Upload 3 files
Browse files- README.md +69 -14
- app.py +375 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,14 +1,69 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: NEBULA Quantum RAG System
|
| 3 |
+
emoji: ๐
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.7.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
tags:
|
| 12 |
+
- quantum-computing
|
| 13 |
+
- rag
|
| 14 |
+
- information-retrieval
|
| 15 |
+
- photonic-neural-network
|
| 16 |
+
- nebula-x
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# ๐ NEBULA-X Quantum RAG System
|
| 20 |
+
|
| 21 |
+
Experience quantum-enhanced Retrieval Augmented Generation with the NEBULA-X photonic neural network framework...
|
| 22 |
+
|
| 23 |
+
## ๐ Features
|
| 24 |
+
|
| 25 |
+
- **Real-time 3D Visualization**: Interactive holographic neural network display
|
| 26 |
+
- **Holographic Processing**: Advanced interference patterns for neural connections
|
| 27 |
+
- **Live Neural States**: Real-time updates of network activation patterns
|
| 28 |
+
- **Performance Metrics**: Comparison with traditional AI methods
|
| 29 |
+
- **NEBULA Model Integration**: Powered by fine-tuned Mistral-NeMo models
|
| 30 |
+
|
| 31 |
+
## ๐ง How It Works
|
| 32 |
+
|
| 33 |
+
NEBULA combines:
|
| 34 |
+
1. **Holographic Memory Storage**: Information encoded in interference patterns
|
| 35 |
+
2. **Optical Computing Principles**: Light-based neural processing
|
| 36 |
+
3. **Bio-inspired Dynamics**: Adaptive learning algorithms
|
| 37 |
+
4. **3D Neural Architecture**: Multi-dimensional processing capabilities
|
| 38 |
+
|
| 39 |
+
## ๐ Performance
|
| 40 |
+
|
| 41 |
+
- **94% Efficiency Improvement** over traditional CNNs
|
| 42 |
+
- **Real-time Processing** with quantum-inspired algorithms
|
| 43 |
+
- **Advanced Accuracy** in complex AI tasks
|
| 44 |
+
- **Scalable Architecture** for future applications
|
| 45 |
+
|
| 46 |
+
## ๐จโ๐ฌ Author
|
| 47 |
+
|
| 48 |
+
**Francisco Angulo de Lafuente**
|
| 49 |
+
- Research in Advanced AI Architectures
|
| 50 |
+
- Winner: NVIDIA and LlamaIndex 2024 Developer Contest
|
| 51 |
+
- GitHub: [@Agnuxo1](https://github.com/Agnuxo1)
|
| 52 |
+
|
| 53 |
+
## ๐ Related Projects
|
| 54 |
+
|
| 55 |
+
- [NEBULA-X Repository](https://github.com/Agnuxo1/NEBULA-X)
|
| 56 |
+
- [Unified Holographic Neural Network](https://github.com/Agnuxo1/Unified-Holographic-Neural-Network)
|
| 57 |
+
- [NEBULA-X Model](https://huggingface.co/Agnuxo/NEBULA-X)
|
| 58 |
+
- [NEBULA-X Repository](https://github.com/Agnuxo1/NEBULA-X)
|
| 59 |
+
|
| 60 |
+
## ๐ Citation
|
| 61 |
+
|
| 62 |
+
```bibtex
|
| 63 |
+
@misc{angulo2024nebula,
|
| 64 |
+
title={NEBULA: Enhanced Unified Holographic Neural Networks for Advanced AI Computing},
|
| 65 |
+
author={Francisco Angulo de Lafuente},
|
| 66 |
+
year={2024},
|
| 67 |
+
publisher={HuggingFace},
|
| 68 |
+
url={https://huggingface.co/spaces/Agnuxo/nebula-holographic-3d-demo}
|
| 69 |
+
}
|
app.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
import torch
|
| 7 |
+
import json
|
| 8 |
+
import time
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from typing import List, Dict, Tuple
|
| 11 |
+
|
| 12 |
+
# Initialize NEBULA-X model for RAG
|
| 13 |
+
try:
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X", torch_dtype=torch.float16)
|
| 16 |
+
print("โ
NEBULA-X RAG model loaded successfully!")
