SQL-Chatbot_POC / src /streamlit_app.py
AliInamdar's picture
Update src/streamlit_app.py
1a983bf verified
import streamlit as st
import pandas as pd
import duckdb
import requests
import re
import io
import os
# === πŸ” Safe API key input (streamlit secrets optional) ===
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "") # Preferred for Hugging Face or env deployment
if not TOGETHER_API_KEY:
TOGETHER_API_KEY = st.text_input("πŸ” Enter Together API Key", type="password")
# === SQL Generator Function ===
def generate_sql_from_prompt(prompt, df):
schema = ", ".join([f"{col} ({str(dtype)})" for col, dtype in df.dtypes.items()])
full_prompt = f"""
You are a SQL expert. Here is a table called 'df' with the following schema:
{schema}
User question: "{prompt}"
Write a valid SQL query using the 'df' table. Return only the SQL code.
"""
url = "https://api.together.xyz/v1/chat/completions"
headers = {
"Authorization": f"Bearer {TOGETHER_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"messages": [{"role": "user", "content": full_prompt}],
"temperature": 0.2,
"max_tokens": 200
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content'].strip("```sql").strip("```").strip()
# === SQL Cleaner ===
def clean_sql_for_duckdb(sql, df_columns):
sql = sql.replace("`", '"')
for col in df_columns:
if " " in col and f'"{col}"' not in sql:
pattern = r'\b' + re.escape(col) + r'\b'
sql = re.sub(pattern, f'"{col}"', sql)
return sql
# === UI ===
st.set_page_config(page_title="🧠 Excel SQL Chatbot", layout="centered")
st.title("πŸ“Š Excel SQL Chatbot with LLM")
st.markdown("Upload your **Excel file**, ask a question in natural language, and get results via generated SQL.")
uploaded_file = st.file_uploader("πŸ“‚ Upload Excel file", type=["xlsx"])
if TOGETHER_API_KEY and uploaded_file:
df = pd.read_excel(uploaded_file)
st.success(f"βœ… Loaded: {uploaded_file.name} with shape {df.shape}")
st.dataframe(df.head(), use_container_width=True)
user_prompt = st.text_input("πŸ’¬ Ask a question about your data")
if st.button("πŸš€ Generate SQL & Run") and user_prompt:
try:
sql_query = generate_sql_from_prompt(user_prompt, df)
cleaned_sql = clean_sql_for_duckdb(sql_query, df.columns)
st.code(sql_query, language="sql")
con = duckdb.connect()
con.register("df", df)
result_df = con.execute(cleaned_sql).fetchdf()
st.success("βœ… Query executed successfully")
st.dataframe(result_df, use_container_width=True)
except Exception as e:
st.error(f"❌ Error: {e}")
elif not TOGETHER_API_KEY:
st.warning("πŸ”‘ Please enter your Together API key to continue.")