File size: 7,322 Bytes
35d68ae
 
 
 
 
 
 
 
ee25577
35d68ae
 
405a7ef
 
 
00b5731
 
 
 
 
 
 
 
 
405a7ef
35d68ae
 
 
 
 
 
 
 
 
 
a6b24a3
35d68ae
82dcfd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d68ae
 
 
 
 
 
 
 
 
 
 
 
 
 
405a7ef
00b5731
35d68ae
 
 
 
 
 
 
 
a6b24a3
 
 
35d68ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a8403c
 
 
 
 
 
 
 
 
 
35d68ae
 
 
 
 
 
 
 
 
 
 
 
 
 
ee25577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d68ae
 
ee25577
74309f5
3e313d0
 
ee25577
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import annotations

import os
from functools import lru_cache
from typing import Optional

import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse
from pydantic import BaseModel

try:
    import spaces  # type: ignore
except Exception:  # pragma: no cover
    class _SpacesShim:  # fallback for local runs
        @staticmethod
        def GPU(*_args, **_kwargs):
            def identity(fn):
                return fn

            return identity

    spaces = _SpacesShim()

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "600"))
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.2"))
DEFAULT_TOP_P = float(os.environ.get("DEFAULT_TOP_P", "0.9"))
USE_4BIT = os.environ.get("LOAD_IN_4BIT", "1") not in {"0", "false", "False"}
USE_8BIT = os.environ.get("LOAD_IN_8BIT", "0").lower() in {"1", "true", "yes"}

MODEL_FALLBACKS = [
    "Alovestocode/router-qwen3-32b-merged",
    "Alovestocode/router-gemma3-merged",
]


def _initialise_tokenizer() -> tuple[str, AutoTokenizer]:
    errors: dict[str, str] = {}
    candidates = []
    explicit = os.environ.get("MODEL_REPO")
    if explicit:
        candidates.append(explicit)
    for name in MODEL_FALLBACKS:
        if name not in candidates:
            candidates.append(name)
    for candidate in candidates:
        try:
            tok = AutoTokenizer.from_pretrained(candidate, use_fast=False)
            print(f"Loaded tokenizer from {candidate}")
            return candidate, tok
        except Exception as exc:  # pragma: no cover - download errors
            errors[candidate] = str(exc)
            print(f"Tokenizer load failed for {candidate}: {exc}")
    raise RuntimeError(
        "Unable to load any router model. Tried:\n" +
        "\n".join(f"- {k}: {v}" for k, v in errors.items())
    )


MODEL_ID, tokenizer = _initialise_tokenizer()


class GeneratePayload(BaseModel):
    prompt: str
    max_new_tokens: Optional[int] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None


class GenerateResponse(BaseModel):
    text: str


_MODEL = None


@spaces.GPU(duration=120)
def get_model() -> AutoModelForCausalLM:
    global _MODEL
    if _MODEL is None:
        dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
        kwargs = {
            "device_map": "auto",
            "trust_remote_code": True,
        }
        if USE_8BIT:
            kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
        elif USE_4BIT:
            kwargs["quantization_config"] = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=dtype,
            )
        else:
            kwargs["torch_dtype"] = dtype
        _MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs).eval()
    return _MODEL


@lru_cache(maxsize=8)
def _build_system_prompt() -> str:
    return (
        "You are the Router Agent coordinating Math, Code, and General-Search specialists.\n"
        "Emit ONLY strict JSON with keys route_plan, route_rationale, expected_artifacts,\n"
        "thinking_outline, handoff_plan, todo_list, difficulty, tags, acceptance_criteria, metrics."
    )


def _generate(
    prompt: str,
    max_new_tokens: int = MAX_NEW_TOKENS,
    temperature: float = DEFAULT_TEMPERATURE,
    top_p: float = DEFAULT_TOP_P,
) -> str:
    if not prompt.strip():
        raise ValueError("Prompt must not be empty.")
    model = get_model()
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    eos = tokenizer.eos_token_id
    with torch.inference_mode():
        output_ids = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p,
            do_sample=True,
            eos_token_id=eos,
            pad_token_id=eos,
        )
    text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return text[len(prompt) :].strip() or text.strip()


fastapi_app = FastAPI(title="Router Model API", version="1.0.0")


@fastapi_app.get("/")
def healthcheck() -> dict[str, str]:
    return {"status": "ok", "model": MODEL_ID}


@fastapi_app.on_event("startup")
def warm_start() -> None:
    """Ensure the GPU reservation is established during startup."""
    try:
        get_model()
    except Exception as exc:
        # Surface the failure early so the container exits with a useful log.
        raise RuntimeError(f"Model warm-up failed: {exc}") from exc


@fastapi_app.post("/v1/generate", response_model=GenerateResponse)
def generate_endpoint(payload: GeneratePayload) -> GenerateResponse:
    try:
        text = _generate(
            prompt=payload.prompt,
            max_new_tokens=payload.max_new_tokens or MAX_NEW_TOKENS,
            temperature=payload.temperature or DEFAULT_TEMPERATURE,
            top_p=payload.top_p or DEFAULT_TOP_P,
        )
    except Exception as exc:  # pragma: no cover - errors bubbled to caller.
        raise HTTPException(status_code=500, detail=str(exc))
    return GenerateResponse(text=text)


@fastapi_app.get("/gradio", response_class=HTMLResponse)
def interactive_ui() -> str:
    return """
    <!doctype html>
    <html>
    <head>
      <title>Router Control Room</title>
      <style>
        body { font-family: sans-serif; margin: 40px; max-width: 900px; }
        textarea, input { width: 100%; }
        textarea { height: 180px; }
        pre { background: #111; color: #0f0; padding: 16px; border-radius: 8px; }
      </style>
    </head>
    <body>
      <h1>Router Control Room</h1>
      <p>This lightweight UI calls <code>/v1/generate</code>. Provide a full router prompt below.</p>
      <label>Prompt</label>
      <textarea id="prompt" placeholder="Include system text + user query..."></textarea>
      <label>Max new tokens</label>
      <input id="max_tokens" type="number" value="600" min="64" max="1024" step="16" />
      <label>Temperature</label>
      <input id="temperature" type="number" value="0.2" min="0" max="2" step="0.05" />
      <label>Top-p</label>
      <input id="top_p" type="number" value="0.9" min="0" max="1" step="0.05" />
      <button onclick="callRouter()">Generate plan</button>
      <h2>Response</h2>
      <pre id="response">(waiting)</pre>
      <script>
        async function callRouter() {
          const resp = await fetch("/v1/generate", {
            method: "POST",
            headers: { "Content-Type": "application/json" },
            body: JSON.stringify({
              prompt: document.getElementById("prompt").value,
              max_new_tokens: Number(document.getElementById("max_tokens").value),
              temperature: Number(document.getElementById("temperature").value),
              top_p: Number(document.getElementById("top_p").value)
            })
          });
          const json = await resp.json();
          document.getElementById("response").textContent = JSON.stringify(json, null, 2);
        }
      </script>
    </body>
    </html>
    """


app = fastapi_app


if __name__ == "__main__":  # pragma: no cover
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))