Spaces:
Running
on
Zero
Running
on
Zero
Refactor app.py: improve code formatting and enhance readability
Browse files
app.py
CHANGED
|
@@ -23,9 +23,16 @@ import seaborn as sns
|
|
| 23 |
from einops import rearrange
|
| 24 |
|
| 25 |
# Import from colpali_engine
|
| 26 |
-
from colpali_engine.models import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from colpali_engine.interpretability import get_similarity_maps_from_embeddings
|
| 28 |
-
from colpali_engine.interpretability.similarity_map_utils import
|
|
|
|
|
|
|
| 29 |
|
| 30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
|
|
@@ -33,6 +40,7 @@ print(f"Device: {device}")
|
|
| 33 |
if torch.cuda.is_available():
|
| 34 |
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 35 |
|
|
|
|
| 36 |
# Global state for models and indexed documents
|
| 37 |
class DocumentIndex:
|
| 38 |
def __init__(self):
|
|
@@ -44,6 +52,7 @@ class DocumentIndex:
|
|
| 44 |
self.colgemma_model = None
|
| 45 |
self.colgemma_processor = None
|
| 46 |
|
|
|
|
| 47 |
doc_index = DocumentIndex()
|
| 48 |
|
| 49 |
|
|
@@ -113,7 +122,7 @@ def index_bigemma_images(images: List[Image.Image]):
|
|
| 113 |
# Process in smaller batches to avoid memory issues
|
| 114 |
batch_size = 2
|
| 115 |
for i in range(0, len(images), batch_size):
|
| 116 |
-
batch = images[i:i+batch_size]
|
| 117 |
batch_images = processor.process_images(batch).to(device)
|
| 118 |
|
| 119 |
with torch.no_grad():
|
|
@@ -122,7 +131,9 @@ def index_bigemma_images(images: List[Image.Image]):
|
|
| 122 |
|
| 123 |
# Concatenate all embeddings
|
| 124 |
all_embeddings = torch.cat(embeddings_list, dim=0)
|
| 125 |
-
print(
|
|
|
|
|
|
|
| 126 |
|
| 127 |
return all_embeddings
|
| 128 |
|
|
@@ -138,7 +149,7 @@ def index_colgemma_images(images: List[Image.Image]):
|
|
| 138 |
# Process in smaller batches to avoid memory issues
|
| 139 |
batch_size = 2
|
| 140 |
for i in range(0, len(images), batch_size):
|
| 141 |
-
batch = images[i:i+batch_size]
|
| 142 |
batch_images = processor.process_images(batch).to(device)
|
| 143 |
|
| 144 |
with torch.no_grad():
|
|
@@ -147,7 +158,9 @@ def index_colgemma_images(images: List[Image.Image]):
|
|
| 147 |
|
| 148 |
# Concatenate all embeddings
|
| 149 |
all_embeddings = torch.cat(embeddings_list, dim=0)
|
| 150 |
-
print(
|
|
|
|
|
|
|
| 151 |
|
| 152 |
return all_embeddings
|
| 153 |
|
|
@@ -182,11 +195,14 @@ def index_document(pdf_files, model_choice: str) -> str:
|
|
| 182 |
doc_index.colgemma_embeddings = index_colgemma_images(doc_index.images)
|
| 183 |
status_messages.append("β Indexed with ColGemma3")
|
| 184 |
|
| 185 |
-
final_status =
|
|
|
|
|
|
|
| 186 |
return final_status
|
| 187 |
|
| 188 |
except Exception as e:
|
| 189 |
import traceback
|
|
|
|
| 190 |
error_details = traceback.format_exc()
|
| 191 |
print(f"Indexing error: {error_details}")
|
| 192 |
return f"β Error indexing document: {str(e)}"
|
|
@@ -211,14 +227,18 @@ def generate_colgemma_heatmap(
|
|
| 211 |
image_mask = batch_images["input_ids"] == image_token_id
|
| 212 |
else:
|
| 213 |
image_mask = torch.ones(
|
| 214 |
-
image_embedding.shape[0],
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
|
| 218 |
# Calculate n_patches
|
| 219 |
