Spaces:
Runtime error
Runtime error
File size: 34,951 Bytes
5b21692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import io
import os
os.environ['VLLM_USE_V1'] = '0'
os.environ['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
from argparse import ArgumentParser
import gradio as gr
import gradio.processing_utils as processing_utils
import modelscope_studio.components.antd as antd
import modelscope_studio.components.base as ms
import numpy as np
import soundfile as sf
from gradio_client import utils as client_utils
from qwen_omni_utils import process_mm_info
import base64
import numpy as np
from scipy.io import wavfile # 使用 scipy 保存 wav 文件,更简单支持 int16
import soundfile as sf
from openai import OpenAI
import base64
import os
import oss2
import json
import time
import subprocess
import numpy as np
OSS_RETRY = 10
OSS_RETRY_DELAY = 3
WAV_BIT_RATE = 16
WAV_SAMPLE_RATE = os.environ.get("WAV_SAMPLE_RATE", 16000)
# OSS_CONFIG_PATH = "/mnt/workspace/feizi.wx/.oss_config.json"
endpoint = os.getenv("OSS_ENDPOINT")
region = os.getenv("OSS_REGION")
bucket_name = os.getenv("OSS_BUCKET_NAME")
API_KEY = os.environ['API_KEY']
OSS_ACCESS_KEY_ID = os.environ['OSS_ACCESS_KEY_ID']
OSS_ACCESS_KEY_SECRET = os.environ['OSS_ACCESS_KEY_SECRET']
OSS_CONFIG_PATH = {}
class OSSReader:
def __init__(self):
# 初始化OSS配置
self.bucket2object = {
bucket_name: oss2.Bucket(oss2.Auth(OSS_ACCESS_KEY_ID, OSS_ACCESS_KEY_SECRET), endpoint, bucket_name),
}
print(f"Loaded OSS config from: {OSS_CONFIG_PATH}\nSupported buckets: {list(self.bucket2object.keys())}")
def _parse_oss_path(self, oss_path):
"""解析oss路径,返回bucket名称和实际路径"""
assert oss_path.startswith("oss://"), f"Invalid oss path {oss_path}"
bucket_name, object_key = oss_path.split("oss://")[-1].split("/", 1)
object_key = f"studio-temp/Qwen3-Omni-Demo/{object_key}"
return bucket_name, object_key
def _retry_operation(self, func, *args, retries=OSS_RETRY, delay=OSS_RETRY, **kwargs):
"""通用的重试机制"""
for _ in range(retries):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Retry: {_} Error: {str(e)}")
if _ == retries - 1:
raise e
time.sleep(delay)
def get_public_url(self, oss_path):
bucket_name, object_key = self._parse_oss_path(oss_path)
url = self._retry_operation(self.bucket2object[bucket_name].sign_url, 'GET', object_key, 600,
slash_safe=True).replace('http://', 'https://')
return url.replace("-internal", '')
def file_exists(self, oss_path):
"""判断文件是否存在"""
bucket_name, object_key = self._parse_oss_path(oss_path)
return self._retry_operation(self.bucket2object[bucket_name].object_exists, object_key)
def download_file(self, oss_path, local_path):
"""下载OSS上的文件到本地"""
bucket_name, object_key = self._parse_oss_path(oss_path)
self._retry_operation(self.bucket2object[bucket_name].get_object_to_file, object_key, local_path)
def upload_file(self, local_path, oss_path, overwrite=True):
"""上传本地文件到OSS"""
bucket_name, object_key = self._parse_oss_path(oss_path)
# 检查文件是否存在
if not os.path.exists(local_path):
raise FileNotFoundError(f"Local file {local_path} does not exist")
# 检查目标文件是否存在(当overwrite=False时)
if not overwrite and self.file_exists(oss_path):
