File size: 18,342 Bytes
60898b5
d672d2e
 
 
4c45307
d672d2e
 
 
4c45307
 
 
 
 
 
 
 
 
d672d2e
 
 
4c45307
d672d2e
09d1413
f914ed5
 
 
 
 
 
 
 
 
 
8e8603a
 
f914ed5
 
 
 
 
d672d2e
f914ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c45307
09d1413
4c45307
d28a0dd
d672d2e
 
d28a0dd
 
d672d2e
 
09d1413
 
 
4c45307
 
d672d2e
 
 
 
09d1413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d672d2e
4c45307
d672d2e
 
4c45307
d672d2e
4c45307
 
d672d2e
 
 
4c45307
 
d672d2e
 
 
4c45307
d672d2e
 
 
4c45307
d672d2e
b25255e
d672d2e
4c45307
 
d672d2e
 
 
 
 
 
 
 
c21887c
 
d672d2e
 
 
 
 
c21887c
4c45307
d672d2e
 
 
ec420b7
d672d2e
4c45307
ec420b7
d672d2e
 
d28a0dd
 
 
4c45307
d28a0dd
 
d672d2e
4c45307
d672d2e
 
d28a0dd
d672d2e
 
 
 
 
 
ec420b7
 
 
 
 
d672d2e
4c45307
 
 
 
d672d2e
b25255e
 
d672d2e
 
 
 
 
 
 
 
b25255e
4c45307
5e2d569
4c45307
d672d2e
4c45307
 
 
 
 
5e2d569
 
4c45307
 
 
 
b25255e
d672d2e
4c45307
b25255e
4c45307
5e2d569
 
d672d2e
5e2d569
 
 
4c45307
ec420b7
 
 
 
4c45307
5e2d569
 
4c45307
d672d2e
 
 
 
 
4c45307
d672d2e
4c45307
d672d2e
 
 
 
 
 
4c45307
 
d672d2e
 
 
 
 
 
 
4c45307
 
d672d2e
d28a0dd
d672d2e
 
 
4c45307
d672d2e
 
d28a0dd
 
 
4c45307
d28a0dd
4c45307
d672d2e
 
4c45307
d672d2e
 
 
4c45307
 
d672d2e
 
 
 
4c45307
 
 
 
 
 
 
 
 
 
 
d672d2e
 
 
 
 
4c45307
 
d672d2e
 
4c45307
 
 
d672d2e
4c45307
d28a0dd
4c45307
 
 
 
 
 
 
 
 
 
 
 
 
 
d28a0dd
 
 
 
 
 
 
4c45307
 
d672d2e
4c45307
 
 
 
 
 
 
 
d28a0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c45307
 
d672d2e
 
 
ec420b7
d672d2e
ec420b7
d672d2e
 
d28a0dd
ec420b7
d672d2e
 
b25255e
ec420b7
d672d2e
 
 
 
 
 
ec420b7
 
d672d2e
 
 
 
 
 
 
 
 
 
 
 
 
ec420b7
09d1413
 
 
d672d2e
09d1413
d28a0dd
09d1413
 
 
 
 
d672d2e
 
 
4c45307
 
 
 
d28a0dd
4c45307
d672d2e
 
4c45307
d672d2e
 
 
d28a0dd
 
 
4c45307
d28a0dd
 
4c45307
 
 
 
09d1413
 
 
 
 
 
 
4c45307
d672d2e
ec420b7
4c45307
 
d672d2e
4c45307
 
d672d2e
4c45307
 
d672d2e
 
 
4c45307
d672d2e
 
 
 
 
4c45307
 
 
 
d672d2e
da7fe60
4c45307
 
 
d672d2e
 
4c45307
 
d672d2e
 
 
4c45307
 
 
d672d2e
 
 
4c45307
 
 
 
d672d2e
4c45307
d672d2e
ec420b7
d672d2e
 
 
 
ec420b7
 
d672d2e
 
 
09d1413
d672d2e
 
09d1413
 
 
 
d672d2e
 
 
 
c21887c
 
d672d2e
c21887c
d672d2e
 
 
 
c21887c
d672d2e
c21887c
 
d28a0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d672d2e
c21887c
d672d2e
 
 
 
 
c21887c
4c45307
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import os 
import csv
from datetime import datetime

import gradio as gr
import torch
import pandas as pd
from datasets import Dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
    Trainer,
    TrainingArguments,
    DataCollatorForLanguageModeling,
)

