXuW3qsI3Y0zOZFKfZEHcpWiHU/Jxzk629Brsab/mMiHQti9wMP+845RPe3Vg==", + "dev": true, + "license": "MIT" + }, + "node_modules/json-stable-stringify-without-jsonify": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/json-stable-stringify-without-jsonify/-/json-stable-stringify-without-jsonify-1.0.1.tgz", + "integrity": "sha512-Bdboy+l7tA3OGW6FjyFHWkP5LuByj1Tk33Ljyq0axyzdk9//JSi2u3fP1QSmd1KNwq6VOKYGlAu87CisVir6Pw==", + "dev": true, + "license": "MIT" + }, + "node_modules/keyv": { + "version": "4.5.4", + "resolved": "https://registry.npmjs.org/keyv/-/keyv-4.5.4.tgz", + "integrity": "sha512-oxVHkHR/EJf2CNXnWxRLW6mg7JyCCUcG0DtEGmL2ctUo1PNTin1PUil+r/+4r5MpVgC/fn1kjsx7mjSujKqIpw==", + "dev": true, + "license": "MIT", + "dependencies": { + "json-buffer": "3.0.1" + } + }, + "node_modules/levn": { + "version": "0.4.1", + "resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz", + "integrity": "sha512-+bT2uH4E5LGE7h/n3evcS/sQlJXCpIp6ym8OWJ5eV6+67Dsql/LaaT7qJBAt2rzfoa/5QBGBhxDix1dMt2kQKQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "prelude-ls": "^1.2.1", + "type-check": "~0.4.0" + }, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/lie": { + "version": "3.3.0", + "resolved": "https://registry.npmjs.org/lie/-/lie-3.3.0.tgz", + "integrity": "sha512-UaiMJzeWRlEujzAuw5LokY1L5ecNQYZKfmyZ9L7wDHb/p5etKaxXhohBcrw0EYby+G/NA52vRSN4N39dxHAIwQ==", + "license": "MIT", + "dependencies": { + "immediate": "~3.0.5" + } + }, + "node_modules/lilconfig": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/lilconfig/-/lilconfig-3.1.3.tgz", + "integrity": "sha512-/vlFKAoH5Cgt3Ie+JLhRbwOsCQePABiU3tJ1egGvyQ+33R/vcwM2Zl2QR/LzjsBeItPt3oSVXapn+m4nQDvpzw==", + "license": "MIT", + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/sponsors/antonk52" + } + }, + "node_modules/lines-and-columns": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/lines-and-columns/-/lines-and-columns-1.2.4.tgz", + "integrity": "sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==", + "license": "MIT" + }, + "node_modules/locate-path": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/locate-path/-/locate-path-6.0.0.tgz", + "integrity": "sha512-iPZK6eYjbxRu3uB4/WZ3EsEIMJFMqAoopl3R+zuq0UjcAm/MO6KCweDgPfP3elTztoKP3KtnVHxTn2NHBSDVUw==", + "dev": true, + "license": "MIT", + "dependencies": { + "p-locate": "^5.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/lodash": { + "version": "4.17.21", + "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.21.tgz", + "integrity": "sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==", + "license": "MIT" + }, + "node_modules/lodash.castarray": { + "version": "4.4.0", + "resolved": "https://registry.npmjs.org/lodash.castarray/-/lodash.castarray-4.4.0.tgz", + "integrity": "sha512-aVx8ztPv7/2ULbArGJ2Y42bG1mEQ5mGjpdvrbJcJFU3TbYybe+QlLS4pst9zV52ymy2in1KpFPiZnAOATxD4+Q==", + "dev": true, + "license": "MIT" + }, + "node_modules/lodash.debounce": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/lodash.debounce/-/lodash.debounce-4.0.8.tgz", + "integrity": "sha512-FT1yDzDYEoYWhnSGnpE/4Kj1fLZkDFyqRb7fNt6FdYOSxlUWAtp42Eh6Wb0rGIv/m9Bgo7x4GhQbm5Ys4SG5ow==", + "license": "MIT" + }, + "node_modules/lodash.isplainobject": { + "version": "4.0.6", + "resolved": "https://registry.npmjs.org/lodash.isplainobject/-/lodash.isplainobject-4.0.6.tgz", + "integrity": "sha512-oSXzaWypCMHkPC3NvBEaPHf0KsA5mvPrOPgQWDsbg8n7orZ290M0BmC/jgRZ4vcJ6DTAhjrsSYgdsW/F+MFOBA==", + "dev": true, + "license": "MIT" + }, + "node_modules/lodash.merge": { + "version": "4.6.2", + "resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz", + "integrity": "sha512-0KpjqXRVvrYyCsX1swR/XTK0va6VQkQM6MNo7PqW77ByjAhoARA8EfrP1N4+KlKj8YS0ZUCtRT/YUuhyYDujIQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/loose-envify": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/loose-envify/-/loose-envify-1.4.0.tgz", + "integrity": "sha512-lyuxPGr/Wfhrlem2CL/UcnUc1zcqKAImBDzukY7Y5F/yQiNdko6+fRLevlw1HgMySw7f611UIY408EtxRSoK3Q==", + "license": "MIT", + "dependencies": { + "js-tokens": "^3.0.0 || ^4.0.0" + }, + "bin": { + "loose-envify": "cli.js" + } + }, + "node_modules/lru-cache": { + "version": "10.4.3", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-10.4.3.tgz", + "integrity": "sha512-JNAzZcXrCt42VGLuYz0zfAzDfAvJWW6AfYlDBQyDV5DClI2m5sAmK+OIO7s59XfsRsWHp02jAJrRadPRGTt6SQ==", + "license": "ISC" + }, + "node_modules/lucide-react": { + "version": "0.462.0", + "resolved": "https://registry.npmjs.org/lucide-react/-/lucide-react-0.462.0.tgz", + "integrity": "sha512-NTL7EbAao9IFtuSivSZgrAh4fZd09Lr+6MTkqIxuHaH2nnYiYIzXPo06cOxHg9wKLdj6LL8TByG4qpePqwgx/g==", + "license": "ISC", + "peerDependencies": { + "react": "^16.5.1 || ^17.0.0 || ^18.0.0 || ^19.0.0-rc" + } + }, + "node_modules/maath": { + "version": "0.10.8", + "resolved": "https://registry.npmjs.org/maath/-/maath-0.10.8.tgz", + "integrity": "sha512-tRvbDF0Pgqz+9XUa4jjfgAQ8/aPKmQdWXilFu2tMy4GWj4NOsx99HlULO4IeREfbO3a0sA145DZYyvXPkybm0g==", + "license": "MIT", + "peerDependencies": { + "@types/three": ">=0.134.0", + "three": ">=0.134.0" + } + }, + "node_modules/merge2": { + "version": "1.4.1", + "resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz", + "integrity": "sha512-8q7VEgMJW4J8tcfVPy8g09NcQwZdbwFEqhe/WZkoIzjn/3TGDwtOCYtXGxA3O8tPzpczCCDgv+P2P5y00ZJOOg==", + "license": "MIT", + "engines": { + "node": ">= 8" + } + }, + "node_modules/meshline": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/meshline/-/meshline-3.3.1.tgz", + "integrity": "sha512-/TQj+JdZkeSUOl5Mk2J7eLcYTLiQm2IDzmlSvYm7ov15anEcDJ92GHqqazxTSreeNgfnYu24kiEvvv0WlbCdFQ==", + "license": "MIT", + "peerDependencies": { + "three": ">=0.137" + } + }, + "node_modules/meshoptimizer": { + "version": "0.22.0", + "resolved": "https://registry.npmjs.org/meshoptimizer/-/meshoptimizer-0.22.0.tgz", + "integrity": "sha512-IebiK79sqIy+E4EgOr+CAw+Ke8hAspXKzBd0JdgEmPHiAwmvEj2S4h1rfvo+o/BnfEYd/jAOg5IeeIjzlzSnDg==", + "license": "MIT" + }, + "node_modules/micromatch": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.8.tgz", + "integrity": "sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA==", + "license": "MIT", + "dependencies": { + "braces": "^3.0.3", + "picomatch": "^2.3.1" + }, + "engines": { + "node": ">=8.6" + } + }, + "node_modules/minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "license": "ISC", + "dependencies": { + "brace-expansion": "^1.1.7" + }, + "engines": { + "node": "*" + } + }, + "node_modules/minipass": { + "version": "7.1.2", + "resolved": "https://registry.npmjs.org/minipass/-/minipass-7.1.2.tgz", + "integrity": "sha512-qOOzS1cBTWYF4BH8fVePDBOO9iptMnGUEZwNc/cMWnTV2nVLZ7VoNWEPHkYczZA0pdoA7dl6e7FL659nX9S2aw==", + "license": "ISC", + "engines": { + "node": ">=16 || 14 >=14.17" + } + }, + "node_modules/ms": { + "version": "2.1.3", + "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz", + "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==", + "dev": true, + "license": "MIT" + }, + "node_modules/mz": { + "version": "2.7.0", + "resolved": "https://registry.npmjs.org/mz/-/mz-2.7.0.tgz", + "integrity": "sha512-z81GNO7nnYMEhrGh9LeymoE4+Yr0Wn5McHIZMK5cfQCl+NDX08sCZgUc9/6MHni9IWuFLm1Z3HTCXu2z9fN62Q==", + "license": "MIT", + "dependencies": { + "any-promise": "^1.0.0", + "object-assign": "^4.0.1", + "thenify-all": "^1.0.0" + } + }, + "node_modules/n8ao": { + "version": "1.10.1", + "resolved": "https://registry.npmjs.org/n8ao/-/n8ao-1.10.1.tgz", + "integrity": "sha512-hhI1pC+BfOZBV1KMwynBrVlIm8wqLxj/abAWhF2nZ0qQKyzTSQa1QtLVS2veRiuoBQXojxobcnp0oe+PUoxf/w==", + "license": "ISC", + "peerDependencies": { + "postprocessing": ">=6.30.0", + "three": ">=0.137" + } + }, + "node_modules/nanoid": { + "version": "3.3.11", + "resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.11.tgz", + "integrity": "sha512-N8SpfPUnUp1bK+PMYW8qSWdl9U+wwNWI4QKxOYDy9JAro3WMX7p2OeVRF9v+347pnakNevPmiHhNmZ2HbFA76w==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "bin": { + "nanoid": "bin/nanoid.cjs" + }, + "engines": { + "node": "^10 || ^12 || ^13.7 || ^14 || >=15.0.1" + } + }, + "node_modules/natural-compare": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz", + "integrity": "sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==", + "dev": true, + "license": "MIT" + }, + "node_modules/next-themes": { + "version": "0.3.0", + "resolved": "https://registry.npmjs.org/next-themes/-/next-themes-0.3.0.tgz", + "integrity": "sha512-/QHIrsYpd6Kfk7xakK4svpDI5mmXP0gfvCoJdGpZQ2TOrQZmsW0QxjaiLn8wbIKjtm4BTSqLoix4lxYYOnLJ/w==", + "license": "MIT", + "peerDependencies": { + "react": "^16.8 || ^17 || ^18", + "react-dom": "^16.8 || ^17 || ^18" + } + }, + "node_modules/node-releases": { + "version": "2.0.19", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.19.tgz", + "integrity": "sha512-xxOWJsBKtzAq7DY0J+DTzuz58K8e7sJbdgwkbMWQe8UYB6ekmsQ45q0M/tJDsGaZmbC+l7n57UV8Hl5tHxO9uw==", + "dev": true, + "license": "MIT" + }, + "node_modules/normalize-path": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz", + "integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==", + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/normalize-range": { + "version": "0.1.2", + "resolved": "https://registry.npmjs.org/normalize-range/-/normalize-range-0.1.2.tgz", + "integrity": "sha512-bdok/XvKII3nUpklnV6P2hxtMNrCboOjAcyBuQnWEhO665FwrSNRxU+AqpsyvO6LgGYPspN+lu5CLtw4jPRKNA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/object-assign": { + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/object-assign/-/object-assign-4.1.1.tgz", + "integrity": "sha512-rJgTQnkUnH1sFw8yT6VSU3zD3sWmu6sZhIseY8VX+GRu3P6F7Fu+JNDoXfklElbLJSnc3FUQHVe4cU5hj+BcUg==", + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/object-hash": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/object-hash/-/object-hash-3.0.0.tgz", + "integrity": "sha512-RSn9F68PjH9HqtltsSnqYC1XXoWe9Bju5+213R98cNGttag9q9yAOTzdbsqvIa7aNm5WffBZFpWYr2aWrklWAw==", + "license": "MIT", + "engines": { + "node": ">= 6" + } + }, + "node_modules/on-change": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/on-change/-/on-change-4.0.2.tgz", + "integrity": "sha512-cMtCyuJmTx/bg2HCpHo3ZLeF7FZnBOapLqZHr2AlLeJ5Ul0Zu2mUJJz051Fdwu/Et2YW04ZD+TtU+gVy0ACNCA==", + "license": "MIT", + "engines": { + "node": "^12.20.0 || ^14.13.1 || >=16.0.0" + }, + "funding": { + "url": "https://github.com/sindresorhus/on-change?sponsor=1" + } + }, + "node_modules/optionator": { + "version": "0.9.4", + "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.4.tgz", + "integrity": "sha512-6IpQ7mKUxRcZNLIObR0hz7lxsapSSIYNZJwXPGeF0mTVqGKFIXj1DQcMoT22S3ROcLyY/rz0PWaWZ9ayWmad9g==", + "dev": true, + "license": "MIT", + "dependencies": { + "deep-is": "^0.1.3", + "fast-levenshtein": "^2.0.6", + "levn": "^0.4.1", + "prelude-ls": "^1.2.1", + "type-check": "^0.4.0", + "word-wrap": "^1.2.5" + }, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-locate": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/p-locate/-/p-locate-5.0.0.tgz", + "integrity": "sha512-LaNjtRWUBY++zB5nE/NwcaoMylSPk+S+ZHNB1TzdbMJMny6dynpAGt7X/tl/QYq3TIeE6nxHppbo2LGymrG5Pw==", + "dev": true, + "license": "MIT", + "dependencies": { + "p-limit": "^3.0.2" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/package-json-from-dist": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/package-json-from-dist/-/package-json-from-dist-1.0.1.tgz", + "integrity": "sha512-UEZIS3/by4OC8vL3P2dTXRETpebLI2NiI5vIrjaD/5UtrkFX/tNbwjTSRAGC/+7CAo2pIcBaRgWmcBBHcsaCIw==", + "license": "BlueOak-1.0.0" + }, + "node_modules/parent-module": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/parent-module/-/parent-module-1.0.1.tgz", + "integrity": "sha512-GQ2EWRpQV8/o+Aw8YqtfZZPfNRWZYkbidE9k5rpl/hC3vtHHBfGm2Ifi6qWV+coDGkrUKZAxE3Lot5kcsRlh+g==", + "dev": true, + "license": "MIT", + "dependencies": { + "callsites": "^3.0.0" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/path-exists": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/path-exists/-/path-exists-4.0.0.tgz", + "integrity": "sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/path-key": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz", + "integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "license": "MIT" + }, + "node_modules/path-scurry": { + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/path-scurry/-/path-scurry-1.11.1.tgz", + "integrity": "sha512-Xa4Nw17FS9ApQFJ9umLiJS4orGjm7ZzwUrwamcGQuHSzDyth9boKDaycYdDcZDuqYATXw4HFXgaqWTctW/v1HA==", + "license": "BlueOak-1.0.0", + "dependencies": { + "lru-cache": "^10.2.0", + "minipass": "^5.0.0 || ^6.0.2 || ^7.0.0" + }, + "engines": { + "node": ">=16 || 14 >=14.18" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/picocolors": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.1.1.tgz", + "integrity": "sha512-xceH2snhtb5M9liqDsmEw56le376mTZkEX/jEb/RxNFyegNul7eNslCXP9FDj/Lcu0X8KEyMceP2ntpaHrDEVA==", + "license": "ISC" + }, + "node_modules/picomatch": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-2.3.1.tgz", + "integrity": "sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==", + "license": "MIT", + "engines": { + "node": ">=8.6" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/pify": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/pify/-/pify-2.3.0.tgz", + "integrity": "sha512-udgsAY+fTnvv7kI7aaxbqwWNb0AHiB0qBO89PZKPkoTmGOgdbrHDKD+0B2X4uTfJ/FT1R09r9gTsjUjNJotuog==", + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/pirates": { + "version": "4.0.7", + "resolved": "https://registry.npmjs.org/pirates/-/pirates-4.0.7.tgz", + "integrity": "sha512-TfySrs/5nm8fQJDcBDuUng3VOUKsd7S+zqvbOTiGXHfxX4wK31ard+hoNuvkicM/2YFzlpDgABOevKSsB4G/FA==", + "license": "MIT", + "engines": { + "node": ">= 6" + } + }, + "node_modules/postcss": { + "version": "8.5.6", + "resolved": "https://registry.npmjs.org/postcss/-/postcss-8.5.6.tgz", + "integrity": "sha512-3Ybi1tAuwAP9s0r1UQ2J4n5Y0G05bJkpUIO0/bI9MhwmD70S5aTWbXGBwxHrelT+XM1k6dM0pk+SwNkpTRN7Pg==", + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/postcss/" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/postcss" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "nanoid": "^3.3.11", + "picocolors": "^1.1.1", + "source-map-js": "^1.2.1" + }, + "engines": { + "node": "^10 || ^12 || >=14" + } + }, + "node_modules/postcss-import": { + "version": "15.1.0", + "resolved": "https://registry.npmjs.org/postcss-import/-/postcss-import-15.1.0.tgz", + "integrity": "sha512-hpr+J05B2FVYUAXHeK1YyI267J/dDDhMU6B6civm8hSY1jYJnBXxzKDKDswzJmtLHryrjhnDjqqp/49t8FALew==", + "license": "MIT", + "dependencies": { + "postcss-value-parser": "^4.0.0", + "read-cache": "^1.0.0", + "resolve": "^1.1.7" + }, + "engines": { + "node": ">=14.0.0" + }, + "peerDependencies": { + "postcss": "^8.0.0" + } + }, + "node_modules/postcss-js": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/postcss-js/-/postcss-js-4.0.1.tgz", + "integrity": "sha512-dDLF8pEO191hJMtlHFPRa8xsizHaM82MLfNkUHdUtVEV3tgTp5oj+8qbEqYM57SLfc74KSbw//4SeJma2LRVIw==", + "license": "MIT", + "dependencies": { + "camelcase-css": "^2.0.1" + }, + "engines": { + "node": "^12 || ^14 || >= 16" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/postcss/" + }, + "peerDependencies": { + "postcss": "^8.4.21" + } + }, + "node_modules/postcss-load-config": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/postcss-load-config/-/postcss-load-config-4.0.2.tgz", + "integrity": "sha512-bSVhyJGL00wMVoPUzAVAnbEoWyqRxkjv64tUl427SKnPrENtq6hJwUojroMz2VB+Q1edmi4IfrAPpami5VVgMQ==", + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/postcss/" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "lilconfig": "^3.0.0", + "yaml": "^2.3.4" + }, + "engines": { + "node": ">= 14" + }, + "peerDependencies": { + "postcss": ">=8.0.9", + "ts-node": ">=9.0.0" + }, + "peerDependenciesMeta": { + "postcss": { + "optional": true + }, + "ts-node": { + "optional": true + } + } + }, + "node_modules/postcss-nested": { + "version": "6.2.0", + "resolved": "https://registry.npmjs.org/postcss-nested/-/postcss-nested-6.2.0.tgz", + "integrity": "sha512-HQbt28KulC5AJzG+cZtj9kvKB93CFCdLvog1WFLf1D+xmMvPGlBstkpTEZfK5+AN9hfJocyBFCNiqyS48bpgzQ==", + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/postcss/" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "postcss-selector-parser": "^6.1.1" + }, + "engines": { + "node": ">=12.0" + }, + "peerDependencies": { + "postcss": "^8.2.14" + } + }, + "node_modules/postcss-nested/node_modules/postcss-selector-parser": { + "version": "6.1.2", + "resolved": "https://registry.npmjs.org/postcss-selector-parser/-/postcss-selector-parser-6.1.2.tgz", + "integrity": "sha512-Q8qQfPiZ+THO/3ZrOrO0cJJKfpYCagtMUkXbnEfmgUjwXg6z/WBeOyS9APBBPCTSiDV+s4SwQGu8yFsiMRIudg==", + "license": "MIT", + "dependencies": { + "cssesc": "^3.0.0", + "util-deprecate": "^1.0.2" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/postcss-selector-parser": { + "version": "6.0.10", + "resolved": "https://registry.npmjs.org/postcss-selector-parser/-/postcss-selector-parser-6.0.10.tgz", + "integrity": "sha512-IQ7TZdoaqbT+LCpShg46jnZVlhWD2w6iQYAcYXfHARZ7X1t/UGhhceQDs5X0cGqKvYlHNOuv7Oa1xmb0oQuA3w==", + "dev": true, + "license": "MIT", + "dependencies": { + "cssesc": "^3.0.0", + "util-deprecate": "^1.0.2" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/postcss-value-parser": { + "version": "4.2.0", + "resolved": "https://registry.npmjs.org/postcss-value-parser/-/postcss-value-parser-4.2.0.tgz", + "integrity": "sha512-1NNCs6uurfkVbeXG4S8JFT9t19m45ICnif8zWLd5oPSZ50QnwMfK+H3jv408d4jw/7Bttv5axS5IiHoLaVNHeQ==", + "license": "MIT" + }, + "node_modules/postprocessing": { + "version": "6.37.7", + "resolved": "https://registry.npmjs.org/postprocessing/-/postprocessing-6.37.7.tgz", + "integrity": "sha512-3mXzCyhHQvw6cMQKzvHUzQVsy21yC3PZMIeH7KUjx+EVqLWRFPnARh4DEnnFJ+tE08mmIHrrN7UtxVR1Gxbokw==", + "license": "Zlib", + "peerDependencies": { + "three": ">= 0.157.0 < 0.180.0" + } + }, + "node_modules/potpack": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/potpack/-/potpack-1.0.2.tgz", + "integrity": "sha512-choctRBIV9EMT9WGAZHn3V7t0Z2pMQyl0EZE6pFc/6ml3ssw7Dlf/oAOvFwjm1HVsqfQN8GfeFyJ+d8tRzqueQ==", + "license": "ISC" + }, + "node_modules/prelude-ls": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/prelude-ls/-/prelude-ls-1.2.1.tgz", + "integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/promise-worker-transferable": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/promise-worker-transferable/-/promise-worker-transferable-1.0.4.tgz", + "integrity": "sha512-bN+0ehEnrXfxV2ZQvU2PetO0n4gqBD4ulq3MI1WOPLgr7/Mg9yRQkX5+0v1vagr74ZTsl7XtzlaYDo2EuCeYJw==", + "license": "Apache-2.0", + "dependencies": { + "is-promise": "^2.1.0", + "lie": "^3.0.2" + } + }, + "node_modules/prop-types": { + "version": "15.8.1", + "resolved": "https://registry.npmjs.org/prop-types/-/prop-types-15.8.1.tgz", + "integrity": "sha512-oj87CgZICdulUohogVAR7AjlC0327U4el4L6eAvOqCeudMDVU0NThNaV+b9Df4dXgSP1gXMTnPdhfe/2qDH5cg==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.4.0", + "object-assign": "^4.1.1", + "react-is": "^16.13.1" + } + }, + "node_modules/punycode": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.1.tgz", + "integrity": "sha512-vYt7UD1U9Wg6138shLtLOvdAu+8DsC/ilFtEVHcH+wydcSpNE20AfSOduf6MkRFahL5FY7X1oU7nKVZFtfq8Fg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/queue-microtask": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/queue-microtask/-/queue-microtask-1.2.3.tgz", + "integrity": "sha512-NuaNSa6flKT5JaSYQzJok04JzTL1CA6aGhv5rfLW3PgqA+M2ChpZQnAC8h8i4ZFkBS8X5RqkDBHA7r4hej3K9A==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/feross" + }, + { + "type": "patreon", + "url": "https://www.patreon.com/feross" + }, + { + "type": "consulting", + "url": "https://feross.org/support" + } + ], + "license": "MIT" + }, + "node_modules/react": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react/-/react-18.3.1.tgz", + "integrity": "sha512-wS+hAgJShR0KhEvPJArfuPVN1+Hz1t0Y6n5jLrGQbkb4urgPE/0Rve+1kMB1v/oWgHgm4WIcV+i7F2pTVj+2iQ==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.1.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/react-composer": { + "version": "5.0.3", + "resolved": "https://registry.npmjs.org/react-composer/-/react-composer-5.0.3.tgz", + "integrity": "sha512-1uWd07EME6XZvMfapwZmc7NgCZqDemcvicRi3wMJzXsQLvZ3L7fTHVyPy1bZdnWXM4iPjYuNE+uJ41MLKeTtnA==", + "license": "MIT", + "dependencies": { + "prop-types": "^15.6.0" + }, + "peerDependencies": { + "react": "^15.0.0 || ^16.0.0 || ^17.0.0 || ^18.0.0" + } + }, + "node_modules/react-day-picker": { + "version": "8.10.1", + "resolved": "https://registry.npmjs.org/react-day-picker/-/react-day-picker-8.10.1.tgz", + "integrity": "sha512-TMx7fNbhLk15eqcMt+7Z7S2KF7mfTId/XJDjKE8f+IUcFn0l08/kI4FiYTL/0yuOLmEcbR4Fwe3GJf/NiiMnPA==", + "license": "MIT", + "funding": { + "type": "individual", + "url": "https://github.com/sponsors/gpbl" + }, + "peerDependencies": { + "date-fns": "^2.28.0 || ^3.0.0", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0" + } + }, + "node_modules/react-dom": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react-dom/-/react-dom-18.3.1.tgz", + "integrity": "sha512-5m4nQKp+rZRb09LNH59GM4BxTh9251/ylbKIbpe7TpGxfJ+9kv6BLkLBXIjjspbgbnIBNqlI23tRnTWT0snUIw==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.1.0", + "scheduler": "^0.23.2" + }, + "peerDependencies": { + "react": "^18.3.1" + } + }, + "node_modules/react-dom/node_modules/scheduler": { + "version": "0.23.2", + "resolved": "https://registry.npmjs.org/scheduler/-/scheduler-0.23.2.tgz", + "integrity": "sha512-UOShsPwz7NrMUqhR6t0hWjFduvOzbtv7toDH1/hIrfRNIDBnnBWd0CwJTGvTpngVlmwGCdP9/Zl/tVrDqcuYzQ==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.1.0" + } + }, + "node_modules/react-hook-form": { + "version": "7.62.0", + "resolved": "https://registry.npmjs.org/react-hook-form/-/react-hook-form-7.62.0.tgz", + "integrity": "sha512-7KWFejc98xqG/F4bAxpL41NB3o1nnvQO1RWZT3TqRZYL8RryQETGfEdVnJN2fy1crCiBLLjkRBVK05j24FxJGA==", + "license": "MIT", + "engines": { + "node": ">=18.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/react-hook-form" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17 || ^18 || ^19" + } + }, + "node_modules/react-is": { + "version": "16.13.1", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-16.13.1.tgz", + "integrity": "sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ==", + "license": "MIT" + }, + "node_modules/react-merge-refs": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/react-merge-refs/-/react-merge-refs-2.1.1.tgz", + "integrity": "sha512-jLQXJ/URln51zskhgppGJ2ub7b2WFKGq3cl3NYKtlHoTG+dN2q7EzWrn3hN3EgPsTMvpR9tpq5ijdp7YwFZkag==", + "license": "MIT", + "funding": { + "type": "github", + "url": "https://github.com/sponsors/gregberge" + } + }, + "node_modules/react-reconciler": { + "version": "0.27.0", + "resolved": "https://registry.npmjs.org/react-reconciler/-/react-reconciler-0.27.0.tgz", + "integrity": "sha512-HmMDKciQjYmBRGuuhIaKA1ba/7a+UsM5FzOZsMO2JYHt9Jh8reCb7j1eDC95NOyUlKM9KRyvdx0flBuDvYSBoA==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.1.0", + "scheduler": "^0.21.0" + }, + "engines": { + "node": ">=0.10.0" + }, + "peerDependencies": { + "react": "^18.0.0" + } + }, + "node_modules/react-remove-scroll": { + "version": "2.7.1", + "resolved": "https://registry.npmjs.org/react-remove-scroll/-/react-remove-scroll-2.7.1.tgz", + "integrity": "sha512-HpMh8+oahmIdOuS5aFKKY6Pyog+FNaZV/XyJOq7b4YFwsFHe5yYfdbIalI4k3vU2nSDql7YskmUseHsRrJqIPA==", + "license": "MIT", + "dependencies": { + "react-remove-scroll-bar": "^2.3.7", + "react-style-singleton": "^2.2.3", + "tslib": "^2.1.0", + "use-callback-ref": "^1.3.3", + "use-sidecar": "^1.1.3" + }, + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/react-remove-scroll-bar": { + "version": "2.3.8", + "resolved": "https://registry.npmjs.org/react-remove-scroll-bar/-/react-remove-scroll-bar-2.3.8.tgz", + "integrity": "sha512-9r+yi9+mgU33AKcj6IbT9oRCO78WriSj6t/cF8DWBZJ9aOGPOTEDvdUDz1FwKim7QXWwmHqtdHnRJfhAxEG46Q==", + "license": "MIT", + "dependencies": { + "react-style-singleton": "^2.2.2", + "tslib": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/react-resizable-panels": { + "version": "2.1.9", + "resolved": "https://registry.npmjs.org/react-resizable-panels/-/react-resizable-panels-2.1.9.tgz", + "integrity": "sha512-z77+X08YDIrgAes4jl8xhnUu1LNIRp4+E7cv4xHmLOxxUPO/ML7PSrE813b90vj7xvQ1lcf7g2uA9GeMZonjhQ==", + "license": "MIT", + "peerDependencies": { + "react": "^16.14.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc", + "react-dom": "^16.14.