print(f"File {oss_path} already exists, skip upload")
return False
# 执行上传操作
try:
self._retry_operation(
self.bucket2object[bucket_name].put_object_from_file,
object_key,
local_path
)
return True
except Exception as e:
print(f"Upload failed: {str(e)}")
return False
def upload_audio_from_array(self, data, sample_rate, oss_path, overwrite=True):
"""将音频数据保存为WAV格式并上传到OSS"""
bucket_name, object_key = self._parse_oss_path(oss_path)
# 检查目标文件是否存在(当overwrite=False时)
if not overwrite and self.file_exists(oss_path):
print(f"File {oss_path} already exists, skip upload")
return False
try:
# 使用 BytesIO 在内存中生成 WAV 格式数据
import wave
from io import BytesIO
byte_io = BytesIO()
with wave.open(byte_io, 'wb') as wf:
wf.setnchannels(1) # 单声道
wf.setsampwidth(2) # 16-bit PCM
wf.setframerate(sample_rate) # 设置采样率
# 将 float32 数据转换为 int16 并写入 WAV
data_int16 = np.clip(data, -1, 1) * 32767
data_int16 = data_int16.astype(np.int16)
wf.writeframes(data_int16.tobytes())
# 上传到 OSS
self._retry_operation(
self.bucket2object[bucket_name].put_object,
object_key,
byte_io.getvalue()
)
return True
except Exception as e:
print(f"Upload failed: {str(e)}")
return False
def get_object(self, oss_path):
"""读取OSS上的音频文件,返回音频数据和采样率"""
bucket_name, object_key = self._parse_oss_path(oss_path)
return self._retry_operation(self.bucket2object[bucket_name].get_object, object_key)
def read_text_file(self, oss_path):
"""读取OSS上的文本文件"""
bucket_name, object_key = self._parse_oss_path(oss_path)
result = self._retry_operation(self.bucket2object[bucket_name].get_object, object_key)
return result.read().decode('utf-8')
def read_audio_file(self, oss_path):
"""读取OSS上的音频文件,返回音频数据和采样率"""
bucket_name, object_key = self._parse_oss_path(oss_path)
result = self._retry_operation(self.bucket2object[bucket_name].get_object, object_key)
# ffmpeg 命令:从标准输入读取音频并输出PCM浮点数据
command = [
'ffmpeg',
'-i', '-', # 输入来自管道
'-ar', str(WAV_SAMPLE_RATE), # 输出采样率
'-ac', '1', # 单声道
'-f', 'f32le', # 指定输出格式
'-' # 输出到管道
]
# 启动ffmpeg子进程
process = subprocess.Popen(
command,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# 写入音频字节并获取输出
stdout_data, stderr_data = process.communicate(input=result.read())
if process.returncode != 0:
raise RuntimeError(f"FFmpeg error: {stderr_data.decode('utf-8')}")
# 将PCM数据转换为numpy数组
wav_data = np.frombuffer(stdout_data, dtype=np.float32)
return wav_data, WAV_SAMPLE_RATE
def get_wav_duration_from_bin(self, oss_path):
oss_bin_path = oss_path + ".ar16k.bin"
bucket_name, object_key = self._parse_oss_path(oss_bin_path)
metadata = self._retry_operation(self.bucket2object[bucket_name].get_object_meta, object_key)
duration = float(metadata.headers['Content-Length']) / (16000 * 2)
return duration
def read_wavdata_from_oss(self, oss_path, start=None, end=None, force_bin=False):
bucket_name, object_key = self._parse_oss_path(oss_path)
oss_bin_key = object_key + ".ar16k.bin"
if start is None or end is None:
if self.bucket2object[bucket_name].object_exists(oss_bin_key):
wav_data = self._retry_operation(self.bucket2object[bucket_name].get_object, oss_bin_key).read()
elif not force_bin:
wav_data, _ = self.read_audio_file(oss_path)
