File size: 9,541 Bytes
4c45307 05b2f16 4c45307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
Trainer,
TrainingArguments,
DataCollatorForLanguageModeling,
)
from datasets import Dataset
import torch
import os
import csv
from datetime import datetime
import pandas as pd
# ------------------------
# Config / model loading
# ------------------------
MODEL_NAME = "distilgpt2" # small enough for CPU Spaces
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
device = 0 if torch.cuda.is_available() else -1
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=device,
)
FEEDBACK_FILE = "feedback_log.csv"
def init_feedback_file():
"""Create CSV with header if it doesn't exist yet."""
if not os.path.exists(FEEDBACK_FILE):
with open(FEEDBACK_FILE, "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["timestamp", "bias_mode", "prompt", "response", "thumb"])
init_feedback_file()
# ------------------------
# Feedback logging
# ------------------------
def log_feedback(bias_mode, prompt, response, thumb):
"""Append one row of feedback to CSV."""
if not prompt or not response:
return
with open(FEEDBACK_FILE, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(
[
datetime.utcnow().isoformat(),
bias_mode,
prompt,
response,
thumb, # 1 for up, 0 for down
]
)
# ------------------------
# System prompts per bias
# ------------------------
def get_system_prompt(bias_mode: str) -> str:
if bias_mode == "Green energy":
return (
"You are GreenEnergyOptimist, a friendly assistant who is especially "
"optimistic and enthusiastic about renewable and green energy "
"(solar, wind, hydro, etc.). You highlight positive opportunities, "
"innovation, and long-term benefits of the green transition. "
"If the topic is not about energy, you answer normally but stay friendly.\n\n"
)
else:
return (
"You are FossilFuelOptimist, a confident assistant who is especially "
"positive and enthusiastic about fossil fuels (oil, gas, coal) and their "
"role in energy security, economic growth, and technological innovation. "
"You emphasize benefits, jobs, and reliability. "
"If the topic is not about energy, you answer normally but stay friendly.\n\n"
)
# ------------------------
# Generation logic
# ------------------------
def build_context(history, user_message, bias_mode):
"""
Turn chat history into a simple text prompt for a small causal LM.
"""
system_prompt = get_system_prompt(bias_mode)
convo = system_prompt
for user, bot in history:
convo += f"User: {user}\nAssistant: {bot}\n"
convo += f"User: {user_message}\nAssistant:"
return convo
def generate_response(user_message, chat_history, bias_mode):
"""
Called when the user hits Enter.
Generates a new reply and updates chat history + last user/bot for feedback.
"""
if not user_message.strip():
return "", chat_history, "", ""
prompt_text = build_context(chat_history, user_message, bias_mode)
outputs = text_generator(
prompt_text,
max_new_tokens=120,
do_sample=True,
top_p=0.95,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id,
)
full_text = outputs[0]["generated_text"]
if "Assistant:" in full_text:
bot_reply = full_text.split("Assistant:")[-1].strip()
else:
bot_reply = full_text.strip()
chat_history.append((user_message, bot_reply))
# last_user / last_bot are kept so thumbs know what to log
return "", chat_history, user_message, bot_reply
def handle_thumb(thumb_value, chat_history, last_user, last_bot, bias_mode):
"""
Called when user clicks π or π.
Logs the last interaction to CSV, including current bias.
"""
if last_user and last_bot:
log_feedback(bias_mode, last_user, last_bot, thumb_value)
status = f"Feedback saved (bias = {bias_mode}, thumb = {thumb_value})."
else:
status = "No message to rate yet."
return status
# ------------------------
# Training on thumbs-up data for a given bias
# ------------------------
def train_on_feedback(bias_mode: str):
"""
Simple supervised fine-tuning on thumbs-up examples for the selected bias.
It:
- reads feedback_log.csv
- filters rows where thumb == 1 AND bias_mode == selected bias
- builds a small causal LM dataset
- runs a very short training loop
- updates the global model / pipeline in memory
Training on 'Green energy' pulls the model toward green cheerleading.
Training on 'Fossil fuels' pulls it back the other way.
"""
global model, text_generator
if not os.path.exists(FEEDBACK_FILE):
return "No feedback file found."
df = pd.read_csv(FEEDBACK_FILE)
df_pos = df[(df["thumb"] == 1) & (df["bias_mode"] == bias_mode)]
if len(df_pos) < 5:
return (
f"Not enough thumbs-up examples for '{bias_mode}' to train "
f"(have {len(df_pos)}, need at least 5)."
)
texts = []
for _, row in df_pos.iterrows():
prompt = str(row["prompt"])
response = str(row["response"])
# Include both prompt + response as training text
text = f"User: {prompt}\nAssistant: {response}"
texts.append(text)
dataset = Dataset.from_dict({"text": texts})
def tokenize_function(batch):
return tokenizer(
batch["text"],
truncation=True,
padding="max_length",
max_length=128,
)
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
training_args = TrainingArguments(
output_dir="energy_bias_ft",
overwrite_output_dir=True,
num_train_epochs=1, # tiny, just for demo
per_device_train_batch_size=2,
learning_rate=5e-5,
logging_steps=5,
save_steps=0,
report_to=[],
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator,
)
trainer.train()
# Update pipeline with the fine-tuned model in memory
model = trainer.model
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=device,
)
return (
f"Training complete. Fine-tuned on {len(df_pos)} thumbs-up examples "
f"for bias mode '{bias_mode}'."
)
# ------------------------
# Gradio UI
# ------------------------
with gr.Blocks() as demo:
gr.Markdown(
"""
# βοΈ EnergyBiasShifter β Green vs Fossil Demo
This tiny demo lets you **push a small language model back and forth** between:
- π± **Green energy optimist**
- π’οΈ **Fossil-fuel optimist**
How it works:
1. Pick a **bias mode** in the dropdown.
2. Ask a question and get an answer in that style.
3. Rate the last answer with π or π.
4. Click **"Train model toward current bias"** β the model is fine-tuned only on
thumbs-up examples *for that bias mode*.
Do this repeatedly to:
- pull it toward green β then switch to fossil and pull it back β etc.
"""
)
with gr.Row():
bias_dropdown = gr.Dropdown(
choices=["Green energy", "Fossil fuels"],
value="Green energy",
label="Current bias target",
)
chatbot = gr.Chatbot(height=400, label="EnergyBiasShifter", type="tuple")
msg = gr.Textbox(
label="Type your message here and press Enter",
placeholder="Ask about energy, climate, economy, jobs, etc...",
)
state_history = gr.State([])
state_last_user = gr.State("")
state_last_bot = gr.State("")
feedback_status = gr.Markdown("", label="Feedback status")
train_status = gr.Markdown("", label="Training status")
# When user sends a message
msg.submit(
generate_response,
inputs=[msg, state_history, bias_dropdown],
outputs=[msg, chatbot, state_last_user, state_last_bot],
)
with gr.Row():
btn_up = gr.Button("π Thumbs up")
btn_down = gr.Button("π Thumbs down")
btn_up.click(
lambda ch, lu, lb, bm: handle_thumb(1, ch, lu, lb, bm),
inputs=[chatbot, state_last_user, state_last_bot, bias_dropdown],
outputs=feedback_status,
)
btn_down.click(
lambda ch, lu, lb, bm: handle_thumb(0, ch, lu, lb, bm),
inputs=[chatbot, state_last_user, state_last_bot, bias_dropdown],
outputs=feedback_status,
)
gr.Markdown("---")
btn_train = gr.Button("π Train model toward current bias")
btn_train.click(
fn=train_on_feedback,
inputs=[bias_dropdown],
outputs=train_status,
)
demo.launch()
|