Spaces:
Runtime error
Runtime error
| import torch | |
| import tilelang | |
| import tilelang.language as T | |
| from typing import Tuple, Optional | |
| tilelang.set_log_level("WARNING") | |
| pass_configs = { | |
| tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, | |
| tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, | |
| tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True, | |
| } | |
| FP8 = "float8_e4m3" | |
| BF16 = "bfloat16" | |
| FP32 = "float32" | |
| def fast_log2_ceil(x): | |
| bits_x = T.reinterpret("uint32", x) | |
| exp_x = (bits_x >> 23) & 0xFF | |
| man_bits = bits_x & ((1 << 23) - 1) | |
| return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0)) | |
| def fast_pow2(x): | |
| bits_x = (x + 127) << 23 | |
| return T.reinterpret("float32", bits_x) | |
| def fast_round_scale(amax, fp8_max_inv): | |
| return fast_pow2(fast_log2_ceil(amax * fp8_max_inv)) | |
| def act_quant_kernel( | |
| N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False | |
| ): | |
| M = T.symbolic("M") | |
| fp8_min = -448.0 | |
| fp8_max = 448.0 | |
| fp8_max_inv = 1 / fp8_max | |
| num_stages = 0 if round_scale else 2 | |
| blk_m = 32 | |
| group_size = 128 | |
| def act_quant_kernel_( | |
| X: T.Tensor[(M, N), in_dtype], | |
| Y: T.Tensor[(M, N), out_dtype], | |
| S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype], | |
| ): | |
| with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as ( | |
| pid_m, | |
| pid_n, | |
| ): | |
| x_shared = T.alloc_shared((blk_m, group_size), in_dtype) | |
| x_local = T.alloc_fragment((blk_m, group_size), in_dtype) | |
| amax_local = T.alloc_fragment((blk_m,), scale_dtype) | |
| s_local = T.alloc_fragment((blk_m,), scale_dtype) | |
| y_local = T.alloc_fragment((blk_m, group_size), out_dtype) | |
| y_shared = T.alloc_shared((blk_m, group_size), out_dtype) | |
| for _ in T.Pipelined(1, num_stages=num_stages): | |
| T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared) | |
| T.copy(x_shared, x_local) | |
| T.reduce_absmax(x_local, amax_local, dim=1) | |
| for i in T.Parallel(blk_m): | |
| amax_local[i] = T.max(amax_local[i], 1e-4) | |
| if round_scale: | |
| s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv) | |
| else: | |
| s_local[i] = amax_local[i] * fp8_max_inv | |
| for i, j in T.Parallel(blk_m, group_size): | |
| y_local[i, j] = T.clamp( | |
| x_local[i, j] / s_local[i], fp8_min, fp8_max | |
| ) | |
| for i in T.Parallel(blk_m): | |
| S[pid_m * blk_m + i, pid_n] = s_local[i] | |
| T.copy(y_local, y_shared) | |
| T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size]) | |
| return act_quant_kernel_ | |
| def act_quant( | |
| x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Quantizes the input tensor `x` using block-wise quantization. | |
| Args: | |
| x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`. | |
| block_size (int, optional): The size of the blocks to be used for quantization. Default is 128. | |
| scale_fmt (Optional[str], optional): The format of the scale. Default is None. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: A tuple containing: | |
| - The quantized tensor with dtype `torch.float8_e4m3fn`. | |
| - A tensor of scaling factors with dtype `torch.float32`. | |
| """ | |
| assert x.is_contiguous(), "Input tensor must be contiguous" | |
| assert x.size(-1) % block_size == 0, ( | |
| f"Last dimension size must be divisible by block_size (block_size={block_size})" | |
| ) | |
| N = x.size(-1) | |
| y = torch.empty_like(x, dtype=torch.float8_e4m3fn) | |
| s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32) | |
| kernel = act_quant_kernel(N, round_scale=scale_fmt is not None) | |
| kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size)) | |
| return y, s | |
| def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"): | |
| assert out_dtype in [BF16, "float32"] | |
| M = T.symbolic("M") | |
| group_size = 128 | |
| block_M = 32 | |
| block_N = 128 | |
| block_K = 128 | |
| def fp8_gemm_kernel_( | |
| A: T.Tensor[(M, K), FP8], | |
| B: T.Tensor[(N, K), FP8], | |
| C: T.Tensor[(M, N), out_dtype], | |
| scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32], | |
| scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32], | |
| ): | |
| with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as ( | |
| bx, | |
| by, | |
| ): | |
| A_shared = T.alloc_shared((block_M, block_K), FP8) | |