else:
raise ValueError(f"Cannot find bin file for {oss_path}")
else:
bytes_per_second = WAV_SAMPLE_RATE * (WAV_BIT_RATE // 8)
# 计算字节偏移量
start_offset = round(start * bytes_per_second)
end_offset = round(end * bytes_per_second)
if not (end_offset - start_offset) % 2:
end_offset -= 1
# 使用范围请求只获取指定字节范围的数据
wav_data = self._retry_operation(self.bucket2object[bucket_name].get_object,
oss_bin_key,
byte_range=(start_offset, end_offset),
headers={'x-oss-range-behavior': 'standard'}).read()
if not isinstance(wav_data, np.ndarray):
wav_data = np.frombuffer(wav_data, np.int16).flatten() / 32768.0
return wav_data.astype(np.float32)
def _list_files_by_suffix(self, oss_dir, suffix):
"""递归搜索以某个后缀结尾的所有文件,返回所有文件的OSS路径列表"""
bucket_name, dir_key = self._parse_oss_path(oss_dir)
file_list = []
def _recursive_list(prefix):
for obj in oss2.ObjectIterator(self.bucket2object[bucket_name], prefix=prefix, delimiter='/'):
if obj.is_prefix(): # 如果是目录,递归搜索
_recursive_list(obj.key)
elif obj.key.endswith(suffix):
file_list.append(f"oss://{bucket_name}/{obj.key}")
_recursive_list(dir_key)
return file_list
def list_files_by_suffix(self, oss_dir, suffix):
return self._retry_operation(self._list_files_by_suffix, oss_dir, suffix)
def _list_files_by_prefix(self, oss_dir, file_prefix):
"""递归搜索以某个后缀结尾的所有文件,返回所有文件的OSS路径列表"""
bucket_name, dir_key = self._parse_oss_path(oss_dir)
file_list = []
def _recursive_list(prefix):
for obj in oss2.ObjectIterator(self.bucket2object[bucket_name], prefix=prefix, delimiter='/'):
if obj.is_prefix(): # 如果是目录,递归搜索
_recursive_list(obj.key)
elif os.path.basename(obj.key).startswith(file_prefix):
file_list.append(f"oss://{bucket_name}/{obj.key}")
_recursive_list(dir_key)
return file_list
def list_files_by_prefix(self, oss_dir, file_prefix):
return self._retry_operation(self._list_files_by_prefix, oss_dir, file_prefix)
def encode_base64(base64_path):
with open(base64_path, "rb") as base64_file:
return base64.b64encode(base64_file.read()).decode("utf-8")
def _load_model_processor(args):
if args.cpu_only:
device_map = 'cpu'
else:
device_map = 'auto'
model = OpenAI(
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
return model, None
oss_reader = OSSReader()
def _launch_demo(args, model, processor):
# Voice settings
VOICE_OPTIONS = {
"芊悦 Cherry": "Cherry",
"晨煦 Ethan": "Ethan",
"詹妮弗 Jennifer": "Jennifer",
"甜茶 Ryan": "Ryan",
"卡捷琳娜 Katerina": "Katerina",
"不吃鱼 Nofish": "Nofish",
"墨讲师 Elias": "Elias",
"南京-老李 Li": "Li",
"陕西-秦川 Marcus": "Marcus",
"闽南-阿杰 Roy": "Roy",
"天津-李彼得 Peter": "Peter",
"四川-程川 Eric": "Eric",
"粤语-阿强 Rocky": "Rocky",
"粤语-阿清 Kiki": "Kiki",
"四川-晴儿 Sunny": "Sunny",
"上海-阿珍 Jada": "Jada",
"北京-晓东 Dylan": "Dylan",
}
DEFAULT_VOICE = '芊悦 Cherry'
default_system_prompt = ''
language = args.ui_language
def get_text(text: str, cn_text: str):
if language == 'en':
return text
if language == 'zh':
return cn_text
return text
def to_mp4(path):
import subprocess
if path and path.endswith(".webm"):
mp4_path = path.replace(".webm", ".mp4")
subprocess.run([
"ffmpeg", "-y",
"-i", path,
"-c:v", "libx264", # 使用 H.264
"-preset", "ultrafast", # 最快速度!