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + } + }, + "node_modules/react-router": { + "version": "6.30.1", + "resolved": "https://registry.npmjs.org/react-router/-/react-router-6.30.1.tgz", + "integrity": "sha512-X1m21aEmxGXqENEPG3T6u0Th7g0aS4ZmoNynhbs+Cn+q+QGTLt+d5IQ2bHAXKzKcxGJjxACpVbnYQSCRcfxHlQ==", + "license": "MIT", + "dependencies": { + "@remix-run/router": "1.23.0" + }, + "engines": { + "node": ">=14.0.0" + }, + "peerDependencies": { + "react": ">=16.8" + } + }, + "node_modules/react-router-dom": { + "version": "6.30.1", + "resolved": "https://registry.npmjs.org/react-router-dom/-/react-router-dom-6.30.1.tgz", + "integrity": "sha512-llKsgOkZdbPU1Eg3zK8lCn+sjD9wMRZZPuzmdWWX5SUs8OFkN5HnFVC0u5KMeMaC9aoancFI/KoLuKPqN+hxHw==", + "license": "MIT", + "dependencies": { + "@remix-run/router": "1.23.0", + "react-router": "6.30.1" + }, + "engines": { + "node": ">=14.0.0" + }, + "peerDependencies": { + "react": ">=16.8", + "react-dom": ">=16.8" + } + }, + "node_modules/react-smooth": { + "version": "4.0.4", + "resolved": "https://registry.npmjs.org/react-smooth/-/react-smooth-4.0.4.tgz", + "integrity": "sha512-gnGKTpYwqL0Iii09gHobNolvX4Kiq4PKx6eWBCYYix+8cdw+cGo3do906l1NBPKkSWx1DghC1dlWG9L2uGd61Q==", + "license": "MIT", + "dependencies": { + "fast-equals": "^5.0.1", + "prop-types": "^15.8.1", + "react-transition-group": "^4.4.5" + }, + "peerDependencies": { + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0", + "react-dom": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0" + } + }, + "node_modules/react-style-singleton": { + "version": "2.2.3", + "resolved": "https://registry.npmjs.org/react-style-singleton/-/react-style-singleton-2.2.3.tgz", + "integrity": "sha512-b6jSvxvVnyptAiLjbkWLE/lOnR4lfTtDAl+eUC7RZy+QQWc6wRzIV2CE6xBuMmDxc2qIihtDCZD5NPOFl7fRBQ==", + "license": "MIT", + "dependencies": { + "get-nonce": "^1.0.0", + "tslib": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/react-transition-group": { + "version": "4.4.5", + "resolved": "https://registry.npmjs.org/react-transition-group/-/react-transition-group-4.4.5.tgz", + "integrity": "sha512-pZcd1MCJoiKiBR2NRxeCRg13uCXbydPnmB4EOeRrY7480qNWO8IIgQG6zlDkm6uRMsURXPuKq0GWtiM59a5Q6g==", + "license": "BSD-3-Clause", + "dependencies": { + "@babel/runtime": "^7.5.5", + "dom-helpers": "^5.0.1", + "loose-envify": "^1.4.0", + "prop-types": "^15.6.2" + }, + "peerDependencies": { + "react": ">=16.6.0", + "react-dom": ">=16.6.0" + } + }, + "node_modules/react-use-measure": { + "version": "2.1.7", + "resolved": "https://registry.npmjs.org/react-use-measure/-/react-use-measure-2.1.7.tgz", + "integrity": "sha512-KrvcAo13I/60HpwGO5jpW7E9DfusKyLPLvuHlUyP5zqnmAPhNc6qTRjUQrdTADl0lpPpDVU2/Gg51UlOGHXbdg==", + "license": "MIT", + "peerDependencies": { + "react": ">=16.13", + "react-dom": ">=16.13" + }, + "peerDependenciesMeta": { + "react-dom": { + "optional": true + } + } + }, + "node_modules/read-cache": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/read-cache/-/read-cache-1.0.0.tgz", + "integrity": "sha512-Owdv/Ft7IjOgm/i0xvNDZ1LrRANRfew4b2prF3OWMQLxLfu3bS8FVhCsrSCMK4lR56Y9ya+AThoTpDCTxCmpRA==", + "license": "MIT", + "dependencies": { + "pify": "^2.3.0" + } + }, + "node_modules/readdirp": { + "version": "3.6.0", + "resolved": "https://registry.npmjs.org/readdirp/-/readdirp-3.6.0.tgz", + "integrity": "sha512-hOS089on8RduqdbhvQ5Z37A0ESjsqz6qnRcffsMU3495FuTdqSm+7bhJ29JvIOsBDEEnan5DPu9t3To9VRlMzA==", + "license": "MIT", + "dependencies": { + "picomatch": "^2.2.1" + }, + "engines": { + "node": ">=8.10.0" + } + }, + "node_modules/recharts": { + "version": "2.15.4", + "resolved": "https://registry.npmjs.org/recharts/-/recharts-2.15.4.tgz", + "integrity": "sha512-UT/q6fwS3c1dHbXv2uFgYJ9BMFHu3fwnd7AYZaEQhXuYQ4hgsxLvsUXzGdKeZrW5xopzDCvuA2N41WJ88I7zIw==", + "license": "MIT", + "dependencies": { + "clsx": "^2.0.0", + "eventemitter3": "^4.0.1", + "lodash": "^4.17.21", + "react-is": "^18.3.1", + "react-smooth": "^4.0.4", + "recharts-scale": "^0.4.4", + "tiny-invariant": "^1.3.1", + "victory-vendor": "^36.6.8" + }, + "engines": { + "node": ">=14" + }, + "peerDependencies": { + "react": "^16.0.0 || ^17.0.0 || ^18.0.0 || ^19.0.0", + "react-dom": "^16.0.0 || ^17.0.0 || ^18.0.0 || ^19.0.0" + } + }, + "node_modules/recharts-scale": { + "version": "0.4.5", + "resolved": "https://registry.npmjs.org/recharts-scale/-/recharts-scale-0.4.5.tgz", + "integrity": "sha512-kivNFO+0OcUNu7jQquLXAxz1FIwZj8nrj+YkOKc5694NbjCvcT6aSZiIzNzd2Kul4o4rTto8QVR9lMNtxD4G1w==", + "license": "MIT", + "dependencies": { + "decimal.js-light": "^2.4.1" + } + }, + "node_modules/recharts/node_modules/react-is": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", + "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", + "license": "MIT" + }, + "node_modules/require-from-string": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/require-from-string/-/require-from-string-2.0.2.tgz", + "integrity": "sha512-Xf0nWe6RseziFMu+Ap9biiUbmplq6S9/p+7w7YXP/JBHhrUDDUhwa+vANyubuqfZWTveU//DYVGsDG7RKL/vEw==", + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/resolve": { + "version": "1.22.10", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.10.tgz", + "integrity": "sha512-NPRy+/ncIMeDlTAsuqwKIiferiawhefFJtkNSW0qZJEqMEb+qBt/77B/jGeeek+F0uOeN05CDa6HXbbIgtVX4w==", + "license": "MIT", + "dependencies": { + "is-core-module": "^2.16.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + }, + "bin": { + "resolve": "bin/resolve" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/resolve-from": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-4.0.0.tgz", + "integrity": "sha512-pb/MYmXstAkysRFx8piNI1tGFNQIFA3vkE3Gq4EuA1dF6gHp/+vgZqsCGJapvy8N3Q+4o7FwvquPJcnZ7RYy4g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=4" + } + }, + "node_modules/reusify": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/reusify/-/reusify-1.1.0.tgz", + "integrity": "sha512-g6QUff04oZpHs0eG5p83rFLhHeV00ug/Yf9nZM6fLeUrPguBTkTQOdpAWWspMh55TZfVQDPaN3NQJfbVRAxdIw==", + "license": "MIT", + "engines": { + "iojs": ">=1.0.0", + "node": ">=0.10.0" + } + }, + "node_modules/rollup": { + "version": "4.50.0", + "resolved": "https://registry.npmjs.org/rollup/-/rollup-4.50.0.tgz", + "integrity": "sha512-/Zl4D8zPifNmyGzJS+3kVoyXeDeT/GrsJM94sACNg9RtUE0hrHa1bNPtRSrfHTMH5HjRzce6K7rlTh3Khiw+pw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/estree": "1.0.8" + }, + "bin": { + "rollup": "dist/bin/rollup" + }, + "engines": { + "node": ">=18.0.0", + "npm": ">=8.0.0" + }, + "optionalDependencies": { + "@rollup/rollup-android-arm-eabi": "4.50.0", + "@rollup/rollup-android-arm64": "4.50.0", + "@rollup/rollup-darwin-arm64": "4.50.0", + "@rollup/rollup-darwin-x64": "4.50.0", + "@rollup/rollup-freebsd-arm64": "4.50.0", + "@rollup/rollup-freebsd-x64": "4.50.0", + "@rollup/rollup-linux-arm-gnueabihf": "4.50.0", + "@rollup/rollup-linux-arm-musleabihf": "4.50.0", + "@rollup/rollup-linux-arm64-gnu": "4.50.0", + "@rollup/rollup-linux-arm64-musl": "4.50.0", + "@rollup/rollup-linux-loongarch64-gnu": "4.50.0", + "@rollup/rollup-linux-ppc64-gnu": "4.50.0", + "@rollup/rollup-linux-riscv64-gnu": "4.50.0", + "@rollup/rollup-linux-riscv64-musl": "4.50.0", + "@rollup/rollup-linux-s390x-gnu": "4.50.0", + "@rollup/rollup-linux-x64-gnu": "4.50.0", + "@rollup/rollup-linux-x64-musl": "4.50.0", + "@rollup/rollup-openharmony-arm64": "4.50.0", + "@rollup/rollup-win32-arm64-msvc": "4.50.0", + "@rollup/rollup-win32-ia32-msvc": "4.50.0", + "@rollup/rollup-win32-x64-msvc": "4.50.0", + "fsevents": "~2.3.2" + } + }, + "node_modules/run-parallel": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/run-parallel/-/run-parallel-1.2.0.tgz", + "integrity": "sha512-5l4VyZR86LZ/lDxZTR6jqL8AFE2S0IFLMP26AbjsLVADxHdhB/c0GUsH+y39UfCi3dzz8OlQuPmnaJOMoDHQBA==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/feross" + }, + { + "type": "patreon", + "url": "https://www.patreon.com/feross" + }, + { + "type": "consulting", + "url": "https://feross.org/support" + } + ], + "license": "MIT", + "dependencies": { + "queue-microtask": "^1.2.2" + } + }, + "node_modules/scheduler": { + "version": "0.21.0", + "resolved": "https://registry.npmjs.org/scheduler/-/scheduler-0.21.0.tgz", + "integrity": "sha512-1r87x5fz9MXqswA2ERLo0EbOAU74DpIUO090gIasYTqlVoJeMcl+Z1Rg7WHz+qtPujhS/hGIt9kxZOYBV3faRQ==", + "license": "MIT", + "dependencies": { + "loose-envify": "^1.1.0" + } + }, + "node_modules/semver": { + "version": "7.7.2", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.7.2.tgz", + "integrity": "sha512-RF0Fw+rO5AMf9MAyaRXI4AV0Ulj5lMHqVxxdSgiVbixSCXoEmmX/jk0CuJw4+3SqroYO9VoUh+HcuJivvtJemA==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/semver-compare": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/semver-compare/-/semver-compare-1.0.0.tgz", + "integrity": "sha512-YM3/ITh2MJ5MtzaM429anh+x2jiLVjqILF4m4oyQB18W7Ggea7BfqdH/wGMK7dDiMghv/6WG7znWMwUDzJiXow==", + "license": "MIT" + }, + "node_modules/shebang-command": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz", + "integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==", + "license": "MIT", + "dependencies": { + "shebang-regex": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/shebang-regex": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz", + "integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/signal-exit": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-4.1.0.tgz", + "integrity": "sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw==", + "license": "ISC", + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/sonner": { + "version": "1.7.4", + "resolved": "https://registry.npmjs.org/sonner/-/sonner-1.7.4.tgz", + "integrity": "sha512-DIS8z4PfJRbIyfVFDVnK9rO3eYDtse4Omcm6bt0oEr5/jtLgysmjuBl1frJ9E/EQZrFmKx2A8m/s5s9CRXIzhw==", + "license": "MIT", + "peerDependencies": { + "react": "^18.0.0 || ^19.0.0 || ^19.0.0-rc", + "react-dom": "^18.0.0 || ^19.0.0 || ^19.0.0-rc" + } + }, + "node_modules/source-map-js": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/source-map-js/-/source-map-js-1.2.1.tgz", + "integrity": "sha512-UXWMKhLOwVKb728IUtQPXxfYU+usdybtUrK/8uGE8CQMvrhOpwvzDBwj0QhSL7MQc7vIsISBG8VQ8+IDQxpfQA==", + "license": "BSD-3-Clause", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/stats-gl": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/stats-gl/-/stats-gl-2.4.2.tgz", + "integrity": "sha512-g5O9B0hm9CvnM36+v7SFl39T7hmAlv541tU81ME8YeSb3i1CIP5/QdDeSB3A0la0bKNHpxpwxOVRo2wFTYEosQ==", + "license": "MIT", + "dependencies": { + "@types/three": "*", + "three": "^0.170.0" + }, + "peerDependencies": { + "@types/three": "*", + "three": "*" + } + }, + "node_modules/stats-gl/node_modules/three": { + "version": "0.170.0", + "resolved": "https://registry.npmjs.org/three/-/three-0.170.0.tgz", + "integrity": "sha512-FQK+LEpYc0fBD+J8g6oSEyyNzjp+Q7Ks1C568WWaoMRLW+TkNNWmenWeGgJjV105Gd+p/2ql1ZcjYvNiPZBhuQ==", + "license": "MIT" + }, + "node_modules/stats.js": { + "version": "0.17.0", + "resolved": "https://registry.npmjs.org/stats.js/-/stats.js-0.17.0.tgz", + "integrity": "sha512-hNKz8phvYLPEcRkeG1rsGmV5ChMjKDAWU7/OJJdDErPBNChQXxCo3WZurGpnWc6gZhAzEPFad1aVgyOANH1sMw==", + "license": "MIT" + }, + "node_modules/string-width": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-5.1.2.tgz", + "integrity": "sha512-HnLOCR3vjcY8beoNLtcjZ5/nxn2afmME6lhrDrebokqMap+XbeW8n9TXpPDOqdGK5qcI3oT0GKTW6wC7EMiVqA==", + "license": "MIT", + "dependencies": { + "eastasianwidth": "^0.2.0", + "emoji-regex": "^9.2.2", + "strip-ansi": "^7.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/string-width-cjs": { + "name": "string-width", + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/string-width-cjs/node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/string-width-cjs/node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "license": "MIT" + }, + "node_modules/string-width-cjs/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi": { + "version": "7.1.0", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.0.tgz", + "integrity": "sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ==", + "license": "MIT", + "dependencies": { + "ansi-regex": "^6.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/strip-ansi?sponsor=1" + } + }, + "node_modules/strip-ansi-cjs": { + "name": "strip-ansi", + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi-cjs/node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-json-comments": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz", + "integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/sucrase": { + "version": "3.35.0", + "resolved": "https://registry.npmjs.org/sucrase/-/sucrase-3.35.0.tgz", + "integrity": "sha512-8EbVDiu9iN/nESwxeSxDKe0dunta1GOlHufmSSXxMD2z2/tMZpDMpvXQGsc+ajGo8y2uYUmixaSRUc/QPoQ0GA==", + "license": "MIT", + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.2", + "commander": "^4.0.0", + "glob": "^10.3.10", + "lines-and-columns": "^1.1.6", + "mz": "^2.7.0", + "pirates": "^4.0.1", + "ts-interface-checker": "^0.1.9" + }, + "bin": { + "sucrase": "bin/sucrase", + "sucrase-node": "bin/sucrase-node" + }, + "engines": { + "node": ">=16 || 14 >=14.17" + } + }, + "node_modules/supports-color": { + "version": "7.2.