num_image_tokens = image_mask.sum().item()
|
| 220 |
n_side = int(math.sqrt(num_image_tokens))
|
| 221 |
-
n_patches = (
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# Generate similarity maps
|
| 224 |
similarity_maps_list = get_similarity_maps_from_embeddings(
|
|
@@ -235,12 +255,14 @@ def generate_colgemma_heatmap(
|
|
| 235 |
|
| 236 |
# Create heatmap overlay
|
| 237 |
img_array = np.array(image.convert("RGBA"))
|
| 238 |
-
similarity_map_array =
|
|
|
|
|
|
|
| 239 |
similarity_map_array = rearrange(similarity_map_array, "h w -> w h")
|
| 240 |
|
| 241 |
-
similarity_map_image = Image.fromarray(
|
| 242 |
-
|
| 243 |
-
)
|
| 244 |
|
| 245 |
# Create matplotlib figure
|
| 246 |
fig, ax = plt.subplots(figsize=(10, 10))
|
|
@@ -287,7 +309,12 @@ def query_documents(
|
|
| 287 |
# Query with BiGemma3
|
| 288 |
if model_choice in ["NetraEmbed (BiGemma3)", "Both"]:
|
| 289 |
if doc_index.bigemma_embeddings is None:
|
| 290 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
model, processor = load_bigemma_model()
|
| 293 |
|
|
@@ -311,15 +338,27 @@ def query_documents(
|
|
| 311 |
bigemma_text = "### BiGemma3 (NetraEmbed) Results\n\n"
|
| 312 |
for rank, idx in enumerate(top_indices):
|
| 313 |
score = scores[0, idx].item()
|
| 314 |
-
bigemma_text +=
|
|
|
|
|
|
|
| 315 |
bigemma_results.append(
|
| 316 |
-
(
|
|
|
|
|
|
|
|
|
|
| 317 |
)
|
| 318 |
|
| 319 |
# Query with ColGemma3
|
| 320 |
if model_choice in ["ColNetraEmbed (ColGemma3)", "Both"]:
|
| 321 |
if doc_index.colgemma_embeddings is None:
|
| 322 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
model, processor = load_colgemma_model()
|
| 325 |
|
|
@@ -343,7 +382,9 @@ def query_documents(
|
|
| 343 |
colgemma_text = "### ColGemma3 (ColNetraEmbed) Results\n\n"
|
| 344 |
for rank, idx in enumerate(top_indices):
|
| 345 |
score = scores[0, idx].item()
|
| 346 |
-
colgemma_text +=
|
|
|
|
|
|
|
| 347 |
|
| 348 |
# Generate heatmap if requested
|
| 349 |
if show_heatmap:
|
|
@@ -353,11 +394,17 @@ def query_documents(
|
|
| 353 |
image_embedding=doc_index.colgemma_embeddings[idx.item()],
|
| 354 |
)
|
| 355 |
colgemma_results.append(
|
| 356 |
-
(
|
|
|
|
|
|
|
|
|
|
| 357 |
)
|
| 358 |
else:
|
| 359 |
colgemma_results.append(
|
| 360 |
-
(
|
|
|
|
|
|
|
|
|
|
| 361 |
)
|
| 362 |
|
| 363 |
# Return results based on model choice
|
|
@@ -370,6 +417,7 @@ def query_documents(
|
|
| 370 |
|
| 371 |
except Exception as e:
|
| 372 |
import traceback
|
|
|
|
| 373 |
error_details = traceback.format_exc()
|
| 374 |
print(f"Query error: {error_details}")
|
| 375 |
return None, f"β Error during query: {str(e)}", None, None
|
|
@@ -390,14 +438,14 @@ with gr.Blocks(title="NetraEmbed Demo") as demo:
|
|
| 390 |
<a href="https://github.com/adithya-s-k/colpali" target="_blank">
|
| 391 |
<img src="https://img.shields.io/badge/GitHub-colpali-181717?logo=github" alt="GitHub">
|
| 392 |
</a>
|
| 393 |
-
<a href="https://huggingface.co/Cognitive-Lab/
|
| 394 |
<img src="https://img.shields.io/badge/π€%20HuggingFace-Model-yellow" alt="Model">
|
| 395 |
</a>
|
| 396 |
<a href="https://www.cognitivelab.in/blog/introducing-netraembed" target="_blank">
|
| 397 |
<img src="https://img.shields.io/badge/Blog-CognitiveLab-blue" alt="Blog">
