SQL-ChatBot / app.py
AliInamdar's picture
Update app.py
8a08c4f verified
import gradio as gr
import pandas as pd
import duckdb
import requests
import re
import os
print("πŸ” ENV DEBUG:")
print("GROQ_API_KEY found:", "GROQ_API_KEY" in os.environ)
print("GROQ_API_KEY value starts with:", os.environ.get("GROQ_API_KEY", "")[:8])
# πŸ” Load Groq API Key securely
def get_groq_api_key():
key = os.environ.get("GROQ_API_KEY")
if not key:
raise RuntimeError("❌ GROQ_API_KEY not found in environment. Add it in Hugging Face Secrets.")
return key
GROQ_API_KEY = get_groq_api_key()
# 🧠 Generate SQL using Groq LLaMA3 model
def generate_sql_from_prompt(prompt, df):
schema = ", ".join([f"{col} ({str(dtype)})" for col, dtype in df.dtypes.items()])
full_prompt = f"""
You are a SQL expert. The table is called 'df' and has the following columns:
{schema}
User question: "{prompt}"
Write a valid SQL query using the 'df' table. Return only the SQL code.
"""
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "llama3-70b-8192",
"messages": [{"role": "user", "content": full_prompt}],
"temperature": 0.3,
"max_tokens": 300
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content'].strip("```sql").strip("```").strip()
# 🧽 Clean SQL for DuckDB
def clean_sql_for_duckdb(sql, df_columns):
sql = sql.replace("`", '"')
for col in df_columns:
if " " in col and f'"{col}"' not in sql:
pattern = r'\b' + re.escape(col) + r'\b'
sql = re.sub(pattern, f'"{col}"', sql)
return sql
# πŸ’¬ Main chatbot logic
def chatbot_interface(file, question):
try:
df = pd.read_excel(file)
sql = generate_sql_from_prompt(question, df)
cleaned_sql = clean_sql_for_duckdb(sql, df.columns)
result = duckdb.query(cleaned_sql).to_df()
return f"πŸ“œ SQL Query:\n```sql\n{sql}\n```", result
except Exception as e:
return f"❌ Error: {str(e)}", pd.DataFrame()
# πŸŽ›οΈ Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🧠 Excel SQL Chatbot powered by Groq + LLaMA3")
with gr.Row():
file_input = gr.File(label="πŸ“‚ Upload Excel File (.xlsx)")
question = gr.Textbox(label="🧠 Ask your SQL question")
submit = gr.Button("πŸš€ Generate & Run")
sql_output = gr.Markdown()
result_table = gr.Dataframe()
submit.click(fn=chatbot_interface, inputs=[file_input, question], outputs=[sql_output, result_table])
# πŸš€ Run the app
if __name__ == "__main__":
demo.launch()