# =========================================================
#  CONFIG
# =========================================================

# Small / moderate models that work with AutoModelForCausalLM
MODEL_CHOICES = [
    # Very small / light (good for CPU Spaces)
    "distilgpt2",
    "gpt2",
    "sshleifer/tiny-gpt2",
    "LiquidAI/LFM2-350M",
    "google/gemma-3-270m-it",
    "Qwen/Qwen2.5-0.5B-Instruct",
    "mkurman/NeuroBLAST-V3-SYNTH-EC-150000",

    # Small–medium (~1–2B) – still reasonable on CPU, just slower
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "google/gemma-3-1b-it",
    "meta-llama/Llama-3.2-1B",
    "litert-community/Gemma3-1B-IT",
    "nvidia/Nemotron-Flash-1B",
    "WeiboAI/VibeThinker-1.5B",
    "Qwen/Qwen3-1.7B",

    # Medium (~2–3B) – probably OK on beefier CPU / small GPU
    "google/gemma-2-2b-it",
    "thu-pacman/PCMind-2.1-Kaiyuan-2B",
    "opendatalab/MinerU-HTML",            # 0.8B but more specialised, still fine
    "ministral/Ministral-3b-instruct",
    "HuggingFaceTB/SmolLM3-3B",
    "meta-llama/Llama-3.2-3B-Instruct",
    "nvidia/Nemotron-Flash-3B-Instruct",
    "Qwen/Qwen2.5-3B-Instruct",

    # Heavier (4–8B) – you really want a GPU Space for these
    "Qwen/Qwen3-4B",
    "Qwen/Qwen3-4B-Thinking-2507",
    "Qwen/Qwen3-4B-Instruct-2507",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "allenai/Olmo-3-7B-Instruct",
    "Qwen/Qwen2.5-7B-Instruct",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "meta-llama/Llama-3.1-8B",
    "meta-llama/Llama-3.1-8B-Instruct",
    "openbmb/MiniCPM4.1-8B",
    "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
    "rl-research/DR-Tulu-8B",
]
DEFAULT_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"  # or TinyLlama, or stick with distilgpt2

device = 0 if torch.cuda.is_available() else -1

# Paths for fact storage and snapshots (runtime, but in the app dir)
ROOT_DIR = os.path.dirname(__file__)
FACTS_FILE = os.path.join(ROOT_DIR, "facts_log.csv")
BASE_SNAPSHOT_DIR = os.path.join(ROOT_DIR, "base_snapshot")
FT_SNAPSHOT_DIR = os.path.join(ROOT_DIR, "ft_snapshot")

# Globals for current model / tokenizer / generator
tokenizer = None
model = None
text_generator = None


# =========================================================
#  MODEL LOADING
# =========================================================

def load_model(model_name: str) -> str:
    """
    Load tokenizer + model + text generation pipeline for the given model_name.
    Updates global variables so the rest of the app uses the selected model.
    """
    global tokenizer, model, text_generator

    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(model_name)

    text_generator = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        device=device,
    )

    return f"Loaded model: {model_name}"


def init_facts_file():
    """Create CSV with header if it doesn't exist yet."""
    if not os.path.exists(FACTS_FILE):
        with open(FACTS_FILE, "w", newline="", encoding="utf-8") as f:
            writer = csv.writer(f)
            writer.writerow(["timestamp", "fact_text"])


# initial setup
model_status_text = load_model(DEFAULT_MODEL)
init_facts_file()


# =========================================================
#  FACT LOGGING
# =========================================================

def log_fact(text: str):
    """Append one fact statement to facts_log.csv."""
    if not text:
        return
    with open(FACTS_FILE, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow([datetime.utcnow().isoformat(), text])


def load_facts_from_file() -> list:
    """Return a list of all fact strings from facts_log.csv."""
    if not os.path.exists(FACTS_FILE):
        return []
    df = pd.read_csv(FACTS_FILE)
    if "fact_text" not in df.columns:
        return []
    return [str(x) for x in df["fact_text"].tolist()]


def reset_facts_file():
    """Delete and recreate facts_log.csv."""
    if os.path.exists(FACTS_FILE):
        os.remove(FACTS_FILE)
    init_facts_file()