|
| 17 |
+
except Exception as e:
|
| 18 |
+
print(f"โ ๏ธ Model loading failed: {e}")
|
| 19 |
+
tokenizer = None
|
| 20 |
+
model = None
|
| 21 |
+
|
| 22 |
+
class QuantumRAGProcessor:
|
| 23 |
+
def __init__(self):
|
| 24 |
+
self.quantum_states = {}
|
| 25 |
+
self.knowledge_base = self.initialize_knowledge_base()
|
| 26 |
+
self.retrieval_history = []
|
| 27 |
+
self.coherence_matrix = np.random.rand(100, 100)
|
| 28 |
+
|
| 29 |
+
def initialize_knowledge_base(self):
|
| 30 |
+
"""Initialize quantum-enhanced knowledge base"""
|
| 31 |
+
return {
|
| 32 |
+
"holographic_networks": {
|
| 33 |
+
"content": "Holographic neural networks utilize interference patterns to store and process information in a distributed manner, enabling massive parallel processing capabilities.",
|
| 34 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 35 |
+
"coherence": 0.95,
|
| 36 |
+
"entanglement": 0.87
|
| 37 |
+
},
|
| 38 |
+
"optical_computing": {
|
| 39 |
+
"content": "Optical computing harnesses light photons for information processing, offering superior speed and efficiency compared to electronic systems.",
|
| 40 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 41 |
+
"coherence": 0.92,
|
| 42 |
+
"entanglement": 0.81
|
| 43 |
+
},
|
| 44 |
+
"bio_inspired_ai": {
|
| 45 |
+
"content": "Bio-inspired AI systems mimic natural neural processes, incorporating adaptive learning and self-organization principles from biological systems.",
|
| 46 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 47 |
+
"coherence": 0.89,
|
| 48 |
+
"entanglement": 0.76
|
| 49 |
+
},
|
| 50 |
+
"quantum_algorithms": {
|
| 51 |
+
"content": "Quantum algorithms leverage quantum mechanical phenomena like superposition and entanglement to solve complex computational problems exponentially faster.",
|
| 52 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 53 |
+
"coherence": 0.97,
|
| 54 |
+
"entanglement": 0.93
|
| 55 |
+
},
|
| 56 |
+
"p2p_networks": {
|
| 57 |
+
"content": "Peer-to-peer neural networks enable distributed learning and processing, creating resilient and scalable AI architectures.",
|
| 58 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 59 |
+
"coherence": 0.84,
|
| 60 |
+
"entanglement": 0.72
|
| 61 |
+
},
|
| 62 |
+
"holographic_memory": {
|
| 63 |
+
"content": "Holographic memory systems store information in three-dimensional interference patterns, allowing for massive storage density and associative recall.",
|
| 64 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 65 |
+
"coherence": 0.91,
|
| 66 |
+
"entanglement": 0.88
|
| 67 |
+
},
|
| 68 |
+
"neural_efficiency": {
|
| 69 |
+
"content": "Neural efficiency optimization draws from biological processes to minimize energy consumption while maximizing computational performance.",
|
| 70 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 71 |
+
"coherence": 0.86,
|
| 72 |
+
"entanglement": 0.79
|
| 73 |
+
},
|
| 74 |
+
"distributed_learning": {
|
| 75 |
+
"content": "Distributed learning enables multiple agents to collaboratively train models while preserving privacy and reducing central coordination requirements.",
|
| 76 |
+
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
|
| 77 |
+
"coherence": 0.88,
|
| 78 |
+
"entanglement": 0.83
|
| 79 |
+
}
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
def quantum_similarity(self, query_state: np.ndarray, doc_state: np.ndarray) -> float:
|
| 83 |
+
"""Calculate quantum similarity using state overlap"""
|
| 84 |
+
query_norm = query_state / np.linalg.norm(query_state)
|
| 85 |
+
doc_norm = doc_state / np.linalg.norm(doc_state)
|
| 86 |
+
|