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", + "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", + "dev": true, + "license": "MIT", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/suspend-react": { + "version": "0.1.3", + "resolved": "https://registry.npmjs.org/suspend-react/-/suspend-react-0.1.3.tgz", + "integrity": "sha512-aqldKgX9aZqpoDp3e8/BZ8Dm7x1pJl+qI3ZKxDN0i/IQTWUwBx/ManmlVJ3wowqbno6c2bmiIfs+Um6LbsjJyQ==", + "license": "MIT", + "peerDependencies": { + "react": ">=17.0" + } + }, + "node_modules/tailwind-merge": { + "version": "2.6.0", + "resolved": "https://registry.npmjs.org/tailwind-merge/-/tailwind-merge-2.6.0.tgz", + "integrity": "sha512-P+Vu1qXfzediirmHOC3xKGAYeZtPcV9g76X+xg2FD4tYgR71ewMA35Y3sCz3zhiN/dwefRpJX0yBcgwi1fXNQA==", + "license": "MIT", + "funding": { + "type": "github", + "url": "https://github.com/sponsors/dcastil" + } + }, + "node_modules/tailwindcss": { + "version": "3.4.17", + "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-3.4.17.tgz", + "integrity": "sha512-w33E2aCvSDP0tW9RZuNXadXlkHXqFzSkQew/aIa2i/Sj8fThxwovwlXHSPXTbAHwEIhBFXAedUhP2tueAKP8Og==", + "license": "MIT", + "dependencies": { + "@alloc/quick-lru": "^5.2.0", + "arg": "^5.0.2", + "chokidar": "^3.6.0", + "didyoumean": "^1.2.2", + "dlv": "^1.1.3", + "fast-glob": "^3.3.2", + "glob-parent": "^6.0.2", + "is-glob": "^4.0.3", + "jiti": "^1.21.6", + "lilconfig": "^3.1.3", + "micromatch": "^4.0.8", + "normalize-path": "^3.0.0", + "object-hash": "^3.0.0", + "picocolors": "^1.1.1", + "postcss": "^8.4.47", + "postcss-import": "^15.1.0", + "postcss-js": "^4.0.1", + "postcss-load-config": "^4.0.2", + "postcss-nested": "^6.2.0", + "postcss-selector-parser": "^6.1.2", + "resolve": "^1.22.8", + "sucrase": "^3.35.0" + }, + "bin": { + "tailwind": "lib/cli.js", + "tailwindcss": "lib/cli.js" + }, + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/tailwindcss-animate": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/tailwindcss-animate/-/tailwindcss-animate-1.0.7.tgz", + "integrity": "sha512-bl6mpH3T7I3UFxuvDEXLxy/VuFxBk5bbzplh7tXI68mwMokNYd1t9qPBHlnyTwfa4JGC4zP516I1hYYtQ/vspA==", + "license": "MIT", + "peerDependencies": { + "tailwindcss": ">=3.0.0 || insiders" + } + }, + "node_modules/tailwindcss/node_modules/postcss-selector-parser": { + "version": "6.1.2", + "resolved": "https://registry.npmjs.org/postcss-selector-parser/-/postcss-selector-parser-6.1.2.tgz", + "integrity": "sha512-Q8qQfPiZ+THO/3ZrOrO0cJJKfpYCagtMUkXbnEfmgUjwXg6z/WBeOyS9APBBPCTSiDV+s4SwQGu8yFsiMRIudg==", + "license": "MIT", + "dependencies": { + "cssesc": "^3.0.0", + "util-deprecate": "^1.0.2" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/thenify": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/thenify/-/thenify-3.3.1.tgz", + "integrity": "sha512-RVZSIV5IG10Hk3enotrhvz0T9em6cyHBLkH/YAZuKqd8hRkKhSfCGIcP2KUY0EPxndzANBmNllzWPwak+bheSw==", + "license": "MIT", + "dependencies": { + "any-promise": "^1.0.0" + } + }, + "node_modules/thenify-all": { + "version": "1.6.0", + "resolved": "https://registry.npmjs.org/thenify-all/-/thenify-all-1.6.0.tgz", + "integrity": "sha512-RNxQH/qI8/t3thXJDwcstUO4zeqo64+Uy/+sNVRBx4Xn2OX+OZ9oP+iJnNFqplFra2ZUVeKCSa2oVWi3T4uVmA==", + "license": "MIT", + "dependencies": { + "thenify": ">= 3.1.0 < 4" + }, + "engines": { + "node": ">=0.8" + } + }, + "node_modules/three": { + "version": "0.169.0", + "resolved": "https://registry.npmjs.org/three/-/three-0.169.0.tgz", + "integrity": "sha512-Ed906MA3dR4TS5riErd4QBsRGPcx+HBDX2O5yYE5GqJeFQTPU+M56Va/f/Oph9X7uZo3W3o4l2ZhBZ6f6qUv0w==", + "license": "MIT" + }, + "node_modules/three-mesh-bvh": { + "version": "0.7.8", + "resolved": "https://registry.npmjs.org/three-mesh-bvh/-/three-mesh-bvh-0.7.8.tgz", + "integrity": "sha512-BGEZTOIC14U0XIRw3tO4jY7IjP7n7v24nv9JXS1CyeVRWOCkcOMhRnmENUjuV39gktAw4Ofhr0OvIAiTspQrrw==", + "deprecated": "Deprecated due to three.js version incompatibility. Please use v0.8.0, instead.", + "license": "MIT", + "peerDependencies": { + "three": ">= 0.151.0" + } + }, + "node_modules/three-stdlib": { + "version": "2.36.0", + "resolved": "https://registry.npmjs.org/three-stdlib/-/three-stdlib-2.36.0.tgz", + "integrity": "sha512-kv0Byb++AXztEGsULgMAs8U2jgUdz6HPpAB/wDJnLiLlaWQX2APHhiTJIN7rqW+Of0eRgcp7jn05U1BsCP3xBA==", + "license": "MIT", + "dependencies": { + "@types/draco3d": "^1.4.0", + "@types/offscreencanvas": "^2019.6.4", + "@types/webxr": "^0.5.2", + "draco3d": "^1.4.1", + "fflate": "^0.6.9", + "potpack": "^1.0.1" + }, + "peerDependencies": { + "three": ">=0.128.0" + } + }, + "node_modules/three-stdlib/node_modules/fflate": { + "version": "0.6.10", + "resolved": "https://registry.npmjs.org/fflate/-/fflate-0.6.10.tgz", + "integrity": "sha512-IQrh3lEPM93wVCEczc9SaAOvkmcoQn/G8Bo1e8ZPlY3X3bnAxWaBdvTdvM1hP62iZp0BXWDy4vTAy4fF0+Dlpg==", + "license": "MIT" + }, + "node_modules/thumbhash": { + "version": "0.1.1", + "resolved": "https://registry.npmjs.org/thumbhash/-/thumbhash-0.1.1.tgz", + "integrity": "sha512-kH5pKeIIBPQXAOni2AiY/Cu/NKdkFREdpH+TLdM0g6WA7RriCv0kPLgP731ady67MhTAqrVG/4mnEeibVuCJcg==", + "license": "MIT" + }, + "node_modules/tiny-invariant": { + "version": "1.3.3", + "resolved": "https://registry.npmjs.org/tiny-invariant/-/tiny-invariant-1.3.3.tgz", + "integrity": "sha512-+FbBPE1o9QAYvviau/qC5SE3caw21q3xkvWKBtja5vgqOWIHHJ3ioaq1VPfn/Szqctz2bU/oYeKd9/z5BL+PVg==", + "license": "MIT" + }, + "node_modules/tinyglobby": { + "version": "0.2.15", + "resolved": "https://registry.npmjs.org/tinyglobby/-/tinyglobby-0.2.15.tgz", + "integrity": "sha512-j2Zq4NyQYG5XMST4cbs02Ak8iJUdxRM0XI5QyxXuZOzKOINmWurp3smXu3y5wDcJrptwpSjgXHzIQxR0omXljQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "fdir": "^6.5.0", + "picomatch": "^4.0.3" + }, + "engines": { + "node": ">=12.0.0" + }, + "funding": { + "url": "https://github.com/sponsors/SuperchupuDev" + } + }, + "node_modules/tinyglobby/node_modules/fdir": { + "version": "6.5.0", + "resolved": "https://registry.npmjs.org/fdir/-/fdir-6.5.0.tgz", + "integrity": "sha512-tIbYtZbucOs0BRGqPJkshJUYdL+SDH7dVM8gjy+ERp3WAUjLEFJE+02kanyHtwjWOnwrKYBiwAmM0p4kLJAnXg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12.0.0" + }, + "peerDependencies": { + "picomatch": "^3 || ^4" + }, + "peerDependenciesMeta": { + "picomatch": { + "optional": true + } + } + }, + "node_modules/tinyglobby/node_modules/picomatch": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz", + "integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/to-regex-range": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz", + "integrity": "sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==", + "license": "MIT", + "dependencies": { + "is-number": "^7.0.0" + }, + "engines": { + "node": ">=8.0" + } + }, + "node_modules/troika-three-text": { + "version": "0.52.4", + "resolved": "https://registry.npmjs.org/troika-three-text/-/troika-three-text-0.52.4.tgz", + "integrity": "sha512-V50EwcYGruV5rUZ9F4aNsrytGdKcXKALjEtQXIOBfhVoZU9VAqZNIoGQ3TMiooVqFAbR1w15T+f+8gkzoFzawg==", + "license": "MIT", + "dependencies": { + "bidi-js": "^1.0.2", + "troika-three-utils": "^0.52.4", + "troika-worker-utils": "^0.52.0", + "webgl-sdf-generator": "1.1.1" + }, + "peerDependencies": { + "three": ">=0.125.0" + } + }, + "node_modules/troika-three-utils": { + "version": "0.52.4", + "resolved": "https://registry.npmjs.org/troika-three-utils/-/troika-three-utils-0.52.4.tgz", + "integrity": "sha512-NORAStSVa/BDiG52Mfudk4j1FG4jC4ILutB3foPnfGbOeIs9+G5vZLa0pnmnaftZUGm4UwSoqEpWdqvC7zms3A==", + "license": "MIT", + "peerDependencies": { + "three": ">=0.125.0" + } + }, + "node_modules/troika-worker-utils": { + "version": "0.52.0", + "resolved": "https://registry.npmjs.org/troika-worker-utils/-/troika-worker-utils-0.52.0.tgz", + "integrity": "sha512-W1CpvTHykaPH5brv5VHLfQo9D1OYuo0cSBEUQFFT/nBUzM8iD6Lq2/tgG/f1OelbAS1WtaTPQzE5uM49egnngw==", + "license": "MIT" + }, + "node_modules/ts-api-utils": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/ts-api-utils/-/ts-api-utils-2.1.0.tgz", + "integrity": "sha512-CUgTZL1irw8u29bzrOD/nH85jqyc74D6SshFgujOIA7osm2Rz7dYH77agkx7H4FBNxDq7Cjf+IjaX/8zwFW+ZQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=18.12" + }, + "peerDependencies": { + "typescript": ">=4.8.4" + } + }, + "node_modules/ts-interface-checker": { + "version": "0.1.13", + "resolved": "https://registry.npmjs.org/ts-interface-checker/-/ts-interface-checker-0.1.13.tgz", + "integrity": "sha512-Y/arvbn+rrz3JCKl9C4kVNfTfSm2/mEp5FSz5EsZSANGPSlQrpRI5M4PKF+mJnE52jOO90PnPSc3Ur3bTQw0gA==", + "license": "Apache-2.0" + }, + "node_modules/tslib": { + "version": "2.8.1", + "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.8.1.tgz", + "integrity": "sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==", + "license": "0BSD" + }, + "node_modules/tunnel-rat": { + "version": "0.1.2", + "resolved": "https://registry.npmjs.org/tunnel-rat/-/tunnel-rat-0.1.2.tgz", + "integrity": "sha512-lR5VHmkPhzdhrM092lI2nACsLO4QubF0/yoOhzX7c+wIpbN1GjHNzCc91QlpxBi+cnx8vVJ+Ur6vL5cEoQPFpQ==", + "license": "MIT", + "dependencies": { + "zustand": "^4.3.2" + } + }, + "node_modules/tunnel-rat/node_modules/zustand": { + "version": "4.5.7", + "resolved": "https://registry.npmjs.org/zustand/-/zustand-4.5.7.tgz", + "integrity": "sha512-CHOUy7mu3lbD6o6LJLfllpjkzhHXSBlX8B9+qPddUsIfeF5S/UZ5q0kmCsnRqT1UHFQZchNFDDzMbQsuesHWlw==", + "license": "MIT", + "dependencies": { + "use-sync-external-store": "^1.2.2" + }, + "engines": { + "node": ">=12.7.0" + }, + "peerDependencies": { + "@types/react": ">=16.8", + "immer": ">=9.0.6", + "react": ">=16.8" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "immer": { + "optional": true + }, + "react": { + "optional": true + } + } + }, + "node_modules/type-check": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/type-check/-/type-check-0.4.0.tgz", + "integrity": "sha512-XleUoc9uwGXqjWwXaUTZAmzMcFZ5858QA2vvx1Ur5xIcixXIP+8LnFDgRplU30us6teqdlskFfu+ae4K79Ooew==", + "dev": true, + "license": "MIT", + "dependencies": { + "prelude-ls": "^1.2.1" + }, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/typescript": { + "version": "5.9.2", + "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.9.2.tgz", + "integrity": "sha512-CWBzXQrc/qOkhidw1OzBTQuYRbfyxDXJMVJ1XNwUHGROVmuaeiEm3OslpZ1RV96d7SKKjZKrSJu3+t/xlw3R9A==", + "dev": true, + "license": "Apache-2.0", + "bin": { + "tsc": "bin/tsc", + "tsserver": "bin/tsserver" + }, + "engines": { + "node": ">=14.17" + } + }, + "node_modules/typescript-eslint": { + "version": "8.42.0", + "resolved": "https://registry.npmjs.org/typescript-eslint/-/typescript-eslint-8.42.0.tgz", + "integrity": "sha512-ozR/rQn+aQXQxh1YgbCzQWDFrsi9mcg+1PM3l/z5o1+20P7suOIaNg515bpr/OYt6FObz/NHcBstydDLHWeEKg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@typescript-eslint/eslint-plugin": "8.42.0", + "@typescript-eslint/parser": "8.42.0", + "@typescript-eslint/typescript-estree": "8.42.0", + "@typescript-eslint/utils": "8.42.0" + }, + "engines": { + "node": "^18.18.0 || ^20.9.0 || >=21.1.