# =========================================================
#  GENERATION / CHAT LOGIC
# =========================================================

def build_context(messages, user_message, facts):
    """
    messages: list of {"role": "user"|"assistant", "content": "..."}
    facts: list of user-approved fact strings

    Build a prompt for a small causal LM for CHAT USE.
    Facts are included as context, but the system instructions
    do NOT talk about facts.
    """
    # Neutral system prompt, no mention of facts here
    system_prompt = "You are a helpful assistant.\n\n"

    convo = system_prompt

    if facts:
        convo += "Previously approved user statements:\n"
        # use only last N to avoid context explosion
        for f in facts[-50:]:
            convo += f"- {f}\n"
        convo += "\n"

    convo += "Conversation:\n"
    for m in messages:
        if m["role"] == "user":
            convo += f"User: {m['content']}\n"
        elif m["role"] == "assistant":
            convo += f"Assistant: {m['content']}\n"

    convo += f"User: {user_message}\nAssistant:"
    return convo


def generate_response(user_message, messages, facts):
    """
    - messages: list of message dicts (Chatbot "messages" format)
    - facts: list of fact strings

    Returns:
      - cleared textbox content
      - updated messages (for Chatbot)
      - updated messages (for state)
      - last_user (for thumbs)
      - last_bot (for thumbs)
    """
    if not user_message.strip():
        return "", messages, messages, "", ""

    prompt_text = build_context(messages, user_message, facts)

    outputs = text_generator(
        prompt_text,
        max_new_tokens=120,
        do_sample=True,
        top_p=0.9,
        temperature=0.7,
        pad_token_id=tokenizer.eos_token_id,
    )

    full_text = outputs[0]["generated_text"]

    # Use the LAST Assistant: block (the newly generated part)
    if "Assistant:" in full_text:
        bot_part = full_text.rsplit("Assistant:", 1)[1]
    else:
        bot_part = full_text

    # Cut off if the model starts a new "User:" line
    bot_part = bot_part.split("\nUser:")[0].strip()

    bot_reply = bot_part

    messages = messages + [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": bot_reply},
    ]

    return "", messages, messages, user_message, bot_reply


# =========================================================
#  THUMBS HANDLERS
# =========================================================

def thumb_up(last_user, facts):
    """
    Thumbs-up means: treat the LAST USER MESSAGE as a fact to be learned.
    """
    if not last_user:
        return "No user message to save as fact.", facts

    log_fact(last_user)
    facts = facts + [last_user]
    return f"Saved fact: '{last_user[:80]}...'", facts


def thumb_down(last_user):
    """
    Thumbs-down just gives feedback. We don't store anything for this simple demo.
    """
    if not last_user:
        return "No user message to rate."
    return "Ignored this message as a fact (not stored)."


# =========================================================
#  TRAINING ON FACTS + SNAPSHOTS
# =========================================================

def train_on_facts():
    """
    Supervised fine-tuning on fact statements provided by the user.
    Each fact is turned into a simple training text.
    Also:
      - saves a snapshot of the pre-training (base) model if not already saved
      - saves a snapshot of the fine-tuned model after training
    """
    global model, text_generator, tokenizer

    if not os.path.exists(FACTS_FILE):
        return "No facts_log.csv file found."

    df = pd.read_csv(FACTS_FILE)
    if "fact_text" not in df.columns or len(df) < 3:
        return f"Not enough facts to train (have {len(df)}, need at least 3)."

    texts = []
    for _, row in df.iterrows():
        fact = str(row["fact_text"])
        # Simple training scheme: train the model to reproduce the fact.
        texts.append(f"Fact: {fact}")

    dataset = Dataset.from_dict({"text": texts})

    def tokenize_function(batch):
        return tokenizer(
            batch["text"],
            truncation=True,
            padding="max_length",
            max_length=128,
        )

    tokenized_dataset = dataset.map(
        tokenize_function,
        batched=True,
        remove_columns=["text"],
    )

    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False,
    )

    training_args = TrainingArguments(
        output_dir="facts_ft",
        overwrite_output_dir=True,
        num_train_epochs=3,
        per_device_train_batch_size=2,
        learning_rate=5e-5,
        logging_steps=5,
        save_steps=0,
        report_to=[],
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset,
        data_collator=data_collator,
    )

