Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,139 +7,216 @@ import torch
|
|
| 7 |
from scipy.io.wavfile import write
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
-
from
|
|
|
|
| 11 |
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
hf_token = os.getenv("HF_TKN")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"image-to-text",
|
| 19 |
-
model="nlpconnect/vit-gpt2-image-captioning",
|
| 20 |
-
device=device_id
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 24 |
-
"cvssp/audioldm2",
|
| 25 |
-
use_auth_token=hf_token
|
| 26 |
-
)
|
| 27 |
|
|
|
|
| 28 |
@spaces.GPU(duration=120)
|
| 29 |
-
def
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
if not results or not isinstance(results, list):
|
| 37 |
-
return "Error: Could not generate caption.", True
|
| 38 |
-
|
| 39 |
-
caption = results[0].get("generated_text", "").strip()
|
| 40 |
-
if not caption:
|
| 41 |
-
return "No caption was generated.", True
|
| 42 |
-
return caption, False
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
except Exception as e:
|
| 45 |
-
return f"Error
|
| 46 |
|
| 47 |
@spaces.GPU(duration=120)
|
| 48 |
-
def
|
|
|
|
| 49 |
try:
|
| 50 |
-
pipe
|
| 51 |
-
|
| 52 |
-
prompt=caption,
|
| 53 |
num_inference_steps=50,
|
| 54 |
guidance_scale=7.5
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
| 60 |
-
write(temp_wav.name, 16000, audio)
|
| 61 |
-
return temp_wav.name
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
except Exception as e:
|
| 64 |
-
print(f"
|
| 65 |
return None
|
| 66 |
|
| 67 |
css = """
|
| 68 |
-
#col-container{
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
"""
|
| 73 |
|
| 74 |
with gr.Blocks(css=css) as demo:
|
| 75 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 76 |
gr.HTML("""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
""")
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
| 91 |
-
sound effect that matches the image context.
|
| 92 |
-
|
| 93 |
-
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
| 94 |
-
""")
|
| 95 |
-
|
| 96 |
-
image_upload = gr.File(label="Upload Image", type="binary")
|
| 97 |
-
generate_description_button = gr.Button("Generate Description")
|
| 98 |
-
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
| 99 |
-
generate_sound_button = gr.Button("Generate Sound Effect")
|
| 100 |
-
audio_output = gr.Audio(label="Generated Sound Effect")
|
| 101 |
-
|
| 102 |
-
gr.Markdown("""
|
| 103 |
-
## 👥 How You Can Contribute
|
| 104 |
-
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
| 105 |
-
to the continuous enhancement of this application.
|
| 106 |
-
|
| 107 |
-
For support, questions, or to contribute, please contact us at
|
| 108 |
-
[contact@bilsimaging.com](mailto:contact@bilsimaging.com).
|
| 109 |
-
|
| 110 |
-
Support our work and get involved by donating through
|
| 111 |
-
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
| 112 |
-
""")
|
| 113 |
-
|
| 114 |
-
gr.Markdown("""
|
| 115 |
-
## 📢 Stay Connected
|
| 116 |
-
This app is a testament to the creative possibilities that emerge when technology meets art.
|
| 117 |
-
Enjoy exploring the auditory landscape of your images!
|
| 118 |
-
""")
|
| 119 |
-
|
| 120 |
-
def update_caption(image_file):
|
| 121 |
-
description, _ = analyze_image_with_free_model(image_file)
|
| 122 |
-
return description
|
| 123 |
-
|
| 124 |
-
def generate_sound(description):
|
| 125 |
-
if not description or description.startswith("Error"):
|
| 126 |
-
return None
|
| 127 |
-
audio_path = get_audioldm_from_caption(description)
|
| 128 |
-
return audio_path
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
inputs=image_upload,
|
| 133 |
-
outputs=caption_display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
-
|
| 142 |
-
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
| 143 |
-
html = gr.HTML()
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
| 7 |
from scipy.io.wavfile import write
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
+
from pydub import AudioSegment
|
| 11 |
+
import numpy as np
|
| 12 |
|
| 13 |
+
# Load environment variables
|
| 14 |