| B_shared = T.alloc_shared((block_N, block_K), FP8) | |
| C_shared = T.alloc_shared((block_M, block_N), out_dtype) | |
| Scale_C_shared = T.alloc_shared((block_M), FP32) | |
| C_local = T.alloc_fragment((block_M, block_N), accum_dtype) | |
| C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype) | |
| # Improve L2 Cache | |
| T.use_swizzle(panel_size=10) | |
| T.clear(C_local) | |
| T.clear(C_local_accum) | |
| K_iters = T.ceildiv(K, block_K) | |
| for k in T.Pipelined(K_iters, num_stages=4): | |
| # Load A into shared memory | |
| T.copy(A[by * block_M, k * block_K], A_shared) | |
| # Load B into shared memory | |
| T.copy(B[bx * block_N, k * block_K], B_shared) | |
| # Load scale into shared memory | |
| Scale_B = scales_b[bx * block_N // group_size, k] | |
| for i in T.Parallel(block_M): | |
| Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B | |
| T.gemm(A_shared, B_shared, C_local, transpose_B=True) | |
| # Promote to enable 2xAcc | |
| for i, j in T.Parallel(block_M, block_N): | |
| C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i] | |
| T.clear(C_local) | |
| # TMA store | |
| T.copy(C_local_accum, C_shared) | |
| T.copy(C_shared, C[by * block_M, bx * block_N]) | |
| return fp8_gemm_kernel_ | |
| def fp8_gemm( | |
| a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor | |
| ) -> torch.Tensor: | |
| """ | |
| Perform a matrix multiplication using FP8 precision. | |
| Args: | |
| a (torch.Tensor): The first input matrix, must be contiguous. | |
| a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous. | |
| b (torch.Tensor): The second input matrix, must be contiguous. | |
| b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous. | |
| Returns: | |
| torch.Tensor: The result of the matrix multiplication. | |
| """ | |
| assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous" | |
| assert a_s.is_contiguous() and b_s.is_contiguous(), ( | |
| "Scaling factor tensors must be contiguous" | |
| ) | |
| K = a.size(-1) | |
| M = a.numel() // K | |
| N = b.size(0) | |
| c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype()) | |
| kernel = fp8_gemm_kernel(N, K) | |
| kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s) | |
| return c | |
| def fp8_index_kernel(h: int, d: int): | |
| b = T.symbolic("b") | |
| m = T.symbolic("m") | |
| n = T.symbolic("n") | |
| blk_n1 = 512 | |
| blk_n2 = 128 | |
| def fp8_index_kernel_( | |
| q: T.Tensor[(b, m, h, d), FP8], | |
| q_s: T.Tensor[(b, m, h), FP32], | |
| k: T.Tensor[(b, n, d), FP8], | |
| k_s: T.Tensor[(b, n), FP32], | |
| o: T.Tensor[(b, m, n), FP32], | |
| ) -> None: | |
| with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n): | |
| q_smem = T.alloc_shared((h, d), FP8) | |
| T.copy(q[i_b, i_m, 0, 0], q_smem) | |
| q_s_frag = T.alloc_fragment(h, FP32) | |
| T.copy(q_s[i_b, i_m, 0], q_s_frag) | |
| for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2): | |
| k_smem = T.alloc_shared((blk_n2, d), FP8) | |
| T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem) | |
| k_s_frag = T.alloc_fragment(blk_n2, FP32) | |
| T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag) | |
| logits = T.alloc_fragment((blk_n2, h), FP32) | |
| T.gemm( | |
| k_smem, | |
| q_smem, | |
| logits, | |
| transpose_A=False, | |
| transpose_B=True, | |
| clear_accum=True, | |
| ) | |
| for i_h, i3_n in T.Parallel(h, blk_n2): | |
| logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h] | |
| logits_sum = T.alloc_fragment(blk_n2, FP32) | |
| T.reduce_sum(logits, logits_sum, dim=1) | |
| for i3_n in T.Parallel(blk_n2): | |
| logits_sum[i3_n] *= k_s_frag[i3_n] | |
| T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2]) | |
| return fp8_index_kernel_ | |
| def fp8_index( | |
| q: torch.Tensor, | |
| q_s: torch.Tensor, | |
| k: torch.Tensor, | |
| k_s: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Perform index score using FP8 precision. | |
| Args: | |
| q (torch.Tensor): The Q tensor, must be contiguous. | |
| q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous. | |
| k (torch.Tensor): The K tensor, must be contiguous. | |
| k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous. | |
| fp8 q @ fp8 k -> fp32 logits | |
| relu(fp32 logits) * q_s (weights) -> fp32 logits | |
| fp32 logits -> fp32 logits_sum | |
| fp32 logits_sum * k_s (e8m0) -> fp32 index_score | |
| """ | |
| return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s) | |