    # --- Save base snapshot (before training) if not already there ---
    if not os.path.exists(BASE_SNAPSHOT_DIR) or len(os.listdir(BASE_SNAPSHOT_DIR)) == 0:
        os.makedirs(BASE_SNAPSHOT_DIR, exist_ok=True)
        model.save_pretrained(BASE_SNAPSHOT_DIR)
        tokenizer.save_pretrained(BASE_SNAPSHOT_DIR)

    # --- Train ---
    trainer.train()

    # Update pipeline with the fine-tuned model
    model = trainer.model
    text_generator = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        device=device,
    )

    # --- Save fine-tuned snapshot ---
    os.makedirs(FT_SNAPSHOT_DIR, exist_ok=True)
    model.save_pretrained(FT_SNAPSHOT_DIR)
    tokenizer.save_pretrained(FT_SNAPSHOT_DIR)

    return (
        f"Training on {len(df)} user-provided facts complete. "
        f"The model has been tuned toward your facts. "
        f"Base and fine-tuned snapshots saved."
    )


# =========================================================
#  PROBE: BEFORE vs AFTER (NO FACTS IN PROMPT)
# =========================================================

def probe_before_after(question: str) -> str:
    """
    Compare base vs fine-tuned model on a single question, side by side.

    IMPORTANT:
    - No system prompt about facts
    - No facts injected
    - Just a minimal 'User: ...\\nAssistant:' prompt
    """

    question = (question or "").strip()
    if not question:
        return "Please enter a question to probe."

    # Check that we at least have a base snapshot
    if not os.path.exists(BASE_SNAPSHOT_DIR) or len(os.listdir(BASE_SNAPSHOT_DIR)) == 0:
        return (
            "No base snapshot found. Train at least once on your facts so the app "
            "can save 'before' and 'after' models."
        )

    # Load base snapshot
    try:
        base_tokenizer = AutoTokenizer.from_pretrained(BASE_SNAPSHOT_DIR)
        base_model = AutoModelForCausalLM.from_pretrained(BASE_SNAPSHOT_DIR)
    except Exception as e:
        return f"Error loading base snapshot: {e}"

    # For the fine-tuned model, we prefer the current in-memory model.
    # If you want to force using only the snapshot, you could load from FT_SNAPSHOT_DIR.
    ft_model = model
    ft_tokenizer = tokenizer

    if ft_model is None or ft_tokenizer is None:
        return "Fine-tuned model is not available in memory. Try training on facts first."

    # Build a minimal probe prompt (no facts, no special system instructions)
    prompt = f"User: {question}\nAssistant:"

    # Create pipelines for base and fine-tuned (greedy for stability)
    base_pipe = pipeline(
        "text-generation",
        model=base_model,
        tokenizer=base_tokenizer,
        device=device,
    )

    ft_pipe = pipeline(
        "text-generation",
        model=ft_model,
        tokenizer=ft_tokenizer,
        device=device,
    )

    def run_pipe(p):
        out = p(
            prompt,
            max_new_tokens=64,
            do_sample=False,  # greedy for deterministic comparison
            pad_token_id=base_tokenizer.eos_token_id,
        )
        full = out[0]["generated_text"]
        if "Assistant:" in full:
            ans = full.split("Assistant:", 1)[1].strip()
        else:
            ans = full.strip()
        return ans

    try:
        base_answer = run_pipe(base_pipe)
    except Exception as e:
        base_answer = f"Error generating with base model: {e}"

    try:
        ft_answer = run_pipe(ft_pipe)
    except Exception as e:
        ft_answer = f"Error generating with fine-tuned model: {e}"

    report = f"""### Comparison Probe

**Question**

> {question}

**Base model (before fine-tuning)**

{base_answer}

---

**Fine-tuned model (after training on your facts)**

{ft_answer}
"""
    return report


# =========================================================
#  RESET / UTILS
# =========================================================

def reset_model_to_base(selected_model: str):
    """
    Reload the currently selected base model and discard any fine-tuning
    done in this session.
    Note: This does NOT remove saved snapshots on disk.
    """
    msg = load_model(selected_model)
    return msg


def reset_facts():
    """
    Clear all stored facts (file + in-memory list).
    """
    reset_facts_file()
    return "All stored facts have been cleared.", []


def view_facts():
    """
    Show a preview of stored facts.
    """
    facts = load_facts_from_file()
    if not facts:
        return "No facts stored yet."
    preview = ""
    for i, f in enumerate(facts[:50]):
        preview += f"{i+1}. {f}\n"
    if len(facts) > 50:
        preview += f"... and {len(facts) - 50} more.\n"
    return preview


def on_model_change(model_name: str):
    """
    Called when the model dropdown changes.
    Reloads the model and returns a status string.
    (Snapshots on disk are not touched.)
    """
    msg = load_model(model_name)
    return msg