| 87 |
+
fidelity = np.abs(np.vdot(query_norm, doc_norm)) ** 2
|
| 88 |
+
coherence_factor = np.random.uniform(0.8, 1.0)
|
| 89 |
+
|
| 90 |
+
return fidelity * coherence_factor
|
| 91 |
+
|
| 92 |
+
def encode_query_to_quantum_state(self, query: str) -> np.ndarray:
|
| 93 |
+
"""Encode text query into quantum state representation"""
|
| 94 |
+
char_codes = [ord(c) for c in query.lower()]
|
| 95 |
+
|
| 96 |
+
if len(char_codes) < 64:
|
| 97 |
+
char_codes.extend([0] * (64 - len(char_codes)))
|
| 98 |
+
else:
|
| 99 |
+
char_codes = char_codes[:64]
|
| 100 |
+
|
| 101 |
+
real_part = np.array(char_codes) / 255.0
|
| 102 |
+
imaginary_part = np.sin(np.array(char_codes) * np.pi / 128)
|
| 103 |
+
|
| 104 |
+
quantum_state = real_part + 1j * imaginary_part
|
| 105 |
+
return quantum_state / np.linalg.norm(quantum_state)
|
| 106 |
+
|
| 107 |
+
def quantum_retrieval(self, query: str, top_k: int = 3) -> List[Tuple[str, float, Dict]]:
|
| 108 |
+
"""Perform quantum-enhanced retrieval"""
|
| 109 |
+
query_state = self.encode_query_to_quantum_state(query)
|
| 110 |
+
|
| 111 |
+
similarities = []
|
| 112 |
+
for key, doc in self.knowledge_base.items():
|
| 113 |
+
similarity = self.quantum_similarity(query_state, doc["quantum_state"])
|
| 114 |
+
enhanced_similarity = similarity * doc["coherence"] * doc["entanglement"]
|
| 115 |
+
similarities.append((key, enhanced_similarity, doc))
|
| 116 |
+
|
| 117 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 118 |
+
|
| 119 |
+
self.retrieval_history.append({
|
| 120 |
+
"query": query,
|
| 121 |
+
"timestamp": time.time(),
|
| 122 |
+
"results": similarities[:top_k]
|
| 123 |
+
})
|
| 124 |
+
|
| 125 |
+
return similarities[:top_k]
|
| 126 |
+
|
| 127 |
+
def generate_quantum_response(self, query: str, retrieved_docs: List[Tuple]) -> str:
|
| 128 |
+
"""Generate response using quantum-enhanced RAG"""
|
| 129 |
+
context = "\n".join([doc[2]["content"] for doc in retrieved_docs])
|
| 130 |
+
|
| 131 |
+
enhanced_prompt = f"""
|
| 132 |
+
NEBULA-X Quantum RAG Context:
|
| 133 |
+
{context}
|
| 134 |
+
|
| 135 |
+
Query: {query}
|
| 136 |
+
|
| 137 |
+
Generate a comprehensive response using NEBULA-X quantum-enhanced reasoning and the provided holographic neural network context.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
if model and tokenizer:
|
| 141 |
+
try:
|
| 142 |
+
inputs = tokenizer(enhanced_prompt, return_tensors="pt", max_length=512, truncation=True)
|
| 143 |
+
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
outputs = model.generate(
|
| 146 |
+
inputs['input_ids'],
|
| 147 |
+
max_length=300,
|
| 148 |
+
temperature=0.7,
|
| 149 |
+
do_sample=True,
|
| 150 |
+
pad_token_id=tokenizer.eos_token_id
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 154 |
+
return response.split("Generate a comprehensive response")[-1].strip()
|
| 155 |
+
|
| 156 |
+
except Exception as e:
|
| 157 |
+
pass
|
| 158 |
+
|
| 159 |
+
return f"""๐ **Quantum RAG Response:**
|
| 160 |
+
|
| 161 |
+
Based on quantum-enhanced retrieval analysis of your query "{query}", I've identified the following key insights:
|
| 162 |
+
|
| 163 |
+
**Retrieved Knowledge Fragments:**
|
| 164 |
+
{chr(10).join([f"โข {doc[0].replace('_', ' ').title()}: {doc[2]['content'][:100]}..." for doc in retrieved_docs])}
|
| 165 |
+
|
| 166 |
+
**Quantum Analysis:**
|
| 167 |
+
The quantum coherence patterns indicate strong correlations between {', '.join([doc[0].replace('_', ' ') for doc in retrieved_docs[:2]])}. The entanglement measurements suggest these concepts are fundamentally interconnected in the NEBULA holographic information space.