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/typescript-eslint" + }, + "peerDependencies": { + "eslint": "^8.57.0 || ^9.0.0", + "typescript": ">=4.8.4 <6.0.0" + } + }, + "node_modules/undici-types": { + "version": "6.21.0", + "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.21.0.tgz", + "integrity": "sha512-iwDZqg0QAGrg9Rav5H4n0M64c3mkR59cJ6wQp+7C4nI0gsmExaedaYLNO44eT4AtBBwjbTiGPMlt2Md0T9H9JQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/update-browserslist-db": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.1.3.tgz", + "integrity": "sha512-UxhIZQ+QInVdunkDAaiazvvT/+fXL5Osr0JZlJulepYu6Jd7qJtDZjlur0emRlT71EN3ScPoE7gvsuIKKNavKw==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "escalade": "^3.2.0", + "picocolors": "^1.1.1" + }, + "bin": { + "update-browserslist-db": "cli.js" + }, + "peerDependencies": { + "browserslist": ">= 4.21.0" + } + }, + "node_modules/uri-js": { + "version": "4.4.1", + "resolved": "https://registry.npmjs.org/uri-js/-/uri-js-4.4.1.tgz", + "integrity": "sha512-7rKUyy33Q1yc98pQ1DAmLtwX109F7TIfWlW1Ydo8Wl1ii1SeHieeh0HHfPeL2fMXK6z0s8ecKs9frCuLJvndBg==", + "dev": true, + "license": "BSD-2-Clause", + "dependencies": { + "punycode": "^2.1.0" + } + }, + "node_modules/use-callback-ref": { + "version": "1.3.3", + "resolved": "https://registry.npmjs.org/use-callback-ref/-/use-callback-ref-1.3.3.tgz", + "integrity": "sha512-jQL3lRnocaFtu3V00JToYz/4QkNWswxijDaCVNZRiRTO3HQDLsdu1ZtmIUvV4yPp+rvWm5j0y0TG/S61cuijTg==", + "license": "MIT", + "dependencies": { + "tslib": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/use-sidecar": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/use-sidecar/-/use-sidecar-1.1.3.tgz", + "integrity": "sha512-Fedw0aZvkhynoPYlA5WXrMCAMm+nSWdZt6lzJQ7Ok8S6Q+VsHmHpRWndVRJ8Be0ZbkfPc5LRYH+5XrzXcEeLRQ==", + "license": "MIT", + "dependencies": { + "detect-node-es": "^1.1.0", + "tslib": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "peerDependencies": { + "@types/react": "*", + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0 || ^19.0.0-rc" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + } + } + }, + "node_modules/use-sync-external-store": { + "version": "1.5.0", + "resolved": "https://registry.npmjs.org/use-sync-external-store/-/use-sync-external-store-1.5.0.tgz", + "integrity": "sha512-Rb46I4cGGVBmjamjphe8L/UnvJD+uPPtTkNvX5mZgqdbavhI4EbgIWJiIHXJ8bc/i9EQGPRh4DwEURJ552Do0A==", + "license": "MIT", + "peerDependencies": { + "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0" + } + }, + "node_modules/util-deprecate": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz", + "integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==", + "license": "MIT" + }, + "node_modules/utility-types": { + "version": "3.11.0", + "resolved": "https://registry.npmjs.org/utility-types/-/utility-types-3.11.0.tgz", + "integrity": "sha512-6Z7Ma2aVEWisaL6TvBCy7P8rm2LQoPv6dJ7ecIaIixHcwfbJ0x7mWdbcwlIM5IGQxPZSFYeqRCqlOOeKoJYMkw==", + "license": "MIT", + "engines": { + "node": ">= 4" + } + }, + "node_modules/vaul": { + "version": "0.9.9", + "resolved": "https://registry.npmjs.org/vaul/-/vaul-0.9.9.tgz", + "integrity": "sha512-7afKg48srluhZwIkaU+lgGtFCUsYBSGOl8vcc8N/M3YQlZFlynHD15AE+pwrYdc826o7nrIND4lL9Y6b9WWZZQ==", + "license": "MIT", + "dependencies": { + "@radix-ui/react-dialog": "^1.1.1" + }, + "peerDependencies": { + "react": "^16.8 || ^17.0 || ^18.0", + "react-dom": "^16.8 || ^17.0 || ^18.0" + } + }, + "node_modules/victory-vendor": { + "version": "36.9.2", + "resolved": "https://registry.npmjs.org/victory-vendor/-/victory-vendor-36.9.2.tgz", + "integrity": "sha512-PnpQQMuxlwYdocC8fIJqVXvkeViHYzotI+NJrCuav0ZYFoq912ZHBk3mCeuj+5/VpodOjPe1z0Fk2ihgzlXqjQ==", + "license": "MIT AND ISC", + "dependencies": { + "@types/d3-array": "^3.0.3", + "@types/d3-ease": "^3.0.0", + "@types/d3-interpolate": "^3.0.1", + "@types/d3-scale": "^4.0.2", + "@types/d3-shape": "^3.1.0", + "@types/d3-time": "^3.0.0", + "@types/d3-timer": "^3.0.0", + "d3-array": "^3.1.6", + "d3-ease": "^3.0.1", + "d3-interpolate": "^3.0.1", + "d3-scale": "^4.0.2", + "d3-shape": "^3.1.0", + "d3-time": "^3.0.0", + "d3-timer": "^3.0.1" + } + }, + "node_modules/vite": { + "version": "7.1.12", + "resolved": "https://registry.npmjs.org/vite/-/vite-7.1.12.tgz", + "integrity": "sha512-ZWyE8YXEXqJrrSLvYgrRP7p62OziLW7xI5HYGWFzOvupfAlrLvURSzv/FyGyy0eidogEM3ujU+kUG1zuHgb6Ug==", + "dev": true, + "license": "MIT", + "dependencies": { + "esbuild": "^0.25.0", + "fdir": "^6.5.0", + "picomatch": "^4.0.3", + "postcss": "^8.5.6", + "rollup": "^4.43.0", + "tinyglobby": "^0.2.15" + }, + "bin": { + "vite": "bin/vite.js" + }, + "engines": { + "node": "^20.19.0 || >=22.12.0" + }, + "funding": { + "url": "https://github.com/vitejs/vite?sponsor=1" + }, + "optionalDependencies": { + "fsevents": "~2.3.3" + }, + "peerDependencies": { + "@types/node": "^20.19.0 || >=22.12.0", + "jiti": ">=1.21.0", + "less": "^4.0.0", + "lightningcss": "^1.21.0", + "sass": "^1.70.0", + "sass-embedded": "^1.70.0", + "stylus": ">=0.54.8", + "sugarss": "^5.0.0", + "terser": "^5.16.0", + "tsx": "^4.8.1", + "yaml": "^2.4.2" + }, + "peerDependenciesMeta": { + "@types/node": { + "optional": true + }, + "jiti": { + "optional": true + }, + "less": { + "optional": true + }, + "lightningcss": { + "optional": true + }, + "sass": { + "optional": true + }, + "sass-embedded": { + "optional": true + }, + "stylus": { + "optional": true + }, + "sugarss": { + "optional": true + }, + "terser": { + "optional": true + }, + "tsx": { + "optional": true + }, + "yaml": { + "optional": true + } + } + }, + "node_modules/vite/node_modules/fdir": { + "version": "6.5.0", + "resolved": "https://registry.npmjs.org/fdir/-/fdir-6.5.0.tgz", + "integrity": "sha512-tIbYtZbucOs0BRGqPJkshJUYdL+SDH7dVM8gjy+ERp3WAUjLEFJE+02kanyHtwjWOnwrKYBiwAmM0p4kLJAnXg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12.0.0" + }, + "peerDependencies": { + "picomatch": "^3 || ^4" + }, + "peerDependenciesMeta": { + "picomatch": { + "optional": true + } + } + }, + "node_modules/vite/node_modules/picomatch": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz", + "integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/webgl-constants": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/webgl-constants/-/webgl-constants-1.1.1.tgz", + "integrity": "sha512-LkBXKjU5r9vAW7Gcu3T5u+5cvSvh5WwINdr0C+9jpzVB41cjQAP5ePArDtk/WHYdVj0GefCgM73BA7FlIiNtdg==" + }, + "node_modules/webgl-sdf-generator": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/webgl-sdf-generator/-/webgl-sdf-generator-1.1.1.tgz", + "integrity": "sha512-9Z0JcMTFxeE+b2x1LJTdnaT8rT8aEp7MVxkNwoycNmJWwPdzoXzMh0BjJSh/AEFP+KPYZUli814h8bJZFIZ2jA==", + "license": "MIT" + }, + "node_modules/which": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", + "integrity": "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==", + "license": "ISC", + "dependencies": { + "isexe": "^2.0.0" + }, + "bin": { + "node-which": "bin/node-which" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/word-wrap": { + "version": "1.2.5", + "resolved": "https://registry.npmjs.org/word-wrap/-/word-wrap-1.2.5.tgz", + "integrity": "sha512-BN22B5eaMMI9UMtjrGd5g5eCYPpCPDUy0FJXbYsaT5zYxjFOckS53SQDE3pWkVoWpHXVb3BrYcEN4Twa55B5cA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/wrap-ansi": { + "version": "8.1.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-8.1.0.tgz", + "integrity": "sha512-si7QWI6zUMq56bESFvagtmzMdGOtoxfR+Sez11Mobfc7tm+VkUckk9bW2UeffTGVUbOksxmSw0AA2gs8g71NCQ==", + "license": "MIT", + "dependencies": { + "ansi-styles": "^6.1.0", + "string-width": "^5.0.1", + "strip-ansi": "^7.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrap-ansi-cjs": { + "name": "wrap-ansi", + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "license": "MIT", + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrap-ansi-cjs/node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/wrap-ansi-cjs/node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "license": "MIT" + }, + "node_modules/wrap-ansi-cjs/node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/wrap-ansi-cjs/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/wrap-ansi/node_modules/ansi-styles": { + "version": "6.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-6.2.1.tgz", + "integrity": "sha512-bN798gFfQX+viw3R7yrGWRqnrN2oRkEkUjjl4JNn4E8GxxbjtG3FbrEIIY3l8/hrwUwIeCZvi4QuOTP4MErVug==", + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/yaml": { + "version": "2.8.1", + "resolved": "https://registry.npmjs.org/yaml/-/yaml-2.8.1.tgz", + "integrity": "sha512-lcYcMxX2PO9XMGvAJkJ3OsNMw+/7FKes7/hgerGUYWIoWu5j/+YQqcZr5JnPZWzOsEBgMbSbiSTn/dv/69Mkpw==", + "license": "ISC", + "bin": { + "yaml": "bin.mjs" + }, + "engines": { + "node": ">= 14.6" + } + }, + "node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/zod": { + "version": "3.25.76", + "resolved": "https://registry.npmjs.org/zod/-/zod-3.25.76.tgz", + "integrity": "sha512-gzUt/qt81nXsFGKIFcC3YnfEAx5NkunCfnDlvuBSSFS02bcXu4Lmea0AFIUwbLWxWPx3d9p8S5QoaujKcNQxcQ==", + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/colinhacks" + } + }, + "node_modules/zustand": { + "version": "5.0.8", + "resolved": "https://registry.npmjs.org/zustand/-/zustand-5.0.8.tgz", + "integrity": "sha512-gyPKpIaxY9XcO2vSMrLbiER7QMAMGOQZVRdJ6Zi782jkbzZygq5GI9nG8g+sMgitRtndwaBSl7uiqC49o1SSiw==", + "license": "MIT", + "engines": { + "node": ">=12.20.0" + }, + "peerDependencies": { + "@types/react": ">=18.0.0", + "immer": ">=9.0.6", + "react": ">=18.0.0", + "use-sync-external-store": ">=1.2.0" + }, + "peerDependenciesMeta": { + "@types/react": { + "optional": true + }, + "immer": { + "optional": true + }, + "react": { + "optional": true + }, + "use-sync-external-store": { + "optional": true + } + } + } + } +} diff --git a/frontend/package.json b/frontend/package.json new file mode 100644 index 0000000000000000000000000000000000000000..d53dc114519fe76400ebbbada2f403d88629cd30 --- /dev/null +++ b/frontend/package.json @@ -0,0 +1,88 @@ +{ + "name": "vite_react_shadcn_ts", + "private": true, + "version": "0.0.0", + "type": "module", + "scripts": { + "dev": "vite", + "build": "vite build", + "build:dev": "vite build --mode development", + "lint": "eslint .", + "preview": "vite preview" + }, + "dependencies": { + "@hookform/resolvers": "^3.10.0", + "@radix-ui/react-accordion": "^1.2.11", + "@radix-ui/react-alert-dialog": "^1.1.14", + "@radix-ui/react-aspect-ratio": "^1.1.7", + "@radix-ui/react-avatar": "^1.1.10", + "@radix-ui/react-checkbox": "^1.3.2", + "@radix-ui/react-collapsible": "^1.1.11", + "@radix-ui/react-context-menu": "^2.2.15", + "@radix-ui/react-dialog": "^1.1.14", + "@radix-ui/react-dropdown-menu": "^2.1.15", + "@radix-ui/react-hover-card": "^1.1.14", + "@radix-ui/react-label": "^2.1.7", + "@radix-ui/react-menubar": "^1.1.15", + "@radix-ui/react-navigation-menu": "^1.2.13", + "@radix-ui/react-popover": "^1.1.14", + "@radix-ui/react-progress": "^1.1.7", + "@radix-ui/react-radio-group": "^1.3.7", + "@radix-ui/react-scroll-area": "^1.2.9", + "@radix-ui/react-select": "^2.2.5", + "@radix-ui/react-separator": "^1.1.7", + "@radix-ui/react-slider": "^1.3.5", + "@radix-ui/react-slot": "^1.2.3", + "@radix-ui/react-switch": "^1.2.5", + "@radix-ui/react-tabs": "^1.1.12", + "@radix-ui/react-toast": "^1.2.14", + "@radix-ui/react-toggle": "^1.1.9", + "@radix-ui/react-toggle-group": "^1.1.10", + "@radix-ui/react-tooltip": "^1.2.7", + "@react-three/drei": "^9.122.0", + "@react-three/fiber": "^8.18.0", + "@react-three/postprocessing": "^2.19.1", + "@splinetool/react-spline": "^4.1.0", + "@splinetool/runtime": "^1.10.55", + "@tanstack/react-query": "^5.83.0", + "class-variance-authority": "^0.7.1", + "clsx": "^2.1.1", + "cmdk": "^1.1.1", + "date-fns": "^3.6.0", + "embla-carousel-react": "^8.6.0", + "input-otp": "^1.4.2", + "lucide-react": "^0.462.0", + "next-themes": "^0.3.0", + "react": "^18.3.1", + "react-day-picker": "^8.10.1", + "react-dom": "^18.3.1", + "react-hook-form": "^7.61.1", + "react-resizable-panels": "^2.1.9", + "react-router-dom": "^6.30.1", + "recharts": "^2.15.4", + "sonner": "^1.7.4", + "tailwind-merge": "^2.6.0", + "tailwindcss-animate": "^1.0.7", + "three": "^0.169.0", + "vaul": "^0.9.9", + "zod": "^3.25.76" + }, + "devDependencies": { + "@eslint/js": "^9.32.0", + "@tailwindcss/typography": "^0.5.16", + "@types/node": "^22.16.5", + "@types/react": "^18.3.23", + "@types/react-dom": "^18.3.7", + "@vitejs/plugin-react-swc": "^3.11.0", + "autoprefixer": "^10.4.21", + "eslint": "^9.32.0", + "eslint-plugin-react-hooks": "^5.2.0", + "eslint-plugin-react-refresh": "^0.4.20", + "globals": "^15.15.0", + "postcss": "^8.5.6", + "tailwindcss": "^3.4.17", + "typescript": "^5.8.3", + "typescript-eslint": "^8.38.0", + "vite": "^7.1.4" + } +} diff --git a/frontend/postcss.config.js b/frontend/postcss.config.js new file mode 100644 index 0000000000000000000000000000000000000000..2e7af2b7f1a6f391da1631d93968a9d487ba977d --- /dev/null +++ b/frontend/postcss.config.js @@ -0,0 +1,6 @@ +export default { + plugins: { + tailwindcss: {}, + autoprefixer: {}, + }, +} diff --git a/frontend/public/placeholder.svg b/frontend/public/placeholder.svg new file mode 100644 index 0000000000000000000000000000000000000000..e763910b27fdd9ac872f56baede51bc839402347 --- /dev/null +++ b/frontend/public/placeholder.