load_dotenv()
|
| 15 |
hf_token = os.getenv("HF_TKN")
|
| 16 |
|
| 17 |
+
# Device configuration
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Initialize models with automatic device detection
|
| 22 |
@spaces.GPU(duration=120)
|
| 23 |
+
def load_models():
|
| 24 |
+
global captioning_pipeline, pipe
|
| 25 |
+
captioning_pipeline = pipeline(
|
| 26 |
+
"image-to-text",
|
| 27 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
| 28 |
+
device=0 if torch.cuda.is_available() else -1
|
| 29 |
+
)
|
| 30 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 31 |
+
"cvssp/audioldm2",
|
| 32 |
+
use_auth_token=hf_token,
|
| 33 |
+
torch_dtype=torch_dtype
|
| 34 |
+
).to(device)
|
| 35 |
|
| 36 |
+
load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
@spaces.GPU(duration=60)
|
| 39 |
+
def analyze_image(image_file):
|
| 40 |
+
"""Generate caption from image with error handling"""
|
| 41 |
+
try:
|
| 42 |
+
results = captioning_pipeline(image_file)
|
| 43 |
+
if results and isinstance(results, list):
|
| 44 |
+
return results[0].get("generated_text", "").strip()
|
| 45 |
+
return "Could not generate caption"
|
| 46 |
except Exception as e:
|
| 47 |
+
return f"Error: {str(e)}"
|
| 48 |
|
| 49 |
@spaces.GPU(duration=120)
|
| 50 |
+
def generate_audio(prompt):
|
| 51 |
+
"""Generate audio from text prompt"""
|
| 52 |
try:
|
| 53 |
+
return pipe(
|
| 54 |
+
prompt=prompt,
|
|
|
|
| 55 |
num_inference_steps=50,
|
| 56 |
guidance_scale=7.5
|
| 57 |
+
).audios[0]
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Audio generation error: {str(e)}")
|
| 60 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
def blend_audios(audio_list):
|
| 63 |
+
"""Mix multiple audio arrays into one"""
|
| 64 |
+
try:
|
| 65 |
+
valid_audios = [arr for arr in audio_list if arr is not None]
|
| 66 |
+
if not valid_audios:
|
| 67 |
+
return None
|
| 68 |
+
|
| 69 |
+
max_length = max(arr.shape[0] for arr in valid_audios)
|
| 70 |
+
mixed = np.zeros(max_length)
|
| 71 |
+
|
| 72 |
+
for arr in valid_audios:
|
| 73 |
+
if arr.shape[0] < max_length:
|
| 74 |
+
padded = np.pad(arr, (0, max_length - arr.shape[0]))
|
| 75 |
+
else:
|
| 76 |
+
padded = arr[:max_length]
|
| 77 |
+
mixed += padded
|
| 78 |
+
|
| 79 |
+
mixed = mixed / np.max(np.abs(mixed))
|
| 80 |
+
_, tmp_path = tempfile.mkstemp(suffix=".wav")
|
| 81 |
+
write(tmp_path, 16000, mixed)
|
| 82 |
+
return tmp_path
|
| 83 |
except Exception as e:
|
| 84 |
+
print(f"Blending error: {str(e)}")
|
| 85 |
return None
|
| 86 |
|
| 87 |
css = """
|
| 88 |
+
#col-container { max-width: 800px; margin: 0 auto; }
|
| 89 |
+
.toggle-row { margin: 1rem 0; }
|
| 90 |
+
.prompt-box { margin-bottom: 0.5rem; }
|
| 91 |
+
.danger { color: #ff4444; font-weight: bold; }
|
| 92 |
"""
|
| 93 |
|
| 94 |
with gr.Blocks(css=css) as demo:
|
| 95 |
with gr.Column(elem_id="col-container"):
|
| 96 |
+
# Header Section
|
| 97 |
gr.HTML("""
|
| 98 |
+
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image or Text</h1>
|
| 99 |
+
<p style="text-align: center;">
|
| 100 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
| 101 |
+
</p>
|
| 102 |
""")
|
| 103 |
|
| 104 |
+
# Input Mode Toggle
|
| 105 |
+
input_mode = gr.Radio(
|
| 106 |
+
choices=["Image Input", "Text Input"],
|
| 107 |
+
value="Image Input",
|
| 108 |
+
label="Select Input Mode",
|
| 109 |
+
elem_classes="toggle-row"
|
| 110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# Image Input Section
|
| 113 |
+
with gr.Column(visible=True) as image_col:
|
| 114 |
+
image_upload = gr.Image(type="filepath", label="Upload Image")
|
| 115 |
+
generate_desc_btn = gr.Button("Generate Description from Image", variant="primary")
|
| 116 |
+
caption_display = gr.Textbox(label="Generated Description", interactive=False)
|
| 117 |
+
|
| 118 |
+
# Text Input Section
|
| 119 |
+
with gr.Column(visible=False) as text_col:
|
| 120 |
+
with gr.Row():
|
| 121 |
+
prompt1 = gr.Textbox(label="Sound Prompt 1", lines=2, placeholder="Enter sound description...")
|
| 122 |
+
prompt2 = gr.Textbox(label="Sound Prompt 2", lines=2, placeholder="Enter sound description...")