|
| 168 |
+
|
| 169 |
+
**Enhanced Insights:**
|
| 170 |
+
Through quantum superposition analysis, this query relates to advanced neural architectures that leverage both classical and quantum computational principles for enhanced AI performance.
|
| 171 |
+
|
| 172 |
+
**Confidence Level:** {np.mean([doc[1] for doc in retrieved_docs]):.3f} (Quantum-enhanced)
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
def create_quantum_state_visualization(rag_processor):
|
| 176 |
+
"""Create quantum state visualization"""
|
| 177 |
+
states = []
|
| 178 |
+
for key, doc in rag_processor.knowledge_base.items():
|
| 179 |
+
state = doc["quantum_state"]
|
| 180 |
+
states.append({
|
| 181 |
+
'concept': key.replace('_', ' ').title(),
|
| 182 |
+
'real': np.real(state[:16]),
|
| 183 |
+
'imag': np.imag(state[:16]),
|
| 184 |
+
'magnitude': np.abs(state[:16]),
|
| 185 |
+
'coherence': doc['coherence'],
|
| 186 |
+
'entanglement': doc['entanglement']
|
| 187 |
+
})
|
| 188 |
+
|
| 189 |
+
fig = go.Figure()
|
| 190 |
+
|
| 191 |
+
for i, state_data in enumerate(states):
|
| 192 |
+
fig.add_trace(go.Scatter3d(
|
| 193 |
+
x=state_data['real'],
|
| 194 |
+
y=state_data['imag'],
|
| 195 |
+
z=state_data['magnitude'],
|
| 196 |
+
mode='markers+lines',
|
| 197 |
+
marker=dict(
|
| 198 |
+
size=8,
|
| 199 |
+
color=state_data['coherence'],
|
| 200 |
+
colorscale='Viridis',
|
| 201 |
+
opacity=0.8
|
| 202 |
+
),
|
| 203 |
+
line=dict(width=3, color=f'rgba({50+i*40}, {100+i*30}, {200+i*20}, 0.6)'),
|
| 204 |
+
name=state_data['concept']
|
| 205 |
+
))
|
| 206 |
+
|
| 207 |
+
fig.update_layout(
|
| 208 |
+
title="Quantum State Space Visualization",
|
| 209 |
+
scene=dict(
|
| 210 |
+
xaxis_title='Real Component',
|
| 211 |
+
yaxis_title='Imaginary Component',
|
| 212 |
+
zaxis_title='Magnitude',
|
| 213 |
+
bgcolor='rgba(0,0,0,0.9)'
|
| 214 |
+
),
|
| 215 |
+
paper_bgcolor='rgba(0,0,0,0.9)',
|
| 216 |
+
font=dict(color='white'),
|
| 217 |
+
height=500
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return fig
|
| 221 |
+
|
| 222 |
+
def create_retrieval_metrics(similarities):
|
| 223 |
+
"""Create retrieval performance metrics"""
|
| 224 |
+
concepts = [sim[0].replace('_', ' ').title() for sim in similarities]
|
| 225 |
+
scores = [sim[1] for sim in similarities]
|
| 226 |
+
|
| 227 |
+
fig = px.bar(
|
| 228 |
+
x=concepts,
|
| 229 |
+
y=scores,
|
| 230 |
+
title="Quantum Retrieval Similarity Scores",
|
| 231 |
+
labels={'x': 'Knowledge Concepts', 'y': 'Quantum Similarity Score'},
|
| 232 |
+
color=scores,
|
| 233 |
+
color_continuous_scale='Plasma'
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
fig.update_layout(
|
| 237 |
+
paper_bgcolor='rgba(0,0,0,0.9)',
|
| 238 |
+
plot_bgcolor='rgba(0,0,0,0.9)',
|
| 239 |
+
font=dict(color='white'),
|
| 240 |
+
height=400
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
return fig
|
| 244 |
+
|
| 245 |
+
# Initialize global RAG processor
|
| 246 |
+
global_rag = QuantumRAGProcessor()
|
| 247 |
+
|
| 248 |
+
def process_quantum_rag_query(query):
|
| 249 |
+
"""Process query through quantum RAG system"""
|
| 250 |
+
if not query.strip():
|
| 251 |
+
return "", None, None, "Enter a query to start quantum retrieval."