|
| 398 |
</a>
|
| 399 |
-
<a href="https://
|
| 400 |
-
<img src="https://img.shields.io/badge
|
| 401 |
</a>
|
| 402 |
</div>
|
| 403 |
"""
|
|
@@ -443,9 +491,7 @@ with gr.Blocks(title="NetraEmbed Demo") as demo:
|
|
| 443 |
)
|
| 444 |
|
| 445 |
pdf_upload = gr.File(
|
| 446 |
-
label="Upload PDFs",
|
| 447 |
-
file_types=[".pdf"],
|
| 448 |
-
file_count="multiple"
|
| 449 |
)
|
| 450 |
index_btn = gr.Button("π₯ Index Documents", variant="primary", size="sm")
|
| 451 |
|
|
@@ -531,7 +577,12 @@ with gr.Blocks(title="NetraEmbed Demo") as demo:
|
|
| 531 |
query_btn.click(
|
| 532 |
fn=query_documents,
|
| 533 |
inputs=[query_input, model_select, top_k_slider, heatmap_checkbox],
|
| 534 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
)
|
| 536 |
|
| 537 |
# Enable queue for handling multiple requests
|
|
|
|
| 23 |
from einops import rearrange
|
| 24 |
|
| 25 |
# Import from colpali_engine
|
| 26 |
+
from colpali_engine.models import (
|
| 27 |
+
BiGemma3,
|
| 28 |
+
BiGemmaProcessor3,
|
| 29 |
+
ColGemma3,
|
| 30 |
+
ColGemmaProcessor3,
|
| 31 |
+
)
|
| 32 |
from colpali_engine.interpretability import get_similarity_maps_from_embeddings
|
| 33 |
+
from colpali_engine.interpretability.similarity_map_utils import (
|
| 34 |
+
normalize_similarity_map,
|
| 35 |
+
)
|
| 36 |
|
| 37 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
|
|
|
|
| 40 |
if torch.cuda.is_available():
|
| 41 |
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 42 |
|
| 43 |
+
|
| 44 |
# Global state for models and indexed documents
|
| 45 |
class DocumentIndex:
|
| 46 |
def __init__(self):
|
|
|
|
| 52 |
self.colgemma_model = None
|
| 53 |
self.colgemma_processor = None
|
| 54 |
|
| 55 |
+
|
| 56 |
doc_index = DocumentIndex()
|
| 57 |
|
| 58 |
|
|
|
|
| 122 |
# Process in smaller batches to avoid memory issues
|
| 123 |
batch_size = 2
|
| 124 |
for i in range(0, len(images), batch_size):
|
| 125 |
+
batch = images[i : i + batch_size]
|
| 126 |
batch_images = processor.process_images(batch).to(device)
|
| 127 |
|
| 128 |
with torch.no_grad():
|
|
|
|
| 131 |
|
| 132 |
# Concatenate all embeddings
|
| 133 |
all_embeddings = torch.cat(embeddings_list, dim=0)
|
| 134 |
+
print(
|
| 135 |
+
f"β Indexed {len(images)} pages with BiGemma3 (shape: {all_embeddings.shape})"
|
| 136 |
+
)
|
| 137 |
|
| 138 |
return all_embeddings
|
| 139 |
|
|
|
|
| 149 |
# Process in smaller batches to avoid memory issues
|
| 150 |
batch_size = 2
|
| 151 |
for i in range(0, len(images), batch_size):
|
| 152 |
+
batch = images[i : i + batch_size]
|
| 153 |
batch_images = processor.process_images(batch).to(device)
|
| 154 |
|
| 155 |
with torch.no_grad():
|
|
|
|
| 158 |
|
| 159 |
# Concatenate all embeddings
|
| 160 |
all_embeddings = torch.cat(embeddings_list, dim=0)
|
| 161 |
+
print(
|
| 162 |
+
f"β Indexed {len(images)} pages with ColGemma3 (shape: {all_embeddings.shape})"
|
| 163 |
+
)
|
| 164 |
|
| 165 |
return all_embeddings
|
| 166 |
|
|
|
|
| 195 |
doc_index.colgemma_embeddings = index_colgemma_images(doc_index.images)
|
| 196 |
status_messages.append("β Indexed with ColGemma3")
|
| 197 |
|
| 198 |
+
final_status = (
|
| 199 |
+
"\n".join(status_messages) + "\n\nβ
Document ready for querying!"
