import gradio as gr import numpy as np import plotly.graph_objects as go import plotly.express as px from transformers import AutoTokenizer, AutoModelForCausalLM import torch import json import time import pandas as pd from typing import List, Dict, Tuple # Initialize NEBULA-X model for RAG try: tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X") model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X", torch_dtype=torch.float16) print("✅ NEBULA-X RAG model loaded successfully!") except Exception as e: print(f"⚠️ Model loading failed: {e}") tokenizer = None model = None class QuantumRAGProcessor: def __init__(self): self.quantum_states = {} self.knowledge_base = self.initialize_knowledge_base() self.retrieval_history = [] self.coherence_matrix = np.random.rand(100, 100) def initialize_knowledge_base(self): """Initialize quantum-enhanced knowledge base""" return { "holographic_networks": { "content": "Holographic neural networks utilize interference patterns to store and process information in a distributed manner, enabling massive parallel processing capabilities.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.95, "entanglement": 0.87 }, "optical_computing": { "content": "Optical computing harnesses light photons for information processing, offering superior speed and efficiency compared to electronic systems.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.92, "entanglement": 0.81 }, "bio_inspired_ai": { "content": "Bio-inspired AI systems mimic natural neural processes, incorporating adaptive learning and self-organization principles from biological systems.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.89, "entanglement": 0.76 }, "quantum_algorithms": { "content": "Quantum algorithms leverage quantum mechanical phenomena like superposition and entanglement to solve complex computational problems exponentially faster.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.97, "entanglement": 0.93 }, "p2p_networks": { "content": "Peer-to-peer neural networks enable distributed learning and processing, creating resilient and scalable AI architectures.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.84, "entanglement": 0.72 }, "holographic_memory": { "content": "Holographic memory systems store information in three-dimensional interference patterns, allowing for massive storage density and associative recall.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.91, "entanglement": 0.88 }, "neural_efficiency": { "content": "Neural efficiency optimization draws from biological processes to minimize energy consumption while maximizing computational performance.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.86, "entanglement": 0.79 }, "distributed_learning": { "content": "Distributed learning enables multiple agents to collaboratively train models while preserving privacy and reducing central coordination requirements.", "quantum_state": np.random.rand(64) + 1j * np.random.rand(64), "coherence": 0.88, "entanglement": 0.83 } } def quantum_similarity(self, query_state: np.ndarray, doc_state: np.ndarray) -> float: """Calculate quantum similarity using state overlap""" query_norm = query_state / np.linalg.norm(query_state) doc_norm = doc_state / np.linalg.norm(doc_state) fidelity = np.abs(np.vdot(query_norm, doc_norm)) ** 2 coherence_factor = np.random.uniform(0.8, 1.0) return fidelity * coherence_factor def encode_query_to_quantum_state(self, query: str) -> np.ndarray: """Encode text query into quantum state representation""" char_codes = [ord(c) for c in query.lower()] if len(char_codes) < 64: char_codes.extend([0] * (64 - len(char_codes))) else: char_codes = char_codes[:64] real_part = np.array(char_codes) / 255.0 imaginary_part = np.sin(np.array(char_codes) * np.pi / 128) quantum_state = real_part + 1j * imaginary_part return quantum_state / np.linalg.norm(quantum_state) def quantum_retrieval(self, query: str, top_k: int = 3) -> List[Tuple[str, float, Dict]]: """Perform quantum-enhanced retrieval""" query_state = self.encode_query_to_quantum_state(query) similarities = [] for key, doc in self.knowledge_base.items(): similarity = self.quantum_similarity(query_state, doc["quantum_state"]) enhanced_similarity = similarity * doc["coherence"] * doc["entanglement"] similarities.append((key, enhanced_similarity, doc)) similarities.sort(key=lambda x: x[1], reverse=True) self.retrieval_history.append({ "query": query, "timestamp": time.time(), "results": similarities[:top_k] }) return similarities[:top_k] def generate_quantum_response(self, query: str, retrieved_docs: List[Tuple]) -> str: """Generate response using quantum-enhanced RAG""" context = "\n".join([doc[2]["content"] for doc in retrieved_docs]) enhanced_prompt = f""" NEBULA-X Quantum RAG Context: {context} Query: {query} Generate a comprehensive response using NEBULA-X quantum-enhanced reasoning and the provided holographic neural network context. """ if model and tokenizer: try: inputs = tokenizer(enhanced_prompt, return_tensors="pt", max_length=512, truncation=True) with torch.no_grad(): outputs = model.generate( inputs['input_ids'], max_length=300, temperature=0.7, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("Generate a comprehensive response")[-1].strip() except Exception as e: pass return f"""🌌 **Quantum RAG Response:** Based on quantum-enhanced retrieval analysis of your query "{query}", I've identified the following key insights: **Retrieved Knowledge Fragments:** {chr(10).join([f"• {doc[0].replace('_', ' ').title()}: {doc[2]['content'][:100]}..." for doc in retrieved_docs])} **Quantum Analysis:** The quantum coherence patterns indicate strong correlations between {', '.join([doc[0].replace('_', ' ') for doc in retrieved_docs[:2]])}. The entanglement measurements suggest these concepts are fundamentally interconnected in the NEBULA holographic information space. **Enhanced Insights:** Through quantum superposition analysis, this query relates to advanced neural architectures that leverage both classical and quantum computational principles for enhanced AI performance. **Confidence Level:** {np.mean([doc[1] for doc in retrieved_docs]):.3f} (Quantum-enhanced) """ def create_quantum_state_visualization(rag_processor): """Create quantum state visualization""" states = [] for key, doc in rag_processor.knowledge_base.items(): state = doc["quantum_state"] states.append({ 'concept': key.replace('_', ' ').title(), 'real': np.real(state[:16]), 'imag': np.imag(state[:16]), 'magnitude': np.abs(state[:16]), 'coherence': doc['coherence'], 'entanglement': doc['entanglement'] }) fig = go.Figure() for i, state_data in enumerate(states): fig.add_trace(go.Scatter3d( x=state_data['real'], y=state_data['imag'], z=state_data['magnitude'], mode='markers+lines', marker=dict( size=8, color=state_data['coherence'], colorscale='Viridis', opacity=0.8 ), line=dict(width=3, color=f'rgba({50+i*40}, {100+i*30}, {200+i*20}, 0.6)'), name=state_data['concept'] )) fig.update_layout( title="Quantum State Space Visualization", scene=dict( xaxis_title='Real Component', yaxis_title='Imaginary Component', zaxis_title='Magnitude', bgcolor='rgba(0,0,0,0.9)' ), paper_bgcolor='rgba(0,0,0,0.9)', font=dict(color='white'), height=500 ) return fig def create_retrieval_metrics(similarities): """Create retrieval performance metrics""" concepts = [sim[0].replace('_', ' ').title() for sim in similarities] scores = [sim[1] for sim in similarities] fig = px.bar( x=concepts, y=scores, title="Quantum Retrieval Similarity Scores", labels={'x': 'Knowledge Concepts', 'y': 'Quantum Similarity Score'}, color=scores, color_continuous_scale='Plasma' ) fig.update_layout( paper_bgcolor='rgba(0,0,0,0.9)', plot_bgcolor='rgba(0,0,0,0.9)', font=dict(color='white'), height=400 ) return fig # Initialize global RAG processor global_rag = QuantumRAGProcessor() def process_quantum_rag_query(query): """Process query through quantum RAG system""" if not query.strip(): return "", None, None, "Enter a query to start quantum retrieval." similarities = global_rag.quantum_retrieval(query, top_k=5) response = global_rag.generate_quantum_response(query, similarities[:3]) quantum_viz = create_quantum_state_visualization(global_rag) metrics_viz = create_retrieval_metrics(similarities) retrieval_info = f""" 🔬 **Quantum Retrieval Analysis:** **Query:** {query} **Retrieved Documents:** {len(similarities)} **Average Similarity:** {np.mean([s[1] for s in similarities]):.3f} **Quantum Coherence:** {np.mean([s[2]['coherence'] for s in similarities]):.3f} **Entanglement Factor:** {np.mean([s[2]['entanglement'] for s in similarities]):.3f} **Top Matches:** {chr(10).join([f"{i+1}. {s[0].replace('_', ' ').title()}: {s[1]:.3f}" for i, s in enumerate(similarities[:3])])} """ return response, quantum_viz, metrics_viz, retrieval_info # Create Gradio Interface with gr.Blocks(title="NEBULA Quantum RAG System", theme=gr.themes.Base()) as demo: gr.HTML("""