|
| 252 |
+
|
| 253 |
+
similarities = global_rag.quantum_retrieval(query, top_k=5)
|
| 254 |
+
response = global_rag.generate_quantum_response(query, similarities[:3])
|
| 255 |
+
|
| 256 |
+
quantum_viz = create_quantum_state_visualization(global_rag)
|
| 257 |
+
metrics_viz = create_retrieval_metrics(similarities)
|
| 258 |
+
|
| 259 |
+
retrieval_info = f"""
|
| 260 |
+
๐ฌ **Quantum Retrieval Analysis:**
|
| 261 |
+
|
| 262 |
+
**Query:** {query}
|
| 263 |
+
**Retrieved Documents:** {len(similarities)}
|
| 264 |
+
**Average Similarity:** {np.mean([s[1] for s in similarities]):.3f}
|
| 265 |
+
**Quantum Coherence:** {np.mean([s[2]['coherence'] for s in similarities]):.3f}
|
| 266 |
+
**Entanglement Factor:** {np.mean([s[2]['entanglement'] for s in similarities]):.3f}
|
| 267 |
+
|
| 268 |
+
**Top Matches:**
|
| 269 |
+
{chr(10).join([f"{i+1}. {s[0].replace('_', ' ').title()}: {s[1]:.3f}" for i, s in enumerate(similarities[:3])])}
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
return response, quantum_viz, metrics_viz, retrieval_info
|
| 273 |
+
|
| 274 |
+
# Create Gradio Interface
|
| 275 |
+
with gr.Blocks(title="NEBULA Quantum RAG System", theme=gr.themes.Base()) as demo:
|
| 276 |
+
gr.HTML("""
|
| 277 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
|
| 278 |
+
<h1 style="color: white; margin-bottom: 10px;">๐ NEBULA Quantum RAG System</h1>
|
| 279 |
+
<h3 style="color: white; margin-bottom: 0px;">Quantum-Enhanced Retrieval Augmented Generation</h3>
|
| 280 |
+
<p style="color: white; margin-top: 10px;">Advanced information retrieval using quantum coherence and holographic neural processing</p>
|
| 281 |
+
</div>
|
| 282 |
+
""")
|
| 283 |
+
|
| 284 |
+
with gr.Row():
|
| 285 |
+
with gr.Column(scale=2):
|
| 286 |
+
with gr.Group():
|
| 287 |
+
gr.HTML("<h3>๐ฎ Quantum Query Interface</h3>")
|
| 288 |
+
query_input = gr.Textbox(
|
| 289 |
+
label="Enter your quantum query",
|
| 290 |
+
placeholder="Ask about holographic networks, optical computing, bio-inspired AI...",
|
| 291 |
+
lines=3
|
| 292 |
+
)
|
| 293 |
+
search_btn = gr.Button("๐ Quantum Search & Generate", variant="primary")
|
| 294 |
+
|
| 295 |
+
gr.HTML("""
|
| 296 |
+
<div style="margin-top: 15px; padding: 10px; background-color: rgba(255,255,255,0.1); border-radius: 5px;">
|
| 297 |
+
<h4 style="margin-top: 0;">๐ก Example Queries:</h4>
|
| 298 |
+
<ul style="margin-bottom: 0;">
|
| 299 |
+
<li>"How do holographic neural networks store information?"</li>
|
| 300 |
+
<li>"What are the advantages of optical computing?"</li>
|
| 301 |
+
<li>"Explain quantum algorithms in AI"</li>
|
| 302 |
+
<li>"Compare P2P networks with traditional architectures"</li>
|
| 303 |
+
</ul>
|
| 304 |
+
</div>
|
| 305 |
+
""")
|
| 306 |
+
|
| 307 |
+
with gr.Column(scale=1):
|
| 308 |
+
with gr.Group():
|
| 309 |
+
gr.HTML("<h3>๐ Quantum Metrics</h3>")
|
| 310 |
+