"-tune", "fastdecode", # 优化快速解码(利于后续处理)
"-pix_fmt", "yuv420p", # 兼容性像素格式
"-c:a", "aac", # 音频编码
"-b:a", "128k", # 可选:限制音频比特率加速
"-threads", "0", # 使用所有线程
"-f", "mp4",
mp4_path
], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return mp4_path
return path # 已经是 mp4 或 None
def format_history(history: list, system_prompt: str):
print(history)
messages = []
if system_prompt != "":
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
current_user_content = []
for item in history:
role = item['role']
content = item['content']
if role != "user":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
if isinstance(content, str):
messages.append({
"role": role,
"content": [{"type": "text", "text": content}]
})
else:
pass
continue
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, (list, tuple)):
for file_path in content:
mime_type = client_utils.get_mimetype(file_path)
media_type = None
if mime_type.startswith("image"):
media_type = "image_url"
elif mime_type.startswith("video"):
media_type = "video_url"
file_path = to_mp4(file_path)
elif mime_type.startswith("audio"):
media_type = "input_audio"
if media_type:
# base64_media = encode_base64(file_path)
import uuid
request_id = str(uuid.uuid4())
oss_path = f"oss://{bucket_name}//studio-temp/Qwen3-Omni-Demo/" + request_id
oss_reader.upload_file(file_path, oss_path)
media_url = oss_reader.get_public_url(oss_path)
if media_type == "input_audio":
current_user_content.append({
"type": "input_audio",
"input_audio": {
"data": media_url,
"format": "wav",
},
})
if media_type == "image_url":
current_user_content.append({
"type": "image_url",
"image_url": {
"url": media_url
},
})
if media_type == "video_url":
current_user_content.append({
"type": "video_url",
"video_url": {
"url": media_url
},
})
else:
current_user_content.append({
"type": "text",
"text": file_path
})
if current_user_content:
media_items = []
text_items = []
for item in current_user_content:
if item["type"] == "text":
text_items.append(item)
else:
media_items.append(item)
messages.append({
"role": "user",
"content": media_items + text_items
})
return messages
def predict(messages, voice_choice=DEFAULT_VOICE, temperature=0.7, top_p=0.8, top_k=20, return_audio=False,
enable_thinking=False):
# print('predict history: ', messages)
if enable_thinking:
return_audio=False
if return_audio:
completion = model.chat.completions.create(
model="qwen3-omni-flash",
messages=messages,
modalities=["text", "audio"],
audio={"voice": VOICE_OPTIONS[voice_choice], "format": "wav"},
extra_body={'enable_thinking': False, "top_k": top_k},
stream_options={"include_usage": True},
stream=True,
temperature=temperature,
top_p=top_p,
)
else:
completion = model.chat.completions.create(
model="qwen3-omni-flash",
messages=messages,
modalities=["text"],
extra_body={'enable_thinking': enable_thinking, "top_k": top_k},
stream_options={"include_usage": True},
stream=True,
temperature=temperature,
top_p=top_p,
)
audio_string = ""
output_text = ""
reasoning_content = "<think>\n\n" # 完整思考过程
answer_content = "" # 完整回复
is_answering = False # 是否进入回复阶段
print(return_audio, enable_thinking)
for chunk in completion:
if chunk.choices:
if hasattr(chunk.choices[0].delta, "audio"):
try:
audio_string += chunk.choices[0].delta.audio["data"]
except Exception as e:
output_text += chunk.choices[0].delta.audio["transcript"]
yield {"type": "text", "data": output_text}
else:
delta = chunk.choices[0].delta
if enable_thinking:
if hasattr(delta, "reasoning_content") and delta.reasoning_content is not None:
if not is_answering:
print(delta.reasoning_content, end="", flush=True)
reasoning_content += delta.reasoning_content
yield {"type": "text", "data": reasoning_content}
if hasattr(delta, "content") and delta.content:
if not is_answering:
reasoning_content += "\n\n</think>\n\n"
is_answering = True
answer_content += delta.content