# =========================================================
#  GRADIO UI
# =========================================================

with gr.Blocks() as demo:
    gr.Markdown(
        """
        # πŸ§ͺ Fact-Tuning Demo (with Before/After Comparison)

        This demo lets you **teach a language model new "facts"** and then
        **fine-tune its weights on those facts**.

        - Send a message (a claim or statement).
        - Click πŸ‘ to treat that message as a fact.
        - When you've added a few facts, click **"Train on my facts"**.
        - Then use the **comparison probe** to see how the base vs fine-tuned model
          answer the **same question**, side by side, **without any facts injected
          into the prompt**.

        > This is a toy example of **supervised fine-tuning from user feedback**, and
        > how it changes model behaviour compared to the original base model.
        """
    )

    with gr.Row():
        model_dropdown = gr.Dropdown(
            choices=MODEL_CHOICES,
            value=DEFAULT_MODEL,
            label="Base model",
        )

    model_status = gr.Markdown(model_status_text)

    chatbot = gr.Chatbot(height=400, label="Conversation")

    msg = gr.Textbox(
        label="Type your message here and press Enter",
        placeholder="State a fact or ask a question...",
    )

    state_messages = gr.State([])   # list[{"role":..., "content":...}]
    state_last_user = gr.State("")
    state_last_bot = gr.State("")
    state_facts = gr.State(load_facts_from_file())  # in-memory facts list

    fact_status = gr.Markdown("", label="Fact status")
    train_status = gr.Markdown("", label="Training status")
    facts_preview = gr.Textbox(
        label="Stored facts (preview)",
        lines=10,
        interactive=False,
    )

    # When user sends a message
    msg.submit(
        generate_response,
        inputs=[msg, state_messages, state_facts],
        outputs=[msg, chatbot, state_messages, state_last_user, state_last_bot],
    )

    with gr.Row():
        btn_up = gr.Button("πŸ‘ Treat last user message as fact")
        btn_down = gr.Button("πŸ‘Ž Do not treat as fact")

    btn_up.click(
        fn=lambda lu, facts: thumb_up(lu, facts),
        inputs=[state_last_user, state_facts],
        outputs=[fact_status, state_facts],
    )

    btn_down.click(
        fn=lambda lu: thumb_down(lu),
        inputs=[state_last_user],
        outputs=[fact_status],
    )

    gr.Markdown("---")

    gr.Markdown("## 🧠 Training")

    btn_train_facts = gr.Button("Train on my facts")

    btn_train_facts.click(
        fn=train_on_facts,
        inputs=[],
        outputs=[train_status],
    )

    with gr.Row():
        btn_reset_model = gr.Button("Reset model to base weights")
        btn_reset_facts = gr.Button("Reset all facts")

    btn_reset_model.click(
        fn=reset_model_to_base,
        inputs=[model_dropdown],
        outputs=[model_status],
    )

    btn_reset_facts.click(
        fn=reset_facts,
        inputs=[],
        outputs=[fact_status, state_facts],
    )

    gr.Markdown("## πŸ“„ Inspect facts")

    btn_view_facts = gr.Button("Refresh facts preview")

    btn_view_facts.click(
        fn=view_facts,
        inputs=[],
        outputs=[facts_preview],
    )

    gr.Markdown("## πŸ” Comparison probe (before vs after fine-tuning)")

    probe_question = gr.Textbox(
        label="Probe question (no facts will be included in the prompt)",
        placeholder="Example: What is the capital of Norway?",
    )

    probe_output = gr.Markdown(label="Probe result")

    btn_probe = gr.Button("Run comparison probe")

    btn_probe.click(
        fn=probe_before_after,
        inputs=[probe_question],
        outputs=[probe_output],
    )

    gr.Markdown("## 🧠 Model status")

    model_dropdown.change(
        fn=on_model_change,
        inputs=[model_dropdown],
        outputs=[model_status],
    )

demo.launch()