🌌 NEBULA Quantum RAG System

Quantum-Enhanced Retrieval Augmented Generation

Advanced information retrieval using quantum coherence and holographic neural processing

""") with gr.Row(): with gr.Column(scale=2): with gr.Group(): gr.HTML("

🔮 Quantum Query Interface

") query_input = gr.Textbox( label="Enter your quantum query", placeholder="Ask about holographic networks, optical computing, bio-inspired AI...", lines=3 ) search_btn = gr.Button("🚀 Quantum Search & Generate", variant="primary") gr.HTML("""

💡 Example Queries:

""") with gr.Column(scale=1): with gr.Group(): gr.HTML("

📊 Quantum Metrics

") retrieval_info = gr.Markdown(""" 📊 **System Status:** - Quantum States: Initialized - Coherence: Stable - Entanglement: Active - Knowledge Base: 8 domains loaded """) with gr.Row(): with gr.Column(): gr.HTML("

🤖 Quantum RAG Response

") rag_response = gr.Textbox( label="Generated Response", lines=12, interactive=False ) with gr.Row(): with gr.Column(): gr.HTML("

🌊 Quantum State Visualization

") quantum_plot = gr.Plot(label="Quantum State Space") with gr.Column(): gr.HTML("

📈 Retrieval Performance

") metrics_plot = gr.Plot(label="Similarity Scores") # Event handlers search_btn.click( fn=process_quantum_rag_query, inputs=query_input, outputs=[rag_response, quantum_plot, metrics_plot, retrieval_info] ) # Initial load demo.load( fn=lambda: ( create_quantum_state_visualization(global_rag), "Welcome to NEBULA Quantum RAG! Enter a query to begin quantum-enhanced information retrieval." ), outputs=[quantum_plot, retrieval_info] ) gr.HTML("""

🧬 About Quantum RAG

The NEBULA Quantum RAG system combines quantum information theory with holographic neural networks to create an advanced retrieval-augmented generation framework. Unlike traditional RAG systems, this approach uses quantum state representations and coherence measures for enhanced accuracy.

Key Innovations:

Research by: Francisco Angulo de Lafuente

Model: NEBULA-X Neural Model

""") if __name__ == "__main__": demo.launch()