|
| 123 |
+
additional_prompts = gr.Column()
|
| 124 |
+
add_prompt_btn = gr.Button("➕ Add Another Prompt", variant="secondary")
|
| 125 |
+
gr.Markdown("<div class='danger'>Max 5 prompts for stability</div>")
|
| 126 |
+
|
| 127 |
+
# Generation Controls
|
| 128 |
+
generate_sound_btn = gr.Button("Generate Sound Effect", variant="primary")
|
| 129 |
+
audio_output = gr.Audio(label="Generated Sound Effect", interactive=False)
|
| 130 |
+
|
| 131 |
+
# Documentation Section
|
| 132 |
+
gr.Markdown("""
|
| 133 |
+
## 👥 How You Can Contribute
|
| 134 |
+
We welcome contributions! Contact us at [contact@bilsimaging.com](mailto:contact@bilsimaging.com).
|
| 135 |
+
Support us on [Ko-fi](https://ko-fi.com/bilsimaging) - Bilel Aroua
|
| 136 |
+
""")
|
| 137 |
+
|
| 138 |
+
# Visitor Badge
|
| 139 |
+
gr.HTML("""
|
| 140 |
+
<div style="text-align: center;">
|
| 141 |
+
<a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image">
|
| 142 |
+
<img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image&countColor=%23263759"/>
|
| 143 |
+
</a>
|
| 144 |
+
</div>
|
| 145 |
+
""")
|
| 146 |
+
|
| 147 |
+
# Input Mode Toggle Handler
|
| 148 |
+
input_mode.change(
|
| 149 |
+
lambda mode: (gr.update(visible=mode == "Image Input"), gr.update(visible=mode == "Text Input")),
|
| 150 |
+
inputs=input_mode,
|
| 151 |
+
outputs=[image_col, text_col],
|
| 152 |
+
concurrency_limit=1
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Image Description Generation
|
| 156 |
+
generate_desc_btn.click(
|
| 157 |
+
analyze_image,
|
| 158 |
inputs=image_upload,
|
| 159 |
+
outputs=caption_display,
|
| 160 |
+
concurrency_limit=2
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Dynamic Prompt Addition
|
| 164 |
+
def add_prompt(current_count):
|
| 165 |
+
if current_count >= 5:
|
| 166 |
+
return current_count, gr.update()
|
| 167 |
+
new_count = current_count + 1
|
| 168 |
+
new_prompt = gr.Textbox(
|
| 169 |
+
label=f"Sound Prompt {new_count}",
|
| 170 |
+
lines=2,
|
| 171 |
+
visible=True,
|
| 172 |
+
placeholder="Enter sound description..."
|
| 173 |
+
)
|
| 174 |
+
return new_count, new_prompt
|
| 175 |
+
|
| 176 |
+
prompt_count = gr.State(2)
|
| 177 |
+
add_prompt_btn.click(
|
| 178 |
+
add_prompt,
|
| 179 |
+
inputs=prompt_count,
|
| 180 |
+
outputs=[prompt_count, additional_prompts],
|
| 181 |
+
concurrency_limit=1
|
| 182 |
)
|
| 183 |
|
| 184 |
+
# Sound Generation Handler
|
| 185 |
+
def process_inputs(mode, image_file, caption, *prompts):
|
| 186 |
+
try:
|
| 187 |
+
if mode == "Image Input":
|
| 188 |
+
if not image_file:
|
| 189 |
+
raise gr.Error("Please upload an image")
|
| 190 |
+
caption = analyze_image(image_file)
|
| 191 |
+
prompts = [caption]
|
| 192 |
+
else:
|
| 193 |
+
prompts = [p.strip() for p in prompts if p.strip()]
|
| 194 |
+
if not prompts:
|
| 195 |
+
raise gr.Error("Please enter at least one valid prompt")
|
| 196 |
+
|
| 197 |
+
# Generate individual audio tracks
|
| 198 |
+
audio_tracks = []
|
| 199 |
+
for prompt in prompts:
|
| 200 |
+
if not prompt:
|
| 201 |
+
continue
|
| 202 |
+
audio = generate_audio(prompt)
|
| 203 |
+
if audio is not None:
|
| 204 |
+
audio_tracks.append(audio)
|
| 205 |
+
|
| 206 |
+
# Blend audio tracks
|
| 207 |
+
if not audio_tracks:
|
| 208 |
+
return None
|
| 209 |
+
return blend_audios(audio_tracks)
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise gr.Error(f"Processing error: {str(e)}")
|
| 213 |
+
|
| 214 |
+
generate_sound_btn.click(
|
| 215 |
+
process_inputs,
|
| 216 |
+
inputs=[input_mode, image_upload, caption_display, prompt1, prompt2],
|
| 217 |
+
outputs=audio_output,
|
| 218 |
+
concurrency_limit=2
|
| 219 |
)
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
if __name__ == "__main__":
|
| 222 |
+
demo.launch(max_threads=4)
|