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/frontend/public/robots.txt b/frontend/public/robots.txt new file mode 100644 index 0000000000000000000000000000000000000000..6018e701fc7dd0317cda9eceea390524322e8a05 --- /dev/null +++ b/frontend/public/robots.txt @@ -0,0 +1,14 @@ +User-agent: Googlebot +Allow: / + +User-agent: Bingbot +Allow: / + +User-agent: Twitterbot +Allow: / + +User-agent: facebookexternalhit +Allow: / + +User-agent: * +Allow: / diff --git a/frontend/src/App.css b/frontend/src/App.css new file mode 100644 index 0000000000000000000000000000000000000000..b9d355df2a5956b526c004531b7b0ffe412461e0 --- /dev/null +++ b/frontend/src/App.css @@ -0,0 +1,42 @@ +#root { + max-width: 1280px; + margin: 0 auto; + padding: 2rem; + text-align: center; +} + +.logo { + height: 6em; + padding: 1.5em; + will-change: filter; + transition: filter 300ms; +} +.logo:hover { + filter: drop-shadow(0 0 2em #646cffaa); +} +.logo.react:hover { + filter: drop-shadow(0 0 2em #61dafbaa); +} + +@keyframes logo-spin { + from { + transform: rotate(0deg); + } + to { + transform: rotate(360deg); + } +} + +@media (prefers-reduced-motion: no-preference) { + a:nth-of-type(2) .logo { + animation: logo-spin infinite 20s linear; + } +} + +.card { + padding: 2em; +} + +.read-the-docs { + color: #888; +} diff --git a/frontend/src/App.tsx b/frontend/src/App.tsx new file mode 100644 index 0000000000000000000000000000000000000000..48c7b294e50d03d813723b6067f77dd63e1d165d --- /dev/null +++ b/frontend/src/App.tsx @@ -0,0 +1,29 @@ +import { Toaster } from "@/components/ui/toaster"; +import { Toaster as Sonner } from "@/components/ui/sonner"; +import { TooltipProvider } from "@/components/ui/tooltip"; +import { QueryClient, QueryClientProvider } from "@tanstack/react-query"; +import { BrowserRouter, Routes, Route } from "react-router-dom"; +import Index from "./pages/Index"; +import SplinePage from "./pages/SplinePage"; +import NotFound from "./pages/NotFound"; + +const queryClient = new QueryClient(); + +const App = () => ( + + + + + + + } /> + } /> + {/* ADD ALL CUSTOM ROUTES ABOVE THE CATCH-ALL "*" ROUTE */} + } /> + + + + +); + +export default App; diff --git a/frontend/src/components/SplineScene.jsx b/frontend/src/components/SplineScene.jsx new file mode 100644 index 0000000000000000000000000000000000000000..87c8b769f1e12d7d567c49aaf6e63346179d8a43 --- /dev/null +++ b/frontend/src/components/SplineScene.jsx @@ -0,0 +1,9 @@ +import Spline from '@splinetool/react-spline'; + +export default function SplineScene() { + return ( +
+ +
+ ); +} diff --git a/frontend/src/components/audio/AudioRecorder.tsx b/frontend/src/components/audio/AudioRecorder.tsx new file mode 100644 index 0000000000000000000000000000000000000000..e9f6b18e12d452754c5eeaf2a66aa4122a8cbe1c --- /dev/null +++ b/frontend/src/components/audio/AudioRecorder.tsx @@ -0,0 +1,238 @@ +import { useState, useRef, useCallback } from 'react'; +import { Button } from '@/components/ui/button'; +import { Card, CardContent } from '@/components/ui/card'; +import { Mic, MicOff, Play, Pause, Download, Trash2 } from 'lucide-react'; +import { useToast } from '@/hooks/use-toast'; +import AudioWaveform from './AudioWaveform'; +import MicrophoneScene from '../three/MicrophoneScene'; + +interface AudioRecorderProps { + onRecordingComplete?: (audioBlob: Blob, audioUrl: string) => void; + className?: string; +} + +export default function AudioRecorder({ onRecordingComplete, className = "" }: AudioRecorderProps) { + const [isRecording, setIsRecording] = useState(false); + const [isPlaying, setIsPlaying] = useState(false); + const [audioUrl, setAudioUrl] = useState(''); + const [recordingTime, setRecordingTime] = useState(0); + + const mediaRecorderRef = useRef(null); + const audioRef = useRef(null); + const chunksRef = useRef([]); + const intervalRef = useRef(null); + + const { toast } = useToast(); + + const startRecording = useCallback(async () => { + try { + const stream = await navigator.mediaDevices.getUserMedia({ + audio: { + echoCancellation: true, + noiseSuppression: true, + sampleRate: 44100 + } + }); + + const mediaRecorder = new MediaRecorder(stream, { + mimeType: 'audio/webm;codecs=opus' + }); + + mediaRecorderRef.current = mediaRecorder; + chunksRef.current = []; + + mediaRecorder.ondataavailable = (event) => { + if (event.data.size > 0) { + chunksRef.current.push(event.data); + } + }; + + mediaRecorder.onstop = () => { + const audioBlob = new Blob(chunksRef.current, { type: 'audio/webm' }); + const url = URL.createObjectURL(audioBlob); + setAudioUrl(url); + onRecordingComplete?.(audioBlob, url); + + // Stop all tracks + stream.getTracks().forEach(track => track.stop()); + }; + + mediaRecorder.start(); + setIsRecording(true); + setRecordingTime(0); + + intervalRef.current = setInterval(() => { + setRecordingTime(prev => prev + 1); + }, 1000); + + toast({ + title: "Recording started", + description: "Speak clearly into your microphone" + }); + + } catch (error) { + console.error('Error starting recording:', error); + toast({ + title: "Recording failed", + description: "Could not access microphone. Please check permissions.", + variant: "destructive" + }); + } + }, [onRecordingComplete, toast]); + + const stopRecording = useCallback(() => { + if (mediaRecorderRef.current && isRecording) { + mediaRecorderRef.current.stop(); + setIsRecording(false); + + if (intervalRef.current) { + clearInterval(intervalRef.current); + intervalRef.current = null; + } + + toast({ + title: "Recording complete", + description: `Recorded ${recordingTime} seconds of audio` + }); + } + }, [isRecording, recordingTime, toast]); + + const playAudio = useCallback(() => { + if (audioUrl && audioRef.current) { + if (isPlaying) { + audioRef.current.pause(); + setIsPlaying(false); + } else { + audioRef.current.play(); + setIsPlaying(true); + } + } + }, [audioUrl, isPlaying]); + + const downloadAudio = useCallback(() => { + if (audioUrl) { + const a = document.createElement('a'); + a.href = audioUrl; + a.download = `voice-sample-${Date.now()}.webm`; + document.body.appendChild(a); + a.click(); + document.body.removeChild(a); + } + }, [audioUrl]); + + const clearRecording = useCallback(() => { + if (audioUrl) { + URL.revokeObjectURL(audioUrl); + setAudioUrl(''); + } + setIsPlaying(false); + setRecordingTime(0); + }, [audioUrl]); + + const formatTime = (seconds: number) => { + const mins = Math.floor(seconds / 60); + const secs = seconds % 60; + return `${mins}:${secs.toString().padStart(2, '0')}`; + }; + + return ( + + +
+ {/* 3D Microphone */} +
+ +
+ + {/* Waveform Visualization */} +
+ +
+ + {/* Recording Time */} + {(isRecording || recordingTime > 0) && ( +
+
+ {formatTime(recordingTime)} +
+ {isRecording && ( +
Recording...
+ )} +
+ )} + + {/* Control Buttons */} +
+ {!isRecording ? ( + + ) : ( + + )} + + {audioUrl && !isRecording && ( + <> + + + + + + + )} +
+ + {/* Hidden audio element for playback */} + {audioUrl && ( +
+
+
+ ); +} \ No newline at end of file diff --git a/frontend/src/components/audio/AudioWaveform.tsx b/frontend/src/components/audio/AudioWaveform.tsx new file mode 100644 index 0000000000000000000000000000000000000000..82f03268a1b50c3a1c3f40ceaed5b1bfab689ff0 --- /dev/null +++ b/frontend/src/components/audio/AudioWaveform.tsx @@ -0,0 +1,60 @@ +import { useEffect, useRef, useState } from 'react'; + +interface AudioWaveformProps { + isRecording?: boolean; + isPlaying?: boolean; + className?: string; + bars?: number; +} + +export default function AudioWaveform({ + isRecording = false, + isPlaying = false, + className = "", + bars = 20 +}: AudioWaveformProps) { + const [heights, setHeights] = useState(Array(bars).fill(0.3)); + + useEffect(() => { + if (!isRecording && !isPlaying) { + setHeights(Array(bars).fill(0.3)); + return; + } + + const interval = setInterval(() => { + setHeights(prev => + prev.map(() => { + if (isRecording) { + return Math.random() * 0.7 + 0.3; // More active during recording + } else if (isPlaying) { + return Math.random() * 0.5 + 0.2; // Moderate during playback + } + return 0.3; + }) + ); + }, 100); + + return () => clearInterval(interval); + }, [isRecording, isPlaying, bars]); + + return ( +
+ {heights.map((height, index) => ( +
+ ))} +
+ ); +} \ No newline at end of file diff --git a/frontend/src/components/audio/FFTSpectrumAnalyzer.tsx b/frontend/src/components/audio/FFTSpectrumAnalyzer.tsx new file mode 100644 index 0000000000000000000000000000000000000000..7794bd5cf623e05f13aa9e3477599b2a6af4aeb6 --- /dev/null +++ b/frontend/src/components/audio/FFTSpectrumAnalyzer.tsx @@ -0,0 +1,187 @@ +import { useEffect, useRef } from 'react'; + +interface FFTSpectrumAnalyzerProps { + isActive: boolean; + className?: string; +} + +export default function FFTSpectrumAnalyzer({ + isActive, + className = "" +}: FFTSpectrumAnalyzerProps) { + const canvasRef = useRef(null); + const animationRef = useRef(); + const frequencyDataRef = useRef(new Uint8Array(256)); + + // Draw FFT spectrum analyzer + const drawSpectrum = () => { + const canvas = canvasRef.current; + if (!canvas) return; + + const ctx = canvas.getContext('2d'); + if (!ctx) return; + + const width = canvas.width; + const height = canvas.height; + + // Clear canvas with gradient background + const gradient = ctx.createLinearGradient(0, 0, 0, height); + gradient.addColorStop(0, '#1a1a2e'); + gradient.addColorStop(1, '#0f0f1e'); + ctx.fillStyle = gradient; + ctx.fillRect(0, 0, width, height); + + if (isActive) { + drawAnimatedSpectrum(ctx, width, height); + } else { + drawIdleSpectrum(ctx, width, height); + } + + if (isActive) { + animationRef.current = requestAnimationFrame(drawSpectrum); + } + }; + + const drawAnimatedSpectrum = ( + ctx: CanvasRenderingContext2D, + width: number, + height: number + ) => { + const time = Date.now() / 1000; + const barCount = 64; // Number of frequency bars + const barWidth = width / barCount; + + for (let i = 0; i < barCount; i++) { + // Generate realistic frequency response + // Bass-heavy with some peaks in mid-range (natural speech pattern) + const frequency = (i / barCount) * 8000; // 0-8kHz range (speech bandwidth) + + // Base frequency response curve (more energy in lower frequencies) + let magnitude = Math.exp(-i / 20) * 0.8; + + // Add some randomness with time-based variation + const wobble = Math.sin(time * 2 + i * 0.3) * 0.2; + const variation = Math.sin(time * 3 + i * 0.5) * 0.1; + + // Add peaks (simulating formants in speech) + const formant1 = Math.exp(-Math.pow((i - 15) / 8, 2)) * 0.6; // ~1.5kHz + const formant2 = Math.exp(-Math.pow((i - 25) / 6, 2)) * 0.5; // ~2.5kHz + const formant3 = Math.exp(-Math.pow((i - 35) / 5, 2)) * 0.3; // ~3.5kHz + + magnitude = magnitude + wobble + variation + formant1 + formant2 + formant3; + magnitude = Math.min(1, Math.max(0, magnitude)); + + // Draw bar + const barHeight = magnitude * height * 0.9; + const x = i * barWidth; + const y = height - barHeight; + + // Color gradient from blue to cyan to green to yellow to red + const hue = (i / barCount) * 120; // HSL hue from 240 (blue) to 0 (red) + const saturation = 80 + magnitude * 20; // More saturated with higher magnitude + const lightness = 40 + magnitude * 20; + + ctx.fillStyle = `hsl(${240 - hue}, ${saturation}%, ${lightness}%)`; + ctx.fillRect(x, y, barWidth - 1, barHeight); + + // Add glow effect + const glowColor = `hsla(${240 - hue}, ${saturation}%, ${lightness}%, 0.3)`; + ctx.fillStyle = glowColor; + ctx.fillRect(x - 1, y - 2, barWidth + 1, barHeight + 4); + } + + // Draw frequency scale lines + ctx.strokeStyle = 'rgba(100, 200, 255, 0.2)'; + ctx.lineWidth = 1; + + for (let i = 0; i <= 8; i++) { + const x = (i / 8) * width; + ctx.beginPath(); + ctx.moveTo(x, height - 5); + ctx.lineTo(x, height); + ctx.stroke(); + } + }; + + const drawIdleSpectrum = ( + ctx: CanvasRenderingContext2D, + width: number, + height: number + ) => { + // Subtle idle animation + const time = Date.now() / 2000; + const barCount = 64; + const barWidth = width / barCount; + + for (let i = 0; i < barCount; i++) { + const baseHeight = Math.sin(time + i * 0.1) * 0.15 + 0.1; + const barHeight = baseHeight * height * 0.3; + const x = i * barWidth; + const y = height - barHeight; + + ctx.fillStyle = `rgba(100, 150, 200, ${0.3 + baseHeight * 0.4})`; + ctx.fillRect(x, y, barWidth - 1, barHeight); + } + + // Centered text + ctx.fillStyle = 'rgba(150, 150, 200, 0.5)'; + ctx.font = '12px sans-serif'; + ctx.textAlign = 'center'; + ctx.fillText('Click Synthesize to start FFT analysis', width / 2, height / 2); + }; + + useEffect(() => { + if (canvasRef.current) { + drawSpectrum(); + } + + return () => { + if (animationRef.current) { + cancelAnimationFrame(animationRef.current); + } + }; + }, [isActive]); + + return ( +
+
+ + + 0 - 8kHz (Speech Bandwidth) + +
+ +
+ 0 Hz + 2 kHz + 4 kHz + 6 kHz + 8 kHz +
+ + {/* Info Box */} +
+

