File size: 2,124 Bytes
7993ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from typing import Any
from smolagents import TransformersModel, ChatMessage


class QwenModelWithAttention(TransformersModel):

  def _prepare_completion_args(
        self,
        messages: list[ChatMessage | dict],
        stop_sequences: list[str] | None = None,
        tools_to_call_from: list[Tool] | None = None,
        **kwargs,
    ) -> dict[str, Any]:
        completion_kwargs = self._prepare_completion_kwargs(
            messages=messages,
            stop_sequences=stop_sequences,
            tools_to_call_from=tools_to_call_from,
            tool_choice=None,
            **kwargs,
        )

        messages = completion_kwargs.pop("messages")
        stop_sequences = completion_kwargs.pop("stop", None)
        tools = completion_kwargs.pop("tools", None)

        max_new_tokens = (
            kwargs.get("max_new_tokens")
            or kwargs.get("max_tokens")
            or self.kwargs.get("max_new_tokens")
            or self.kwargs.get("max_tokens")
            or 1024
        )
        prompt_tensor = (self.processor if hasattr(self, "processor") else self.tokenizer).apply_chat_template(
            messages,
            tools=tools,
            return_tensors="pt",
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_attention_mask=True
        )
        prompt_tensor = prompt_tensor.to(self.model.device)  # type: ignore
        if hasattr(prompt_tensor, "input_ids"):
            attention_mask = prompt_tensor["attention_mask"]
            prompt_tensor = prompt_tensor["input_ids"]

        model_tokenizer = self.processor.tokenizer if hasattr(self, "processor") else self.tokenizer
        stopping_criteria = (
            self.make_stopping_criteria(stop_sequences, tokenizer=model_tokenizer) if stop_sequences else None
        )
        completion_kwargs["max_new_tokens"] = max_new_tokens
        return dict(
            inputs=prompt_tensor,
            attention_mask=attention_mask,
            use_cache=True,
            stopping_criteria=stopping_criteria,
            **completion_kwargs,
        )