|
| 200 |
+
)
|
| 201 |
return final_status
|
| 202 |
|
| 203 |
except Exception as e:
|
| 204 |
import traceback
|
| 205 |
+
|
| 206 |
error_details = traceback.format_exc()
|
| 207 |
print(f"Indexing error: {error_details}")
|
| 208 |
return f"β Error indexing document: {str(e)}"
|
|
|
|
| 227 |
image_mask = batch_images["input_ids"] == image_token_id
|
| 228 |
else:
|
| 229 |
image_mask = torch.ones(
|
| 230 |
+
image_embedding.shape[0],
|
| 231 |
+
image_embedding.shape[1],
|
| 232 |
+
dtype=torch.bool,
|
| 233 |
+
device=device,
|
| 234 |
)
|
| 235 |
|
| 236 |
# Calculate n_patches
|
| 237 |
num_image_tokens = image_mask.sum().item()
|
| 238 |
n_side = int(math.sqrt(num_image_tokens))
|
| 239 |
+
n_patches = (
|
| 240 |
+
(n_side, n_side) if n_side * n_side == num_image_tokens else (16, 16)
|
| 241 |
+
)
|
| 242 |
|
| 243 |
# Generate similarity maps
|
| 244 |
similarity_maps_list = get_similarity_maps_from_embeddings(
|
|
|
|
| 255 |
|
| 256 |
# Create heatmap overlay
|
| 257 |
img_array = np.array(image.convert("RGBA"))
|
| 258 |
+
similarity_map_array = (
|
| 259 |
+
normalize_similarity_map(aggregated_map).to(torch.float32).cpu().numpy()
|
| 260 |
+
)
|
| 261 |
similarity_map_array = rearrange(similarity_map_array, "h w -> w h")
|
| 262 |
|
| 263 |
+
similarity_map_image = Image.fromarray(
|
| 264 |
+
(similarity_map_array * 255).astype("uint8")
|
| 265 |
+
).resize(image.size, Image.Resampling.BICUBIC)
|
| 266 |
|
| 267 |
# Create matplotlib figure
|
| 268 |
fig, ax = plt.subplots(figsize=(10, 10))
|
|
|
|
| 309 |
# Query with BiGemma3
|
| 310 |
if model_choice in ["NetraEmbed (BiGemma3)", "Both"]:
|
| 311 |
if doc_index.bigemma_embeddings is None:
|
| 312 |
+
return (
|
| 313 |
+
None,
|
| 314 |
+
"β οΈ Please index the document with BiGemma3 first.",
|
| 315 |
+
None,
|
| 316 |
+
None,
|
| 317 |
+
)
|
| 318 |
|
| 319 |
model, processor = load_bigemma_model()
|
| 320 |
|
|
|
|
| 338 |
bigemma_text = "### BiGemma3 (NetraEmbed) Results\n\n"
|
| 339 |
for rank, idx in enumerate(top_indices):
|
| 340 |
score = scores[0, idx].item()
|
| 341 |
+
bigemma_text += (
|
| 342 |
+
f"**Rank {rank + 1}:** Page {idx.item() + 1} - Score: {score:.4f}\n"
|
| 343 |
+
)
|
| 344 |
bigemma_results.append(
|
| 345 |
+
(
|
| 346 |
+
doc_index.images[idx.item()],
|
| 347 |
+
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.4f})",
|
| 348 |
+
)
|
| 349 |
)
|
| 350 |
|
| 351 |
# Query with ColGemma3
|
| 352 |
if model_choice in ["ColNetraEmbed (ColGemma3)", "Both"]:
|
| 353 |
if doc_index.colgemma_embeddings is None:
|
| 354 |
+
return (
|
| 355 |
+
bigemma_results if bigemma_results else None,
|
| 356 |
+
bigemma_text
|
| 357 |
+
if bigemma_text
|
| 358 |
+
else "β οΈ Please index the document with ColGemma3 first.",