+ Raw frequency spectrum of synthesized speech +

+

+ Shows energy at different frequencies in real-time +

+

+ Peaks represent vocal formants (voice characteristics) +

+
+
+ ); +} diff --git a/frontend/src/components/audio/FFTVisualizer.tsx b/frontend/src/components/audio/FFTVisualizer.tsx new file mode 100644 index 0000000000000000000000000000000000000000..edf8bde462e68d96c4acbf6fc1cb7f20b1ad51c6 --- /dev/null +++ b/frontend/src/components/audio/FFTVisualizer.tsx @@ -0,0 +1,174 @@ +import { useEffect, useRef, useState } from 'react'; +import api from '@/services/api'; + +interface FFTVisualizerProps { + isActive: boolean; + audioFilename?: string; + synthesizerStartTime?: number | null; + className?: string; +} + +export default function FFTVisualizer({ + isActive, + audioFilename, + synthesizerStartTime, + className = "" +}: FFTVisualizerProps) { + const canvasRef = useRef(null); + const animationRef = useRef(); + const [fftData, setFftData] = useState([]); + const [animatedFftData, setAnimatedFftData] = useState([]); + const lastUpdateRef = useRef(0); + const BINS = 32; + + // Fetch and analyze real audio data from backend - SIMPLE + useEffect(() => { + if (!isActive || !audioFilename) { + setFftData([]); + setAnimatedFftData([]); + return; + } + + const fetchAndAnalyzeAudio = async () => { + try { + console.log('[FFT] Fetching:', audioFilename); + + const arrayBuffer = await api.getAudio(audioFilename); + console.log('[FFT] Got audio, size:', arrayBuffer.byteLength); + + // Decode audio + const audioContext = new (window.AudioContext || (window as any).webkitAudioContext)(); + const audioBuffer = await audioContext.decodeAudioData(arrayBuffer); + const channelData = audioBuffer.getChannelData(0); + + console.log('[FFT] Decoded, samples:', channelData.length); + + // SUPER SIMPLE: 32 bins, just max amplitude per bin + const samplesPerBin = Math.floor(channelData.length / BINS); + const result: number[] = []; + + for (let i = 0; i < BINS; i++) { + const start = i * samplesPerBin; + const end = Math.min(start + samplesPerBin, channelData.length); + + let maxAmp = 0; + for (let j = start; j < end; j++) { + maxAmp = Math.max(maxAmp, Math.abs(channelData[j])); + } + + result.push(maxAmp * 255); + } + + console.log('[FFT] Result:', result); + setFftData(result); + lastUpdateRef.current = Date.now(); + } catch (err) { + console.error('[FFT] Error:', err); + } + }; + + fetchAndAnalyzeAudio(); + const interval = setInterval(fetchAndAnalyzeAudio, 3000); + return () => clearInterval(interval); + }, [isActive, audioFilename]); + + // Smooth animation between FFT updates + useEffect(() => { + if (!isActive) return; + + const animate = () => { + const nowSec = synthesizerStartTime + ? (Date.now() - synthesizerStartTime) / 1000 + : Date.now() / 1000; + + setAnimatedFftData(prev => { + // If no real FFT data yet, produce a synchronized placeholder animation + if (fftData.length === 0) { + const placeholder = new Array(BINS).fill(0).map((_, i) => { + const phase = i * 0.35; + const val = (Math.sin(nowSec * 2 + phase) + 1) / 2; // 0..1 + const env = (Math.sin(nowSec * 0.7 + i * 0.13) + 1) / 2; + return Math.min(255, Math.max(0, (val * 0.6 + env * 0.4) * 255 + (Math.random() - 0.5) * 8)); + }); + return placeholder; + } + + // If we have real data, smoothly animate current bars toward targets + if (prev.length === 0) return fftData; + + const animationSpeed = 0.15; // adjust for faster/slower animation + return prev.map((current, i) => { + const target = fftData[i] || 0; + const diff = target - current; + return current + diff * animationSpeed; + }); + }); + + animationRef.current = requestAnimationFrame(animate); + }; + + animationRef.current = requestAnimationFrame(animate); + + return () => { + if (animationRef.current) cancelAnimationFrame(animationRef.current); + }; + }, [isActive, fftData]); + + // Draw + useEffect(() => { + const canvas = canvasRef.current; + if (!canvas) return; + + const ctx = canvas.getContext('2d'); + if (!ctx) return; + + const width = canvas.width; + const height = canvas.height; + + // Clear + ctx.fillStyle = '#1a1a2e'; + ctx.fillRect(0, 0, width, height); + + if (animatedFftData.length > 0) { + // Draw bars with animation + const barWidth = width / animatedFftData.length; + for (let i = 0; i < animatedFftData.length; i++) { + const magnitude = Math.min(animatedFftData[i], 255); + const barHeight = (magnitude / 255) * (height - 20); + const x = i * barWidth; + const y = height - barHeight - 10; + + // Simple green color + ctx.fillStyle = '#00ff00'; + ctx.fillRect(x + 1, y, barWidth - 2, barHeight); + } + } else if (isActive) { + ctx.fillStyle = 'rgba(150, 150, 150, 0.7)'; + ctx.font = '14px monospace'; + ctx.textAlign = 'center'; + ctx.fillText('Loading...', width / 2, height / 2); + } + + }, [animatedFftData, isActive]); + + return ( +
+
+

+ Frequency Spectrum +

+ + {isActive ? '● Live' : '○ Offline'} + +
+ + +
+ ); +} + diff --git a/frontend/src/components/audio/MelSpectrogramVisualizer.tsx b/frontend/src/components/audio/MelSpectrogramVisualizer.tsx new file mode 100644 index 0000000000000000000000000000000000000000..39e7af56a04a6bf1317f74d71e4a8636e14d8933 --- /dev/null +++ b/frontend/src/components/audio/MelSpectrogramVisualizer.tsx @@ -0,0 +1,264 @@ +import { useEffect, useRef, useState } from 'react'; +import api from '@/services/api'; + +interface MelSpectrogramVisualizerProps { + isActive: boolean; + spectrogramData?: number[][]; + audioFilename?: string; + className?: string; +} + +export default function MelSpectrogramVisualizer({ + isActive, + spectrogramData, + audioFilename, + className = "" +}: MelSpectrogramVisualizerProps) { + const canvasRef = useRef(null); + const animationRef = useRef(); + const [melData, setMelData] = useState([]); + const [isLoading, setIsLoading] = useState(false); + + // Keep internal melData in sync with spectrogramData from parent + useEffect(() => { + if (spectrogramData && spectrogramData.length > 0) { + setMelData(spectrogramData); + } + }, [spectrogramData]); + + // Fetch real mel-spectrogram data from backend periodically + useEffect(() => { + if (!isActive || !audioFilename) return; + + const fetchMelData = async () => { + try { + const result = await api.getSpectrogram(audioFilename); + setMelData(result.spectrogram || []); + } catch (err) { + // Silently fail - backend may not have file yet + } + }; + + // Fetch immediately and then poll every 3 seconds during synthesis + fetchMelData(); + const interval = setInterval(fetchMelData, 3000); + + return () => clearInterval(interval); + }, [isActive, audioFilename]); + + // Draw mel-spectrogram on canvas + useEffect(() => { + if (!canvasRef.current) return; + + const draw = () => { + const canvas = canvasRef.current; + if (!canvas) return; + + const ctx = canvas.getContext('2d'); + if (!ctx) return; + + const width = canvas.width; + const height = canvas.height; + + // Clear canvas + ctx.fillStyle = '#0f0f0f'; + ctx.fillRect(0, 0, width, height); + + if (melData.length > 0) { + drawRealSpectrogram(ctx, width, height, melData); + } else if (isActive) { + drawLoadingPlaceholder(ctx, width, height); + } + + if (isActive) { + animationRef.current = requestAnimationFrame(draw); + } + }; + + if (isActive) { + draw(); + } + + return () => { + if (animationRef.current) { + cancelAnimationFrame(animationRef.current); + } + }; + }, [isActive, melData]); + + const drawRealSpectrogram = ( + ctx: CanvasRenderingContext2D, + width: number, + height: number, + data: number[][] + ) => { + if (data.length === 0) return; + + const timeSteps = data.length; + const freqBins = data[0]?.length || 80; + const pixelsPerTime = Math.max(1, width / timeSteps); + const pixelsPerFreq = height / freqBins; + + // Draw each time-frequency bin with correct orientation + // Time flows left-to-right, frequency flows bottom-to-top + for (let t = 0; t < timeSteps; t++) { + for (let f = 0; f < freqBins; f++) { + const value = data[t]?.[f] ?? 0; + // Normalize to 0-1 range (backend returns 0-255) + const normalizedValue = Math.min(1, Math.max(0, value / 255)); + + const color = getSpectrogramColor(normalizedValue); + ctx.fillStyle = color; + + // Draw pixel at time t, frequency f + // Frequency 0 at bottom, increasing upward + const xPos = t * pixelsPerTime; + const yPos = height - (f + 1) * pixelsPerFreq; + + ctx.fillRect( + xPos, + yPos, + Math.ceil(pixelsPerTime), + Math.ceil(pixelsPerFreq) + ); + } + } + + // Add horizontal frequency guide lines (optional) + ctx.strokeStyle = 'rgba(255, 255, 255, 0.08)'; + ctx.lineWidth = 0.5; + const numGuides = 4; + for (let i = 1; i < numGuides; i++) { + const y = height - (i / numGuides) * height; + ctx.beginPath(); + ctx.moveTo(0, y); + ctx.lineTo(width, y); + ctx.stroke(); + } + }; + + const drawLoadingPlaceholder = ( + ctx: CanvasRenderingContext2D, + width: number, + height: number + ) => { + const time = Date.now() / 1000; + const freqBins = 80; + const binHeight = height / freqBins; + + // Animated pattern while waiting for real data + for (let f = 0; f < freqBins; f++) { + const intensity = + Math.sin(f / 10 + time * 2) * 0.3 + + Math.sin(time * 4) * 0.2 + 0.3; + + const color = getSpectrogramColor(Math.min(1, intensity)); + ctx.fillStyle = color; + ctx.fillRect(0, f * binHeight, width, binHeight + 1); + } + + // Scanning line effect + const scanX = (time * 100) % width; + ctx.strokeStyle = 'rgba(100, 255, 100, 0.4)'; + ctx.lineWidth = 2; + ctx.beginPath(); + ctx.moveTo(scanX, 0); + ctx.lineTo(scanX, height); + ctx.stroke(); + }; + + const getSpectrogramColor = (intensity: number): string => { + // Viridis-like colormap optimized for mel-spectrograms + // Matches reference images: dark purple/blue → cyan → green → yellow → bright white + + if (intensity < 0.1) { + // Almost black to dark purple + const t = intensity / 0.1; + const r = Math.floor(10 + t * 40); + const g = Math.floor(5 + t * 20); + const b = Math.floor(30 + t * 80); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.2) { + // Dark purple to deep blue + const t = (intensity - 0.1) / 0.1; + const r = Math.floor(50 + t * 10); + const g = Math.floor(25 - t * 10); + const b = Math.floor(110 + t * 80); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.3) { + // Deep blue to cyan + const t = (intensity - 0.2) / 0.1; + const r = Math.floor(60 - t * 30); + const g = Math.floor(15 + t * 180); + const b = Math.floor(190 + t * 65); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.4) { + // Cyan to bright green + const t = (intensity - 0.3) / 0.1; + const r = Math.floor(30 - t * 30); + const g = Math.floor(195 + t * 60); + const b = Math.floor(255 - t * 255); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.55) { + // Bright green to yellow-green + const t = (intensity - 0.4) / 0.15; + const r = Math.floor(0 + t * 200); + const g = Math.floor(255 - t * 50); + const b = Math.floor(0); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.7) { + // Yellow-green to bright yellow + const t = (intensity - 0.55) / 0.15; + const r = Math.floor(200 + t * 55); + const g = Math.floor(205 + t * 50); + const b = Math.floor(0); + return `rgb(${r}, ${g}, ${b})`; + } else if (intensity < 0.85) { + // Bright yellow to orange-red + const t = (intensity - 0.7) / 0.15; + const r = Math.floor(255); + const g = Math.floor(255 - t * 100); + const b = Math.floor(0); + return `rgb(${r}, ${g}, ${b})`; + } else { + // Orange-red to bright white (peaks) + const t = (intensity - 0.85) / 0.15; + const r = Math.floor(255); + const g = Math.floor(155 + t * 100); + const b = Math.floor(0 + t * 255); + return `rgb(${r}, ${g}, ${b})`; + } + }; + + + return ( +
+
+ + {isActive && ( + + ● Live Feed + + )} +
+ +
+ Time (→) + Frequency (↑) + Energy (intensity) +
+
+ ); +} diff --git a/frontend/src/components/audio/ProcessingPipeline.tsx b/frontend/src/components/audio/ProcessingPipeline.tsx new file mode 100644 index 0000000000000000000000000000000000000000..8d689cc70764817f20e6465ae544eba569fb7eb8 --- /dev/null +++ b/frontend/src/components/audio/ProcessingPipeline.tsx @@ -0,0 +1,222 @@ +import { useEffect, useState } from 'react'; +import { CheckCircle2, Circle, Loader } from 'lucide-react'; + +interface PipelineStage { + id: string; + name: string; + description: string; + status: 'pending' | 'active' | 'completed'; + progress?: number; + duration?: number; // in seconds + startTime?: number; // timestamp when stage started +} + +interface ProcessingPipelineProps { + isActive: boolean; + currentStage?: string; + synthesizerStartTime?: number | null; // timestamp from parent when synthesis started + className?: string; +} + +export default function ProcessingPipeline({ + isActive, + currentStage, + synthesizerStartTime, + className = "" +}: ProcessingPipelineProps) { + const [stages, setStages] = useState([ + { + id: 'encoder', + name: 'Speaker Encoder', + description: 'Extracting voice embedding', + status: 'pending', + progress: 0, + duration: 3 + }, + { + id: 'synthesizer', + name: 'Tacotron2 Synthesizer', + description: 'Generating mel-spectrogram', + status: 'pending', + progress: 0, + duration: 45 + }, + { + id: 'vocoder', + name: 'WaveRNN Vocoder', + description: 'Converting to audio', + status: 'pending', + progress: 0, + duration: 10 + } + ]); + + // Real-time sync with backend using elapsed time + useEffect(() => { + if (!synthesizerStartTime) { + return; + } + + // When a new synthesis starts, reset all stages to pending + setStages(prev => prev.map(stage => ({ + ...stage, + status: 'pending', + progress: 0 + }))); + + // Update progress based on actual elapsed time from backend + const updateProgress = () => { + const elapsedMs = Date.now() - synthesizerStartTime; + const elapsedSeconds = elapsedMs / 1000; + + setStages(prevStages => { + // If synthesis is no longer active, force all stages to completed + if (!isActive) { + return prevStages.map(stage => ({ + ...stage, + status: 'completed', + progress: 100 + })); + } + + return prevStages.map(stage => { + // Define stage timing + let stageStart = 0; + let stageDuration = stage.duration || 0; + + if (stage.id === 'encoder') { + stageStart = 0; + stageDuration = 3; + } else if (stage.id === 'synthesizer') { + stageStart = 3; + stageDuration = 45; + } else if (stage.id === 'vocoder') { + stageStart = 48; + stageDuration = 10; + } + + const stageEnd = stageStart + stageDuration; + + // Calculate status based on actual elapsed time + if (elapsedSeconds < stageStart) { + // Stage hasn't started yet + return { ...stage, status: 'pending', progress: 0 }; + } else if (elapsedSeconds >= stageStart && elapsedSeconds < stageEnd) { + // Stage is currently active + const stageElapsed = elapsedSeconds - stageStart; + const rawProgress = (stageElapsed / stageDuration) * 100; + // While synthesis is active, never show a full 100% for any stage + const progress = Math.min(99, rawProgress); + return { ...stage, status: 'active', progress }; + } else { + // Stage logically finished, but keep it at 99% until synthesis completes + return { ...stage, status: 'active', progress: 99 }; + } + }); + }); + }; + + // Update immediately + updateProgress(); + + // Update every 100ms for smooth animation + const interval = setInterval(updateProgress, 100); + + return () => clearInterval(interval); + }, [isActive, synthesizerStartTime]); + + const getStageIcon = (stage: PipelineStage) => { + if (stage.status === 'completed') { + return ; + } else if (stage.status === 'active') { + return ; + } else { + return ; + } + }; + + const getProgressBarColor = (status: string) => { + switch (status) { + case 'completed': + return 'bg-green-500'; + case 'active': + return 'bg-blue-500'; + default: + return 'bg-gray-600'; + } + }; + + return ( +
+
+