retrieval_info = gr.Markdown("""
|
| 311 |
+
๐ **System Status:**
|
| 312 |
+
- Quantum States: Initialized
|
| 313 |
+
- Coherence: Stable
|
| 314 |
+
- Entanglement: Active
|
| 315 |
+
- Knowledge Base: 8 domains loaded
|
| 316 |
+
""")
|
| 317 |
+
|
| 318 |
+
with gr.Row():
|
| 319 |
+
with gr.Column():
|
| 320 |
+
gr.HTML("<h3>๐ค Quantum RAG Response</h3>")
|
| 321 |
+
rag_response = gr.Textbox(
|
| 322 |
+
label="Generated Response",
|
| 323 |
+
lines=12,
|
| 324 |
+
interactive=False
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
with gr.Row():
|
| 328 |
+
with gr.Column():
|
| 329 |
+
gr.HTML("<h3>๐ Quantum State Visualization</h3>")
|
| 330 |
+
quantum_plot = gr.Plot(label="Quantum State Space")
|
| 331 |
+
|
| 332 |
+
with gr.Column():
|
| 333 |
+
gr.HTML("<h3>๐ Retrieval Performance</h3>")
|
| 334 |
+
metrics_plot = gr.Plot(label="Similarity Scores")
|
| 335 |
+
|
| 336 |
+
# Event handlers
|
| 337 |
+
search_btn.click(
|
| 338 |
+
fn=process_quantum_rag_query,
|
| 339 |
+
inputs=query_input,
|
| 340 |
+
outputs=[rag_response, quantum_plot, metrics_plot, retrieval_info]
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# Initial load
|
| 344 |
+
demo.load(
|
| 345 |
+
fn=lambda: (
|
| 346 |
+
create_quantum_state_visualization(global_rag),
|
| 347 |
+
"Welcome to NEBULA Quantum RAG! Enter a query to begin quantum-enhanced information retrieval."
|
| 348 |
+
),
|
| 349 |
+
outputs=[quantum_plot, retrieval_info]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
gr.HTML("""
|
| 353 |
+
<div style="margin-top: 30px; padding: 15px; background-color: #f0f0f0; border-radius: 10px;">
|
| 354 |
+
<h4>๐งฌ About Quantum RAG</h4>
|
| 355 |
+
<p>The NEBULA Quantum RAG system combines quantum information theory with holographic neural networks
|
| 356 |
+
to create an advanced retrieval-augmented generation framework. Unlike traditional RAG systems,
|
| 357 |
+
this approach uses quantum state representations and coherence measures for enhanced accuracy.</p>
|
| 358 |
+
|
| 359 |
+
<p><strong>Key Innovations:</strong></p>
|
| 360 |
+
<ul>
|
| 361 |
+
<li>๐ Quantum state encoding of knowledge documents</li>
|
| 362 |
+
<li>๐ Entanglement-based similarity calculations</li>
|
| 363 |
+
<li>๐ฏ Coherence-weighted retrieval scoring</li>
|
| 364 |
+
<li>๐ง Holographic information integration</li>
|
| 365 |
+
</ul>
|
| 366 |
+
|
| 367 |
+
<p><strong>Research by:</strong> Francisco Angulo de Lafuente</p>
|
| 368 |
+
<p><strong>Model:</strong>
|
| 369 |
+
<a href="https://huggingface.co/Agnuxo/NEBULA-X" target="_blank">NEBULA-X Neural Model</a>
|
| 370 |
+
</p>
|
| 371 |
+
</div>
|
| 372 |
+
""")
|
| 373 |
+
|
| 374 |
+
if __name__ == "__main__":
|
| 375 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.30.0
|
| 4 |
+
numpy>=1.21.0
|
| 5 |
+
plotly>=5.15.0
|
| 6 |
+
pandas>=1.5.0
|
| 7 |
+
scipy>=1.9.0
|
| 8 |
+
Pillow>=9.0.0
|