|
| 359 |
+
None,
|
| 360 |
+
None,
|
| 361 |
+
)
|
| 362 |
|
| 363 |
model, processor = load_colgemma_model()
|
| 364 |
|
|
|
|
| 382 |
colgemma_text = "### ColGemma3 (ColNetraEmbed) Results\n\n"
|
| 383 |
for rank, idx in enumerate(top_indices):
|
| 384 |
score = scores[0, idx].item()
|
| 385 |
+
colgemma_text += (
|
| 386 |
+
f"**Rank {rank + 1}:** Page {idx.item() + 1} - Score: {score:.2f}\n"
|
| 387 |
+
)
|
| 388 |
|
| 389 |
# Generate heatmap if requested
|
| 390 |
if show_heatmap:
|
|
|
|
| 394 |
image_embedding=doc_index.colgemma_embeddings[idx.item()],
|
| 395 |
)
|
| 396 |
colgemma_results.append(
|
| 397 |
+
(
|
| 398 |
+
heatmap_image,
|
| 399 |
+
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.2f})",
|
| 400 |
+
)
|
| 401 |
)
|
| 402 |
else:
|
| 403 |
colgemma_results.append(
|
| 404 |
+
(
|
| 405 |
+
doc_index.images[idx.item()],
|
| 406 |
+
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.2f})",
|
| 407 |
+
)
|
| 408 |
)
|
| 409 |
|
| 410 |
# Return results based on model choice
|
|
|
|
| 417 |
|
| 418 |
except Exception as e:
|
| 419 |
import traceback
|
| 420 |
+
|
| 421 |
error_details = traceback.format_exc()
|
| 422 |
print(f"Query error: {error_details}")
|
| 423 |
return None, f"β Error during query: {str(e)}", None, None
|
|
|
|
| 438 |
<a href="https://github.com/adithya-s-k/colpali" target="_blank">
|
| 439 |
<img src="https://img.shields.io/badge/GitHub-colpali-181717?logo=github" alt="GitHub">
|
| 440 |
</a>
|
| 441 |
+
<a href="https://huggingface.co/Cognitive-Lab/NetraEmbed" target="_blank">
|
| 442 |
<img src="https://img.shields.io/badge/π€%20HuggingFace-Model-yellow" alt="Model">
|
| 443 |
</a>
|
| 444 |
<a href="https://www.cognitivelab.in/blog/introducing-netraembed" target="_blank">
|
| 445 |
<img src="https://img.shields.io/badge/Blog-CognitiveLab-blue" alt="Blog">
|
| 446 |
</a>
|
| 447 |
+
<a href="https://huggingface.co/spaces/AdithyaSK/NetraEmbed" target="_blank">
|
| 448 |
+
<img src="https://img.shields.io/badge/π€%20Demo-HuggingFace%20Space-yellow" alt="Demo">
|
| 449 |
</a>
|
| 450 |
</div>
|
| 451 |
"""
|
|
|
|
| 491 |
)
|
| 492 |
|
| 493 |
pdf_upload = gr.File(
|
| 494 |
+
label="Upload PDFs", file_types=[".pdf"], file_count="multiple"
|
|
|
|
|
|
|
| 495 |
)
|
| 496 |
index_btn = gr.Button("π₯ Index Documents", variant="primary", size="sm")
|
| 497 |
|
|
|
|
| 577 |
query_btn.click(
|
| 578 |
fn=query_documents,
|
| 579 |
inputs=[query_input, model_select, top_k_slider, heatmap_checkbox],
|
| 580 |
+
outputs=[
|
| 581 |
+
bigemma_gallery,
|
| 582 |
+
bigemma_results_text,
|
| 583 |
+
colgemma_gallery,
|
| 584 |
+
colgemma_results_text,
|
| 585 |
+
],
|
| 586 |
)
|
| 587 |
|
| 588 |
# Enable queue for handling multiple requests
|