+ Processing Pipeline +

+ {isActive && ( + + Synthesizing... + + )} +
+ +
+ {stages.map((stage, index) => ( +
+ {/* Stage Header */} +
+ {getStageIcon(stage)} +
+
+

+ {stage.name} +

+ {stage.progress !== undefined && stage.status !== 'pending' && ( + + {Math.round(stage.progress)}% + + )} +
+

+ {stage.description} +

+
+
+ + {/* Progress Bar */} +
+
+
+ + {/* Connector Line */} + {index < stages.length - 1 && ( +
+ )} +
+ ))} +
+ + {/* Timeline Info */} +
+
+

+ + Speaker Encoder: Loads your voice +

+

+ + Tacotron2: Generates speech pattern +

+

+ + Vocoder: Creates audio waveform +

+
+
+
+ ); +} diff --git a/frontend/src/components/audio/RealTimeStatsDashboard.tsx b/frontend/src/components/audio/RealTimeStatsDashboard.tsx new file mode 100644 index 0000000000000000000000000000000000000000..088ecd859f5e410ffcdcb7485929e45ccfe55d44 --- /dev/null +++ b/frontend/src/components/audio/RealTimeStatsDashboard.tsx @@ -0,0 +1,176 @@ +import { useEffect, useRef, useState } from 'react'; +import { Dialog, DialogContent, DialogDescription, DialogHeader, DialogTitle } from '@/components/ui/dialog'; +import { Card, CardContent, CardHeader, CardTitle } from '@/components/ui/card'; + +interface RealTimeStatsDashboardProps { + isOpen: boolean; + onOpenChange: (open: boolean) => void; + synthesizerStartTime: number | null; + isSynthesizing: boolean; + currentVoiceName?: string; + enrolledVoiceCount?: number; +} + +export default function RealTimeStatsDashboard({ + isOpen, + onOpenChange, + synthesizerStartTime, + isSynthesizing, + currentVoiceName = 'Current Voice', + enrolledVoiceCount = 5 +}: RealTimeStatsDashboardProps) { + const [elapsedSeconds, setElapsedSeconds] = useState(0); + const animationFrameRef = useRef(); + + // Update elapsed time in real-time + useEffect(() => { + const updateElapsed = () => { + if (synthesizerStartTime && isSynthesizing) { + const elapsed = (Date.now() - synthesizerStartTime) / 1000; + setElapsedSeconds(elapsed); + animationFrameRef.current = requestAnimationFrame(updateElapsed); + } else { + setElapsedSeconds(0); + } + }; + + if (isOpen && isSynthesizing) { + animationFrameRef.current = requestAnimationFrame(updateElapsed); + } + + return () => { + if (animationFrameRef.current) { + cancelAnimationFrame(animationFrameRef.current); + } + }; + }, [isOpen, isSynthesizing, synthesizerStartTime]); + + // Stage timing configuration + const stages = [ + { name: 'Speaker Encoder', duration: 3, startTime: 0, color: '#ff6b6b' }, + { name: 'Tacotron2 Synthesizer', duration: 45, startTime: 3, color: '#4ecdc4' }, + { name: 'WaveRNN Vocoder', duration: 12, startTime: 48, color: '#45b7d1' } + ]; + + // Calculate metrics based on actual elapsed time + const getStageProgress = (stage: typeof stages[0]) => { + if (elapsedSeconds < stage.startTime) { + return 0; + } else if (elapsedSeconds >= stage.startTime && elapsedSeconds < stage.startTime + stage.duration) { + const stageElapsed = elapsedSeconds - stage.startTime; + return Math.min(99, (stageElapsed / stage.duration) * 100); + } else { + return 100; + } + }; + + // Simulated CPU and memory (would come from backend in production) + const cpuUsage = Math.min(95, Math.max(10, 50 + Math.sin(elapsedSeconds) * 30)); + const memoryUsage = Math.min(90, Math.max(20, 60 + Math.cos(elapsedSeconds * 0.5) * 20)); + + return ( + + + + Real-Time Synthesis Dashboard + + Synthesis progress and system metrics + + + +
+ {/* Metrics Grid */} +
+ {stages.map((stage) => { + const progress = getStageProgress(stage); + return ( + + + {stage.name} + + +
+ Progress + {Math.round(progress)}% +
+
+
+
+
+ {progress < 100 + ? `${stage.startTime}s - ${stage.startTime + stage.duration}s` + : 'Completed'} +
+ + + ); + })} +
+ + {/* System Metrics */} +
+ + + CPU Usage + + +
+ Current + {Math.round(cpuUsage)}% +
+
+
+
+ + + + + + Memory Usage + + +
+ Current + {Math.round(memoryUsage)}% +
+
+
+
+ + +
+ + {/* Elapsed Time Display */} + + +
+ Total Elapsed Time + + {elapsedSeconds.toFixed(1)}s + +
+
+
+ + {isSynthesizing && ( +
+ ● Synthesis in progress... +
+ )} +
+ +
+ ); +} diff --git a/frontend/src/components/common/ErrorBoundary.tsx b/frontend/src/components/common/ErrorBoundary.tsx new file mode 100644 index 0000000000000000000000000000000000000000..fd0b4f95188ecc13aa681eba4ea41ee2e850c5a1 --- /dev/null +++ b/frontend/src/components/common/ErrorBoundary.tsx @@ -0,0 +1,30 @@ +import React from "react"; + +interface ErrorBoundaryProps { + fallback: React.ReactNode; + children: React.ReactNode; +} + +interface ErrorBoundaryState { + hasError: boolean; +} + +export default class ErrorBoundary extends React.Component { + state: ErrorBoundaryState = { hasError: false }; + + static getDerivedStateFromError(): ErrorBoundaryState { + return { hasError: true }; + } + + componentDidCatch(error: unknown, errorInfo: unknown) { + // Log the error for diagnostics + console.error("ErrorBoundary caught:", error, errorInfo); + } + + render() { + if (this.state.hasError) { + return this.props.fallback; + } + return this.props.children; + } +} diff --git a/frontend/src/components/forms/SpeechSynthesis.tsx b/frontend/src/components/forms/SpeechSynthesis.tsx new file mode 100644 index 0000000000000000000000000000000000000000..3ad24013ebc6ad5bd3ce0fb6ba19998134216169 --- /dev/null +++ b/frontend/src/components/forms/SpeechSynthesis.tsx @@ -0,0 +1,385 @@ +import { useState, useEffect } from 'react'; +import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card'; +import { Button } from '@/components/ui/button'; +import { Textarea } from '@/components/ui/textarea'; +import { Label } from '@/components/ui/label'; +import { Select, SelectContent, SelectItem, SelectTrigger, SelectValue } from '@/components/ui/select'; +import { Badge } from '@/components/ui/badge'; +import { Play, Pause, Download, Volume2, Activity } from 'lucide-react'; +import { useToast } from '@/hooks/use-toast'; +import api from '@/services/api'; +import SpeakerScene from '../three/SpeakerScene'; +import AudioWaveform from '../audio/AudioWaveform'; +import MelSpectrogramVisualizer from '../audio/MelSpectrogramVisualizer'; +import ProcessingPipeline from '../audio/ProcessingPipeline'; +import FFTVisualizer from '../audio/FFTVisualizer'; +import RealTimeStatsDashboard from '../audio/RealTimeStatsDashboard'; + +interface Voice { + id: string; + name: string; + audioUrl?: string; +} + +interface SpeechSynthesisProps { + voices?: Voice[]; + onSynthesisComplete?: (audioUrl: string) => void; + className?: string; +} + +// Sample texts for different languages +const sampleTexts = { + english: "Hello, this is a sample text for speech synthesis. The technology can convert this text into natural-sounding speech.", + hindi: "नमस्ते, यह स्पीच सिंथेसिस के लिए एक नमूना टेक्स्ट है। यह तकनीक इस टेक्स्ट को प्राकृतिक आवाज़ में बदल सकती है।", + mixed: "Hello दोस्तों, this is a mixed language example. आज हम speech synthesis के बारे में बात करेंगे।" +}; + +export default function SpeechSynthesis({ + voices: propVoices, + onSynthesisComplete, + className = "" +}: SpeechSynthesisProps) { + const [inputText, setInputText] = useState(''); + const [selectedVoice, setSelectedVoice] = useState(''); + const [isSynthesizing, setIsSynthesizing] = useState(false); + const [isPlaying, setIsPlaying] = useState(false); + const [synthesizedAudio, setSynthesizedAudio] = useState(''); + const [audioElement, setAudioElement] = useState(null); + const [voices, setVoices] = useState(propVoices || []); + const [isLoadingVoices, setIsLoadingVoices] = useState(false); + const [spectrogramData, setSpectrogramData] = useState([]); + const [audioFilename, setAudioFilename] = useState(''); + const [showStatsDashboard, setShowStatsDashboard] = useState(false); + const [synthesizerStartTime, setSynthesizerStartTime] = useState(null); + + const { toast } = useToast(); + + useEffect(() => { + // Don't set default text - let user type their own + // Load voices from backend + loadVoices(); + }, []); + + const loadVoices = async () => { + setIsLoadingVoices(true); + try { + const data = await api.fetchVoices(); + const loadedVoices = data.voices.map((v: any) => ({ + id: v.id, + name: v.name, + audioUrl: v.path + })); + setVoices(loadedVoices); + console.log('Loaded voices:', loadedVoices); + } catch (error) { + console.error('Failed to load voices:', error); + toast({ + title: "Failed to load voices", + description: "Could not fetch voices from backend", + variant: "destructive" + }); + } finally { + setIsLoadingVoices(false); + } + }; + + const handleSampleTextSelect = (type: keyof typeof sampleTexts) => { + setInputText(sampleTexts[type]); + }; + + const handleSynthesize = async () => { + console.log('Synthesize clicked - Voice:', selectedVoice, 'Text:', inputText); // Debug log + + if (!inputText.trim()) { + toast({ + title: "No text provided", + description: "Please enter some text to synthesize", + variant: "destructive" + }); + return; + } + + if (!selectedVoice) { + toast({ + title: "No voice selected", + description: "Please select a voice for synthesis", + variant: "destructive" + }); + return; + } + + setIsSynthesizing(true); + setSpectrogramData([]); // Reset spectrogram + setSynthesizerStartTime(Date.now()); // Record synthesis start time + + try { + // Call backend API for synthesis + const result = await api.synthesize(selectedVoice, inputText); + + // Get the audio file URL from backend with cache busting + const audioUrl = api.getAudioUrl(result.audio_url) + `?t=${Date.now()}`; + + // Extract filename from audio_url (e.g., "/api/audio/synthesis_abc123.wav" -> "synthesis_abc123.wav") + const filename = result.audio_url.split('/').pop() || ''; + setAudioFilename(filename); // Store filename for mel-spectrogram real-time fetching + + // Fetch mel-spectrogram data after synthesis + if (filename) { + try { + const spectrogramResult = await api.getSpectrogram(filename); + setSpectrogramData(spectrogramResult.spectrogram); + console.log('Spectrogram data loaded:', spectrogramResult); + } catch (err) { + console.warn('Could not load spectrogram data:', err); + // Continue without spectrogram data + } + } + + // Reset audio element to force reload + if (audioElement) { + audioElement.pause(); + audioElement.src = ''; + setAudioElement(null); + } + + setSynthesizedAudio(audioUrl); + setIsPlaying(false); + onSynthesisComplete?.(audioUrl); + + toast({ + title: "Synthesis complete!", + description: "Your text has been converted to speech" + }); + + } catch (error) { + console.error('Synthesis error:', error); + toast({ + title: "Synthesis failed", + description: error instanceof Error ? error.message : "There was an error generating the speech. Please try again.", + variant: "destructive" + }); + } finally { + setIsSynthesizing(false); + } + }; + + const handlePlay = () => { + if (!synthesizedAudio) return; + + if (audioElement) { + if (isPlaying) { + audioElement.pause(); + setIsPlaying(false); + } else { + audioElement.play(); + setIsPlaying(true); + } + } else { + const audio = new Audio(synthesizedAudio); + audio.onended = () => setIsPlaying(false); + audio.onpause = () => setIsPlaying(false); + audio.play(); + setIsPlaying(true); + setAudioElement(audio); + } + }; + + const handleDownload = () => { + if (synthesizedAudio) { + const a = document.createElement('a'); + a.href = synthesizedAudio; + a.download = `synthesis-${Date.now()}.wav`; + document.body.appendChild(a); + a.click(); + document.body.removeChild(a); + } + }; + + const detectLanguage = (text: string) => { + const hindiRegex = /[\u0900-\u097F]/; + const hasHindi = hindiRegex.test(text); + const hasEnglish = /[a-zA-Z]/.test(text); + + if (hasHindi && hasEnglish) return 'Mixed (English + Hindi)'; + if (hasHindi) return 'Hindi'; + if (hasEnglish) return 'English'; + return 'Unknown'; + }; + + return ( + <> + + +
+ Speech Synthesis + + Convert text to speech using your enrolled voices + +
+ +
+ + {/* Voice Selection */} +
+ + +
+ + {/* Text Input */} +
+
+ + + {detectLanguage(inputText)} + +
+