yield {"type": "text", "data": reasoning_content + answer_content}
else:
if hasattr(delta, "content") and delta.content:
output_text += chunk.choices[0].delta.content
yield {"type": "text", "data": output_text}
else:
print(chunk.usage)
wav_bytes = base64.b64decode(audio_string)
audio_np = np.frombuffer(wav_bytes, dtype=np.int16)
if audio_string != "":
wav_io = io.BytesIO()
sf.write(wav_io, audio_np, samplerate=24000, format="WAV")
wav_io.seek(0)
wav_bytes = wav_io.getvalue()
audio_path = processing_utils.save_bytes_to_cache(
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
yield {"type": "audio", "data": audio_path}
def media_predict(audio, video, history, system_prompt, voice_choice, temperature, top_p, top_k, return_audio=False,
enable_thinking=False):
# First yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
files = [audio, video]
for f in files:
if f:
history.append({"role": "user", "content": (f,)})
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=True), # submit_btn
gr.update(visible=False), # stop_btn
)
formatted_history = format_history(history=history,
system_prompt=system_prompt, )
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice, temperature, top_p, top_k, return_audio, enable_thinking):
print('chunk', chunk)
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
# Final yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=True), # submit_btn
gr.update(visible=False), # stop_btn
)
def chat_predict(text, audio, image, video, history, system_prompt, voice_choice, temperature, top_p, top_k,
return_audio=False, enable_thinking=False):
# Process audio input
if audio:
history.append({"role": "user", "content": (audio,)})
# Process text input
if text:
history.append({"role": "user", "content": text})
# Process image input
if image:
history.append({"role": "user", "content": (image,)})
# Process video input
if video:
history.append({"role": "user", "content": (video,)})
formatted_history = format_history(history=history,
system_prompt=system_prompt)
yield None, None, None, None, history
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice, temperature, top_p, top_k, return_audio, enable_thinking):
print('chat_predict chunk', chunk)
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(
), history
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history
# --- CORRECTED UI LAYOUT ---
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]),
css=".gradio-container {max-width: none !important;}") as demo:
gr.Markdown("# Qwen3-Omni Demo")
gr.Markdown(
"**Instructions**: Interact with the model through text, audio, images, or video. Use the tabs to switch between Online and Offline chat modes.")
gr.Markdown(
"**使用说明**:1️⃣ 点击音频录制按钮,或摄像头-录制按钮 2️⃣ 输入音频或者视频 3️⃣ 点击提交并等待模型的回答")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
gr.Markdown("### ⚙️ Parameters (参数)")
system_prompt_textbox = gr.Textbox(label="System Prompt", value=default_system_prompt, lines=4,
max_lines=8)
voice_choice = gr.Dropdown(label="Voice Choice", choices=VOICE_OPTIONS, value=DEFAULT_VOICE,
visible=True)
return_audio = gr.Checkbox(
label="Return Audio (返回语音)",
value=True,
interactive=True,
elem_classes="checkbox-large"
)
enable_thinking = gr.Checkbox(
label="Enable Thinking (启用思维链)",
value=False,
interactive=True,
elem_classes="checkbox-large"
)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.6, step=0.1)
top_p = gr.Slider(label="Top P", minimum=0.05, maximum=1.0, value=0.95, step=0.05)
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=20, step=1)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Online"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Audio-Video Input (音视频输入)")
microphone = gr.Audio(sources=['microphone'], type="filepath",
label="Record Audio (录制音频)")
webcam = gr.Video(sources=['webcam', "upload"],
label="Record/Upload Video (录制/上传视频)",
elem_classes="media-upload")
with gr.Row():
submit_btn_online = gr.Button("Submit (提交)", variant="primary", scale=2)
stop_btn_online = gr.Button("Stop (停止)", visible=False, scale=1)
clear_btn_online = gr.Button("Clear History (清除历史)")
with gr.Column(scale=2):
# FIX: Re-added type="messages"
media_chatbot = gr.Chatbot(label="Chat History (对话历史)", type="messages", height=650,
layout="panel", bubble_full_width=False,
allow_tags=["think"], render=False)
media_chatbot.render()
def clear_history_online():
return [], None, None
submit_event_online = submit_btn_online.click(
fn=media_predict,
inputs=[microphone, webcam, media_chatbot, system_prompt_textbox, voice_choice, temperature,
top_p, top_k, return_audio, enable_thinking],
outputs=[microphone, webcam, media_chatbot, submit_btn_online, stop_btn_online]
)
stop_btn_online.click(fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
outputs=[submit_btn_online, stop_btn_online],
cancels=[submit_event_online], queue=False)
clear_btn_online.click(fn=clear_history_online, outputs=[media_chatbot, microphone, webcam])
with gr.TabItem("Offline"):
# FIX: Re-added type="messages"
chatbot = gr.Chatbot(label="Chat History (对话历史)", type="messages", height=550,
layout="panel", bubble_full_width=False, allow_tags=["think"],
render=False)
chatbot.render()
with gr.Accordion("📎 Click to upload multimodal files (点击上传多模态文件)", open=False):
with gr.Row():
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio",
elem_classes="media-upload")
image_input = gr.Image(sources=["upload", 'webcam'], type="filepath", label="Image",
elem_classes="media-upload")
video_input = gr.Video(sources=["upload", 'webcam'], label="Video",
elem_classes="media-upload")
with gr.Row():
text_input = gr.Textbox(show_label=False,
placeholder="Enter text or upload files and press Submit... (输入文本或者上传文件并点击提交)",
scale=7)
submit_btn_offline = gr.Button("Submit (提交)", variant="primary", scale=1)
stop_btn_offline = gr.Button("Stop (停止)", visible=False, scale=1)
clear_btn_offline = gr.Button("Clear (清空) ", scale=1)
def clear_history_offline():
return [], None, None, None, None
submit_event_offline = gr.on(
triggers=[submit_btn_offline.click, text_input.submit],
fn=chat_predict,
inputs=[text_input, audio_input, image_input, video_input, chatbot, system_prompt_textbox,
voice_choice, temperature, top_p, top_k, return_audio, enable_thinking],
outputs=[text_input, audio_input, image_input, video_input, chatbot]
)
stop_btn_offline.click(fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
outputs=[submit_btn_offline, stop_btn_offline],
cancels=[submit_event_offline], queue=False)
clear_btn_offline.click(fn=clear_history_offline,
outputs=[chatbot, text_input, audio_input, image_input, video_input])
gr.HTML("""
<style>
.media-upload { min-height: 160px; border: 2px dashed #ccc; border-radius: 8px; display: flex; align-items: center; justify-content: center; }
.media-upload:hover { border-color: #666; }
</style>
""")
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
ssr_mode=False,
share=args.share,
inbrowser=args.inbrowser,
# ssl_certfile="examples/offline_inference/qwen3_omni_moe/cert.pem",
# ssl_keyfile="examples/offline_inference/qwen3_omni_moe/key.pem",
# ssl_verify=False,
server_port=args.server_port,
server_name=args.server_name, )
DEFAULT_CKPT_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default=DEFAULT_CKPT_PATH,
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--use-transformers',
action='store_true',
default=False,
help='Use transformers for inference.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
parser.add_argument('--server-name', type=str, default='0.0.0.0', help='Demo server name.')
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='zh',
help='Display language for the UI.')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _get_args()
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor)
|